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1. I?ltroducfion

The origin of the study of process semantics can be situated in the field of

automata theory and formal languages. Typically, the abstract view that is

taken in this field leaves from a process only its set of execution traces, the

language determined by the process behavior associated to some abstract

machine. Although this abstraction from all but the execution traces is the

right one for a vast area of applications, Milner [27, 29] observed in his seminal

book that it precludes one from modeling, in a satisfactory way, certain

features that arise when communication between abstract machines is consid-

ered, such as deadlock behavior. The same observation was made by Hoare,

who initially provided his CSP with a trace semantics [18] but later preferred a

less abstracting semantics—the so-called failure semantics [9, 19]. In recent

years, much work has been done and is going on to study such process

semantics that do not go all the way to the abstraction to trace sets or

languages.

However, much less work has been done to explore the relationships be-

tween the “classical” and well-established theory of automata and formal

languages and the more recent views on processes. As one example of such an

exploration, we mention [13], where the trace semantics is called linear tinze

semantics (LT) and the less-abstract process semantics is called branching time

semantics (BT). For more work in the same direction, see [14] and [26].

The present paper also addresses a question that arises from the comparison

of LT and BT. The problem is as follows: As is well known, the equality

problem for context-free languages is unsolvable, meaning that it is undecid-

able whether two context-free grammars have the same (finite) trace semantics.

With the availability of more discriminating process semantics, such as Milner’s

bisimulation semantics or Hoare’s failure semantics, it is natural to ask whether

the equality problem for context-free granzrnars is also unsolvable in such a finer

semantics. In this paper, we only look at bisimulation semantics (for some other

process semantics such as failure semantics, see Section 9). For the question to

make sense, we have to transpose the concept of a context-free grammar to the

setting of process algebra, as we collectively call the algebraic approaches to

process semantics that are exemplified by the work of Milner [27-29] and of
Hoare [9, 19]. This transposition is rather obvious: Every context-free grammar

can be converted (while retaining the same trace semantics) to a context-free

grammar in Greibach Normal Form. And such a grammar in GNF is just

another notation for what is known in process algebra as a process specifica-

tion by means of a system of guarded recursion equations. (An alternative

notation for a system of recursion equations can be obtained in w-calculus, see
[26] Or [28].)

So the question that we consider is:

Is the equality problem for context-free grammars in Greibach Normal

Form, or, equivalently for process specifications by means of systems of

guarded recursion equations in the signature of Basic Process Algebra,

solvable when “equality” refers to bisimulation equivalence?

Here the word “basic” in Basic Process Algebra (or BPA) indicates that only

process operators + and . are present, and no parallel or other operators.

(Roughly, these operators can be compared with “union” and “concatenation,”
respectively, in trace semantics.)
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Remarkably, the answer is affirmative, if we adopt the natural restriction to

grammars without useless symbols and useless productions. In hindsight, this is

not too surprising, since processes under bisimulation semantics contain much

more information than their abstractions, the corresponding finite trace sets

(the context-free languages). The proof of the decidability is based upon the

fact that the processes (under bisimulation semantics) that yield the context-free

languages as their trace sets, display a very periodical structure that can be

made explicit in the corresponding process graphs or transition diagrams. This

periodicity may in itself be illuminating when context-free languages are

considered. For instance, it would be interesting to derive well-known periodic-

ity properties of context-free languages, such as the Pumping Lemma, directly

from the periodicity of the “underlying” processes.

The proof below employs, in an essential way, the supposition that the

context-free grammar has no useless symbols and productions, that is, useless

as regards generating the context-free language. A more general question,

however, would be the one without this assumption, that is, the question: “Is

bisimulation equivalence decidable for all guarded recursive process specifica-

tions in BPA?” This question is specific for process algebra and “too general”

to be of interest for the theory of formal languages when only sets of finite

traces are considered, but would be of interest when infinitary trace languages

are considered also.

In Section 8, we show how, as a very straightforward corollary of the main

theorem, we find the well-known result of decidability of equality for simple

context-free languages. Section 9, finally, contains some further questions and

remarks; we also mention some alternative proofs of the main theorem, which

have been given subsequent to the first version of this paper [3].

2. Context-Free Languages

For definitions and terminology concerning context-free grammars (CFGS) and

context-free languages (CFLS), we refer to [20]. In this preliminary section, we

recall some basic facts that will be used in the sequel. The following example

fixes some notation:

Example 2.1

NOTE: This is Example 4.3 in [20].

(i){ S-+aB, S- bA, A~a, A~aS, A~ bAA, B~b, B- bS, B-aBB}

is the CFG with variables S, A, B, terminals a, b and start symbol S. The

corresponding CFL consists of all words w E {a, b}* containing an equal

nonzero number of a‘s and b ‘s, as will be apparent from an inspection of

the process graph determined by this CFG, in the sequel (Example 6.2.4).

(ii) Henceforth, we write CFGS using the bar notation, in which the CFG of (i)

looks like

S a aBlbA

A ~ alaslb~

B 4 blbSlaBB.

We suppose that all our CFLS do not contain the empty word E; hence, we

may suppose that no CFG contains an E-production, that is, a production of

the form A -+ e. (As is well known, this does not essentially restrict generality;
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cf. Theorem 4.3 in [20].) A property of CFGS that is often used in the sequel is

given by the following definition:

Definition 2.2

(i) A CFG in which every production is of the form A + a a, where A is a

variable, a is a terminal, a is a possibly empty string of variables, is said to

be in Greibach Normal Fo?m (GNF).

(ii) If moreover the length of a (in symbols) does not exceed 2, we say that the
CFG is in restricted GNF. (In [17], the format of restricted GNF is called

“2-standard form”.)

Example 2.3. The CFG in Example 2.1 is in restricted GNF,

It is well known that every CFL (without ●) can be generated by a CFG in

GNF. We even have:

THEOREM 2.4. E[wy CFL without e can be generated by a CFG in restricted

GNF.

PROOF. See the solution to Exercise S4. 16 [20] or see Lemma 6.4 [31,

p. 100]. ❑

3. Basic Process Algebra

The axiom system Basic Process Algebra or BPA consists of the axioms in

Table I: This axiom system is the core of a variety of more extensive process

axiomatizations, including for instance axioms for parallel operators on pro-

cesses as in ACP, Algebra of Communicating Processes (see [11, [2], and [4–81).

In this paper, we exclusively work in the setting of BPA. The signature of BPA

consists of a set A = {a, b, c,. . . } of constants, called atomic actions, and the

operators + (alternative composition) and . (sequential composition). (The

atomic actions will correspond with the terminal symbols from a CFG.) So, for

instance, a . ( b + c) “ d denotes the process whose first action is “a” followed

by a choice between b and c and concluding with action d. Often the dot . will

be suppressed. In fact, the previous process expression denotes the same

process as a(cd + bd), according to the axioms Al and A4 of BPA. Note,

however, that BPA does not enable us to prove that a(cd + bd) = acd + abd.

