Towards evaluating the benefits of inter-vehicle coordination

Niall O’Hara, Marco Slot, Julien Monteil, Vinny Cahill, Mélanie Bouroche
Distributed Systems Group, School of Computer Science and Statistics,
Trinity College Dublin, Ireland

Abstract— While vehicle automation has the potential to sig-
nificantly improve safety and traffic efficiency, the full potential
will only be realised when vehicles start exploiting wireless
communication to cooperate with each other and coordinate
their interactions in advance. Ensuring that vehicles coordinate
safely while improving efficiency is, however, a very challenging
problem as it depends on (i) the characteristics of individ-
ual vehicles (vehicle physics, sensors), (ii) unreliable wireless
communication, and (iii) driving behaviour at a microscopic
level, and their compounded effects at scale. The presence
of non-communicative, non-automated vehicles must also be
considered.

Designing and evaluating coordination protocols requires a
scalable simulation framework that is accurate both micro-
scopically (to assess safety) and macroscopically (to evaluate
efficiency). Standard car-following models, where position and
velocity are dictated by local input stimuli, produce sometimes
unrealistic behaviour when laterally changing position, and lack
support for additional inputs. Furthermore, conventional envi-
ronments used to model traffic flow are either too fine-grained
to scale or too coarse to appropriately simulate control logic.
This paper introduces RoundaSim consisting of (i) a traffic
simulator using a novel approach of mixed discrete-continuous
modes of time, and (ii) a framework for implementing car-
following models that supports lane-changing and coordination
protocols, with additional inputs from advanced sensors and
wireless communications. We show how our framework can be
used to implement and evaluate a car-following model with lane
changes and validate that the traffic flow achieved approximates
that of real-world highways. This allows our platform to be
used as a baseline for evaluating the safety and efficiency of
coordination protocols.

I. INTRODUCTION

Whilst drivers sometimes subconsciously coordinate their
actions driving behaviour tends to be competitive, often lead-
ing to unsafe behaviour and ultimately causing congestion
and delays. By communicating with each other over wireless
networks, vehicles could share information and actively
coordinate their behaviour with the potential to significantly
improve safety and efficiency. Real-time coordination [1] and
group communication [2] are required to dictate the infor-
mation a car broadcasts and the actions it should take based
on received messages and available sensor data. Designing
coordination protocols that ensure safety while improving
efficiency is challenging, since:

o vehicles are heterogeneous in terms of physical at-
tributes, but also in terms of capabilities: what sensors
and actuators they are equipped with, as well as whether
they can communicate,

« sensor range is limited and wireless communication is
unreliable (messages can be delayed or lost),

« the behaviour of a vehicle will depend on the driver and
their ability to process and act on presented information.

As a result, unexpected traffic patterns may emerge from
the logic followed by vehicles when reacting to each other’s
presence, hence potentially threatening safety, and making
it challenging to rigorously evaluate potential efficiency
improvements.

Designing and evaluating coordination protocols therefore
requires a framework that includes realistic models of the
physical properties of vehicles, advanced sensors and wire-
less communication whilst providing microscopic accuracy
to assess safety. It also must support the simulation of a
large number of vehicles over wide scenarios to enable the
study of efficiency at a macroscopic scale. Furthermore, due
to the complexity of the interactions between participants
and the resultant emergent behaviour, real-time visualisation
of the simulation is particularly helpful. Indeed, observing
the emergent behaviour helps understand the effects of the
coordination protocol under study, and their evolution over
time. Finally, the ability to model vehicles’ behaviour, and
in particular the behaviour of heterogeneous vehicles, is
essential.

In this paper, we present a traffic simulator and frame-
work that provides the ability to accurately model vehicles’
dynamics, with sensors for orientation, position, velocity,
orientation and indicator detection. In addition LIDAR sensor
and wireless communication (802.11p) capabilities are also
provided. These can all be used as inputs to a controller,
which controls the actuators of the vehicle. The simulation
engine, a hybrid between a microscopic traffic simulator and
a robotics simulator, where discrete events are interleaved
with continuous time progress, supports the evaluation of the
safety and efficiency of traffic. We show how our framework
can be used to implement a controller for an automated vehi-
cle driving on highways which utilises sensor data as input
to support opportunistic lane changes coordinated through
indicators.

