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This document’s goal is to interpret Soltys’ theory LAp [SK01, SC04] two times. Once over the
field F2 into the theory V⊕L, and once over the integral domain Z into the theory V#L [Fon09].
Both theories capture basic arithmetic and include a function expressing matrix powering.

Each interpretation is a mapping from LAp to V⊕L (respectively, V#L) of terms and formulas
such that provability is preserved. That is, theorems in LAp are mapped to theorems of V⊕L
(V#L). Such an interpretation has two uses. First, it allows for a shortcut when working in V⊕L
(V#L): no duplication of Soltys’ work must be done in order to show that theorems proved in LAp
are also provable in V⊕L (V#L). Second, it fits Soltys’ otherwise standalone hierarchy of theories
LA ⊂ LAp ⊂ ∀LAp into the hierarchy of theories established in [CN10].

LAp has three sorts – indices (N), field elements, and matrices, which we think of semantically as
having field elements as entries. V⊕L (V#L) has only two sorts, numbers (N) and binary strings,
which are used to encode matrices, lists, and other data structures, as required. The technical details
of interpreting LAp into V⊕L (V#L) arise from this difference in number of sorts. The number sort
of LAp can be directly interpreted as the number sort of V⊕L (V#L), but the field sort and the
matrix sort present a non-obvious technical point. This document motivates, explains, and proves
correct an interpretation whose main point of interest is this non-obvious interpretation of the field
and matrix sorts into binary strings.
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1 A summary of LAp

A survey of LAp is available in [SC04]; a fully-detailed explanation is available in [SK01].
LAp has three sorts: indices (represented by i, j, k), field elements (a, b, c), and matrices (A,

B, C). Matrices have field elements as entries.
The language LLA of LAp comprises the symbols:

0index, 1index,+index, ∗index,−index,div, rem,
0field, 1field,+field, ∗field,−field,

−1 , r, c, e,
∑
,

≤index,=index,=field,=matrix, condindex, condfield

The symbol −index is cutoff subtraction; div(i, j) and rem(i, j) are the quotient and remainder
functions; 0−1 =field 0; r(A) and c(A) return the number of rows and columns in A;

∑
(A) is the

sum of all the entries of A; and for α a formula (with all atomic subformulas of the form m ≤ n and
m = n), cond(α, i, j) is i if α is true and j otherwise (and similarly for field elements). The function
e(A, i, j) is the (i, j)th entry of matrix A. (See remark 1 below.)

There is an additional symbol, p, for matrix powering. The ith power of matrix A is given by
p(i, A).

Terms of type index are represented by n and m; terms of type field are represented by t and
u, and terms of type matrix are represented by T and U . Formulas are represented by α and β.
(This holds throughout this section and the rest of the document.) Terms and formulas are defined
inductively, as follows:

0index, 1index, 0field, 1field, and variables of all three types are terms. Terms of type index also
include combinations of terms of type index using the +index, −index, ∗index, div, rem, r, and c
functions as expected. Terms of type field also include combinations of terms of type field using the
+field, −field, ∗field, and −1 functions as usual, as well as the terms e(T,m, n) and

∑
(T ).

Terms of type matrix also include the constructed term λij〈m,n, t〉 (with the restriction that
i and j are not free in m and n). It defines a r × c matrix with (i, j)th entry given by t(i, j).
Constructed λij terms can be used to define many matrix functions — multiplication, addition,
transpose, inverse, etc. — using a field function to compute each entry. This feature avoids the need
for separately-defined function symbols.

Atomic formulas are of the form m ≤index n, m =index n, t =field u, and T =matrix U . Formulas
include ¬α, α ∧ β, and α ∨ β. Notice that all formulas of LAp are open.

If α is a formula with atomic subformulas all of the form m ≤index n and m =index n, then
condindex(α,m′, n′) is a term of type index and condfield(α, t, u) is a term of type field.

Following the numbering from [SC04], the axioms of LAp are numbered A1 through A34,
together with A35 and A36 for matrix powering. The rules of inference are given by PK, with
additional rules for induction and matrix equality [SK01, SC04]. These axioms and rules are all
restated in section 3 below.

Remark 1 On a technical note, matrices in LAp have three “attributes:” number of rows, number
of columns, and the values of matrix entries. Matrix entries are numbered from 1 to r(A) and 1 to
c(A). If queried on i or j = 0 or > r(A) or c(A) (respectively), then e(A, i, j) = 0 by definition.

LAp takes advantage of this default behavior to allow non-standard mathematical operations:
matrices of inappropriately-matched sizes can be haphazardly added and multiplied. (This works
because an n × m matrix can be used as an (n + k) × (m + j) matrix by implicit padding with
zeroes.) This feature is useful but requires additional notice; for example, non-square matrices can
be raised to a power. See page 13 for more details.

2 A summary of V⊕L

V⊕L has two sorts: numbers and strings. Numbers are denoted with lowercase letters x, y, z, and
strings with uppercase X, Y , Z.

The language of 2-sorted arithmetic is L2
A = [0, 1,+, ·, | |,=1,=2,≤,∈]. 0 and 1 are constants of

the number sort; +, ·, =1, and ≤ are functions and predicate symbols over the number sort. =2 is
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string equality. Binary strings are considered as the characteristic vectors of finite sets of natural
numbers. |X| is meant to represent the “length of X” and has value 1+ the largest element of
X. (Thus the set {0, 1, 3} is represented by string ‘1101’ and has length 4.) Set membership is
represented by x ∈ X, and is abbreviated X(x).

There is an additional function symbol, Pow2, for matrix powering over F2.
Terms of type number are represented by s and t; terms of type string are represented by S and

T . Formulas are represented by ϕ and ψ.
0, 1, and number variables are number terms. Number terms also include combinations of number

terms with the function symbols + and ·, as well as |T1| for any string term T1. String variables are
string terms.

The logical constants > and ⊥ are atomic formulas. Atomic formulas are also of the form s =1 t,
s ≤ t, S =2 T , and S(t). Formulas include ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ∀xϕ, ∃xϕ, ∀Xϕ, and ∃Xϕ.

The axioms of V⊕L are given by B1 through B12, L1, L2, SE, and ΣB0 -COMP (those for V 0

[CN10]), together with the axiom stating the existence of a string value for the matrix powering
function Pow2 [Fon09]. (On a technical note, matrices in V⊕L are encoded as strings separately
from their sizes; see axioms A35 and A36 on page 13.)

The function Parity(x, Y ) = Z is defined in section 9D of [CN10]. The string Z witnesses the
bit-by-bit computation of the parity of the first x bits of string Y , meaning that bit Z(i) is true
when there are an odd number of 1s in the first i bits of Y . Thus the parity of string Y is given
by the boolean term Parity(|Y |, Y )(|Y |). The expression PARITY(Y ) will be used as shorthand for
this in the discussion below.

3 Interpreting LAp over F2 into V⊕L

The theories V⊕L and V⊕L can be considered as having Boolean field elements. This observation is
the basis of the interpretation below. The index sort is directly interpreted as the number sort, the
field sort (Z2) is interpreted below as Boolean-valued formulas, and the matrix sort is interpreted
as strings.

3.1 Interpreting terms and formulas

Preserving the notation from LAp in section 1 above, let i, j, and k represent indices, and m and n
terms of type index; let a, b, and c represent field elements, and t and u terms of type field; let A, B,
and C represent matrices, and T and U terms of type matrix; and let α and β represent formulas.
When interpreted into V⊕L, a superscript σ is added: iσ, mσ, Tσ, etc., are terms in V⊕L. (Note
that this breaks with the standard notation from V⊕L, in which lowercase letters are numbers and
uppercase letters are strings.)

This interpretation requires the introduction of predicate symbol eq , function symbols . , fdiv,
frem, fr, fc, and functions fϕ and Fϕ for every formula ϕ.1 These functions have ΣB0 definitions, and
so they are defined in the universal conservative extension V⊕L. Aside from Σ and p, the functions
of LAp are all definable in V 0. Defining Σ requires PARITY ; thus the base theory LA over F2

is interpretable into V 0(2). Conveniently, LAp is obtained from LA by addition of the two axioms
defining powering function p, and V⊕L is obtained from V 0(2) by addition of the axiom defining
PowSeq2.

