
A Parallel Algorithm for Text Inference

Sanda M. Harabagiu
University of Southern California

Dept. of Electrical Engineering-Systems
Los Angeles, CA 90089-2562

harabagi@usc.edu

Dan I. Moldovan
Southern Methodist University

Dept. of Computer Science & Engineering
Dallas, TX 75275

moldovan@seas.smu.edu

Abstract

In this paper we describe a highly parallel method for
extracting inferences from text. The method is based on
a marker-propagation algorithm that establishes semantic
paths between knowledge base concepts. The paper presents
the structure of the system, the marker-propagation algo-
rithm, and results that show a large degree of parallelism.

1 Introduction to Text Inference

The problem of text inference
Text inference refers to the problem of extracting relevant,
unstated information from a text. Humans have a great abil-
ity to perform correct inference from text or speech. This is
perhaps because we have a great deal of world knowledge
and can focus our thoughtsand filter out irrelevant facts. The
inferences derived from reading a text vary from person to
person depending on background, context, mental state and
other factors. However, basic inferences are in everyones
ability. Consider the text:
S1: John hit the ball with a bat.
S2: It landed far away.
Verb hit has fourteen meanings, noun ball has nine
meanings and noun bat has six meanings. A human is
able not only to disambiguate words to construct a collec-
tive coherent meaning, but also to visualize how a ball hit by
a bat is first touched by the bat, travels through the air and
finally touches the ground far away from John. To automate
the process of text inference by computers presents several
difficulties unsolved yet. Since many of these technical
challenges relate to the huge volume of processing required,
it seems natural that parallel processing technology is likely
to play an important role in implementing text inference
applications.

Summary of our solution
Any reasoning system is concerned with three aspects: (1)

knowledge representation and structure, (2) rules of infer-
ence, and (3) control of inference process. Our system
represents linguistic knowledge as a large semantic network
that can be regarded as nodes connected by relations. The in-
ference rules are implemented as chains of selected relations
that link semantically concepts in the knowledge base. We
allow some processes, called markers, to travel along these
inference patterns and check linguistic constraints along the
way. The inference process is controlled by limiting marker
propagations only along patterns that are specified by the
user. Massive parallelism is achieved by allowing multiple
markers to propagate throughout the large knowledge base
spawning other markers along the way.

2 Structure of a Very Large Knowledge Base

WordNet and extensions
Common sense reasoning requires extensive knowledge.
We decided to build our knowledge base on top of WordNet
lexical database [4], [3] developed at Princeton. WordNet
is a semantic dictionary because words are searched based
on conceptual affinity with other words. It covers the vast
majority of nouns, verbs, adjectives and adverbs from the
English language. The words in WordNet are organized
in synonym sets, called synsets. Each synset represents a
concept. There is a rich set of relation links between words
and other words, between words and synsets, and between
synsets. A large linguistic knowledge base may be devel-
oped starting from WordNet.

We took a portion of WordNet and enhanced it in several
ways. New case constraint relations were added that link
verb concepts to their case roles such as agent, object, instru-
ment, experiencer, and others. Another enhancement was
to transform the gloss associated to each concept into defin-
ing feature relations that specify the properties of concepts.
These improvements increased the connectivity between the
knowledge base nodes.

Table 1 shows the number of words and concepts for
each part of speech. In its current version WordNet 1.5 has



Part of words concepts
speech

noun 107,484 60,560
verb 25,768 11,364
adjective 28,762 16,428
adverb 6,203 3,243

Total 168,217 91,595

Table 1. Knowledge base nodes

168,217 words organized in 91,595 synsets, thus a total of
259,812 nodes.

Semantic relations
The noun and verb concepts are structured into hierarchies
by using ordering relations such as isa, has part, and others.
The adjectives and adverbs don’t have hierarchies, instead
are linked into clusters. The knowledge base relations, that
link various nodes, are the building blocks to our solution
for text inference. Altogether there are 345,264 links in the
knowledge base. Note that, on average there are approxi-
mately 1.5 links per node.

3 Marker-Propagation Programming Envi-
ronment

Marker-Propagation Networks
Marker-propagation computational paradigm is especially
suitable for applications where control flow is incompletely
specified. Reasoning on knowledge bases falls into this
broad category. An SIMD implementation of a much sim-
pler marker propagation model is the SNAP experimental
computer [6]. In this paper, we use a more powerful MIMD
model that runs only on a simulator.

The marker propagation model can be briefly described as
a network consisting of nodes and links, and a set of markers
moving through the network according to some propagation
rules.

The nodes can independently execute a set of functions,
store data, and communicate with other nodes. Nodes
may have several identities or labels simultaneously. The
links are directional, connecting source nodes to destination
nodes. A link has a name, indicating the link type, and it
may have some associated functions that are executed when
some markers are propagated along it. This is the static part
of the model.