By a process, we mean an element of some algebra satisfying the axioms of

BPA; the x, y, z in Table I vary over processes. Such an algebra is a process

algebra (for BPA), for example, the initial algebra of BPA is one.

In this paper, we are concerned with one process algebra only, namely, the

graph model of BPA consisting of jinitely branching process graphs modulo
bisimulation. All these concepts are treated in extenso in [2], [4]. and [6]; for the

sake of completeness of the present paper, we give a short exposition. Figure 1

contains two process graphs, g and h. Process graphs have a root node

(indicated by the small arrow ~ ) and have edges labeled with elements

a, b, c,... from the action alphabet A. The two process graphs g, h displayed

in Figure 1 are in fact bisimilar, that is, there exists a bisimukztion between

them. A bisimulation (from g to h) is a binary relation R with the set of nodes

of g, NODES(g), as domain and NODES(/Z ) as codomain, such that the roots of

g, /z are related and satisfying:

(i) If s R t and s ~~ s’ is an edge in g, then there is an edge t +a t’ in h

such that s’ R t’;
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TABLE I. BASIC PROCESS ALGEBRA

X+y=y+x Al
(X+y)+z=x+(y+z) A2
x+x=x A3

(X+y). z=x. z+y. z A4

(X”y)”z=x’(y”z) AS

9:

c b

a d

c b

(a)

,$’

FIGURE 1

(b)

h:

7 a

(ii) If s R t and t -. t’ is an edge in h, then there is an edge s -+. s’ in g
such that s’ R t’.

Indeed, a bisimulation between g, h in Figure 1 is obtained by relating the

nodes that can be joined by a horizontal line. (Incidentally, this bisimulation is

unique.) We indicate the fact that g, h are bisimilar, thus: g ~ h. The notion

of a bisimulation is originally due to Park [30].

Let G={g, h,... } be the set of all finitely branching process graphs (“finitely

branching” means that a node has only finitely many outgoing edges). Opera-

tions + and o are defined on G as follows:

—If gl, gz = G, then the product gl “ gl results from appending (a copy of) gz

at each terminal node (i.e., node without successors; this has nothing to do

with the terminals in a CFG) of gl, by identifying the root of gz with that

terminal node;

—The sum gl + gz is the result of unwinding gl, gz to gj, respectively, gj, in

order to make the roots acyclic (i.e., not lying on a cycle of steps) and, next,
identifying the roots. (For a more detailed definition, see [(2], [4], and [6].)

Now it turns out that bisimilarity e is not only an equivalence on G, but

even a congruence with respect to the operations just defined; and further-

more, we have

G/e I= BPA,
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that is, the quotient structure G/~ is a process algebra for BPA. We refer to
G/w as G, the graph model of BPA.

Each process graph g e G determines a set tr(g) of completed traces,

starting at the root and continued as far as possible, that is, either terminating

in an end node, or infinite. We now drop the word “completed.” For instance,

g in Figure 1 has finite traces: a, bca, bcbdaca, and also infinite traces such as

bdbdbd. . . . We refer to the set of finite traces of g as ftr(g). Now one can

prove:

PROPOSITION 3.1. Let g, h E G be bisimilar. Then, tr(g) = tr(h), and hence

ftr(g) = ftr(lz).

A proof will not be given here (see, e.g., [2], [4], and [6]). The proposition

allows us to assign a trace set tr( p) and a finite trace set ftr( p) to an element p

of G (a “process”).

For use in the sequel, we need the following notions:

(1) If s is a node of process graph g = G, then (g), is the subgraph of g

determined by s, that is, the process graph with root s and having all nodes

of g that are accessible from s. The edges of (g), are inherited from g.

(2) A process graph g is canonical if whenever for nodes s, t in g, the
subgraphs (g),, (g), are bisimilar, then s, t are identical.

4. RecursiL’e Definitions

The model G of Section 3 has the pleasant property that every system of

guarded recursion equations has a unique solution in it. We explain the syntax

of such definitions (also called specifications) in this section, and also point out

the relation with CFGS.

Definition 4.1

(i) A system of recursion equations (oL1er BPA) is a pair (X[l, E), where X. is a

recursion variable and E is a finite set of recursion equations {Xl =

S,(xo, ..., X,,) limo,..., n}. We indicate the tuple XO, . . . . X,, by X The s,(X)

are process expressions in the signature of BPA, possibly containing occurrences of

the recursion L’ariables in X. The Ljariable XO is the root uariable. Usually, we omit

mentioning tire root L’an’ab[e whetl presenting a system of recursion equations, with

the understanding that it is the first l~ariable in the actual presentation.

(ii) Suppose that the right-hand side of a recursion equation X, = s,(X) is in
no?mal form with respect to applications from left to right of axiom A 4 in Table I,
that is, (x + y)z = X.Z + yz. SUCA a rccursiott equation XL = s,(X) z’s guarded if

ele~ occurrence of X1 (j = O,. . . . n ) in s,(X) is preceded (<<guarded>’) by an atom

from the action alphabet; more precisely, el’e~ occurrence of +] is in a subexpres-

sion of the form a “ s’ for some atom a and expression s’. For instance,

Xo=aX1+Xz”b” X1

is not guarded, as the first occurrence of X, is unguarded, but the recursion

equation

X. =c(aX, +Xz. b.Xz)

is guarded.
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If the right-hand side of Xl = s,(TO is not in noirnal form with respect to axiom

A4, the recursion equation is said to be guarded if it is so after bringing the

right-hand side into A4-normal form.

A system of guarded recursion equations is also called a guarded system.

(iii) An expression without Lisible brackets is one in which all -I- -operators
precede, in the term formation, the “-operators. For example, aX1 + Xz “ b “ Xz is

without l~isible brackets, but C(aX1 + X, . b . Xz ) is not. A recursion equation is

without uisible brackets if its right-hand side is. Note that it is not possible to prolv

each expression in BPA equal to one without uisibie brackets.

(iti) If a system E of recursion equations is guarded and without uisible brackets,
each recursion equation is of the form

Xi = Ejal . al

where al is a possibly empty product of atoms and uariables (in case it is empty,

al . al is just aj). Now if, moreover, a, is exclusil’ely a product of Ljariables, E is

said to be in Greibach Nofmal Form (GNF), analogous to the same definition for

CFGS. If each al in E has length not exceeding 2, E is in restricted GNF.

A well-known fact, for whose proof we refer to [2], [4], and [6], is:

PROPOSITION 4.2. A guarded system of recursion equations has a unique

solution in G.

PROPOSITION 4.3. Each guarded system E of recursion equations over BPA

can, without altering the solution in G, be conL’erted to a system E’ in restricted

GNF.