As automated vehicles will initially mimic human
drivers [3], they should show similar overall behaviour. By
comparing traffic statistics in a simulated highway scenario
to well-established traffic models, based on real-world ob-
servations from the Highway Capacity Manual [4], we show
that our implementation accurately reproduces the expected
relationship between density, speed, and flow rate. This
creates a baseline for the evaluation of future coordination
protocols.

The next section describes related work and section III
provides an in-depth description of RoundaSim and its
components. Section IV outlines the implementation of a
highway car-following model with lane changes within our
framework. In section V we outline our experiments to
validate our implementation and present our results. Finally,
section VI concludes the paper.

II. RELATED WORK

Existing microscopic traffic simulators, such as VIS-
SIM [5] and SUMO [6] discretize time into steps of fixed
size, which is appropriate for evaluating traffic flow, but the
fidelity of interactions is lost in the coarseness of the time
steps. Another drawback of fixed time-step simulation is that
many events in the simulation occur at the same instant
in time, while this would not be the case in reality. This
can lead to peculiar side-effects, especially in scenarios in
which the vehicles are not expected to be synchronized in
terms of their actions, sensor measurements, and communi-
cation. For this reason these simulators cannot be used to
evaluate safety. MovSim [7] allows for the investigation of
discrete decision making within traffic situations. It imple-
ments various car-following models and aims to model basic
traffic flow situations and discrete decisions such as lane
changing on a highway. It does not however provide any
advanced sensor or wireless communication simulation. As
such, it is requires extension to make it suitable to investigate
cooperative vehicle scenarios [8]. PreScan [9], a physics-
based simulator used for the development of Advanced
Driver Assistance System (ADAS), provides advanced sensor
simulation, realistic vehicle dynamics and visualization tools.
It also supports real-time visualisation, but it does not scale
well and vehicles cannot be dynamically added at runtime.
Furthermore, its wireless network simulation capabilities are
quite basic. In order to increase the realism of the scenario
under investigation, combining multiple simulation platforms
is a route often taken. Mylonas [10] and Bhakthavath-
salam [11] evaluated inter-vehicle communication proto-
cols and applications through the integration of microscopic
simulation programs (VISSIM, SUMO) and discrete event
communication simulation engines (OPNET, NS-2). They
demonstrated that the approach was valid when developing
such applications however as they focused on inter-vehicle
communication, they were not concerned by car-following
models.

A core part of traffic simulation is the car-following model
used to control decisions of an individual vehicle [12]. The
aim of a car-following model is to approximate what a
vehicle is likely to do in a given situation, in terms of
acceleration, lane changes, or routing. Various car-following
models have been developed such as Wiedemann [13],
Gipps [14] and the widely used Intelligent Driver Model
(IDM) [15], which provides acceleration. It is the default
car-following model for SUMO. MOBIL [16] extends ac-
celeration models with lane changes. A car-following model
is generally based on simplifying assumptions. For example,
most models assume the distance to, and the speed of, a

236.0m

344 0m

Fig. 1. RoundaSim GUI - Section of the M50 highway in Dublin

predecessor are known instantly, while human drivers can
only roughly estimate these and automated vehicles are
limited by the capabilities of their sensors. For the purpose of
developing a car-following model for an automated vehicle,
safety needs to be preserved in the presence of inaccuracy
and uncertainty from measurements and transformations. The
heuristics provided by a standard car-following model can
still be used to achieve a ‘good’ baseline behaviour, although
the overall behaviour may not perfectly match the expected
performance of the vehicle unless inputs from advanced sen-
sors and wireless communications are accurately modelled.
The highway controller presented in section IV uses the IDM
and an incentive based lane change process similar to that
of MOBIL.

III. ROUNDASIM

This section first outlines RoundaSim’s novel simulation
approach and describes the concept of tracks, which enable
RoundaSim’s scalability. We then detail how the capabilities
of vehicles are modelled and tied to the simulation environ-
ment. Finally we look at how the wireless communications
layer is implemented.

A. Simulation Environment

RoundaSim is a traffic simulator that uses mixed discrete-
continuous modes of time. Like a discrete-event simulator,
it keeps a queue of events and their scheduled execution
times. Events could be generated by control logic, such
as functions that are called periodically, or external factors
such as a message being received. Before executing an
event, the simulation moves the vehicles forward according
to continuous-time models at nanosecond granularity thus
avoiding any loss of fidelity. Uncertainties such as commu-
nication latency/failures and sensor inaccuracy/failures can
be defined at runtime in order to increase the realism of the
scenario under investigation. Heterogeneous vehicle types are
defined through sensor availability and parametrised physical
capabilities (length, acceleration profile, etc.).