Variables of the index sort are interpreted as variables of the number sort. Variables of the field
and matrix sorts are interpreted as variables of the string sort.

3.1.1 Index sort

The index sort from LAp can be directly interpreted as the number sort in V⊕L. In general, an
index term with k free variables will be interpreted as a number term with k free variables. Free

1Using fϕ to interpret cond, we are only interested in the case where the formula ϕ is an interpretation of a formula
in LAp all of whose atomic sub-formulas have the form m = n or m ≤ n. There is no such restriction for Fϕ, which
interprets λ terms.
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variables of index terms are suppressed below for readability.
The 0 in LAp is interpreted as 0 in V⊕L, 1 is interpreted as 1 in V⊕L, etc.:

LAp V⊕L
0index 0
1index 1
i i variables map to variables

m+index n mσ + nσ

m ∗index n mσ · nσ
m−index n mσ . nσ ‘ . ’ is standard limited subtraction, defined:

x . y = z ↔ (x = y + z) ∨ (z = 0 ∧ x < y)
div(m,n) fdiv(mσ, nσ) fdiv is a number function with graph:

fdiv(x, y) = z ↔ y · z ≤ x ∧ x < y · (z + 1)
rem(m,n) frem(mσ, nσ) frem is a number function with graph:

frem(x, y) = z ↔ z + y · f2(x, y) = x
or alternatively,
frem(x, y) = z ↔ z < y ∧ ∃d ≤ x(x = d · y + z)

condindex(α,m, n) fασ (mσ, nσ) where for every formula ϕ, fϕ is defined:
fϕ(x, y) = z ↔ (ϕ ∧ x = z) ∨ (¬ϕ ∧ y = z)

m =index n mσ =1 n
σ

m ≤index n mσ ≤ nσ

3.1.2 Field sort

The field sort of LAp over F2 is binary-valued. Each term of type field is interpreted into a formula
in V⊕L whose truth value corresponds to the binary value of the original term. (It was previously
discussed that it might be necessary to interpret all field elements as strings of length one in V⊕L,
but this does not seem necessary.)

Variables of type field are interpreted as the first entry of a 1 × 1 matrix variable (that is, a
string). Thus a field variable a is interpreted as the formula Xa(1, 1), where Xa is a free string
variable. (See section 3.1.3 below for explanatory details of the interpretation of matrices.)2

Thus a field term with k free variables will be interpreted as a formula with k free variables (each
index variable corresponding to a number variable, and each field or matrix variable corresponding
to a string variable). Free variables of field terms are suppressed below for readability.

For t and u terms of type field, we interpret:

LAp V⊕L
0field ⊥
1field >
a Xa(1, 1) see above: variables map to string variables

t+field u tσ ⊕ uσ that is, tσ XORuσ

t−field u tσ ⊕ uσ
t ∗field u tσ ∧ uσ
t−1 tσ

condfield(α, t, u) (ασ ∧ tσ) ∨ (¬ασ ∧ uσ)
t =field u tσ ↔ uσ

3.1.3 Matrix sort

The matrix sort of LAp has entries from the field sort (in this instance, F2). Every matrix in LAp
has three attributes: number of rows, number of columns, and matrix entries. The matrix sort is

2Alternatively, a field variable could be interpreted into a formula x = 0 for a free number variable x. This
shorter interpretation “maps” field variables into number variables. This might be a better interpretation, since
interpreting field variables into string variables as above implicitly assumes that the string variable X encodes a
matrix appropriately. Strings X not encoding a matrix will not cause any problems with this interpretation – they
are treated as strings encoding a 0× 0 matrix.
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interpreted as strings in V⊕L. The string sort in V⊕L is used to encode many different formats of
data. Here, the intention is to use a binary string to encode a triple: two numbers (the dimensions
of the matrix) and a matrix of Boolean values. The pairing function will facilitate this encoding,
by means of the same usage and encoding format as is used in [CN10, Fon09]. Additionally, since
field elements in LAp are interpreted as Boolean-valued formulas in V⊕L, the format of retrieving
matrix entries is cleanly interpreted.

An a × b matrix A is interpreted as a string Aσ such that Aσ(0, 〈a, b〉) is true, and for every i
and j such that e(A, i, j) = Aij = 1, the bit Aσ(i, j) is true. All other bits of Aσ are false. (Thus
a string Aσ = X encodes a matrix whose zeroth row is all zeroes except the 〈a, b〉th place, with the
rows of A stored in the other “rows” of X.) This interpretation preserves the feature from LAp that
matrices, when queried out-of-bounds, return 0. (As in LAp, a matrix queried on its 0th row must
return 0; that row is reserved in our encoding, so this is a special case.)

Throughout this section, it is convenient to have a formula isMatrix 2(X) which is true if and
only if string X is a valid encoding of a matrix over the field F2. Let isMatrix 2(X) be:

∃x, y < |X|
[ (a)︷ ︸︸ ︷
X(0, 〈x, y〉)∧∀z < |X| [

(b)︷ ︸︸ ︷
(z = 0 ∨ ¬X(z, 0)) ∧ (z = 〈x, y〉 ∨ ¬X(0, z))

∧
(
X(z)→ (Pair(z) ∧ left(z) ≤ x ∧ (left(z) = 0 ∨ right(z)) ≤ y

)︸ ︷︷ ︸
(c)

]
]

(1)

This formula has three sections: section (a) guarantees that the matrix dimensions are encoded
properly; section (b) checks that there are no stray matrix entries in the 0th row or column; and
section (c) checks that the matrix entries are encoded properly and within the bounds of the matrix
dimensions. Matrices have many “wasted” bits of empty space, due to the use of pairing numbers
to encode rows and columns of data.

The shorthand formula isMatrix 2(X) simplifies the design of the following formulas of the inter-
pretation. Strings not representing matrices are treated as 0 × 0 matrices when considered in the
V⊕L “image” of an interpreted formula from LAp. That is, the interpretation below is arranged so
that the axioms of LAp are theorems of V⊕L without the addition of a conditional clause for “when
X is a valid encoding of a matrix, . . . ” This is further explained in section 3.2.

LAp V⊕L
A A

Variables of type matrix are interpreted as variables of type string. As with the other sorts, a matrix
term with k free variables is interpreted as a string term with k free variables. Free variables for
matrix terms are suppressed below for readability. Special consideration is required for the free
variables of λij terms.

LAp V⊕L
r(T ) fr(Tσ) fr is a number function with graph: fr(X) = z ↔(

isMatrix 2(X) ∧ ∃y ≤ |X|(X(0, 〈z, y〉))
)︸ ︷︷ ︸

for matrices

∨
(
z = 0 ∧ ¬ isMatrix 2(X)

)︸ ︷︷ ︸
for strings not encoding matrices

c(T ) fc(Tσ) where fc is a number function with graph: fc(X) = z ↔(
isMatrix 2(X) ∧ ∃y ≤ |X|(X(0, 〈y, z〉))

)︸ ︷︷ ︸
for matrices

∨
(
z = 0 ∧ ¬ isMatrix 2(X)

)︸ ︷︷ ︸
for strings not encoding matrices

The r and c functions recover the size of the matrix from the first “row” of the string. Note that
they also check that the string is a valid encoding of a matrix. These functions are well-defined:
when X does not encode a matrix, fr(X) = 0 = fc(X). The values of r(X) and c(X) are implicitly
bounded by |X|.

LAp V⊕L∑
(T ) ¬PARITY(Tσ)︸ ︷︷ ︸

for matrices

∧ isMatrix 2(Tσ)︸ ︷︷ ︸
true only for strings encoding matrices
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The
∑

function returns the sum of the entries of a matrix. This is of type field in LAp, and its
interpretation is a formula in V⊕L. Working over F2, the sum of field entries of a matrix is is simply
the parity of the entries. If X is a string encoding a matrix Tσ, then the parity of X is the parity
(that is, sum mod 2) of the entries of T and the single 1 bit encoding the size of the matrix. The
PARITY of the string is reversed to correct for this extra bit and obtain the parity of the matrix
entries.

