
Advances in flux balance analysis
Kenneth J Kauffman, Purusharth Prakash and Jeremy S Edwards�

Biology is going through a paradigm shift from reductionist to

holistic, systems-based approaches. The complete genome

sequence for a number of organisms is available and the analysis

of genome sequence data is proving very useful. Thus, genome

sequencing projects and bioinformatic analyses are leading to a

complete ‘parts catalog’ of the molecular components in many

organisms. The next challenge will be to reconstruct and

simulate overall cellular functions based on the extensive

reductionist information. Recent advances have been made in

the area of flux balance analysis, a mathematical modeling

approach often utilized by metabolic engineers to quantitatively

simulate microbial metabolism.

Addresses
University of Delaware, Department of Chemical Engineering, Newark,

DE 19716, USA
�e-mail: edwards@che.udel.edu

Current Opinion in Biotechnology 2003, 14:491–496

This review comes from a themed issue on

Biochemical engineering

Edited by Jeremy S Edwards and Kenneth J Kauffman

0958-1669/$ – see front matter

� 2003 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.copbio.2003.08.001

Abbreviation
FBA flux balance analysis

Introduction
Biology is going through a period of fundamental change.

The complete genome sequence for several organisms is

available, and this number is growing rapidly [1]. Further-

more, the analysis of genome sequence data is proving

very useful; for example, 40 to 80% of the open reading

frames identified in the fully sequenced microbial ge-

nomes have a reproducible, putative function assignment

[2]. Thus, the genome sequencing projects and bioinfor-

matic analysis are leading to a complete ‘parts catalog’ of

the molecular components in many organisms. The next

challenge will be to reconstruct and simulate overall

cellular functions based on the extensive reductionist

information.

The traditional engineering approach to analysis and

design for metabolic engineering is to have a mathema-

tical or computer model (e.g. a dynamic simulator) of

metabolism that is based on fundamental physicochem-

ical laws and principles. The metabolic engineer hopes

that such models can be used to systematically ‘design’ a

new (and improved) living cell. The methods of recom-

binant DNA technology should then be applied to

achieve the desired changes in the genotype of the cell

of interest. However, a review in the field has concluded

that ‘despite the recent surge of interest in metabolic

engineering, a great disparity still exists between the

power of available molecular biological techniques and

the ability to rationally analyze biochemical networks’ [3].

This conclusion is not surprising, for cellular networks

have evolved over millions of years. As a result, the cell

has many interconnected pathways that demonstrate

complex regulation. Mischaracterization of the interac-

tions and regulation leads to inadequate dynamic models;

however, there are alternative approaches that build on

insights derived from bioinformatics and genomics.

This review describes flux balance analysis (FBA), a math-

ematical modeling approach often utilized by metabolic

engineers to quantitatively simulate microbial metabolism.

Furthermore, simultaneously genomics and bioinformatics

are producing a detailed parts catalog of the molecular

components found within a cell. This review brings meta-

bolic engineering, bioinformatics and genomics together

and demonstrates how genomic information can be used to

build quantitative simulators of cellular functions.

Building flux balance analysis models
Constraint-based modeling

Constraint-based modeling uses physiochemical con-

straints such as mass balance, energy balance, and flux

limitations to describe the potential behavior of an organ-

ism [4,5,6�,7–12]. The analysis assumes that under any

given environmental condition, the organism will reach a

steady state that satisfies the physiochemical constraints.

As the constraints on a cellular system are never com-

pletely known, multiple steady-state solutions are possi-

ble. To identify a physiologically meaningful steady state,

an optimization is carried out to find the optimal value of a

specified objective function with respect to the con-

straints identified [13��]. FBA is a constraint-based mod-

eling approach in which the stoichiometry of the

underlying biochemical network constrains the solution.

A brief history of FBA is shown in Table 1.

Theory

FBA assumes that metabolic networks will reach a steady

state constrained by the stoichiometry. The stoichio-

metric constraints lead to an underdetermined system;

however, a bounded solution space of all feasible fluxes

can be identified [14]. This solution space can be further

restricted by specifying maximum and minimum fluxes

through any particular reaction and by specifying other
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physiochemical constraints. Thus, obtaining these con-

straints gives us the performance capability of the meta-

bolic network, and the constraints can be refined by

adding experimental data [4,5,6�,15–17].