Fig. 2. Tracks on a section of the M50 in Dublin, Ireland

B. Tracks

A key concept in RoundaSim is that of tracks: inter-
connected, 2-dimensional paths that vehicles can follow.
Positions on tracks, called track points, are represented by
a track identifier and an offset along the length of the path.
Tracks start and end on track points of other tracks, except
at the boundaries of a scenario where the tracks are open-
ended, it’s at these boundaries where vehicles enter and exit
the simulation. Tracks can also be connected sideways as
lanes, which means that lane changes are possible between
the tracks. A lane change requires a new track to be generated
at run-time. An example of tracks for a highway scenario
is given in Figure 2. Track areas are represented as sets
of (track id, start offset, end offset) tuples called track
ranges. The benefit of these 1-dimensional representations
is that both the simulation logic and vehicle control logic
can be implemented efficiently and with relatively simple
algorithms. The use of tracks also allows a straight-forward
conversion into 2-dimensional geometry in order to simulate
sensors and wireless networking, and provide a rich visual-
ization. Using the tool shown in Figure 1, users can define
a scenario comprising the primary tracks that vehicles can
follow and buildings that can be observed using LIDAR.
Figures 2, 5, and 6 show different visualizations produced
by the simulator. Section IV-A explains how driving is
implemented atop of tracks.

C. Localization

Vehicles have access to basic localization sensors for
measuring velocity, orientation, and position. The velocity
sensor simply takes the current velocity of the vehicle from
the state of the simulation. The orientation and position
sensors are implemented by translating the current track
position of the vehicle, consisting of a track identifier ¢ and
an offset o, into 2 dimensions. The path of the track ¢ is
followed from the start for a distance of o to obtain the 2-
dimensional position p. The orientation of the vehicle is the
orientation of the line segment on which point p lies. Position

Fig. 3.

LIDAR Sensors on the vehicle

Fig. 4. Converting LIDAR beams to a ring of points

can also be provided as a track point, which simplifies the
control logic.

D. LIDAR

LIDAR simulation is implemented using raycasting. By
default, vehicles are equipped with two 180° sensors on
the front and back of the vehicle with 1° angular res-
olution, in addition to two single-beam sensors on both
sides for sideways observations as shown in Figure 3. This
gives vehicles a 360° view of their surroundings, similar to
Google’s autonomous vehicles [17], but in a 2-dimensional
plane. Periodically, beams are drawn from the sensor and
intersected with the polygons of other vehicles and buildings.
The distance between the position of the sensor and the
closest intersection is the value of the distance measurement
for that beam. The output of the LIDAR sensor is a set of
distance measurements associated with individual beams.

A useful transformation is to convert the distance mea-
surements into a track area, such that the measured distances
(empty space) can be associated with the driving paths of ve-
hicles. The transformation can be performed in 3 steps. First,
the measurements are converted into a 2-dimensional ring
(polygon) around the vehicle. Second, the ring is intersected
with the tracks to obtain a set of track boundaries. Finally,
the track boundaries are converted into an empty track area.

The first step of the transformation constructs beams from
the sensor positions. For every pair of adjacent beams, the
projection of the tip of the shortest beam onto the longest
beam is added to a ring as shown in Figure 4. This determines
the area in between the beams that is actually empty as
a polygon. The polygon is translated to the 2-dimensional

Fig. 5. LIDAR beams measured by a vehicle are converted to a polygon

position and orientation of the vehicle (Figure 5). To factor in
potential inaccuracy in the position sensor, polygon offsetting
can be used to reduce the size of the polygon by the worst-
case inaccuracy value.

The second step of the transformation converts the polygon
into a set of track boundaries, which are (track id, offset,
forward/backward) tuples. This is achieved by intersecting
the polygon with the paths of the tracks. To make this
operation efficient, a spatial data structure is used to index
the individual line segments of the tracks at the start of
a simulation. When an intersection is found, the direction
of the boundary is determined to point inwards into the
polygon. The offset of the track boundary is found by taking
the distance between the start of the line segment and the
intersection plus the lengths of the all the preceding line
segments. When all intersections are converted to boundaries
the second step is completed.