PROOF. The conversion to a system in GNF is obvious. To prove that the

system can be converted to restricted GNF, assume that a system E in GNF is

given with variables X,, i = 1,..., n. Introduce new variables ~J for the

products X, XJ, all i, j. Replace each string (i.e., product) over X in E by the

corresponding string that uses the U-variables, starting the consecutive replace-

ments from the left. Then, form equations for Qj. Then, use again the

abbreviations U,l. This reduces the maximal length of the original strings by at

least one, if it 1s 3 or more. •l

Example 4.4

(i) Let E be the guarded system consisting of the single equation X = a(X +

b) XX. Then, a conversion to GNF may yield {X = aYXX, Y = b + aY2ZY}.

(ii) Let E be the system in GNF {X= a + bXYX, Y = b + cYXY}. Then a
conversion to restricted GNF may yield

{X=a+bUX, U= XY=aY+bUXY=aY+ bUU,

Y= b+cVY, V= XY=bX+cW}.

Henceforth, all our systems of recursion equations will be in restricted GNF. The

reason to prefer the GNF format of systems of recursion equations or CFGS is
that it implies in process algebra a well-understood theory of finding solutions.

In principle, it would also be possible to consider CFGS in say Chomsky

Normal Form or even general CFGS; then, the corresponding systems of

recursion equations would in general be unguarded. Now, although such
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FIGURE2

systems have always a solution in G, these solutions are in general not unique

for unguarded systems. Nevertheless, one can associate to a system of recur-

sion equations, possibly unguarded, a certain solution that has again the

“intended” CFL as finite trace set; but this is much less straightforward than

for the guarded case.

Notation 4.5. If E is a system of recursion equations, Et will denote the

CFG obtained by replacing + by 1,and = by ~ . The start symbol of E’ is

the root variable of E.

THEOREM 4.6. Let E be in restricted GNF, with solution p ● G. Then ftr( p ) is

just the CFL generated by E’.

PROOF. We merely sketch the proofi filling in the details is routine. By

Proposition 4.2 it is sufficient to consider one particular process graph g

representing p, the solution of E. Such a graph can be found by developing E

to a tree, in the obvious way illustrated with an example below. Now it is

convenient, while developing, to label the nodes with the process that remains

to be done at that stage; this process is represented by a string (i.e.. a product)

of recursion variables. For example, E = {X = a + bXX} develops to the

graph in Figure 2(a); and since XX = (a + bAX)X = aX + bX~ we can

develop further to the graph (a tree, in fact) in Figure 2(b); and so on.

Clearly, the resulting possibly infinite tree is a record of all the leftmost

derivations using start symbol X by means of the CFG E’; and the terminating

branches in the tree correspond to derivations of words in which no variable

occurs, that is, to members of the CFL generated by E’. For example,

X * bXX * bbXXX - bbaXX == bbczaX * bbaaa. ❑

5. IVonned Processes

We now describe a simplification algorithm to be applied to a system E of

recursion equations in restricted GNF, yielding a system E’ that does in

general not have the same solution in the graph model G, but which has the

same finite trace set, that is, determines the same CFL. The idea is to remove

parts of E that do not contribute to the generation of the finite traces; cf. the

similar procedure in [20] to remove superfluous variables and productions from

a CFG. The algorithm is essentially the same as the one in [20], but the

presentation below, using an underlining procedure, is more in line with our
process algebra point of view.
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Definition 5.1

(i) A process graph g in G is peipetual if g has no finite (completed) traces.
A process p in G is perpetual if p is represented by a perpetual process

graph.

(ii) The norm of a process graph g, written Igl, is the least number of steps it

takes from the root to reach a termination node, if g is not perpetual. (So

Igl is the minimum length of a completed finite trace of g.) If g is
perpetual, g has no norm.

(iii) The norm of a node s in process graph g, written 1s1,is the norm of the

subgraph determined by s (if this subgraph is not perpetual).

(iv) The norm of a process p is the norm of a representing process graph. A

perpetual process has no norm. (It is an easy exercise to prove that

bisimulations respect norms; hence, the norm of a process is well defined.)

(v) A process is normed if every subprocess has a norm. (Process q is called a
subprocess of process p if p, q have representing process graphs g, h,

respectively, such that h is a subgraph of g.)

P~o~osrmoNI 5.2. E1’ety CFL is the finite trace set of a normed process p,

recumiljely defined by means of a guarded system of recursion equations in

restricted GNF.

PROOF. Let E be a system of equations as in the proposition defining p.

We underline in an iterative procedure certain subexpressions in E, with the

interpretation that an underlined subexpression stands for a nonperpetual

process. The procedure is as follows:

(1) Underline all atoms in E.

(2) Extend underlinings s + t or s + f, where s + t is a subexpression in E, to
$ + t or s + <, respectwely.

(3) If the right-hand side of a recursion equation in E is totally underlined, as
in X, = s(X), then the left-hand side is underlined: ~1 = s(X)

(4) If a variable X, is underlined, then every occurrence of X, in E is

underlined.

(5) Extend underlinings ~.f to ~.I.

(6) Iterate these steps until no%rther underlining is generated.

(7) Erase all summands that are not totally underlined, and all equations
whose left-hand side consists of a variable that is not underlined.

Example 5.3. The system

E={ X=aY+bXZ+cXX, Y=d +eYY, Z=aZ+bYZ)

gets the underlining

Hence, the boldface parts of E are discarded, yielding the system

{x=aY+cXY, Y=d+eYY}.

The remainder of the proof, to show that the resulting system indeed defines

a normed process, is left to the reader. ❑
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Definition 5.4. Let E be a system of recursion equations that is invariant

under the simplification procedure described in the proof of Proposition 5.2.

Equivalently, E has a solution which is normed. Then, E is called normed.

We can now state the main problem of our paper. The bisimulution eqz~i~w

lence problem is the problem to decide whether two systems of recursion

equations determine the same process (in G). The question now is:

Is the bisimulation equivalence problem for normed systems of recursion

equations solvable?

In the remainder of this paper, we show that this is indeed so, in remarkable

contrast with the well-known fact that the “finite trace equivalence problem”

for such normed systems, or in other words, irredundant CFGS, is unsolvable.

First, we demonstrate in Section 6 a periodicity phenomenon of processes

which are normed and recursively definable in BPA, the processes that can be

said to be the underlying processes for the generation of CFLS.

6. Periodicity of Nonned Processes

To each system E of recursion equations (henceforth always supposed to be

normed and in restricted GNF), we assign a process graph g(E) that repre-

sents the process defined by E and that displays the periodicity we are looking

for. In order to describe g(E), we first define:

6.1, THE UNIVERSAL TREE t(E). This is the tree having as nodes all the

words w ● X“ = {Xl, ..., X,,}+, where Xl, . . ., X. are the variables used by E.

