
Digitally Signed Documents – Ambiguities and Solutions

Adil Alsaid and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK.

e-mail: A.Alsaid@rhul.ac.uk

Abstract
Digitally signing a digital document is a straightforward procedure; however, when the digital document contains
dynamic content, the digital signature may remain valid but the viewed document may not be the same as the docu-
ment when viewed by the signer. Other similar problems exist even with ‘static’ documents, if the appearance of a
document can be changed. In this paper, we consider previously proposed solutions for such problems, and propose
a new solution. Unresolved issues and problems are also discussed.

Keywords
Digital Signature, e-commerce, e-Document, Security

1 Introduction

Digitally signing a digital document is a straightforward procedure, and digital signatures (see,
for example (Menezes et al. 1997, Chapter 11)) are a very important cryptographic primitive.
Both national and international standards for signatures exist, including the US Digital Signature
Standard (DSS) (NIST 2000), which specifies a suite of recommended algorithms, and two multi-
part ISO/IEC standards, ISO/IEC 9796 and ISO/IEC 14888. The main security services that
can be provided by a digital signature are: message integrity, origin authentication, and non-
repudiation. It is important to note that all the existing standards for signatures, including the
DSS and the ISO/IEC standards, are concerned with which algorithms to use and not the form of
the data that is signed.

As pointed out by Kain et al. (2002), digital documents with dynamic content may cause a
problem for the digital signature verification process. This paper tries to address some of the
problems that arise when signing digital documents that contain dynamic content. It does not
discuss other digital signature security problems such as Trojan Horses or securing the Digital
Signature workstation, as discussed, for example, in (Spalka et al. 2001a, Weber 1998).

The rest of the paper is organized as follows. Section 2 briefly introduces the problem of signing
digital documents with dynamic content. Section 3 discusses possible locations for signature
functionality in a computer system. Existing solutions to the problems discussed in Section 2 are
introduced in Section 4. A novel solution is discussed in Section 5. Finally, issues and unresolved
problems are discussed in Section 6.

2 The Signature Interpretation Problem

In order for a program to generate a digital signature on a data structure, e.g. a document, it
must first encode it as a serial string of bits and bytes. It is then expected that the signature
will unambiguously commit the signer to the contents of this serialized document. However,



ambiguities can arise in the interpretation of the data string when this string can be viewed
differently by the signer and the verifier of the signature. That is, it is possible to sign a digital
document that changes when viewed at a later time, without invalidating the digital signature.
One way in which this problem can arise is when the digital document being signed contains
dynamic content.

As an example, suppose that the creator of the digital document is different from the signer. The
creator produces the document in such a way that it gives the signer the impression that what he
is about to sign is what is being displayed. However, the creator may embed dynamic content,
e.g. macros or JavaScript, in the document to change its displayed contents when viewed at a
later time. Kain et al. (2002) describe the problem and gave some examples using MS Word, MS
Excel, PDF files, as well as HTML documents.

A different source of ambiguities in digitally signed documents was discussed by Jøsang et al.
(2002). Jøsang et al. (2002) show how font substitution can be used to display the same digital
document with different meanings on different computers.

Whilst there are no doubt yet further ways in which ambiguities can be deliberately or acciden-
tally introduced into digital documents, the main focus of this paper is problems arising from
dynamic content. This is a significant and growing problem — whether we like it or not, docu-
ment formats appear to be becoming more complex and more dynamic, rather than less so. Of
course, this enables many new features to be provided to users; this appears to be yet another
area where user convenience and security are pulling in opposite directions.

3 Signature functionality

Signature functionality can be integrated into a specific application or implemented as a stand-
alone application. If digital signature functionality is integrated into an application, the applica-
tion is aware of the document format and could be designed to avoid possible digital signature
interpretation issues arising from dynamic content. Moreover, the application could act as a
“trusted viewer” for the digital document. However, this is not really a viable general approach,
since including signature functionality in every application is potentially very inefficient, with
significant associated key management issues.

On the other hand, when a stand-alone signature application is used, the problem of dynamic
content can be much more serious, since the digital signature program is typically not aware of
the format of the document being signed. One way of avoiding this problem would be to enable
the signing application to communicate with the application which understands the document
format. This idea forms the basis of the scheme we propose in Section 5 below.

Of course, the security of the signing process also relies on the integrity and secrecy of the private
signing key and controls to limit its use. The private key must thus be protected in some way,
e.g. by storing it in a security module such as a smart card and requiring entry of a password to
enable its use.

4 Existing Solutions

In this section, previously proposed solutions to the problem of signing digital documents pos-
sessing dynamic content are briefly reviewed. Interestingly, all these solutions fall into the second
category discussed above, i.e. they apply to the case where signature functionality is included in



a stand-alone application.