Once the solution space describing the capability of the

organism is defined, the network’s behavior can be stud-

ied by optimizing the steady-state behavior with respect

to some objective function [13��]. The simulation results

can then be experimentally verified and used to further

strengthen the model. Ultimately, the iterative model

refinement procedure can result in predictive models of

cellular metabolism.

FBA model construction
To better understand FBA, the steps are explained in

detail and illustrated through an example (Figure 1).

Step I: system definition

The development of a flux balance model requires the

definition of all the metabolic reactions and metabolites

(Figure 1a). All reactions should be included in the

model. The pathways will be regulated, however, and

depending on the environmental conditions only a sub-

set of the reactions will be utilized at any given time. In

FBA, the regulation of the reactions or pathways is

neglected and mathematical modeling is used to predict

the pathway flux without explicit consideration of the

regulation.

An ideal starting point for the metabolic reconstruction is

the annotated genome sequence. The product of each

gene is annotated by homology searches so as to identify

all the metabolic enzymes. Next, the reactions catalyzed

by each of these enzymes should be described. This

requires characterizing the reactants and products for

each enzymatic reaction. Often at this stage, one or a

few enzymes from a known pathway will be present, but

several of the other enzymes will be missing. This is one

of the places where the iterative nature of the model

development is required. The other reactions in a path-

way can be added to close the mass balance based on

physiological or biochemical data.

In addition to characterizing all enzymatic reactions, all

transport mechanisms must be considered. This includes

reactions that diffuse through the membrane, diffuse

through pores in the membrane or that are actively

transported across the membrane.

Step II: mass balance

Once all of the reaction and transport mechanisms are

identified, a dynamic mass balance is derived for all the

metabolites in the metabolic network (Figure 1b). The

mass balance is defined in terms of the flux through each

reaction and the stoichiometry of that reaction. This gives

rise to a set of coupled ordinary differential equations.

The differential equations can be represented using a

matrix notation, where ‘S’ is the stoichiometric matrix and

‘V’ is the matrix of the fluxes. The goal of FBA is to

identify the metabolic fluxes in the steady-state operation

of the metabolic network. As there are more reactions

(hence fluxes) than there are metabolites, the steady-state

solution for the metabolic fluxes is underdetermined.

Thus, additional constraints are needed to uniquely

determine the steady-state flux distribution.

Step III: defining measurable fluxes

One way to obtain the additional constraints for the

metabolic network, and hence to calculate a value for

all fluxes in the network, is to measure fluxes in the

metabolic network (the minimum number of measure-

ments is equal to the dimension of the null space).

Commonly, the exact flux values are not defined, but

rather ranges of allowable flux values are incorporated as

additional constraints (Figure 1c).

Table 1

Significant milestones in the development of flux balance analysis.

Year History of flux balance analysis References

1984 Papoutsakis used linear programming to calculate maximal theoretical yields [36]
1986 Fell and Small used linear programming to study lipogenesis [37]

1990 Majewski and Domach studied acetate overflow during aerobic growth [38]

1992 Savinell and Palsson performed detailed analysis and development of FBA theory [39,40]

1993 Varma and Palsson used FBA to describe E. coli properties [9,10,12]

1997 Pramanik and Keasling studied growth rate dependence on biomass concentration [41,42]

2000 Edwards and Palsson carried out a gene deletion, phase plane, robustness study of E. coli [4,31]

Lee et al. identification of alternative optima [20]

Schilling et al. integrated FBA with extreme pathway analysis [14]

2001 Burgard and Maranas examined performance limits of E. coli and minimal reaction sets [27]

Covert, Schilling and Palsson added regulatory constraints to FBA models [23]

2002 Papin et al. studied network redundancy in Haemophilus influenzae (alternate optima) [22]

Ibarra, Edwards and Palsson looked at adaptive evolution of E. coli [19��]

Mahadevan, Edwards and Doyle studied dynamic FBA [25��]

Beard, Liang and Qian considered the addition of energy balance constraints to FBA [26�]
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Step IV: optimization