The top node is the empty word, and will be called the termination ~zode. The

first level of t(E) is as in Figure 3(a); the other levels of t(E) are inductively

generated as follows: If w is a node of t(E), then its successors are as in Fig-

ure 3(b). It is important that the successors are X,w rather than wX,.

The tree t(E) will serve as the underlying node “space” for the process

graph g(E) determined by E, which will be defined below in Section 6.3. A
node from this space, that is, a word x G X*, actually will denote the product

of the (solutions for the) variables in w. For example, if w = XYYXZ, then w

denotes the process ~. ~. ~. ~. ~ where ~ is the solution for the variable X,

etc.

Dejlnition 6.1.1

(i) Let w e X*. The translation TW is the mapping from X“ to X* defined by:
TW(ZI) = LIW, the concatenation of z followed by w. The inL1erse translatio~z

T; 1 is the partial mapping from X* to itself which removes the postfix WI.
A shift is an inverse translation followed by a translation: TWT,: 1. (So a

shift replaces a postfix u by a postfix w.)

(ii) Let w = X*. The length of WI, lth( w), is the number of symbols of w.

(iii) Let L’, w c X*. The (genealogical) distance d( LI, w) between ~ and w is the
minimum number of steps (edges) necessary to go from LI to w in the tree

d E), where E has variables X. Alternatively, let LL be the maximal

common postfix of L),w; let L = 11’u and w = W’LL; then d(L1, W) = lth(L,’)
+ lth( w’ ). For example, d(XYXZXYYZ, ZYYKYYZ) = lth( XKYZ) +
lth(ZYY) = 7. (The reason for the term genealogical will be clear in

Section 6.2.)
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Let u, w c X*. Then u, w are called far apart if d(t), w) >3. (The number

3 is connected to the restriction in “restricted GNF”, as will be clear

later.) Furthermore, let X* Q V, W’. Then, the sets V, W are far apart if all

pairs u = V, w = W are far apart.

The sphere with centre w and radius r (a natural number), notation B(w, r),

is the” subset of X* consisting of all u whose distance to w does not ex-

ceed r.

Definition 6.1.2

(i) Let V = {~li G 1} be a collection of subsets of X*. Suppose V contains a
subcollection W = {~ Ij G J}, I g J, such that every ~(i e I) can be

obtained by translation of some ~(j c Y), that is, ~ = T,,,(y) for some w.

Then, W is called a basis (with respect to translations) for V.

(ii) Let X* Q V, W’ and suppose for some U and LI, w we have: T,,(U) = V,

TW(U) = W. Then, we say that V, W are equivalent mOddO translation,

notation V -~ W.

PROPOSITION 6.1.3

(i) =~ is an equiljalence relation.

(ii) If V -~ W, tlzen V, W differ by a shijt.

PROOF

(0 To prove the transitivity, note that if sets V, W can be translated to a
common set U, then either V can be translated to W or vice versa. More

precisely: suppose VI =~ V2 and V2 =~ Vs. Take UI, U2, WI, W2, W:, Wq such

that

TW1(U1) = VI, TWZ(U1) = V2,

TW,Z,(UZ) = Vz, TWJ(UZ) = Vj.

Now consider Wz and wj. Suppose that lth( Wz) > lth( wj ); the other case is

entirely analogous. Let w be the word obtained from Wz by deleting the

last lth(w~) symbols. We claim that TW(UI ) = U2; the proof of the claim is

easy. Now

TW~(Ul) = V3, TV1(UI) = VI,

so VI =T V3.

(ii) Easy. ❑

PROPOSITION 6.1.4

(i) -Let ~, be the collection of all spheres with a ftied radius r. Then B, has a
.jinite basis.
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(ii) B, is finitely partitioned by the translation equivalence.

PROOF

(i) It is not hard to check that the spheres l?(w, r) with lth( w) s r form a
basis.

(ii) Immediately from (i). ❑

Example 6.1.5. See Figure 4, where X = {X, Y} and where B(YX, 1) is

indicated. A basis for the collection of all spheres with radius 1 is given by the

three spheres B(E, 1) = {~, X, Y}, B(X, 1) = {e, X, XX, YX}, and B(Y, 1) =

{E, Y, XY, YY).

Definition 6.1.6

(i) If a subset V of X’ is contained in some B(w, r), V is called r-bounded.

(ii) If V = {L’li E 1} is a collection of subsets of X*, and: Sr Vi =w B(MJ, r) 2
~, then the elements of V are unzJormly bounded.

PROPOSITION 6.1.7. Let V be a uniformly bozuzded collection of subsets of X*.

Then V is finitely partitioned by translation equivalence.

PROOF. Clear from the preceding proposition, since the number of subsets

of B(w, r) is bounded by a constant depending only from r. ❑

PROPOSITION 6.1.8. Let W be a subset of X*, where X is the list of L’ariables

used by E, such that:

(i) 3CI, C2 G ~ VW G Wcl < lth(w) < C2,

(ii) W cannot be partitioned into WI, W: which are far apart.

Then W is contained in a sphere B( w, r) where r depends only from c,, c1,

PROOF. It is not hard to check that for a pair of points in a set W as in the

proposition, the distance is in fact bounded by 2( Cz – c1) + 2. ❑

This proposition says that if horizontal slices of thickness Cz – c1 are taken

from the tree t(E),and the slices of the tree are further divided into “parts”

that are far apart, then the collection of these “parts” is uniformly bounded.

See Figure 5, where X = {X, Y} and where the slices have thickness 1; the

“parts” are contained by the indicated rectangles.
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FIGURE5

Before defining the process graph g(E), we make a simple observation about

the relation of the length and the norm function. Our assumption is that E is

normed, that is, all perpetual parts have been pruned away as described in

Proposition 5.2. That means that all subprocesses of the solution of E, which

are of the form w ● X*, have a norm Iw 1,the distance in steps to termination.

It is easy to determine the relationship between lth(w) and Iwl:

PROPOSITION 6.1.9. Let E be a nozrned system of reczwsion equations and 1.1

the corresponding norm. Then:

(i) IWLI = Iwl + lLI\,

(ii) Iwl = C,.] XII + “”” + c,,. IX,, I, where c,(i = 1,..., n) is the number of occzw-

rences of X, in w,

(iii) the lengtlz jimction and the norm function are linearly equiL’alent in this sense:
for some constants nl and n2 we haLe for all w

PROOF. (i) is trivial, (ii) follows at once from (i) and (iii) follows from (ii) by

setting nl = max(l Xll, . . ..ll)l) and n2 = 1. ❑

Remark 6.1.10. Using the preceding proposition it is not hard to prove a

proposition analogous to Proposition 6.1.8 where lth(w) is replaced by Iw 1.