4.1 Disabling dynamic content

Disabling dynamic or active content, as proposed by Spalka et al. (2001b), is one solution to
this problem. However, this solution may render some documents useless. Spalka et al. (2001b)
propose two further ways to solve the problem of dynamic content. One is to restrict the actions
of active content instead of disabling it, although this would require re-engineering every appli-
cation. The other approach is to use a ‘secure viewer’ to view signed documents; however, this
would require the viewer to be able to parse every possible document format (see also Section
4.4).

4.2 Static file formats

In this approach, only predefined static file formats, known not to have dynamic content, are
permitted to be signed. For example, plain ASCII files have no dynamic content, so the digital
signature program can sign them without worrying about ambiguity issues. However, this may
mean that only one file format can be digitally signed, because most digital document formats
permit some sort of dynamic content. This approach may be useful in situations where the digital
documents to be signed do not have dynamic content features, such as macros, JavaScript, or
HTML capabilities.

4.3 XML

Another solution would be to convert the digital document to the Extensible Markup Language
(XML) format (W3C 2003) and then apply the XML digital signature processing standard (Bartel
et al. 2002) to obtain the document signature. This does appear to help solve the problem, but
dynamic content may still exist in the XML version. When the document is later presented to the
signature verifier, if it is necessary to convert the document back to its original form, the dynamic
content may be activated. The authors of the XML digital signature standard are aware of the
problem of dynamic or active content. The standard states clearly that, in order to sign an XML
document, the signature program should sign all ‘external’ documents, i.e. documents referenced
from within the XML document.

One problem with this solution is that the XML document may no longer contain all the dynamic
content of the original document. For instance, if a Microsoft Excel document contains macros,
then in order to avoid any possible problems arising from such dynamic content, all macros
should be removed from the XML version. This will render the document useless if there are
macros that are needed to present the document to the user, or if the user wants to make some
changes to the document using the macros.

4.4 Document Parser

Another approach to solving the problem is to create a digital signature program with its own
document parser. That is, whenever the user wants to sign a document, the digital signature
program parses the digital document and removes all dynamic content. In this approach, the
digital signature program will need to be aware of most, if not all, digital document formats,
which appears infeasible.



Thus, as it stands, this approach is impractical, because of the need to provide a document parser
for every possible document format. However, it might be possible to provide a parser for the
most popular document formats. Nevertheless, problems will still arise since not all document
format specifications are available, and the owners of proprietary document formats often change
the format with every release of their product.

4.5 Graphics version

The What You See Is What You Sign (WYSIWYS) concept (Scheibelhofer 2001) is designed to
solve the ambiguity problem arising from signing digital documents with dynamic content. This
approach works by creating a graphical representation of the digital document and then digitally
signing it. That is the approach taken by a commercial product (utimaco 2003) running under
the Microsoft Windows operating system.

This approach appears to work well. However, it removes a lot of the flexibility enjoyed in
today’s business environment. Also sending an image potentially consumes a lot more bandwidth
than just sending the digital document.

5 A New Solution

In this section, we propose a new method to solve the problem of signing digital documents with
dynamic content. The solution works in a similar way to the document parser solution outlined
in Section 4.4. The main difference is that our proposed solution passes the document parsing
task to the document generator program. This removes the need for the digital signature program
to be aware of the document format specifications in order to generate a static version of the
document, i.e. a version of the document without dynamic content.

Furthermore, the solution is flexible in that it can handle document formats introduced after the
signing program was released. The solution as described here uses the Microsoft Component
Object Model (COM) architecture (Box 1998); however, other component based architectures,
such as CORBA or Java, could also be used. The solution is based on two assumptions, as
follows.

1. The verifier has access to the program that was used by the signer to generate the digital
document. In other words, both signer and verifier have access to the COM object that can
generate a ‘safe’ digital document for the specific digital document type. For example, if
the signer is signing a document created by Microsoft Word, then the verifier should also
have access to Microsoft Word.

2. All programs that generate digital documents that may need to be signed must be aware
of the digital signature program, i.e. they must possessapplication awareness. For exam-
ple, in the Microsoft Windows environment, this assumption can be met by registering the
COM component of the application responsible for creating a static version of the docu-
ment under a key in the Registry. We will discuss these assumptions in more detail below.

5.1 Application awareness

In order for an application to be digital signature application aware, it should meet the following
two requirements:



COM Interface

Dynamic Document

2. Send Dynamic document to application

Registry

Digital Signature
Application

Digital Signature
aware Application

application and create an instance of it
1. Get GUID of Digital Signature aware

3. Sign recieved static document

Static Document

Figure 1: Signing a digital document

1. It must implement an object that exposes a COM interface to help the digital signature
program communicate with the application.