String X encodes a matrix Tσ if and only if then isMatrix 2(X) is true. Any string X not en-
coding a matrix is semantically interpreted as the 0 × 0 matrix; thus the sum of entries is 0. The
interpretation maps 0 to a false formula; if X is not a matrix, then this formula is false, as required.
This is useful in section 3.2.

LAp V⊕L
λij〈m,n, t〉 Ftσ (mσ, nσ)

Constructed λij matrix terms have the restriction that distinguished variables i and j are free
in t and not free in m and n. In LAp, the λ operator binds i and j. Thus, when interpreted, tσ has
two reserved free variables iσ and jσ (the interpretations of i and j). The restrictions are preserved:
iσ and jσ are free in tσ and not free in mσ and nσ. Thus, suppressing free variables, Ftσ (mσ, nσ) is
the string interpreting λij(m,n, t) in V⊕L.

If t(i, j) is a field term in LAp, then tσ is a V⊕L formula ϕ(i, j) with the same number of free
variables. (Recall from section 3.1.2 that field variables are interpreted into string variables.) For
every formula ϕ(i, j), the string function Fϕ(m,n)(b) is bit-defined:

b = 〈0, 〈m,n〉〉 ∨ ∃i ≤ m∃j ≤ n(i > 0 ∧ j > 0 ∧ b = 〈i, j〉 ∧ ϕ(i, j)) (2)

Thus the output of Fϕ(m,n) is a string encoding a matrix with m rows and n columns, with entries
determined by ϕ. This aligns with LAp’s definition of λij term, so that Ftσ (mσ, nσ) is the string
interpretation in V⊕L of the matrix λij(m,n, t) in LAp.

Notice that isMatrix 2(Fϕ(m,n)) is always true.
The interpretation of λij terms is required when those terms are used inside formulas; the exis-

tence of such a string is guaranteed in V⊕L by ΣB0 -COMP. By general theorems, these quantifier-
free ΣB0 formulas in V⊕L translate to ΣB1 formulas in the base theory V⊕L.

LAp V⊕L
e(T,m, n) Tσ(mσ, nσ) ∧mσ > 0 ∧ nσ > 0 ∧ isMatrix 2(Tσ)︸ ︷︷ ︸

true only for valid strings encoding matrices

The e function simply returns the matrix’s entry at the requested coordinates; this is straightforward,
given the encoding of matrices into strings. LAp specifies that matrices return 0 when queried out-
of-bounds. As in LAp, matrix row and column numbering starts at 1 for strings encoding matrices.
Hence querying at (0, x) or (x, 0) is out-of-bounds and returns 0. Conveniently, on all bits in a row
or column larger than its dimensions, a string also returns 0 (false).

Strings which do not encode matrices are interpreted as 0 × 0 matrices, and accordingly return
0 (false) for every lookup.

LAp V⊕L
T =matrix U (r(T ) = r(U))σ ∧ (c(T ) = c(U))σ ∧ ∀i, j ≤ |Tσ|+ |Uσ|(e(i, j, T ) = e(i, j, U))σ

Two matrices are equal in LAp if and only if they have the same dimensions and entries. If two
matrices are equal in LAp then their interpretations are equal as strings in V⊕L. (The converse is
not true because there are many different strings that “encode” the 0 × 0 matrix.) Specifying the
above formula for matrix equality handles these cases; the formula evaluates two different strings as
“equal as matrices” if they both encode the same matrix.

LAp V⊕L
p(i, A) Fp(i, Aσ)
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The p function computes the power of a matrix. The V⊕L function Pow2 (definable from
PowSeq2) also computes the power of a matrix.

A technical point obfuscates this otherwise-straightforward interpretation. Each matrix in LAp
is associated with its dimensions r and c, and has entries starting with (1, 1). To preserve this
information, matrices are interpreted as strings encoding both the matrix entries and dimensions.
However, the Pow2 function was defined for a different matrix encoding in V⊕L, in which a string
encodes the bits of a matrix starting with (0, 0); the size of the matrix is not included in the string.

Thus we need two ΣB0 string functions. The first one strips the dimensions from the string,
converting a matrix encoded according to our interpretation (of LAp into V⊕L) into a matrix
according to the standard in V⊕L.

Strip(X)(i, j)↔ X(i+ 1, j + 1)

The second function adds the dimension-encoding “wrapper” back, converting a standard-form V⊕L
matrix into the form of an interpreted matrix from LAp.

Wrap(r, c,X)(b)↔ b = 〈0, 〈r, c〉〉 ∨ ∃0 < i, j < b(b = 〈i, j〉 ∧X(i, j))

Given these two functions, let Fp(i, Aσ) interpret the LAp function p(i, A), and let rA = fr(Aσ) be
the interpretation of r(A), and cA = fc(Aσ) be the interpretation of c(A). For strings X that validly
encode a matrix Aσ, and powers i > 0,

Fp(i,X) = Wrap(rA, cA,Pow2(max(rA, cA), i,Strip(X)))

There is a special case: if i = 0, then LAp specifies that the zeroth power of a matrix A is the
r(A)× r(A) identity matrix.

Fp(0, X) = Wrap(rA, rA,Pow2(ra, 0,Strip(X)))

Otherwise, for strings X that do not validly encode a matrix, we want Fp to behave as if X encoded
the 0× 0 matrix. The powers of this matrix are all identical: the 0× 0 matrix. This is encoded as
a string with only one true bit, the 〈0, 0〉 bit of its first row. Thus in this case,

Fp(i,X)(b)↔ b = 〈0, 〈0, 0〉〉

Combining these, we can bit-define Fp as follows:

Fp(i, Aσ)(b) ↔
[

isMatrix 2(X) ∧Wrap(rA, cA,Pow2(frA=0(rA,max(rA, cA)), i,Strip(Aσ)))(b)
]

∨
[
¬ isMatrix 2(X) ∧ b = 〈0, 〈0, 0〉〉

]
3.2 Provability is preserved

This interpretation is useful because it preserves provability: for any sequent → ϕ provable in LAp,
the interpreted formula ϕt is provable in V⊕L. Because V⊕L is a conservative extension of V⊕L,
it is sufficient to show that the interpretation from LAp to V⊕L preserves provability.

Deduction in LAp follows PK rules of inference for sequents: exchange; weakening; connectives
¬, ∧, ∨; induction; substitution; and matrix equality. These deductive rules (except induction and
matrix equality) are logically sound, so the same deductions can be used in V⊕L proofs. The
induction rule is easily proven using the induction axiom schema in V⊕L. The matrix equality
rules are trivially true in V⊕L, since the interpretation of matrix equality fits the rule exactly
(matrices are equal iff they have the same dimensions and entries). Thus it suffices to show that the
interpretations of LAp axioms are provable in V⊕L.

Each LAp sequent of the form

α1, . . . , αk → β1, . . . , βt (3)
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is interpreted as a V⊕L formula3

k∧
i=1

ασi ⊃
t∨

j=1

βσj (4)

Provability is preserved if every sequent (3) provable in LAp translates to a formula (4) provable in
V⊕L.

The following lemma is useful in proving A32σ and A33σ below. It states that if two strings
differ on exactly one bit, then they have opposite parities.

Lemma 2 V⊕L proves:

(X(k)↔ ¬Y (k)) ∧
(
∀i < |X|+ |Y | i 6= k ↔ (X(i)↔ Y (i))

)
⊃
(

PARITY(X)↔ ¬PARITY(Y )
)

The proof of the lemma proceeds by induction on the bits of the witness strings computing the
parities of X and Y . The inverse “if two strings are identical on every bit, then they have the same
parity” is true by properties of equality.