6.2. THE PROCESS GRAPH g(E). According to the equations in E, we now

fill in, in the obvious manner, labeled edges in t(E). This will not give rise

immediately to g(E), but first to an intermediate graph g’(E) from which

g(E) originates by leaving out inaccessible parts (inaccessible from the root

node, X1). For instance, if

E={ X=a+bYY, Y=c+dXY},

then the upper part of t(E) gets the edges, drawn boldface in Figure 6(a).

This basic figure (the boldface part) corresponds just to the equations of E.
But these equations give also rise to the following equations, for every w =
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{X, Y}* (of course, considered as a product):

X1’v = (a + 12yx)w = (2W + bl’xl’v,

Yw = (c + &YY)w = cl+’ + CLYYiv.

These equations yield the edges in d ~) as in Figure 6(b). So, the graph we

want originates by reiterating the basic figure in Figure 6(a) wherever possible

in t( 13). The result is g’(E) as in Figure 7.

However, it is easily seen that large parts (the shaded rectangles in Figure 7)

of the graph g’(E) are inaccessible from the root X. After leaving these out,

we have g(E), which has a “linear” structure; it is the graph in Figure l(a),
Section 3.

Example 6.2.1. Let E be {X= a + bXY, Y= c + dYX}. Then, g’(E) =

g(E), that is, g(lZ) uses all nodes of the tree t(E), as one easily verifies.

Example 6.2.2. The previous two systems of equations were as ‘“economical”

as possible and therefore the process graph coincided in fact with the canonical
process graph of the solution. The present example is one where this is not

so—it consists of a reworking of the system used as example in the introduc-

tion of this section:

E={ X==a+bU, U=cX+dZX, Y= c+dZ, Z=aY+bYU}.
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FIGURE9

(This system originates from the above one by putting U = KY, Z = XI’, etc.)
We show the “basic figure”, in Figure 8. The process graph g(13) is shown in

Figure 9. In this case, g(13) is not identical to the canonical process graph.

Note that, by the restriction in “restricted GNF,” the only possible arrows

(edges) in g(13) are:

(i) from a node to itself,

(ii) from a node to its “mother” (e.g., AX ~. X in Figure 7),
(iii) jiom a node to a “daughter” (e.g., XX ~~ XXX in Figure 7),

(iv) from a node to a “sister” (e.g., X eC U in Figure 8, 9),

(v) from a node to a “niece” (i.e., daughter of a sister, e.g., U -~ 2X in

Figure 8, 9).
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So, in all cases the nodes connected by an edge of g(E) have distance O, 1, 2,

or 3.

In the rest of this paper, we will present gwzphs g(E) such that the norms are

“respected graphically”, that is, a node with norm n will be positioned on lelel n.

Thus, Figure 9 becomes as shown in Figure 10.

Note that the graphs of Figure 7 (the unshaded “linear” graph also appear-

ing in Figure l(a), Section 3) and Figure 10 (also in Figure l(b)) are bisimilar,

as can be seen by relating all nodes on the same level. This example of two

bisimilar process graphs shows that our bisimulation equivalence has nothing

to do with the so-called “structural equivalence” or “strong equivalence” of

CFGS (see [32, p. 287]), an equivalence notion that also happens to be

decidable. (See also Problem 26 in Section 10.4 of [17].) Indeed, the “parenthe-

sized versions” (see [32]) of both CFGS yield different languages (e.g., the word

( b( c)(a)) is in the first CFL but not in the second, whereas (b(c(a))) is in the

second but not in the first).

Example 6.2.3. Let E be

{X=a+bY +fXY, Y=cX+dZ, Z=gX+ eXZ}.

Then, g(/3) is as shown in Figure 11.

Example 6.2.4. Let E be

{X=dY+bZ, Y= b+ bX+dYY, Z= d+dX+bZZ}.

This example is the same as Example 2.1. The corresponding CFL consists of

words with equal numbers of b‘s and d’s (see Figure 12).

Anticipating further developments, let us note here that the graphs g(E) as

in the examples above exhibit a striking regularity; although they are, in

general, not trees (as there may be cycles present), the process graphs g(E)

nevertheless have, from a more global point of view, a “tree-like” structure.

For instance, in the last example there are three “fragments” of the process

graph that are strung together not only in tree-like fashion, but also in a

regular way, as suggested in Figure 13.
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6.3. PROCESS GRAPH FRAGMENTS. To describe the periodicity of the pro-

cess graphs g(E), we need the notion of a fragment of a process graph.

Definition 6.3.1. Let E be a system of recursion equations with variables

X= {xl,..., X,l} and action alphabet A(E).

(i) A process graph fragments in the space t(13) consists of some subset N of
nodes of X* together with some edges w ~~ L1(w, u = IV) labeled by atoms

in A(E). We use a, ~, . . . to denote process graph fragments. Sometimes
we omit the word “process”.
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(ii)

(iii)

(iv)

(v)

Two graph fragments in t(E) are disjoint if they have no nodes in

common.

A graph fragment is weaklj connected if it cannot be partitioned into two

graph fragments which are far apart. Note that “weakly connected” does

not imply “connected” (i.e., indivisible into disjoint fragments).

If a, ~ are graph fragments, the union a U ~ is the graph fragment

obtained by taking the union of the respective nodes and edges.

Translations T., of graph fragments and translation equivalence are de-

fined as for node se~s, with the extra understanding tha~ a translation also

respects labeled edges.

PROPOSITION 6.3.2. If a, a’ are graph fragments in g(E), and a =~ a’, then

there are words w, [ such that a = ~,(~~ 1( a’)).

PROOF. Evident from the definitions. ❑

PROPOSITION 6.3.3. Let a be a graph fragment of g(E) such that

(i) 3cl, cz = N Vw = a c1 < Iwl < C2, and

(ii) a is weakly connected.

Then a is contained by a sphere B( w, r) where r otdy depends (in a computable

way) from cl, Cz and E.

PROOF. By Proposition 6.1.8 (or rather its analogous version mentioned in

Remark 6.1.10). ❑

PROPOSITION 6.3.4. Let (al), ~ ~ be a collection of fragments of g(E). Let the

a, be uniformly bounded. Then the collection is finitely partitioned by translation

equilwlence. Moreoler, the tmmber of elements of the partition can be computed

@om E.

PROOF. At once from Proposition 6.1.7 and 6.3.3. ❑

6.4. REGULAR DECOMPOSITIONS. We are now arriving at the heart of the

matter. First, we define what is meant by a “regular decomposition” (also

called “periodical decomposition”).
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Definition 6.4.1. A regular node-labeled tree T is a tree T with a labeling of

the nodes, such that there are (modulo isomorphism of node-labeled trees)

only finitely many subtrees.

NOTE: The labels can be any mathematical objects—in our case, they will be complicated
objects, viz. translation equivalence classesof process graph fragments.