The markers are process threads that carry a variable
number of fields. They reside inside the nodes and propa-
gate to other nodes through links using user-defined prop-
agation rules. Some of the required marker fields are: the
marker type, the propagation function, and the node where
the marker originated. The arguments of a propagation rule
may be node labels, regular expressions of link labels,and/or

functions which govern the interactions between a marker
and other markers or nodes. In addition to the required
fields, user may define any other fields. A set of functions
are normally included to specify the behavior of markers
inside nodes.

An application program is loaded into the nodes such that
each node has the same set of programs. However, the appli-
cation functions are triggered only by the arrival of markers
to a node. Thus, different nodes execute different functions.
This is why we call this a process flow model of computa-
tion. The processing operands may be any combination of
one or more marker data and node data. Processing changes
the states of nodes and possibly marker data.

Marker processing
The basic mechanism for handling markers is summarized
below. An MPN is mapped into a multiprocessor by allo-
cating several nodes to a processor.

1. Fetch marker from the processor input queue in round-robin;
2. Find node to which marker was sent;
3. Execute node function FN (node; marker);

3.1 Execute node function prior to any marker synchronization;
3.2 If marker synchronization

then search for corresponding marker in waiting list;
3.3 If the synchronization marker is not found

marker is placed on waiting list;
3.4 Execute node function after marker synchronization;
3.5 Goto 3.2 if there is another synchronization;

4. Evaluate marker propagation rule;
4.1 Execute propagation rule prior to any marker synchronization
4.2 Repeat procedures from steps 3.2 and 33
4.3 Execute propagation rule code after marker synchronization
4.4 Goto 4.1 if more synchronization is necessary

5. Update marker propagation rule
6. If necessary spawn marker
7. Execute link function FL(link;marker)
8. Place markers on output queues

4 Path-Finding Algorithm

Below we describe a marker propagation algorithm for
finding relational paths between words in a text. Markers
are placed on the nodes corresponding to words in the input
text, and then let free to propagate through the knowledge
base to establish semantic connections between sentences.

The inputs to the algorithm are: (1) a semantic knowledge
base as described above, and (2) semantically tagged input
text. The input text is considered to be disambiguated, in
other words, the correct senses of each word have already
been identified. This is necessary in order to start from
correct concepts. The outputs of the algorithm consist of
semantic paths that link a pair of input concepts. To each
path it corresponds some inferred sentences that explain
closely how the two concepts are logically related. Although

2



this is an asynchronous MIMD algorithm, the system host
has the role of initiating and collecting results.

Step 0. Create and load the knowledge base. The knowl-
edge base is in the form of a semantic network consisting
of nodes and relations. It is partitioned arbitrarily into as
many parts as processors. Each part is then loaded into that
processor memory.

Step 1. Place markers on words in knowledge base. This
step consists of creating markers and placing them on the
knowledge base nodes corresponding to the input words.
The marker creation is done by selecting and filling the
marker fields with the values provided by the input.

Step2. Propagate markers. After markers are placed on
nodes, they start to propagate according to their propagation
rule. New markers are spawned every time a node contains
more than one outgoing link that is part of its propagation
rule. Whenever a marker reaches a node that does not have
an outgoing relation as part of its propagation rule, marker
stops. The propagation trail of a marker becomes part of that
marker history, thus markers become fatter as they propa-
gate. For reasons that will become evident in the next step,
nodes keep a copy of each passing marker.

An example of a propagation rule for markers placed on
verbs is any combination of relations ISA-V, Caused by,
Caused to, Entail and reverse Entail. Markers
continue to propagate as long as the propagation rule allows.
The algorithm detects and avoids cycles by simply checking
whether or not a marker has visited already a node. .

Step 3. Detect collisions. A path between two concepts
is established when the marker originated from one concept
collides with the marker originated from the other concept.
Figure 1 shows a path found between verb hit from sen-
tence S1 and verb land from sentence S2.

Step 4. Extract inferences. The nodes along a path be-
tween two concepts provide a rich source of information
that explains the semantic connections and coherence rela-
tions between these two concepts. Our markers carry case
relations which allow us to express inferences as English
sentences. The reader may trace the highlighted path from
Figure 1 and correlate the nodes with the inference sentences
from Table 2.

5 Simulation Results

This section describes some of the results obtained with
the algorithm above when running on a WordNet-like knowl-
edge base of 392 nodes, and 605 links. This knowledge base
contains all the semantic senses of the verbs and nouns in the
examples below. Thus, the knowledge base is a “window”
of the knowledge base described in Section 2.