Biological metabolic networks always have more fluxes

(reactions) in the system than metabolites, but optimiza-

tion can be used as an alternative to measuring the

internal fluxes in the metabolic network (which is a very

difficult task). To identify a flux distribution without

making additional measurements, it can be assumed that

the metabolic network is optimized with respect to a

certain objective [13��]. This allows the underdeter-

mined system to be formulated as an optimization prob-

lem. If the objective function is linear, the optimization

problem is a linear programming problem. Simulations to

calculate the internal fluxes of an underdetermined net-

work with the objective function defined as the growth

flux have been shown to be consistent with experimental

data [13��,18,19��].

For a given objective function (Z) an optimal set of fluxes

can be obtained subject to the mass balance (SzV ¼ 0)

and linear inequality (ai<Vi<bj) constraints. It may hap-

pen that under certain conditions the system optima lie

on an edge instead of a point (Figure 1d). This situation

arises when the limiting constraint of the system exactly

parallels the objective function. In such cases, the sys-

tem exhibits multiple optimal solutions along this edge.

To identify these alternate optimal solutions a mixed

integer linear programming (MILP) approach can be

used [20,21]. An analysis of the alternate optimal solu-

tions can be used to find redundancies in the metabolic

network [22].

In general, the solution obtained by FBA is only as good

as the constraints used to identify it. While specifying

known flux limitations constrains the flux space signif-

icantly, it still allows for infeasible predictions. Further,

characterizing the effect of mutants or shifts in the steady

states is difficult to do with traditional FBA [13��].

Second generation flux balance analysis
models
In the past three years, FBA models have begun to evolve

to incorporate additional biological knowledge. This

Figure 1
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Methodology for flux balance analysis. (a) A model system comprising three metabolites (A, B and C) with three reactions (internal fluxes, vi, including

one reversible reaction) and three exchange fluxes (bi). (b) Mass balance equations accounting for all reactions and transport mechanisms are written

for each species. These equations are then rewritten in matrix form. At steady state, this reduced to SzV ¼ 0. (c) The fluxes of the system are

constrained on the basis of thermodynamics and experimental insights. This creates a flux cone [14,22] corresponding to the metabolic capacity of the

organism. (d) Optimization of the system with different objective functions (Z). Case I gives a single optimal point, whereas case II gives multiple

optimal points lying along an edge.
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evolution can be broken down into three thrusts: incor-

poration of regulatory constraints, explicit incorporation

of thermodynamics, and exploration of alternative classes

of objective functions.

Incorporation of regulatory constraints

Regulatory constraints were first imposed as Boolean

logic operators by Covert and coworkers [23]. The reg-

ulatory constraints represent temporary flux constraints

that arise due to a specific environment rather than

physiochemical constraints that represent fundamental

restrictions on what is possible, regardless of time and

space. Using the Boolean logic approach, regulatory con-

straints were evaluated based on the initial condition of

the cellular system. A standard FBA was then carried out,

optimizing for growth rate. The calculated solution to the

fluxes was then used to re-evaluate the regulatory con-

straints. This process was repeated over the time course

of interest.

Covert and coworkers found that the Boolean approach

was sufficient to eliminate a large number of the pathways

as infeasible [24��]. This was because many of the

extreme pathways required two or more inconsistent

regulatory events to occur simultaneously. Thus, the

entire extreme pathway could be eliminated from con-

sideration. The analysis further demonstrated the high

degree of redundancy in the underlying metabolic net-

work arising from multiple similar extreme pathways

available to the cellular system [24��], consistent with

previous observations [22].

Mahadevan and coworkers considered transcriptional

and translational regulation in a more quantitative

manner [25��]. The authors compared two formulations

of dynamic FBA for predicting diauxic shift in

Escherichia coli: the dynamic optimization approach (non-

linear programming problem) and static optimization

approach (linear programming approach). The dynamic

optimization approach can be used with either an

instantaneous objective function or using an end-point

objective function — the instantaneous objective func-

tion was found to be more consistent with observed be-

haviors. The static optimization approach is only valid

with instantaneous objective functions. Mahadevan and

coworkers [25��] concluded that the static optimization

approach was computationally simpler to implement

provided all of the constraints were linear, whereas

the dynamic optimization approach was more flexible

and should be quite suitable for the incorporation of

experimental data.