Definition 6.4.2. A regular decomposition of the process graph g(E) is a tree
T where each node s is labeled with a process graph fragment a,, such that

—each a,, is a jinite graph fragment in t(E),

—the union of all a, is g(E),

—for nodes s, t in T, a$ and a, are disjoint iff s, t are not connected by a

single edge in T,

—the collection of a, (all nodes s in T) is finitely partitioned by translation

equivalence,

—ifgl, . . ..~~ denote the finitely many equivalence classes in which the a,

are partitioned, and each label a, is replaced by the label denoting its

equivalence class, the resulting node-labeled tree T’ is regular.

Example 6.4.3. Let T’ be the regular tree as in Figure 14. Then, the actual

tree T has the same tree structure and as node labels: fragments a,,, which are

translation equivalent in the way indicated by T’.

The following proposition is essential in the proof of the existence of a

regular decomposition:

PROPOSITION 6.4.4. Let a and a’ be fragments of g(E), which are translation

equivalent. Let s be a node in a that has a length not minimal in a. Suppose
s *. t is an edge such that a U {s -+. t} is again a fragment of g(E). Let S’ be

the point in CY’corresponding (after the same shift as jlom a to LY’) to s.

Then there is a t’ and an edge s’ 4U t’ such that a’ U {s’ -+. t’} is also a

fragment of g(E); moreover, the two extended fragments are again translation
equil)alent by the same shift.

PROOF. (See Figure 15.) Since a -~ a’, there are w, L) = X* such that

a’ = T,,(T~l ( a)). So s = uw for some u e X* and s’ = ULJ.Since the length of

s is not minimal in a, Z4k not empty, So s and s’ start with the same variable:
say, s = X1 u’ w and s’ = X, u’ v. In particular, if s *O t isa step obtained from

the recursion equation X, = . . . + au” + . . . (i.e., from the displayed summand,

where u“ E X*), then t = L/u’ w, and we have the step s’ = Xl u’ L) +,, Ll” U! L> =

t’. So the step s’ -~ t’ is at least in g’(E) (the graph where also inaccessible
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parts are present, see Section 6.2). It is also in g(13), because t’ is an accessible

node. This is so as s’ is accessible, being a node in a’ which is in g( i!3).

Therefore, a’ u {s’ ~c, t’} k indeed a fragment of g(~), and clearly it is

equivalent to a U {s -U t} by the same shift T,,TW:l. ❑

We now define the decomposition that will be proved to be regular in

Theorem 6.4.8.

Definition 6.4.5. Let g(~) be the process graph corresponding to E.

(i)

(ii)

(iii)

(iv)

g(E) will be divided in fragments called slices, numbered O, 1,2,3, . . . .

Each slice has thickness d; we also call d the amplitLlde of the decomposi-

tion.

The nth slice (n = O, 1,2,3 ,... ) contains the nodes s of g(~) with

n.d < 1s1< (n + 1). d and moreover those nodes reachable by one step in

g(E) from a node s with n.d < 1s1< (n + 1).d. For instance, in Figure 16,

slice 1 of thickness 2 is displayed of the process graph in Figure 11.

The nodes s in the nth slice with Is I s n.d are called the upper nodes of

the nth slice; the nodes s with Is I > (n + 1).d are the bottom nodes of the

nth slice.

The nth slice is now the fragment of X(E) obtained by taking the

restriction of g(E) to the set of-nodes of the nth slice. (In the exam~le of

Figure 16, the boldface part.)

Each slice will now be partitioned into maximal weakly connected graph

fragments. More precisely:

Definition 6.4.6

(i) The nodes of the nth slice will be partitioned into equivalence classes as
follows: Define for nodes s, t in the n.th slice: s - t if s, t have distance O,

1, 2, or 3. Let * be the transitive closure of ~ . Clearly, this is an

equivalence relation on the nodes of the nth slice, partitioning these nodes

into equivalence classes denoted by [s] ~ .

(ii) The restriction of g(E) to the set of nodes [s] ~ in slice n, is called a

principal fragment. Note that the principal fragments of g(E) are uniquely

determined, once the decomposition in slices is given.
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PROPOSITION 6.4.7. Let g(E) be divided in slices. Then the corresponding

principal fragments of g(E) are unifonn~ bounded, and hence, jinitely partitioned

by translation equivalence. Moreover, the number of principal fi-agments of g(E)

can be computed @om E.

PROOF. By the construction in Definition 6.4.6, each two principal frag-

ments of slice n are far apart (Definition 6.1. l(iv)). Now, using Proposition

6.1.8 (or rather its analogous version mentioned in Remark 6.1.10), we have

that the collection of all principal fragments (of all slices) of g(E) is a

uniformly bounded collection. Proposition 6.3.4 states that the collection of

principal fragments is finitely partitioned by translation equivalence, and that

the number of elements is computable from E. ❑

THEOREM 6.4.8. Let E be a normed system of recursion equations in restricted

GNF, in the signature of BPA, and let g(E) be the corresponding normed process

graph. Then g(E) has a regular decomposition; moreover, the amplitude d of the

decomposition can be chosen arbitrarily such that d > c(E) for some constant

c(E) computable from E.

PROOF. Consider the decomposition with amplitude d as just defined.

(i)

(ii)

(iii)

It is easy to see that the tree of fragments thus obtained is indeed a tree.

To prove this, we must show that a situation (e.g., as in Figure 17) cannot

happen. The reason that such a “confluence” is impossible is that (all
points of) ~ and y are too far apart. Going downwards from such points

only increases the distance—hence, there is no confluence of lower

principal fragments possible.

There are only finitely many labels (fragments) modulo translation equiva-

lence. This follows from Propositions 6.3.3 and 6.3.4.
Next, we must prove the regularity of the decomposition. So consider two

nodes s, t in T occupied by a,, at with a, -~ af. Let T,, Tt be the

subtrees of T determined by s, t,respectively. Further, let G,, Gt be the

graph fragments of g(E) obtained by taking the unions of all the labels in

T$, respectively, Tt.
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Claim. G, =~ G,.

From the claim, the regularity follows at once. The proof of the claim follows

by repeated application of Proposition 6.4.4. ❑

In fact, the proof of Theorem 6.4.S can also be applied on systems E that are

not formed; an inspection of the definitions and arguments shows that every-

thing carries over if instead of the norm /.1, the length lth is used (cf.

Proposition 6.1.9). Thus, we obtain:

THEOREM 6.4.9. Let E be a system of recursion equations in BPA in restricted

GNF. Then the corresponding graph g(E) has a regular decomposition.

7. Decidability of Bisimukztion Equilalenee for Nonned Processes

We can now harvest the fruits of our demonstration of the regular decomposi-

tion of normed process graphs. The main idea of this section is that if there is a

bisimulation between normed process graphs g(El ), g( E, ), then there must

also be a “periodical” bisimulation, in view of the periodi~ity of g(E1 ), g(Ez ).

Moreover, the “period” can be computed from El, Ez and this yields the

desired decidability. First, we need some preparations.