The third and final step of the transformation converts
the set of boundaries into a set of track ranges. From an
arbitrary, unmarked boundary, a breadth-first search is started
to find the other boundaries by following the tracks in the
direction of the boundary. The track ranges that are traversed
in the search are added to the track area. When the search
encounters another boundary, it is marked. Since an area may
consist of multiple partitions, the search process is repeated
until all boundaries are marked. The resulting set of track
ranges is the final empty track area. An example is shown
in Figure 6.

The empty track area can be used in additional transfor-
mations, which are effectively part of the control logic. By
tracing the route of the vehicle from its current position to
the edge of the track area, a track-aware forward-looking dis-
tance is obtained that can be used in acceleration decisions.
An interesting side effect of using the empty track area for
distance measurement is that the curvature of the road and
the line-of-sight of the vehicle will be taken into account.

Fig. 6. Polygon converted to 1-dimensional track ranges

E. WLAN

The wireless network in RoundaSim is simulated using
SWANS [18] (Scalable Wireless Ad-hoc Network Simula-
tor), a Java library for simulating an ad-hoc 802.11 network.
It is normally used in combination with JiST, a virtual ma-
chine simulator. The JiST execution model used by SWANS
is not entirely compatible with a discrete event simulator
that uses explicit scheduling, but the modifications to make
SWANS compatible with RoundaSim are minor. The param-
eters used to configure SWANS are taken from the 802.11p
standard for wireless access in vehicular environments [19].
Rayleigh fading and two-ray propagation [20] are used to
model the physical channel. Control software running in the
simulator uses SWANS through generic unicast, broadcast,
and receive interfaces.

IV. CONTROLLERS & CAR-FOLLOWING MODELS

Within our framework, a controller is the implementation
of a car-following model, and possibly a coordination proto-
col, as a Java class of which an instance is created whenever
a new vehicle enters the scenario. The physical capabilities
of the vehicle such as WLAN and sensors are exposed to the
controller through an abstract set of interfaces. Conceivably,
the interfaces could be implemented on a real car that the
controller could steer.

The inputs of a controller are the results from sensor data
and the properties of the vehicle, the output is actuation. Ve-
hicle control is implemented by a set of event handlers. The
handlers act in response to incoming sensor data, received
messages, or periodic events. The controller is constructed
with a set of capabilities, which are interfaces to simulated
sensors, WLAN, actuators, properties of the vehicle, road
map, and a few more administrative interfaces such as
logging and the random number generator. This section
shows how a controller implementing a car-following and
lane changing model for driving on highways can be defined
using the input and abstractions provided by RoundaSim.

Fig. 7.

Automated vehicles view of a highway

Actuation for this highway model consists of setting the
acceleration, indicator, and lane changes to follow.

A. Driving

Driving in the simulator is implemented by increasing the
offset of the position of a vehicle on a track according to its
velocity and acceleration until the it reaches its next track.
A vehicle has a queue of track identifiers representing a
sequence of tracks to follow. When a vehicle reaches the
track point on which the track at the head of the queue starts,
its position changes to the start of the new track and this
track is removed from the queue, an example of this would
be taking an off ramp on a highway. Otherwise, the vehicle
changes to the track point to which the end of the current
track connects, i.e. remain on the highway. A controller can
steer the vehicle across a scenario by adding tracks to the
queue. It can also generate a new track at runtime before
doing so to facilitate lane changes. The use of tracks for
driving avoids the need to implement complex steering logic
in the controller, allowing developers to focus on cooperative
and behavioural aspects, which can be very complex in itself.
Moreover, this implementation is efficient enough to run
simulations in real time on commodity hardware even when
taking millions of arbitrarily small time steps per second.

B. Indicator Control

To support lane changes, vehicles have indicators and
indicator detectors. A controller can set the indicators of
the vehicles to 3 states: off, left on, right on. Other, nearby
vehicles can detect the presence of a vehicle indicating
towards the current lane of the vehicle and the distance to
the vehicle. The detector is implemented in the simulator by
projecting the 1-dimensional positions of vehicles that are
indicating to the lane that lies in the direction of the indicator.
If the projected position lies in an area of 60m ahead of the
vehicle, an indicator is detected. The distance to the closest
indicator in the area, if any, is returned to the controller. We
expect that the indicator detector can be implemented using
camera sensors, but a real-world implementation is beyond
the scope of this paper. Automated vehicles can also use

radio signals to communicate indicator states, but indicator
detection is still necessary to interact with human-driven
vehicles and automated vehicles that do not support the same
communication protocol.