V⊕L has axioms:
B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x+ 1 = y + 1 ⊃ x = y B8. x ≤ x+ y
B3. x+ 0 = x B9. 0 ≤ x
B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)

SE. [|X| = |Y | ∧ ∀i < |X|(X(i)↔ Y (i)) ⊃ X = Y
The axiom scheme ΣB0 −COMP: for every ΣB0 −COMP formula ϕ(z),

∃X ≤ y∀z < y(X(z)↔ ϕ(z))
And the axiom for matrix powering.

In this section, each interpretation of an axiom from LAp is shown to be provable in V⊕L. The
axioms for LAp are numbered A1-A34, and grouped by type.

The equality axioms for LAp are A1–A5. The equality axioms are all valid in V⊕L since in every
L2
A structure, equality is interpreted as true equality.

A1. → x = x A1σ. x = x

A2. x = y → y = x A2σ. x = y → y = x

A3. (x = y ∧ y = z)→ x = z A3σ. (x = y ∧ y = z) ⊃ x = z

A4. x1 = y1, . . . , xn = yn → fx1, . . . , xn = fy1, . . . , yn

A4σ. x1 = y1 ∧ . . . ∧ xn = yn ⊃ f(x1, . . . , xn) = f(y1, . . . , yn)

A5. i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2 A5σ. i1 = j1 ∧ i2 = j2 ∧ i1 ≤ i2 ⊃ j1 ≤ j2

The index axioms for LAp are A6-A17.

A6. → i+ 1 6= 0 A6σ. x+ 1 6= 0

This is axiom B1.

A7. → i ∗ (j + 1) = (i ∗ j) + i A7σ. x · (y + 1) = x · y + x

This is axiom B6.

A8. i+ 1 = j + 1→ i = j A8σ. x+ 1 = y + 1 ⊃ x = y

This is axiom B2.
3Recall that ⊃ is sometimes written →, and (α ⊃ β) ∧ (β ⊃ α) can be written α↔ β in V⊕L.
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A9. → i ≤ i+ j A9σ. x ≤ x+ y

This is axiom B8.

A10. → i+ 0 = i A10σ. x+ 0 = x

This is axiom B3.

A11. → i ≤ j, j ≤ i A11σ. x ≤ y ∨ y ≤ x
This is axiom B10.

A12. → i+ (j + 1) = (i+ j) + 1 A12σ. x+ (y + 1) = (x+ y) + 1

This is axiom B4.

A13. i ≤ j, j ≤ i→ i = j A13σ. (x ≤ y ∧ y ≤ x) ⊃ x = y

This is axiom B7.

A14. → i ∗ 0 = 0 A14σ. x · 0 = 0

This is axiom B5.

A15. i ≤ j, i+ k = j → j − i = k and i 6≤ j → j − i = 0

A15σ. x ≤ y ∧ x+ z = y ⊃ y . x = z and x 6≤ y ⊃ y . x = 0

Axiom A15σ is provable by definition of . .

A16. j 6= 0→ rem(i, j) < j and j 6= 0→ i = j ∗ div(i, j) + rem(i, j)

A16σ. x 6= 0 ⊃ frem(y, x) < x and x 6= 0 ⊃ y = x · fdiv(y, x) + frem(y, x)

A16σ is provable by the definitions of fdiv and frem.

A17. α→ cond(α, i, j) = i and ¬α→ cond(α, i, j) = j

A17σ. ασ ⊃ fασ (x, y) = x and ¬ασ ⊃ fασ (x, y) = y

A17σ is provable by the definition of fϕ.

The field axioms of LAp are A18-A27. For readability, we adopt the shorthand X11 for X(1, 1).
Since the interpretation maps terms of type field to formulas, the following axioms’ interpretations
are true in V⊕L because they are logical tautologies.

A18. → 0 6= 1 ∧ a+ 0 = a A18σ. (⊥ ↔ ¬>) ∧ ((X11 ⊕⊥)↔ X11)

A19. → a+ (−a) = 0 A19σ. (X11 ⊕ ¬X11))↔ ⊥

A20. → 1 ∗ a = a A20σ. (> ∧X1,1)↔ X11

A21. a 6= 0→ a ∗ (a−1) = 1 A21σ. (X11 ↔ ¬⊥) ⊃
(
(X11 ∧X11)↔ >

)
A22. → a+ b = b+ a A22σ. (X11 ⊕ Y11)↔ (Y11 ⊕X11)

A23. → a ∗ b = b ∗ a A23σ. (X11 ∧ Y11)↔ (Y11 ∧X11)

A24. → a+ (b+ c) = a+ (b+ c) A24σ.
(
X11 ⊕ (Y11 ⊕ Z11)

)
↔
(
(X11 ⊕ Y11)⊕ Z11

)
A25. → a ∗ (b ∗ c) = (a ∗ b) ∗ c A25σ.

(
X11 ∧ (Y11 ∧ Z11)

)
↔
(
(X11 ∧ Y11) ∧ Z11

)
A26. → a ∗ (b+ c) = a ∗ b+ a ∗ c A26σ.

(
X11 ∧ (Y11 ⊕ Z(11)

)
↔
(
(X11 ∧ Y11)⊕ (X11 ∧ Z11)

)
A27. α→ cond(α, a, b) = a A27σ. ασ ⊃

((
(ασ ∧X11) ∨ (¬ασ ∧ Y11)

)
↔ X11

)
and ¬α→ cond(α, a, b) = b and ¬ασ ⊃

((
(ασ ∧X11) ∨ (¬ασ ∧ Y11)

)
↔ Y11

)
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The matrix axioms of LAp are A28-A34.4

A28. (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j)→ e(A, i, j) = 0

A28σ. (x = 0 ∨ fr(X) < x ∨ y = 0 ∨ fc(X) < y) ⊃[(
X(x, y) ∧ x > 0 ∧ y > 0 ∧ isMatrix 2(X)

)
↔ ⊥

]
A29. → r(λij〈m,n, t〉) = m A29σ. fr(Fϕ(x,y,~v,~V )(x, y, ϕ(x, y,~v, ~V ))) = x

and → c(λij〈m,n, t〉) = n and fc(Fϕ(x, y, ϕ(x, y,~v, ~V ))) = y

and 1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n→ e(λij〈m,n, t〉, i, j) = t

and (1 ≤ i ∧ i ≤ m ∧ 1 ≤ j ∧ j ≤ n) ⊃
(
(Fϕ(i,j,~v,~V )(m,n))(i, j)↔ ϕ(i, j, ~v, ~V )

)
for any ΣB0 formula ϕ(x, y,~v, ~V )

Axioms A28 and A29 are provable in V⊕L by definition of the functions fr, fc, and Fϕ.

A30. r(A) = 1, c(A) = 1→
∑

(A) = e(A, 1, 1) A30σ. fr(X) = 1 ∧ fc(X) = 1 ⊃(
(¬PARITY(X) ∧ isMatrix 2(X))↔ X(1, 1) ∧ 1 > 0 ∧ 1 > 0 ∧ isMatrix 2(X)

)
Consider two cases: if ¬ isMatrix 2(X), then by definition, fr(X) = 0 = fc(X) and so A30σ

is vacuously true. If isMatrix 2(X) and fr(x) = 1 = fc(X), then X(0, 〈1, 1〉) is true (by the
definitions of fr and fc). By clauses (b) and (c) of isMatrix 2(X), all other bits of X are false
except X(1, 1), which may be true. Thus ¬PARITY(X) is true iff X(1, 1) is true. Thus A30σ

is provable in V⊕L.

A31. r(A) = 1, 1 < c(A)→
∑

(A) =
∑

(λij〈1, c(A)− 1, Aij〉) +A1 c(A)

Let ϕ(i, j,X) be the formula X(i, j)∧ i > 0∧ j > 0∧ isMatrix 2(X) interpreting e(A, i, j), and
let Y be the string Fϕ(i,j,X)(1, fc(X) . 1). Then A31σ is:

(fr(x) = 1 ∧ 1 < fc(X)) ⊃(
(¬PARITY(X) ∧ isMatrix 2(X))↔ (¬PARITY(Y ) ∧ isMatrix 2(Y )⊕X(1, fc(X)))

)
To prove A31σ, consider two cases: if ¬ isMatrix 2(X), then by definition, fr(X) = 0 = fc(X),
and A31σ is vacuously true.