Definition 7.1. Let g, h be process graphs and let R be a relation with the

nodes of K as domain and the nodes of h as codomain. A bisimulation error of

Ris “

(d a triple of nodes s, s’ ● g, t G h and an edge s ~~ s’ in g such that
and there is no edge t +a t’in h with s’ R t’ (see Figure 18), or

(ii) similar with g, h interchanged.

sRt

Clearly, R is a bisimulation iff R relates the roots of g, h and R contains no

bisimulation errors.

Definition 7.2. Let El, Ez be normed systems of recursion equations in

restricted GNF.

(i)

(ii)

Let R be a bisimulation between g( El ), g(E2). Then, the prefti up to n, or

n-prefix, is the restriction of R to the nodes of g, h whose level does not
exceed n.

A partial bisimulation R between g( El ), g( Ez ) up to lel!el n is a relation R

with domain: the nodes of g(El ) with level s n, and codomain: the nodes

of g(Ez) with level < n, and such that R relates the roots of g(El), g(Ez)

and contains no bisimulation errors.
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(iii) Let g(El), g(Ez) be divided in slices of thickness d. Then, a partial
bisimulation between g(~l), g(Ez) up to slice k is a partial bisimulation

up to level d.k.

Remark 7.2.1. Note that if graphs g(El), g( Ez) are drawn according to the

convention that nodes with norm n are positioned on level n, all connections

(i.e., related pairs of nodes) in a bisimulation between g(El), g(Ez) are
“horizontal”.

De@zition 7.3. Let g(E1), g( Ez) be as in Definition 7.2(iii), and suppose

that regular decompositions of g(El ), g(Ez) are given, with a common ampli-

tude d. Let R be a partial bisimulation between g( El ), g(EQ) Up to slice k. We

define what it means for R to be d-sufficient (to extend R to a total bisimula-

tion between g(El), g(Ez)). (See Figure 19.)

Suppose, in the regular decomposition, that a is a fragment of slice k in

g(E1 ), ~ one of slice k in g(Ez). The successor fragments of a are al, ..., a,,

and those of ~ are PI, ..., & for some n, m. (Note that the top points of al
(i=l ,. ... n) are also in slice k, and likewise for ~, (j = 1,..., m).)

Suppose, furthermore, that fragments a, /3 are related by the partial bisimu-

lation R, that is, there is a pair of nodes s = a, t G @ with s R t. Now suppose

that at least one slice higher there are translation equivalent copies a’, /3’ or
~, p (which then must have successors aj, ..., CI/Land D;, ..., ~~1, respectively,
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translation equivalent to their unprimed versions), such that the restriction of

R to a X ~ coincides, modulo translation equivalence -r , with the restric-

tion of R to a’ X ~’. (C)f course, -~ extends to pail-sof nodes (s, t)

coordinate-wise.)

If for each pair a, ~ in the kth slice such a copy a’, ~‘ exists, then the

partial bisimulation R is called d-su~icienf.

Definition 7.4. Let a partial bisimulation R as in Definition 7.3 be given,

which is sufficient. Then, the pen”odical continuation of R is constructed as

follows:

Let a, ~ be as in Definition 7.3. The partial bisimulation R is extended to

(a, u ““” u an) x (~, u ‘.. Up,,z)

by copying the restriction of R to

(aj u ““” u a:) x (p: u ““” up;,).

This is done for all pairs a, ~ in slice k of g(~l), g(~z). It is now easily

checked that the result is a partial bisimulation up to slice k + 1,which again

is sufficient; for, clearly the extended partial bisimulation does not contain a

bisimulation error—if it did, the bisimulation error was copied from an earlier

slice, quod non.

The periodical continuation of the sufficient, partial bisimulation R is

obtained as the limit of this extension procedure. Clearly, it is a total

bisimulation.

PROPOSITION 7.5. Let g( El ), g(Ez ) be as before, and let R be a bisimu[ation

between them. Then:

(i) each n-prefti of R is a partial bisimulation up to n,

(ii) R has a d-sufficient M-prefti for each M > N(E1, E?, d), where N(EI, E,, d)
is some constant computable from El, El, and d.

PROOF. Part (i) k obvious. Part (ii): The proof follows by elementary

finiteness considerations; there are only finitely many possible relations

(a X@)n R. ❑

THEOREM 7.6

(i) Let El, El be non-ned systems of recursion equations (oler BPA) in restricted
GNF. Then the bisimilarity relation g( El ) ~ g( El ) is decidable.

(ii) Equality of recursiue~ defined nonnedprocesses in the graph model G of BPA
is decidable.

PROOF

(i) According to Theorem 6.4.8 the graphs g(El ), g(E~) have a regular de-
composition, with a common amplitude d. Now search through all (finitely

many) relations between the nodes of g( El ), g(Ez ) up to level N =

N( El, Ez, d). If there is no such relation that is a partial bisimulation up to

N, there cannot be a bisimulation between g( El ), g(, E? ), by Proposi-

tion 7.5(i). If there is such a bisimulation, this is revealed by finding a

d-sufficient partial bisimulation up to N.

(ii) A rephrasing of (i). ❑
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8. Simple Context-Free Languages

In this section, we derive, as an application of the method used in this paper,

the well-known fact that simple CFLS have a decidable equivalence problem.

Definition 8.1

(i) A simple CFG is a CFG in GNF such that there is no pair of different
productions A ~ a a, A -+ a P. Equivalently, in the notation of systems of

guarded recursion equations in GNF, a system E is simple if it contains no

recursion equation

xi = ““. +aw +au + ““”,

for different w, l] E X*.

(ii) A CFL is simple if it can be obtained from a simple CFG.

Definition 8.2. A process graph g is deterministic if there is no node s = g

having two outgoing edges with the same label.

PROPOSITION 8.3. Let E be a simple system of recursion equations in restricted

GNF. Then g(E) is deterministic.

PROOF. Clear. ❑

The reason for our interest in deterministic process graphs is that if they are

normed, their bisimulation equivalence problem coincides with the equality

problem for their finite trace sets.

PROPOSITION 8.4. Let g, h be nomned, deterministic process graphs. Then:

g~h ~ftr(g) =ftr(h).

PROOF

(~): Proposition 3.1.

(~): Suppose ftr(g) = ftr(h). Let u ● ftr( g). Then a has a unique location
in g as well as in h. Now we connect, in a construction of a bisimulation

between g, h, the intermediate nodes lying on o in g, h. More precisely, let u

in g be obtained by the path

So ‘ao SI ‘al ““” ‘m(,t–1) ‘n>

where SO is the root of g, s,, is a final state (termination node), and u i = A( i

< n) such that u = (m O)(O-1) “o” (cr(n – l)). Furthermore, let m in h be

obtained by the path

to +&() t,+’al ““”+a(,,_])t,,,

where to is the root of h, t,, a final state.