Inference sequence

John hit the ball with a bat
John propelled the ball with a bat
John moved forward the ball with a bat
Ball moved COLLISION
It moved
It flew
It landed far away

Table 2. Inferences resulted from coherence
path

Experiment 1 Find the coherence paths between S1 and
S2-1.
S1: John hit the ball with a bat.
S2-1: It landed far away.
For these sentences, the algorithm found 30 paths; one path
is illustrated in Figure 1. Out of these 30 paths, only 20
were semantically correct. The algorithm started with seven
markers and the total number of markers in the system was
54, thus 47 new markers were created. Out of the 392 nodes,
181 nodes were visited by markers. In the next section,
we introduce some metrics for algorithm performance and
summarize the results from several experiments.

Experiment 2 Find the coherence paths between S1 and
S2-2.
S1: John hit the ball with a bat.
S2-2: He felt relieved.
The first sentence is the same, but the second one is slightly
changed from the previous example. The algorithm found
11 paths of which 6 were semantically correct. One is:

hit#1v �isa! propel#1v �isa! move#2v �cause to!
move#3v�df isa! change#1v��
relieved#1adj �pertain! relieve#1v �isa!
ameliorate#1v�isa! change#1v��
The path starts from hit#1, which is move forward, which
is displace, which causes to change position, which is a
synonym of change. Here collision took place with the path
starting fromrelieve#1which is synonym with alleviate,
which is to ameliorate, which is to change.

Experiment 3 Find the coherence paths between S1 and
S2-3.
S1: John hit the ball with a bat.
S2-3: It broke.
For this text, the algorithm found 16 paths of which 11 were
semantically correct. One correct path is:

ball#1n �df isa! object#1n �dfc r obj! hit#1v �isa!
propel#1v �isa! move#2v �cause to! move#3v �df isa!

3



experiencer : ball #1n
attr: forward #1adv

agent : John #1n
object : ball #1n
instrument : bat #1n

agent : John #1n
object : ball #1n
instrument : bat #1n

experiencer : ball #1n
attr: forward #1adv

experiencer : it
location: @ATTR(far_away#1adj)

agent : John #1n
object : ball #1n
instrument : bat #1n

experiencer : it
location: @ATTR(far_away#1adj)

experiencer : it
location: @ATTR(far_away#1adj)

experiencer location

experiencer : it
location: @ATTR(far_away#1adj)

experiencer : ball #1n

objectagent instrument

travel # 1v

SYNONYM

go # 1v

SYNONYM

move # 1v

r_SYNONYM

locomote # 1v

SYNONYM

v1046072

(attribute)
DEF_FEAT_cont

v869132

DEF_FEAT
(experiencer = object)

SYNONYM

propel # 1v impel # 2v

SYNONYM
SYNONYM

move forward # 3v
ISA
(*agent; *object; *instrument)

COLLISION

r_SYNONYM

v809580

SYNONYM

cause to move by striking # 1v

hit # 1v

fly # 1v

SYNONYM

wing # 1v

SYNONYM

be airborne # 1v

SYNONYM

ENTAILEDBY

v1128809

(*experiencer; *location)

land # 1v

far awayit

ISA
(*experiencer; *location)

v1104809

SAME_LABEL

move # 1v_dv869132

forward # 1 adv_dv869132

set down # 2v

the ball a batJohn

r_SYNONYM

SYNONYM

Figure 1. Coherence path between S1 and S2

change#1v��
break#4v�isa! change#1v��
This path shows a connection from ball to brake. Noun
ball#1 has the meaning of a sport ball which has defining
feature that is hit. From here, the path takes us to propel,
which is a displacement, which causes to change position ,
which is a change. Here is the collision with the path from
break which causes a change of state, which is a change.

6 Algorithm Performance and Parallelism
Analysis

Algorithm performance metrics
Little is known about inference algorithms, mainly because
there are not many such algorithms. Algorithmperformance
should reflect both the quality of inferences, as well as the
computational efficiency measured in terms of processing
time and memory space. While we realize intuitively that
some inferences are more important than others, it is not
known yet how to rank inferences. Unfortunately, we can
not yet link algorithm performance to the “goodness of in-
ferences”.

In this paper, we propose two metrics that indicate how
many useful inferences were found by the algorithm and

how many were missed. Since inferences are closely related
to the semantic paths in the knowledge base, we will refer
to these paths instead. The algorithm may find paths that
are semantically incorrect and lead to erroneous inferences,
or algorithm may miss some correct paths that exist in the
knowledge base.

Let us denote with n the total number of paths found by
the algorithm, nc the number of correct paths found by the
algorithm, and Nc the number of correct paths that exist in
the knowledge base. A correct path is one that is seman-
tically correct, meaning that contains concepts leading to
inferences acceptable to an average human.