Otherwise, assume isMatrix 2(X). If fr(X) = 1 and 1 < fc(X), then fc(X) = (fc(X) . 1) + 1.
Note that by the definition of Fϕ, Y (b) is false for any b not a pairing number, and Y (0, z) is
true only for z = 〈1, fc(X) . 1〉. Similarly, for j ≥ fc(X), Y (1, j) is false, and Y (i, j) is false
for all i > 1. Thus the only true bits of Y are Y (0, 〈1, fc(X) . 1〉), and (possibly) bits in the
first row Y [1], so

PARITY(Y )↔ ¬PARITY(Y [1]) (5)

By isMatrix 2, X(b) is true only if b is a pairing number. By the definitions of fr and fc, X(i, j)
is true for 〈i, j〉 = 〈0, 〈1, fc(X)〉〉, and otherwise, only if 0 < i ≤ 1 and 0 < j ≤ fc(X). Thus
|X [1]| ≤ fc(X) and

PARITY(X)↔ ¬PARITY(X [1]) (6)

Recall that PARITY(Z) is shorthand for Parity(|Z|, Z)(|Z|), and for all b ≥ |Z|,
Parity(|Z|, Z)(b) is equivalent to Parity(|Z|, Z)(|Z|) . By the definition of Fϕ,
∀j < fc(X)(Y (1, j) ↔ X(1, j)). Thus

Parity(fc(X)
.

1, X [1]) = Parity(fc(X)
.

1, Y [1]) (7)

Since ∀j > fc(X) . 1, Y (1, j) is false, |Y [1]| ≤ fc(X) . 1. Thus

PARITY(Y [1])↔ Parity(fc(X)
.

1, Y [1])(fc(X)
.

1) (8)

4In [SK01] they are numbered A28-A33 and E; we take the numbering from [SC04], where the axiom E is renum-
bered as A34.
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By the bitwise definition of its graph δparity in 9D of [CN10],

Parity(fc(X), X [1])(fc(X))↔ Parity(fc(X)
.

1, X [1])(fc(X)
.

1)⊕X [1](fc(X)) (9)

Since |X [1]| ≤ fc(X),

PARITY(X [1])↔ Parity(fc(X), X [1])(fc(X)) (10)

Combining (5)–(10), we obtain the consequent of A31σ.

This axiom is also provable by induction.

A32. c(A) = 1→
∑

(A) =
∑

(At)

A32σ. fc(X) = 1 ⊃
(
(¬PARITY(X) ∧ isMatrix 2(X))↔ (¬PARITY(Y ) ∧ isMatrix 2(Y ))

)
where Y is the string: FX(j,i)∧j>0∧i>0∧isMatrix2(X)(fc(X), fr(X))

Recall that At is shorthand for the formula λij〈c(A), r(A), Aji〉.
To prove A32σ, consider two cases: if ¬ isMatrix 2(X), then fc(X) = 0 and A32σ is vacuously
true.

Otherwise, isMatrix 2(X). We can also assume that X encodes a column matrix (fc(X) = 1),
as otherwise A32σ is trivially true.

We prove the theorem by induction on rows. Let ϕ(k,X) be the formula for “for string X
encoding a 1-column matrix, axiom A32 holds of the k × 1 submatrix of the first k rows of
X.” To write this formula, we first define the ΣB0 formula that extracts the submatrix. Let
Abbrev(k,X) be a string function that takes a string X encoding a matrix and outputs the
first k × 1 sub-matrix of that string (the first k entries of the first column):

Abbrev(k,X)(b)↔ isMatrix 2(X) ∧
(
b = 〈0, 〈k, 1〉〉 ∨ (0 < left(b) ≤ k ∧ right(b) = 1 ∧X(b))

)
By construction, Abbrev(k,X) correctly encodes a matrix: isMatrix 2(Abbrev(k,X)). The
induction proceeds on the formula ϕ(k,X):

fc(Abbrev(k,X)) = 1 ⊃
(

PARITY(Abbrev(k,X))↔ PARITY(

transpose of Abbrev(k,X)︷ ︸︸ ︷
FAbbrev(k,X)(j,i)∧j>0∧i>0(k, 1))

)
Notice that this is a simplified version of A32σ, with Abbrev(k,X) substituted for X.

As a base case, ϕ(0, X) is obviously true, as both Abbrev(0, X) and the string encoding its
transpose have exactly one bit true (the bit encoding the matrices’ size), and no others.

Assume ϕ(k,X). In order to prove the inductive step ϕ(k,X) ⊃ ϕ(k+ 1, X), we need to prove
three statements. In shorthand, they are:

(a)
∑

Abbrev(k + 1, X) =
∑

Abbrev(k,X) +X(k + 1, 1)

(b)
∑

Abbrev(k,X) =
∑

Abbrev(k,X)t

(c)
∑

Abbrev(k + 1, X)t =
∑

Abbrev(k,X)t +Xt(1, k + 1)

Proof of 1. We want to show:

¬PARITY(X)∧isMatrix 2(X)↔ (¬PARITY(Abbrev(k,X))∧isMatrix 2(Abbrev(k,X)))⊕X(k+1, 1)

The possible “true” bits of X are, in order: 〈1, 1〉, . . . , 〈k, 1〉, 〈k + 1, 1〉, and 〈0, 〈k + 1, 1〉〉.
The possible “true” bits of Abbrev(k,X) are, in order: 〈1, 1〉, . . . , 〈k, 1〉, and 〈0, 〈k, 1〉〉. Note
that on bits numbered 〈∗, 1〉, the string Abbrev(k,X) is true iff X is true, by construction.
Thus for the first 〈k, 1〉 bits, X and Abbrev(k,X) are identical, so the strings witnessing the
computation of their parities are equal:

Parity(〈k, 1〉, X) = Parity(〈k, 1〉,Abbrev(k,X))
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In fact, the strings are identical up until the bit 〈k + 1, 1〉. At that bit, by the definition of
Parity , and since Abbrev(k + 1, X) is false on all bits between 〈k, 1〉 and 〈k + 1, 1〉,

Parity(〈k + 1, 1〉,Abbrev(k + 1, X))(〈k + 1, 1〉) ↔ Parity(〈k + 1, 1〉,Abbrev(k + 1, X))(〈k, 1〉)⊕X(k + 1, 1)

Since Abbrev(k,X)(b) is false for all b > 〈k, 1〉 except b = 〈0, 〈k, 1〉〉,

Parity(〈k+1, 1〉,Abbrev(k+1, X))(〈k+1, 1〉)↔ Parity(〈k, 1〉,Abbrev(k,X))(〈k, 1〉)⊕X(k+1, 1)

Each of Abbrev(k,X) and Abbrev(k + 1, X) is true on exactly one bit > 〈k + 1, 1〉 (namely,
the bit recording the matrix size, respectively 〈0, 〈k, 1, 〉〉 and 〈0, 〉k + 1, 1〉〉). Thus

PARITY(Abbrev(k,X))↔ PARITY(Abbrev(k + 1, X))⊕X(k + 1, 1)

Proof of 2. This is the inductive hypothesis, so it is true by assumption.
Proof of 3. This proof proceeds similarly to the proof of 1, above.
The inductive step is proven by combining 1, 2, and 3.