C. Acceleration Control

To set acceleration, the controller uses the IDM, which
provides a 1-dimensional acceleration value. The IDM func-
tion has several parameters [21]: desired speed s, desired
time headway T, vehicle length [(set to 4.12m - the average
length of a passenger car), minimum spacing s (set to 2m),
maximum acceleration a (set to 3.4m/s2), and comfortable
braking deceleration b (set to 3m/s?). Additionally, the IDM
function takes the speed of the vehicle, the distance to the
predecessor, and the speed of the predecessor as parameters.
The speed of the vehicle is assumed to be directly provided
by a sensor. The minimum of the length of the empty route
ahead and the distance to the nearest indicator (if any), is
used as the forward-looking distance.

Since the measured distance is limited by the line-of-
sight and the range of distance sensors, the value is often
lower than the real distance between vehicles. The effect is
that the observed free-flow speed, dependant on the current
traffic density, is typically lower than the desired speed of
the controller. The desired speed and desired headway need
to be corrected to factor in this effect, which is shown in the
evaluation.

D. Lane Change Control

We have modelled lane changes as follows. When a
suitable opportunity arises, vehicles may change lanes. A
vehicle may always decide to try to change to the preferred
side of driving (slow lane), and may decide to change to the
other side if the speed of the current predecessor is more
than 5% below the desired speed of the vehicle. Whether a
vehicle can make the lane change depends primarily on, the
speed of, and distance to, the potential future predecessor
and successor on the target lane. The controller requires
the vehicle to have at least 1.5s of time headway between
a future successor or predecessor to safely initiate a lane
change. Additionally, the future successor needs to be slower
than the vehicle and the future predecessor needs to be faster.
When these conditions are met, the vehicle enters the lane
change procedure.

This can easily be implemented using the track abstraction.
The lane change procedure goes through two phases: indicat-
ing and lane changing. At the start of the indicating phase,
the vehicle generates a new track for the path of the lane
change. The track is a Bézier curve with 2 control points
on the current lane, and two control points further down
the target lane. The total length of the lane change depends
on the velocity of the vehicle and is given by the function
0.0118v% + 0.0862v + 20.943 for speed v, which is based
on observations by Naranjo et al. [22]. The start of the lane
change track lies a distance of 0.85v+ 5 ahead of the vehicle
when it decides to change lanes. These values were found by
studying the visualization until a smooth traffic flow arose.

After generating a lane change track, the vehicle adds it to the
head of the queue of tracks to follow and starts its indicators
in the appropriate direction.

The lane change starts when the vehicle enters the lane
change track. While on the track, the vehicle keeps indicat-
ing. As a rule, the indicator detector in RoundaSim projects
the position of a vehicle on a lane change track into its target
lane. This means that vehicles on the target lane will detect
the presence of the vehicle both before and during the lane
change and treat it as a predecessor. The combination of
vehicles reacting to indicators and the distance that vehicles
require to vehicles on the target lane before initiating a lane
change is critical to the safety of the lane change. While a
formal proof is beyond the scope of this paper, the evaluation
encompasses millions of simulated driving hours without any
crashes occurring.

V. EVALUATION

To evaluate the wvalidity of traffic simulations in
RoundaSim, we simulate a highway scenario and compare
traffic properties to models for multi-lane highways from the
Highway Capacity Manual based on results from a National
Cooperative Highway Research study. While our simulator
and framework cater for traffic composed of vehicles of
several degrees of automation, this evaluation focuses on
homogeneous traffic, without the use of wireless commu-
nication, for validation purposes.

A. Experiment

The experiment simulates a 2km two-lane highway (one-
way). Vehicles are spawned at the start of either lane at
a configurable rate with time between vehicles following
a Poisson distribution. However, a vehicle is omitted when
another vehicle is too close to the starting point for a new
vehicle to enter without having to adjust its desired speed.
The actual flow rate could therefore be lower than the
configured spawn rate. Once the vehicle is created, a highway
controller is started that drives the vehicle to the other side
of the highway, changing lanes if necessary.

A large number of runs are performed with different spawn
rates and different desired speeds, in blocks of 1 hour. Each
run is repeated 5 times for the same set of the parameters,
but a different random number generator seed. However, for
the metrics of interest, we find that the differences between
runs are negligible.