2. When installed, it must register itself in a predefined key location in the Registry, i.e. the
data repository in the Microsoft Windows environment in which most of the Windows
settings and program information are kept. The Registry location used must be specific to
the digital signature program. This will make it easier for the digital signature program to
locate digital signature aware applications.

Given that the application meets the above two requirements, the digital signature program can
consult the Registry and search for the application that is associated with any digital document
(using the file type indication following the full stop in the file name). Once it has identified
the application that generated the document, it creates an instance of that application and, using
the digital signature COM interface, passes it the document and requests it to generate a static
representation of the document. In the next two sections, we describe the process of signing and
verifying digital documents.

5.2 Signing a digital document

To sign a digital document, the signer uses the relevant application to check that the document
appears correct. The digital signature program is then invoked and is passed the document. The
digital signature program performs the following steps in order to sign the document, as shown
in Figure 1.

1. The program consults the Registry and searches for the application program that generated
the document, using the document filename extension as a key. It then obtains the Globally
Unique ID (GUID) of the application and creates an instance of the application in order
to get access to the digital signature interface. If the digital signature program cannot find
the GUID of the application responsible for creating the particular document type, the user
should be warned, and given the option of either signing the document or not.

2. The program sends the document to the identified application through the digital signature
COM interface that was acquired in step 1, and requests it to parse the document and return



it in a static form.

3. The signature program receives back the static form of the document and signs it.

5.3 Verifying a signed document

In order to verify a digital signature on a document, the document, the signature, and the signer’s
public key are input to the signature program for verification. After performing steps 1 and 2
as described in Section 5.2, the signature program verifies the digital signature against the static
version of the document it received in step 2 and outputs a ‘true/false’ indicator. If the output
value is true, then the signature is valid. Figure 2 illustrates the process of verifying a digital
signature on a document with dynamic content.

COM Interface

Digital Signature
Application

Signature verification process

Digital Signature +

Dynamic Document +

Signer’s Public Key

True/False indicator

Digital Signature
aware Application

Figure 2: Verifying a signed document

5.4 Security Analysis

We now briefly review some possible attacks on the scheme described immediately above.

5.4.1 File type attacks

As discussed in Section 5.1, the application program must register the file type extensions that it
uses in a special location within the Registry, in addition to the ‘regular’ extension registration
process. Correct operation of the proposed solution relies heavily on the correctness of both
document extensions and the file type/extension table held in the Registry. Apart from ensuring
that the application program possesses application awareness of the digital signature program,
the use of a special extension mapping table minimises the risk of accidental changes to this
table.

The document extension scheme could be attacked by taking advantage of this reliance. One
attack of this type would be to change the extension of a document that is to be signed. For
example, suppose that a document is in Microsoft Word format, i.e. it has the extension .doc,
and that a malicious third party changes its extension to .txt, the extension for text files. In order
to sign the document, the digital signature program performs all the steps discussed in section
5.2, and passes the document to the application registered for handling text files. Since .txt files
cannot contain dynamic content, the application will simply return the unchanged file to the
signature program, which will sign it.

If an attacker can then change the document type back to .doc before it is viewed by the signature
verifier, then problems can clearly arise. If the file contains dynamic content then the problem
that the solution was designed to avoid will recur on the verifier’s computer. The only way of
avoiding this problem is to prevent changes to the file type extension, which can be achieved



by including the file name within the scope of the digital signature. However, even if such a
precaution is enforced (and this would be our recommendation) problems can still arise if the
extension/application mapping table in the Registry can be modified, as we now describe.

Suppose an attacker can modify the signature program extension/application association tables
in the Registry of both the signer’s and the verifier’s computer so that in both cases .doc files are
processed by an application designed to work with ASCII text files. Suppose, moreover, that the
signer is given a document to sign that contains dynamic content. When the signature program
passes it to the application to make a static version, no changes will be made since the document
will be treated as an ASCII text file. Exactly the same will happen at the verifier, and the signature
on the document will thus be verified. However, when the verifier views the document using
Word, the dynamic content will be activated, and the usual problems with dynamic content arise.

It should be noted that, as long as the file name (and hence the extension) is signed, attacks
require the modification of settings on the signer and/or verifier machine. The use of a special
association table, used only by the signature program, will prevent such changes being made
accidentally. However, no system can completely address threats which arise if attackers have
access to the signer or verifier computer, and thus users of signatures should take all the usual
precautions to protect the integrity of their computers.

5.4.2 Changes to documents

In order to sign a digital document, the user views the document on the screen, approves it for
signature, and finally requests the digital signature program to sign it. However, a threat exists
that the document could be changed after the user views it and before the document is signed.
For instance, just after viewing the document and before signing it, a piece of malicious code
could change the document.