A33. 1 < r(A), 1 < c(A)→
∑

(A) = e(A, 1, 1) +
∑

(R(A)) +
∑

(S(A)) +
∑

(M(A))
Recall that, by definition:
R(A) : = λij〈1, c(A)− 1, e(A, 1, i+ 1)〉
S(A) : = λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉
M(A) : = λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉

These expressions nesting e inside λ make the translation of A33 very long. For readability,
let η(i, j,X) be the much-repeated formula X(i, j)∧ i > 0∧ j > 0∧ isMatrix 2(X) interpreting
e(A, i, j).
Then A33σ is the formula:

1 < fr(X) ∧ 1 < fc(X) ⊃
(
¬PARITY(X) ∧ isMatrix 2(X)↔({[
X(1, 1) ∧ 1 > 0 ∧ 1 > 0 ∧ isMatrix 2(X)

⊕(¬PARITY(Fη(i,j,X)(1, fc(X) . 1)) ∧ isMatrix 2(Fη(i,j,X)(1, fc(X) . 1)))
]

⊕(¬PARITY(Fη(i,j,X)(fr(X) . 1, 1)) ∧ isMatrix 2(Fη(i,j,X)(fr(X) . 1, 1))
}

⊕(¬PARITY(Fη(i,j,X)(fr(X) . 1, fc(X) . 1)) ∧ isMatrix 2(Fη(i,j,X)(fr(X) . 1, fc(X) . 1)))
))

We will actually prove a stronger version: the consequent holds of all strings (even those that
don’t satisfy the antecedent). The proof will use lemma 2 from A33σ above: if two strings
differ on a single bit, then they have opposite parities.
As above, for strings X not encoding matrices, the theorem is trivially true.
Recall that the intention of this theorem is to break a matrix into four parts:

e R

S M

We proceed by a double induction, first on rows, then on columns. It will be convenient to be
able to denote a particular submatrix of n ×m matrix X, the first i ×m submatrix with an
additional k ≤ m bits of the i+ 1st row.

i,m
i+1,k
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Call this string function Partial(i, k,X):

Partial(i, k,X)(b)↔ isMatrix 2(X) ∧ Pair(b) ∧ k ≤ fc(X)∧(
b = 〈0, 〈i+ 1, fc(X)〉〉∨ (11)

[0 < left(b) ≤ i ∧ right(b) ≤ fc(X) ∧X(b)]∨ (12)

[left(b) = i+ 1 ∧ right(b) ≤ k ∧X(b)]
)

(13)

The case on line (11) is true for the bit encoding the size of the matrix; (12) is the case for
bits within the i×m submatrix of X; and (13) is the case for bits in the final row.

As a base case, consider the first row of X. We proceed inductively by columns. For the first
1 × 1 submatrix of X, Partial(0, 1, X), the theorem is easily true: the R, S, and M portions
of the matrix have at least one dimension 0, so they are empty. Inducting on columns, for the
first row of X (a 1×m matrix Partial(0,m,X)), the theorem is true by use of lemma 2. (This
is similar to axiom A31.)

For the inductive step on rows, we consider adding one row. Assume that the axiom holds for
an i×m submatrix of the first i rows of X. From the proof for A32 above, we can denote this
Abbrev(i,X); alternatively, this is Partial(i, 0, X). We now consider adding the bits of the
i+ 1st row, one at a time. For each bit, Partial(i, k,X) differs from Partial(i, k + 1, X) on at
most one bit, and lemma 2 can be applied. If the bit is 0, then the parity remains unchanged.
If the bit is 1, then by the lemma above, the parity is reversed.

A34. r(A) = 0 ∨ c(A) = 0→
∑

(A) = 0

A34σ. fr(X) = 0 ∧ fc(X) = 0 ⊃
(
¬PARITY(X) ∧ isMatrix 2(X)↔ ⊥

)
There are two cases: if ¬ isMatrix 2(X), then the theorem is trivially true. If isMatrix 2(X)
and fr(X) = fc(X) = 0, then the only true bit of X is X(0, 0), the bit encoding the size of
the matrix. Thus ¬PARITY(X) is false, and the theorem is true.

A35. → p(0, A) = I A35σ. Fp(0, X) = Wrap(fr(X), fr(X), ID(fr(X)))

As defined in [Fon09], ID(n) is the string representing the n× n identity matrix, with entries
starting at (0, 0).

To prove A35σ, we need to show that the two strings are bit-by-bit identical.

Consider two cases. If ¬ isMatrix 2(X), then Fp(i,X) is true only on bit 〈0, 〈0, 0〉〉. Also, by
definition, fr(X) = 0. Thus, by definition of the Wrap function, the right-hand side is true
on bit 〈0, 〈0, 0〉〉. The right-hand side is also true on all bits (shifted) of the string ID(fr(X)),
but since fr(X) = 0, there are no such bits.5

In the other case, let isMatrix 2(X) hold. Then both sides are expressions of the form Wrap(r, c, Z).
On both sides, r = c = fr(X) and Z = ID(fr(X)). Thus the strings are equal.

Remark 3 By the conventions from [SC04, SK01], the zeroth power of an n ×m matrix is
the n×n identity matrix. This is designed to work with the left-recursive definition of matrix
powering (axiom A36), so that the ith power of an m×n matrix is an m×n matrix (for every
i > 0). (See remark 1 on page 2.) Notice that this axiom is meaningful in our interpretation
as Fp treats any given matrix as a square matrix along its largest dimension. This allows for
powering non-square matrices.

A36. → p(n+ 1, A) = p(n,A)×A
5The string function ID(n) is bit-defined in [Fon09]. It yields a string representing the n×n identity matrix, with

entries starting at (0, 0):
ID(n)(b)↔ left(b) < n ∧ Pair(b) ∧ left(b) = right(b)
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This concise axiom features convenient notational shorthand from LAp. In order to interpret
A36, it is necessary to unravel this notation back to the basic predicates of LAp. This inter-
pretation is not difficult, but lengthy, due to several layers of dependent notation definitions
in [SC04].

This axiom explicitly uses matrix multiplication, defined:

A×B = λij〈r(A), c(B), λkl〈c(a), 1, e(A, i, k)〉 · λkl〈r(B), 1, e(B, k, j)〉〉

Matrix multiplication uses the dot product, defined:

A ·B = Σλij〈max(r(A), r(B)),max(c(A), c(B)), e(A, i, j) ∗ e(B, i, j)〉

The dot product uses the index (integer) function max, defined:

max(i, j) = cond(i ≤ j, j, i)

Ultimately, the statement of A36σ and its proof in V⊕L are detailed but not interesting.
Each term in LAp (matrix product, dot product, and maximum) corresponds to a term in
V⊕L encoding the same information. The insight of the proof is limited to observing that the
iterative process used to compute Pow2 is the same as the interpretation of Solty’s definition
of matrix multiplication.

4 A summary of V #L

The theory LAp can be considered over an arbitrary field. In fact, most results of [SK01, SC04] hold
over an integral domain; multiplicative inverses are not required.

Like V⊕L, the theory V#L is an extension of V 0. It has two sorts, numbers and binary strings.
V#L differs from V⊕L in a single way: it is a theory for the integers (as opposed to V⊕L’s field
{0, 1}). Each integer is encoded as a binary string. The first bit indicates the integer’s sign (zero
for integers ≥ 0, one for negative integers), and the following bits form a binary representation of
the integer, from least to most significant bit. Along with this integer encoding, there are useful
functions defined in [Fon09]. The function intsize returns the absolute value of the integer encoded
in string X:

intsize(X) =
∑
i

X(i+ 1) · 2i

Thus binary string X encodes the integer (−1)X(0) · intsize(X). We also have the string functions
+Z for integer addition, ×Z for integer multiplication, and the function SumZ(r, `, Z) which sums a
list of r integers, each of length ≤ `, given as rows of string Z.6

The theory V#L has the same axioms as V⊕L, but its axiom for matrix powering accomodates
this change in matrix encoding.

5 Interpreting LAp over Z into V #L

As above, the superscript σ will be used here to denote interpretation.
The theory LAp over the integers has a fairly straighforward interpretation into V#L, much of

it identical or similar to the above interpretation into V⊕L (section 3). For example, the index sort
in LAp can be interpreted, as before, into V#L’s number sort. The “field”7 sort Z is interpreted
into binary strings, and the matrix sort is also interpreted into binary strings.

Because the integers are not a field, but an integral domain, there is no interpretation for mul-
tiplicative inverses over the “field” type. See section 5.2.1 for discussion of this issue.