Then, we put the pairs (s., to), (sl, tl),. ... (s., t.) in the relation R to be

constructed. This is done for all s = ftr(g)( = ftr(h)); result: R.

We claim that R is a bisimulation between g and h. Proof of the claim:

(1) The roots of g, h are related by R.
(2) Suppose s, s’ c g, t e h arc nodes such that s R t and s -a s’ is an edge

of g.

Since g is normed, there is a path m- from s’ to a termination node r. By the

construction of R, there is some path in g from S(J(the root) to s and some
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R

R

FIGURE20

path in h from t.(the root) such that both ~aths determine the same word u,,
~ prefix of an element from ftr(g). These paths in g, h are uniquely determined

by ~, as the graphs are deterministic. So we identify these paths, for conve-

nience, with the word o. (See Figure 20.) Now maw E ftr(g) = ftr(h). Hence,

there must be such a path o-a~ in h, and it has to pass node t. So, indeed,

there is a step t ~,, t’such that s’ R t’. ❑

As a corollary, we have the following fact from [25] (or see [17, Sect. 11.10]):

THEOREM 8.5 (KORENJAK–HOPCROFT 1966). The equivalence problem for

simple CFLS is decidable.

PROOF. Immediate from Theorem 7.6(i), Proposition 8.3 and Proposi-

tion 8.4. ❑

9. concluding Remarks and @estions

We have shown that equality of the processes generating CFLS is decidable, in

remarkable contrast with the unsolvability of equality of CFLS. As equality of

processes, we mean here the equality obtained by dividing out the well-known

bisimulation equivalence in the domain of process graphs. The proof of the

decidability essentially uses the fact that the process graphs associated to CFGS

in (restricted) Greibach Normal Form possess a tree-like periodical structure,

which in itself is interesting. It should be noted that this periodicity holds for
all process graphs g(17) with E a system of guarded recursion equations in

Basic Process Algebra. However, in order to prove decidability of bisimulation

equivalence for such graphs, we have adopted the restriction that they are

normed; that is, there are no redundant parts as regards the generation of the

finite trace set, a CFL. From the point of view of CFGS and CFLS this is

perfectly natural; but the general question for BPA remains: Is bisimilarity of

process graphs g(E) for all guarded recursile specifications E in BPA decidable?
Or, rephrased: Is equality of all recursively definedprocesses in the graph model G
of BPA decidable? We conjecture that this is the case.1

‘ See Note Added m Proof.
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FIGURE21

One can associate to push-down automata (PDAs) in a similar manner a

process; however, as pointed out in [12] (correcting an earlier statement in [3]),

there is a PDA, even without e and deterministic, whose associated graph does

not display the periodicity exploited in this paper.

Several other interesting questions remain. We conclude this paper with a

small list of such questions. First an observation:

Remark 9.1. A regular process is one with finitely many subprocesses;

equivalently, a regular process (in G) has a representing process graph that is

finite. If process p is defined by a system of recursion equations using the

singleton alphabet {a} only, is it true that p is regular? (The corresponding fact

for CFLS is true; see Remark 7.3 in [17]. The answer is negative, as witnessed

by

E = {X= a(Xa + a)a}

or, equivalently, the system

E’={X=aY, Y=aYZ+aU, Z=aU, U=a}

in restricted GNF. Indeed, the CFL determined by E’ is {a3° [n > 1}, hence

regular, but g( E’ ) in Figure 21 shows that the process p determined by E’ is

not regular (as there are infinitely many different norms \s \ for s a node in

g(E’)):

Remark 9.2. The process graph g(E) corresponding to the system E (see

Section 6.2) need not be a canonical process graph (cf. Figure 9); the canonical
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FIGURE2?

a a
a a

b b

a
a

a
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process graph originates by collapsing all bisimilar subprocesses. Now one may

ask: If g is the canonical process graph of process p, recursively defined by

some system E, does g have a periodical decomposition? This question has

been answered positively by [10] and [11]. This is interesting also because it

provides a tool to obtain certain nondefinability results. For instance, the

process BAG as defined by the recursion equation

BAG = a(gllBAG) + b(~llBAG)

is the behavior of a bag over a data domain of two elements; a means: put a in

the bag, a means: get a from the bag, and likewise for b. Here we have used in

the definition an interleaving operator II as in PA, an extension of BPA with

some axioms for 11.(See [5], [6], and [7].) Now the canonical process graph of

BAG is as in Figure 22.

Clearly, this graph does not possess a tree-like periodical decomposition as

we have defined before. Hence, the associated process is not definable in BPA,

that is, the definition must use a parallel operator. (For a different proof of this

nondefinability result, not employing the method suggested here, see [7].)

Remark 9.3. The problem of this paper can also be considered in the setting

of readiness or failure senlantics instead of bisimulation semantics. (See [8] for
an account of BPA with failure semantics or readiness semantics. ) As these

semantics are intermediate between bisimulation semantics and trace seman-

tics. it is an interesting question whether decidability still holds. Since the first

version of this paper as [3], this question has been answered in [23]; surpris-

ingly, the answer is negative –decidability no longer holds for readiness and

failure semantics. In [16], this undecidability result is extended to several other

process semantics that are intermediate between bisimulatirm equivalence and
trace equivalence.

As a generalization of the main theorem in the present paper, Htittel [21]

has obtained a positive decidability result for so-called “branching bisimula-

tion” (treated in [4]). Added to the signature of BPA, one considers “~-steps”

(silent steps, introduced in [27] and [29]), with the notion of bisimulation called
“branching bisimulation” (without ~-steps present, this reduces to bisimulation

as in this paper). A somewhat coarser congruence, dealing also with ~-steps, is

the one called “weak bisimulation” in [27] and [29], and called “rooted

~-bisimulation” in [2], [4], and [6]. For this notion of bisimulation, the decidabil-

ity question is open.
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Remark 9.4. Alternative and shorter proofs of the main theorem of this

paper have been given in [10] (by an analysis employing rewriting rules), in [22]

(by a tableau proof method), and in [151.

Remark 9.5. We have been concerned with processes that may have in-

finitely many states; for a decidability and complexity analysis of various

equivalences on finite state processes, we refer to [24] and [33]. For the present

case of infinite-state processes, but in the setting of failure and readiness

semantics, a complexity analysis (for some subclasses of processes) has been

given in [23].

Question 9.6. If BPA is extended to PA (see Remark 9.2), is the equivalence

problem for recursively defined processes still decidable? And if PA is re-

stricted to “prefix multiplication” as in Milner’s CCS [27, 291?

If PA is further extended to ACP, Algebra of Communicating Processes,

where also communication is present, the decidability no longer holds (see [7]).

NOTE ADDED IN PROOF. Recently, Christenson et al. [12a] have solved the conjecture in
Section 9 affirmatively.
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