This issue can be addressed by integrating the digital signature functionality into the application
itself, instead of separating the viewing and signing functions. An application may provide both
facilities to the user; for instance, the application may enable the user to view the document,
approve it for signature, and have the signature generated (e.g. using a system function call)
without switching to any other application.

Of course, this problem arises with any scheme designed to sign documents, independently of the
solution described in this paper. Again, this underline the importance of protecting the integrity
of any computer used to create digital signatures.

6 Concluding remarks

The suggested solution requires all document handling applications to possess application aware-
ness of the digital signature program in order to function properly. Every application must im-
plement a COM interface and register itself in the Registry, in a location specific to the digital
signature program, to enable the digital signature program to sign the digital document. We
conclude this document by discussing one possible area for possible future research.

In order to sign a digital document, the user private key should be accessible to the digital signa-
ture program. Securing the user private key is very important to the operation of the suggested
solution and, indeed, to any implementation of digital signatures. Where should this key be
stored? The use of trusted computing technology (Balacheff et al. 2003), as incorporated into



Microsoft’s Next Generation Secure Computing Base (NGSCB) (England et al. 2003), may be
useful in this context. Further research in this area is required in order to answer such questions.

7 References
Balacheff, B., Chen, L., Pearson, S., Plaquin, D. & Proudler, G. (2003),Trusted Computing Platforms: TCPA

Technology in Context, Prentice Hall PTR, Upper Saddle River, New Jersey.

Bartel, M., Boyer, J., Fox, B., LaMacchia, B. & Simon, E. (2002), ‘XML-Signature Syntax and Processing’.
http://www.w3.org/TR/xmldsig-core/.

Box, D. (1998),Essential COM, Addison-Wesley, Boston, MA.

England, P., Lampson, B., Manferdelli, J., Peinado, M. & Willman, B. (2003), ‘A trusted open platform’,IEEE
Computer36(7), 55–62.

Jøsang, A., Povey, D. & Ho, A. (2002), What You See is Not Always What You Sign,in ‘The proceedings of the
Australian UNIX User Group’, Melbourne.

Kain, K., Smith, S. W. & Asokan, R. (2002), Digital signatures and electronic documents: A cautionary tale,in
B. Jerman-Blazic & T. Klobucar, eds, ‘Advanced Communications and Multimedia Security, IFIP TC6/TC11
Sixth Joint Working Conference on Communications and Multimedia Security, September 26-27, 2002, Por-
toroz, Slovenia’, Vol. 228 ofIFIP Conference Proceedings, Kluwer Academic, Boston, MA, pp. 293–308.

Menezes, A., van Oorschot, P. C. & Vanstone, S. A. (1997),Handbook of applied cryptography, CRC Press, Boca
Raton, Florida.

NIST (2000),FIPS PUB 186-2: Digital Signature Standard (DSS), National Institute for Standards and Technology,
Gaithersburg, MD, USA.
URL: http://www.itl.nist.gov/fipspubs/fip186-2.pdf

Scheibelhofer, K. (2001), Signing XML Documents and the Concept of ‘What You See Is What You Sign’, Master’s
thesis, Institute for Applied Information Processing and Communications, Graz University of Technology.

Spalka, A., Cremers, A. B. & Langweg, H. (2001a), The fairy tale of ‘what you see is what you sign’ — Trojan horse
attacks on software for digital signature,in S. Fischer-Ḧubner, D. Olejar & K. Rannenberg, eds, ‘Proceedings
of the IFIP WG 9.6/11.7 Working Conference’, Security and Control of IT in Society-II (SCITS-II), Bratislava,
Slovakia.

Spalka, A., Cremers, A. B. & Langweg, H. (2001b), Protecting the creation of digital signatures with trusted com-
puting platform technology against attacks by trojan horse programs,in M. Dupuy & P. Paradinas, eds, ‘Pro-
ceedings of the IFIP SEC 2001’, Kluwer Academic, Boston, MA, pp. 403–420.

utimaco (2003), ‘WYSIWYS What You See Is What You Sign’. http://www.utimaco.de/eng/contentpdf/wysiwys.pdf.

W3C, T. (2003), ‘Extensible markup language (XML)’. http://www.w3.org/XML.

Weber, A. (1998), See what you sign: Secure implementations of digital signatures,in S. Trigila, A. P. Mullery,
M. Campolargo, H. Vanderstraeten & M. Mampaey, eds, ‘Intelligence in Services and Networks: Technol-
ogy for Ubiquitous Telecom Services, 5th International Conference on Intelligence and Services in Networks,
IS&N’98, Antwerp, Belgium, May 25-28, 1998, Proceedings’, Vol. 1430 ofLecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, pp. 509–520.