6The function Sum is defined in [CN10] for binary strings encoding natural numbers, not integers. It can easily
be modified to work for the integer encoding presented here; that modification is achieved in [Fon09] by the addition
of a helper function, and need not be repeated here.

7The integers are, of course, not a field, but a principal ideal domain. See section 5.2.1.
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5.1 Interpreting terms and formulas

Terms, formulas, and the index sort are treated exactly as above (sections 3.1 and 3.1.1).

5.1.1 “Field” sort

Each integer in LAp is interpreted into a binary string representing it. Integer variables are inter-
preted into string variables, and integer terms with k free variables are interpreted as string terms
with k free variables. Free variables of field terms are suppressed below for readability.

For t and u integer terms in LAp, we interpret:

LAp V#L
0field the empty string ∅
1field the string “10”, i.e., X such that X(i)↔ i = 1
a X see above: variables map to string variables

t+field u tσ +Z u
σ

t−field u tσ +Z (uσ)′ where (uσ)′ is identical to uσ, except on the first bit
t ∗field u tσ ×Z u

σ

condfield(α, t, u) F cond
ασ (tσ, uσ) where for each formula ϕ, define:

F cond
ϕ (X,Y ) = Z ↔ (ϕ ∧X = Z) ∨ (¬ϕ ∧ Y = Z)

t =field u tσ = uσ

No interpretation is provided for multiplicative inverses t−1. See section 5.2.1.

5.1.2 Matrix sort

This treatment is similar to V⊕L, but more complicated due to the difference in encoding matrices
as strings.

The matrix sort of LAp has integer entries. Every matrix in LAp has three attributes: number of
rows, number of columns, and matrix entries. The matrix sort is interpreted as strings in V#L; as
before, the string sort in V⊕L is used to encode many different formats of data. Here, the intention
is to use a binary string to encode a triple: two numbers (the dimensions of the matrix) and a
matrix of other binary strings. The pairing function will facilitate this encoding, by means of the
same usage and encoding format as is used in [CN10, Fon09].

An a× b matrix A of integers is interpreted as a string Aσ such that Aσ(0, 〈a, b〉) is true. Each
integer entry Aij is interpreted as a string Aσij ; each row of the matrix is encoded as a string (a list
of other strings), and the list of rows of the matrix is encoded in the string Aσ. (Notice that, as
before, the entries begin numbering at (1, 1), so that the first column of Aσ is empty.) All other bits
of Aσ are false.

This interpretation preserves the feature from LAp that matrices, when queried out-of-bounds,
return 0. (As in LAp, a matrix queried on its 0th row must return 0; that row is reserved in our
encoding, so this is a special case.)

Throughout this section, it is convenient to have a formula isMatrix Z(X) which is true if and
only if X is a valid encoding of a matrix of integers. Let isMatrix Z(X) be:

∃x, y < |X|
[ (a)︷ ︸︸ ︷

X(0, 〈x, y〉)∧

(b)︷ ︸︸ ︷
∀z < |X|

(
¬X(z, 0) ∧ (z = 〈x, y〉 ∨ ¬X(0, z)) ∧ (X(z)→ Pair(z))

)
∧∀z ≤ x∀i < |X [z]|

(
X [z](i)→ Pair(i) ∧ left(i) ≤ y

)︸ ︷︷ ︸
(c)

]
(14)

This formula has three sections: section (a) guarantees that the matrix dimensions are encoded
properly; section (b) checks that there are no matrix entries in the 0th row or column, or in any
non-pair-numbered bit; section (c) checks that the matrix entries are encoded properly and within
the bounds of the matrix dimensions. Matrices have many “wasted” bits of empty space, due to the
use of pairing numbers to encode rows and columns of data.
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The interpretation of LAp matrix functions into V#L is similar, and in some places, identical,
to the above interpretation (section 3.1.3). Only the differences are noted in this section.

LAp V#L∑
(T ) FP(Tσ)

In order to interpret
∑

(T ), we require a string-valued function that, given an input string X validly
encoding a matrix of integers, outputs the string Y encoding the integer sum of the entries of the
matrix. The function Sum is defined in [CN10] to sum a list of (positive) numbers encoded in binary
notation. In [Fon09], this is extended to the function SumZ, which sums a list of integers. (These
integers are encoded in binary strings exactly as here.) Thus all that is required is a string function
to convert an integer matrix into a list of integers:

List(Z)[k](b)↔ isMatrix Z(Z) ∧ 0 < r ≤ fr(Z) ∧ 0 < c ≤ fc(Z) ∧ Z(div(k, c), rem(k, c))(b)

Thus List(Z) is a list of the integer entries in the matrix Z, in “reading order”: the first c elements
of the list are the elements from the first row of matrix Z, the next c elements are from the second
row, and so on. (As is standard, List(Z) is zero on all unspecified bits.)

Define

FP(Tσ)(b)↔ SumZ(fr(Tσ)× fc(Tσ), |Tσ|,List(Tσ))(b) ∧ isMatrix Z(Tσ)︸ ︷︷ ︸
true only for strings encoding matrices

We specify FP in this way so that universal claims about
∑

(T ) in LAp can be interpreted into
universal claims in V#L of the same provability, even though not every string in V#L encodes a
matrix.

LAp V#L
λij〈m,n, t〉 Ftσ (mσ, nσ)

Constructed λij matrix terms have the restriction that i and j are free in t and not free in m and
n. In LAp, the λ operator binds i and j. Thus, when interpreted, tσ has two reserved free variables
iσ and jσ (the interpretations of i and j). The restrictions are preserved: iσ and jσ are free in tσ

and not free in mσ and nσ. Thus, suppressing free variables, Ftσ (mσ, nσ) is the string interpreting
the matrix term λij(m,n, t) in V#L.

If t(i, j, ~vindex, ~Vfield, ~Vmatrix) is a field term in LAp, then tσ is a string in V#L. Let tσ(k) be the
formula ϕ(i, j, ~v, ~V )(k) with the same number of free variables. (Recall that field variables are inter-
preted into string variables.) For every formula ϕ(i, j, ~v, ~V )(k), the string function Fϕ(m,n,~v, ~V )(b)
is bit-defined:

b = 〈0, 〈m,n〉〉 ∨ ∃i ≤ m∃j ≤ n(i > 0 ∧ j > 0 ∧ left(b) = 〈i, j〉 ∧ ϕ(i, j, ~v, ~V )(right(b))) (15)

Thus the output of Fϕ(m,n) is a string encoding a matrix with m rows and n columns, with entries
strings whose bits are determined by ϕ. This aligns with LAp’s definition of λij term, so that
Ftσ (mσ, nσ) is the string interpretation in V#L of the matrix λij(m,n, t) in LAp.

Notice that isMatrix Z(Fϕ(m,n)) is true for all for all formulas ϕ with at least two free number
variables. This is by construction, as the bit-definition of Fϕ matches the clauses of isMatrix Z.

The interpretation of λij terms is required when those terms are used inside formulas; the exis-
tence of string Ftσ (mσ, nσ) is guaranteed by ΣB0 -COMP.

LAp V#L
e(T,m, n) Fe(Tσ,mσ, nσ)
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The e function returns the matrix’s entry at the requested coordinates; thus its interpretation is
string-valued in V#L. We bit-define Fe(X, i, j):

Fe(X, i, j)(b)↔ X(i, j)(b) ∧ i > 0 ∧ j > 0 ∧ isMatrix Z(X)︸ ︷︷ ︸
true only for valid strings encoding matrices

LAp specifies that matrices return 0 when queried out-of bounds. As in LAp, matrix row and
column numbering starts at 1 for strings encoding matrices. Hence querying at (0, x) or (x, 0) is
out-of-bounds and returns the string of all false bits, representing integer 0. Conveniently, on all
bits in a row or column larger than its dimensions, a matrix encoded as a string also returns false.
Strings which do not encode matrices are interpreted as 0× 0 matrices, and accordingly return false
for every lookup.

This interpretation of e(T,m, n) is convenient; it allows us to use the same interpretation of
matrix equality as above, since again matrices that have the same number of rows, columns, and
entries (strings) will be equal.