B. Results

During simulation runs, the average speed, density, flow
rate, and headway of vehicles are measured after 5 minutes,
when the highway has filled with cars. Results are given
for a particular free-flow speed (FFS). This is the average
speed of vehicles in low density, unencumbered traffic. The
free-flow speed can be controlled with the desired speed
and headway parameters of the IDM. IDM is normally
used to make an approximation of human behaviour under
idealized conditions. It does not take into account limitations
of automated vehicles, such as a limited distance sensor

Mean Passenger-Car Speed (km/h) Headway (seconds)

Density (pc/km/In)

2400

2400

7 T T T T
65 Roundasim (FFS = 100) -----+----
el Roundasim (FES = 90) - b
6 Roundasim (FFS = 80) - 1
55 F Roundasim (FFS = 70) --&— |
5+ 1
45 + 1
4]
35 +]
2 3 r *X\KB~ -
S F Q”“\E\’_ 1
2+ *E\"‘mw\& 4
ey
15 ¢ * B
1+ 1
0.5 +]
0 1 1 1 1 1
0 400 800 1200 1600 2000
Flow Rate (pc/h/In)
Fig. 8. Average headway vs. Flow rate
110
100 |-=]
90 |- ° S
80 —]
70 RN
60 1
50 F . .
Highway Capacity Manual (FFS = 100) ----------
40 + Highway Capacity Manual (FFS = 90) - 4
Highway Capacity Manual (FFS = 80)
30 Highway Capacity Manual (FFS = 70) ——-——- 1
20 | Roundasim (FFS = 100) ---w-- |
Roundasim (FFS = 90) - - -o- -
10 + Roundasim (FFS = 80) --e-— |
0 Roundasim (FFS = 70) —-a--
0 400 800 1200 1600 2000
Flow Rate (pc/h/In)
Fig. 9. Average speed vs. Flow rate
50 T T T
Highway Capacity Manual (FFS = 100) -
45 + Highway Capacity Manual (FES = 90) - 4
Highway Capacity Manual (FFS = 80)
40 + Highway Capacity Manual (FFS = 70) ------ R
Roundasim (FFS = 100) ---=--- P
35+ Roundasim (FFS = 90) - - o- - s
3 Roundasim (FFS = 80) —-e-- g ’
30 ¢ Roundasim (FFS = 70) s .~
25 ¢ “
20 -
15 |
10 +
5 |
0 ™ L L L L L
0 400 800 1200 1600 2000
Flow Rate (pc/h/In)
Fig. 10. Average density vs. Flow rate

2400

IDM Parameters

FFS Desired Speed s Desired Time Headway T’
70km/h 70.7km/h 0.44s
80km/h 81.5km/h 0.72s
90km/h 92.2km/h 0.75s
100km/h 103.0km/h 0.82s

TABLE I
IDM PARAMETERS TO MATCH FFS VALUES FROM HIGHWAY CAPACITY
MANUAL

range (80m). We used the speed and headway parameters to
correct the behaviour of IDM in order to mimic the behaviour
of real vehicles. Table I shows the IDM parameters used to
obtain a particular free-flow speed. The overall behaviour of
vehicles, which depends on factors such as line-of-sight, is
more conservative than what the IDM would predict. The
desired headways used are therefore set to be relatively low
to encourage more aggressive (closer) driving. However, the
actual headways depend only on the flow rate, as shown in
Figure 8.

Figure 9 shows the average speed of vehicles according to
the Highway Capacity Manual and RoundaSim for different
free flow speeds compared to the flow rate expressed as
passenger cars per hour per lane. For most flow rates, the
results produced by RoundaSim are very similar to the
capacity manual, except around 1400pc/h/In. The capacity
manual assumes this to be the cut-off point from which
speed starts to deteriorate, but we find the decline to start at
lower densities. This may be due to simplifying assumptions
in the capacity model. Nevertheless, the average speeds in
RoundaSim are within 5% of the reference value in all cases.
Figure 10 shows the average density for different flow rates
with a similar pattern. For both the flow and the density,
RoundaSim is able to reproduce the traffic properties found
in the Highway Capacity Manual very accurately.

VI. CONCLUSION

We have presented RoundaSim, a novel simulation engine
and framework supporting advanced sensors, communication
capabilities, and actuators in order to evaluate control strate-
gies for heterogeneous vehicle types and their interaction
with each other. Using a car-following model and controller
for highway scenarios, which supports lane changes and
sensor input, we demonstrated the ability of RoundaSim
to accurately reproduce the expected speeds and densities
of traffic on highways. We consider RoundaSim as filling
the gap between traffic and vehicle simulators for evaluating
control logic and coordination protocols.