Definition 1. Recall is the ratio between the number of
correct paths found by the system over the number of correct
paths that exist in the knowledge base.Recall = ncNc
Definition 2. Precision is the ratio between the number of
correct paths found by the system over the total number of
paths found. Precision = ncn
A human evaluator needs to determine nc out of all the
paths produced by the algorithm. Also, the evaluator needs
to inspect the knowledge base and determine all the correct

4



paths. While this is in general difficult, it may be possible
for some examples, for the purpose of tuning the algorithm
marker propagation rules.

For example, in Experiment 1 described above n =
30; nc = 20, and Nc = 25. The numbers n and nc re-
sult by inspecting the path, and Nc was found by inspecting
the knowledge base. This results in a 66% recall and 80%
precision.

Parallelism performance
Several sources contribute to the large degree of parallelism
available. First, it is the fact that markers may originate
in parallel from many words in the sentence pair. An-
other source of parallelism results from the branching in
the knowledge base. When a marker is processed in a node,
it may spawn other markers whenever there are several out-
going relations on which its propagation rule allows markers
to move. These two sources of parallelism are reflected in
the number of markers produced by the system.

The algorithm speed up may be computed as the ratio be-
tween the total number of marker propagations (sequential
time), over the number of propagations along the longest
path (parallel time). Here we assume that a marker propa-
gation includes communication as well as processing time.
Let Ptotal be all marker propagations, and Ppath the propa-
gations along the longest path.Speedup = PtotalPpath
For example, in Experiment 1 there were 54 markers in the
system, and the total number of nodes marked was 181.
The total number of marker propagations was 338, and the
longest path had 12 propagations, which results in a speed
up of 28.1

Summary of results

Table 3 summarizes our measurements for the three ex-
periments discussed above. The number of nodes and re-
lations gives information about the knowledge base. The
next entry indicates the number of nodes that were marked,
in each case. Then, the number of markers indicates the
degree of parallelism. Recall, precision and speed up are
computed for each case.

7 Conclusions

We have identified a parallel method for extracting plau-
sible inferences from text. A practical way of constructing
large, scalable, general-purpose knowledge bases is to ex-
pand WordNet.

The markers we used are considerably more complex
then spreading activation markers proposed by Quillian [7],

Parameter Exp. 1 Exp. 2 Exp. 3

Nodes 392 346 278
Relations 605 532 418
Nodes marked 181 132 116
Markers total 54 44 40n 30 11 16nc 20 6 11Nc 25 8 13Recall 66% 55% 69%Precision 80% 75% 85%Ptotal 338 272 258Ppath 12 10 11Speedup 28.1 27.2 23.4

Table 3. Measurements summary

and used later by [2], [1], [5], and others. Our markers have
fields for case constraints, synchronization with other mark-
ers, and propagation rules. We think that by allowing the
user to program the marker fields is a clear advantage. Mark-
ers may be regarded as lightweight processes that execute
asynchronously. Some problems with marker propagation,
however, are the detection of the end of propagation, and
using a large amount of memory to keep copies of markers.

Acknowledgment
We are grateful to Takashi Yukawa, visiting scientist from
NTT, Japan, who has contributed to the construction of
the larger knowledge base and conducted several experi-
ments. This work was partially supported by NSF grant
CCR-9406998.

References

[1] E. Charniak. A neat theory of marker passing. In Proceed-
ings of the Fifth National Conferenceon Artificial Intelligence
AAAI-86, pages 584–588, 1986.

[2] S. Fahlman. NETL: A System for Representing and Using
Real-World Knowledge. The MIT Press, Cambridge, Mas-
sachusetts, 1979.

[3] C. Fellbaum. English verbs as a semantic net. Technical
Report CSL 90-43, Princeton University, 1990.

[4] C. Fellbaum, D. Gross, and G. Miller. Wordnet : A lex-
ical database organized on psycholinguistic principles. In
U. Zernik, editor, Lexical Aquisition: Exploiting On-Line Re-
sources to Build a Lexicon,pages 141–170. Lawrence Erlbaum
Associates Publishers, Hillsdale, N.J., 1991.

[5] J. Hendler. Integrating Marker-Passing and Problem-Solving.
Lawrence Erlbaum Associates Publishers, 1988.

[6] D. Moldovan, W. Lee, and C. Lin. Snap: A marker-
propagation architecture for knowledge processing. IEEE
Transactions on Parallel and Distributed Systems, 3:1–13,
1992.

[7] M. Quillian. Semantic Memory. PhD thesis, Carnegie Institute
of Technology (Carnegie Mellon University), 1966.

5