The two methods discussed above for incorporating reg-

ulatory constraints each have potential problems and

limitations; however, the limitations can be reduced by

combining the approaches to further gain insight into

metabolic regulation.

Explicit incorporation of thermodynamics

In traditional FBA, the thermodynamic constraints are

only accounted for in the reversibility/irreversibility of a

given reaction. However, the reversibility is dependent on

the intracellular conditions, which may change as the

environmental conditions change. Beard and coworkers

[26�] explored the impact of a full energy balance analysis

on the predictions of a flux balance analysis. The analysis

requires the solution of a nonlinear optimization problem

that provides estimates of the growth rate and the intra-

cellular metabolic fluxes. The nonlinearities arise from the

introduction of the free energy changes into the con-

straints. The resulting feasible solution space is a subset

of the space predicted by a traditional FBA; however, due

to the nonlinear optimization problem, the approach does

not ensure an optimal solution. For E. coli metabolism,

Beard and coworkers found that combination of the

energy balance analysis with FBA gave the same optimal

growth rate, but the observed fluxes were substantially

different [26�]. The energy balance analysis was also able

to explain why certain genes that FBA identified as

nonessential were in fact essential — major changes were

required in the observed fluxes to compensate for these

knockouts [26�]. This explanation is consistent with the

observations of Segre and coworkers [13��], which were

derived from a different perspective.

Exploration of alternative classes of objective

functions

The predictions of FBA are highly dependent on the

objective function used for the analysis. Common ob-

jective functions include maximization of biomass

[4,25��,27,28,29��], maximization of ATP [7] or reducing

power, and maximization of the rate of synthesis of a

particular product [8].

FBA predictions with maximum growth rate as the objec-

tive function are consistent with experimental data

approximately 60% of the time for Helicobacter pylori
[15], approximately 86% of the time for E. coli [4], and

approximately 91% of the time for E. coli when transcrip-

tional regulation was accounted for [23,30]. Alternatively,

minimization of metabolic adjustment (MOMA) can be

used to improve the prediction efficiency of FBA for

studying E. coli mutants [13��]. Both MOMA and the

transcriptional regulation attempt to account for the bur-

den a cell must adsorb to shift from one operating region

to another [13��,23,30].

Maximization of biomass production allows for a wide

range of predictions that are consistent with experimental

observations for microbial systems [4,15,18,19��,25��,30,

31,32��]. However, under some conditions, the behavior

of cellular systems is incompatible with maximization of

biomass [13��,19��,27,32]. Ibarra and coworkers [19��]
demonstrated that E. coli will evolve towards maximiza-

tion of biomass; however, for other situations evaluation
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of several objective functions may be necessary to find the

most consistent objective for the analysis of the metabolic

system of interest [32��]. In other cases, regardless of the

objective function used, certain fluxes within a cellular

network can be uniquely solved for [33�,34].

Objective functions can be used to explore the capabil-

ities and limitations of a biochemical network. For exam-

ple, robustness can be explored by varying the maximum

flux through a particular pathway and observing the

resulting optimization with respect to growth rate.

Through such an approach, Edwards and Palsson [31]

demonstrated that E. coli is robust to changes in indivi-

dual enzyme or pathway activities. Van Dien and

Lidstrom [29��] demonstrated both computationally

and experimentally that Methylobacterium extorquens AM1

had several redundant pathways that could compensate

for each other. Alternatively, the effect of various knock-

outs and additions on maximum theoretical yields can be

explored by maximizing a hypothetical degradation flux

on a metabolite of interest. However, any knockouts

identified this way should first be screened to ensure

viability of the resulting construct.

Conclusions
‘Cells obey the laws of [physics and] chemistry’ [35],

which include conservation of mass, energy and redox

potential. Along with other limitations (such as mass

transfer), these conservation requirements constrain the

cellular behavior, providing bounds on cellular capabil-

ities. Mathematical modeling in which the boundaries of

cellular capabilities are defined is proving to be a useful

research direction to analyze biological properties; how-

ever, many challenges remain.
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