VII. ACKNOWLEDGEMENT

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/11855 to Lero - the Irish Software
Engineering Research Centre (www.lero.ie).

[7]
[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

M. Bouroche, B. Hughes, and V. Cahill, “Real-time coordination
of autonomous vehicles,” in Intelligent Transportation Systems
Conference (ITSC). 1EEE, 2006, pp. 1232-1239.

M. Slot and V. Cahill, “A reliable membership service for vehicular
safety applications,” in Intelligent Vehicles Symposium. 1EEE, 2011.
J. Markoff, “Google cars drive themselves, in traffic,” The New York
Times, vol. 10, p. Al, 2010.

T. R. Board, Highway capacity manual, ser. Special report.
Research Council (U.S.)., 2010.

M. Fellendorf and P. Vortisch, “Validation of the microscopic traffic
flow model vissim in different real-world situations,” PTV AG, Tech.
Rep., 2001.

M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo - sim-
ulation of urban mobility: An overview,” in International Conference
on Advances in System Simulation (SIMUL), Barcelona, Spain, 2011.
A. Kesting, “Movsim,” http://www.movsim.org/, June 2011.

M. Gueriau, R. Billot, J. Monteil, S. Hassas, and N.-E. El Faouzi,
“Agent-based cooperative traffic modeling and simulation,” in Pro-
ceedings of the 94th Transportation Research Board Annual Meeting,
Washington, DC, USA, 2015.

F. Hendriks, M. Tideman, R. Pelders, R. Bours, and X. Liu, “De-
velopment tools for active safety systems: Prescan and vehil,” in
International Conference on Vehicular Electronics and Safety (ICVES).
IEEE, 2010, pp. 54-58.

Y. Mylonas, M. Lestas, A. Pitsillides, and P. Ioannou, “Speed adaptive
probabilistic flooding for vehicular ad-hoc networks,” in Personal
Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd
International Symposium on, sept. 2011, pp. 719 —723.

R. Bhakthavathsalam, S. Nayak, and M. Srikumar, “Expediency of
penetration ratio and evaluation of mean throughput for safety and
commercial applications in vanets,” in Ultra Modern Telecommunica-
tions Workshops, 2009. ICUMT ’09. International Conference on, oct.
2009, pp. 1 -5.

S. Panwai and H. Dia, “Comparative evaluation of microscopic car-
following behavior,” Intelligent Transportation Systems, IEEE Trans-
actions on, vol. 6, no. 3, pp. 314-325, 2005.

R. Wiedemann, “Modelling of RTI-elements on multi-lane roads,”
Advanced Telematics in Road Transport, vol. DG XIII, 1991.

R. E. Wilson, “An analysis of gipps’s car-following model of highway
traffic,” IMA Journal of Applied Mathematics, vol. 66, no. 5, pp.
509-537, October 2001.

M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
vol. 62, no. cond-mat/0002177, pp. 1805-1824, 2000.

A. Kesting, M. Treiber, and D. Helbing, “General lane-changing
model mobil for car-following models,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 1999,
no. -1, pp. 86-94, Jan. 2007.

E. Guizzo, “How googles self-driving car works,” IEEE Spectrum
Online, October, vol. 18, 2011.

R. Barr, Z. J. Haas, and R. van Renesse, Scalable Wireless Ad hoc
Network Simulation. CRC Press, Aug. 2005, pp. 297-311.

IEEE, “IEEE standard for information technology—
telecommunications and information exchange between systems—local
and metropolitan area networks—specific requirements part 11:
Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications amendment 6: Wireless access in vehicular
environments,” IEEE Std 802.11p-2010, pp. 1 -51, 2010.

J. Proakis and M. Salehi, Digital communications, ser. McGraw-Hilll
higher education. McGraw-Hill Higher Education, 2008.

V. Punzo, M. Montanino, and B. Ciuffo, “Do we really need to
calibrate all the parameters? variance-based sensitivity analysis to
simplify microscopic traffic flow models,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 16, no. 1, pp. 184-193, Feb 2015.
J. Naranjo, C. Gonzalez, R. Garcia, and T. de Pedro, “Lane-change
fuzzy control in autonomous vehicles for the overtaking maneuver,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 9, no. 3,
pp. 438-450, 2008.

National