The interpretation of powering p(i, A) into V#L is identical to the interpretation into V⊕L
above, except that PowZ replaces Pow2.

5.2 Provability is preserved

This interpretation is useful because it preserves provability: for any sequent → ϕ provable in LAp
without using field inverses, the interpreted formula ϕt is provable in V#L. See the note on inverses
(section 5.2.1).

As above in section 3.2, we will have a lemma to simplify upcoming proofs. This lemma states
that if two integers differ by 1, then their sums also differ by 1.

Lemma 4 V#L `
(
X [i] = Y [i]+ZZ∧∀j 6= i X [j] = Y [j]

)
→SumZ(1, |X|, X) = SumZ(1, |Y |, Y )+ZZ

This lemma follows directly from definitions.
V#L has axioms:
B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x+ 1 = y + 1 ⊃ x = y B8. x ≤ x+ y
B3. x+ 0 = x B9. 0 ≤ x
B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)

SE. [|X| = |Y | ∧ ∀i < |X|(X(i)↔ Y (i)) ⊃ X = Y
The axiom scheme ΣB0 −COMP: for every ΣB0 −COMP formula ϕ(z),

∃X ≤ y∀z < y(X(z)↔ ϕ(z))
And the axiom for matrix powering.
In this section, each interpretation of an axiom from LAp is shown to be provable in V#L. Since

V#L’s set of axioms is nearly identical to those of V⊕L (the exception is that matrix powering
is here over integer matrices, not binary matrices), many of these proofs are identical to those in
section 3.2 above. The interpretation into V#L differs only on interpretations of strings, as well as
functions

∑
, λij , and e. It suffices to re-prove only those axioms of LAp whose interpretations have

changed. (This is a superset of all axioms involving PARITY in their proofs; note that the theory
V#L does not have PARITY.)

The equality and field axioms remain the same, but the field axioms must be reproven.
The field axioms of LAp are A18-A27. For readability, let U be the all-zero string, and V be the

string such that V (i)↔ i = 1.

A18. → 0 6= 1 ∧ a+ 0 = a A18σ. U 6= V ∧X +Z U = X

This is provable since string equality is true equality in V#L, and by the definition of +Z.
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A19. → a+ (−a) = 0 A19σ. X +Z Y = U

Where Y is a string that differs from X only on Y (0). Again, this is provable from the definition
of +Z.

A20. → 1 ∗ a = a A20σ. V ×Z X = X

This is provable by the definition of ×Z.

A21. a 6= 0→ a ∗ (a−1) = 1

This axiom is not provable in the interpretation as described above, since no interpretation
was provided for multiplicative inverses in the “field” Z. See section 5.2.1 for further discussion
of inverses.

A22. → a+ b = b+ a A22σ. X +Z Y = Y +Z X

This is provable from the definition of +Z, since it is commutative.

A23. → a ∗ b = b ∗ a A23σ. X ×Z Y = Y ×Z X

This is provable from the definition of ×Z.

A24. → a+ (b+ c) = a+ (b+ c) A24σ. X +Z (Y +Z Z) = (X +Z Y ) +Z Z

This is provable from the definition of +Z.

A25. → a ∗ (b ∗ c) = (a ∗ b) ∗ c A25σ. X ×Z (Y ×Z Z) = (X ×Z Y )×Z Z

This proof is detailed but uninteresting, and simply follows the definition of ×Z.

A26. → a ∗ (b+ c) = a ∗ b+ a ∗ c A26σ. X ×Z (Y +Z Z) = X ×Z Y +Z X ×Z Z

This proof is also intricately detailed, but simply traces the interacting definitions of +Z and
×Z.

A27. α→ cond(α, a, b) = a A27σ. ασ ⊃ F cond
ασ (X,Y ) = X

and ¬α→ cond(α, a, b) = b and ¬ασ ⊃ F cond
ασ (X,Y ) = Y

These follow directly from the definition of F cond
ασ .

The matrix axioms of LAp are A28-A34; these are the axioms most different in interpreted form
in V⊕L and V#L. As above, let U be the all-zero string, and V be the string such that V (i)↔ i = 1.

A28. (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j)→ e(A, i, j) = 0

A28σ. (x = 0 ∨ fr(X) < x ∨ y = 0 ∨ fc(X) < y) ⊃ Fe(X,x, y) = U

A29. → r(λij〈m,n, t〉) = m A29σ. fr(Fϕ(x,y,~v,~V )(x, y, ϕ(x, y,~v, ~V ))) = x

and → c(λij〈m,n, t〉) = n and fc(Fϕ(x,y,~v,~V )(x, y, ϕ(x, y,~v, ~V ))) = y

and 1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n→ e(λij〈m,n, t〉, i, j) = t

and (1 ≤ i ∧ i ≤ m ∧ 1 ≤ j ∧ j ≤ n) ⊃
(
(Fϕ(i,j,~v,~V )(m,n))(i, j) = ϕ(i, j, ~v, ~V )

)
for any appropriate formula ϕ(x, y,~v, ~V )

Axioms A28 and A29 are provable in V#L by definition of the functions fr, fc, and Fϕ.

A30. r(A) = 1, c(A) = 1→
∑

(A) = e(A, 1, 1)

A30σ. fr(X) = 1 ∧ fc(X) = 1 ⊃ FP(X) = Fe(X, 1, 1)

This is provable from definitions, though the details are messy: by fr(X) = 1 and fc(X) = 1, X
properly encodes a matrix (i.e., isMatrix Z(X)), and the only true bits of X are: X(0, 〈1, 1〉),
and possibly X(1, 〈1, b〉). Those are exactly the bits in the string returned by the function
Fe(X, 1, 1).
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A31. r(A) = 1, 1 < c(A)→
∑

(A) =
∑

(λij〈1, c(A)− 1, Aij〉) +A1 c(A)

A31σ. fr(X) = 1 ∧ 1 < fc(X) ⊃ FP (X) = FP (FFe(X,i,j)(1, fc(X))) +Z Fe(X, 1, fc(X))

This is provable by induction on columns, since SumZ is defined using +Z [Fon09].

A32. c(A) = 1→
∑

(A) =
∑

(At)

A32σ. fc(X) = 1 ⊃
(
FP (X) = FP (Y )

)
where Y is the string: FFe(X,j,i)(X, fc(X), fr(X))

This can be proven in the same way as previously, in the mod2 case.

A33. 1 < r(A), 1 < c(A) →
∑

(A) = e(A, 1, 1) +
∑

(R(A)) +
∑

(S(A)) +
∑

(M(A)) Recall that, by
definition:
R(A) : = λij〈1, c(A)− 1, e(A, 1, i+ 1)〉
S(A) : = λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉
M(A) : = λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉

These expressions nesting e inside λ make the translation of A33 very long.

Thus A33σ is:

1 < fr(X) ∧ 1 <, fc(X)→ FP (X) = Fe(X, 1, 1)
+ZFP (FFe(X,i,j)(1, fc(X)− 1, Fe(X, 1, i+ 1)))
+ZFP (FFe(X,i,j)(fr(X)− 1, 1, Fe(X, i+ 1, 1)))
+ZFP (FFe(X,i,j)(fr(X)− 1, fc(X)− 1, Fe(X, i+ 1, j + 1)))

A34. r(A) = 0 ∨ c(A) = 0→
∑

(A) = 0

A34σ. fr(X) = 0 ∧ fc(X) = 0 ⊃ ∀i ≤ |FP (X)| ¬FP (X)(i)

A35. → p(0, A) = I A35σ. Fp(0, X) = Wrap(fr(X), fr(X), IDZ(fr(X)))

The string function IDZ(n) returns the n × n identity matrix of integers, each encoded by a
string. It is defined in [Fon09]. Here again the difference in matrix encodings is evident, as
standard matrices in V⊕L are encoded separately from their size, but interpreted matrices
from LAp require the Wrap function to mark their dimensions. Note that non-square matrices
can be powered; an n×m matrix raised to the 0th power will yield a max(n,m)×max(n,m)
identity matrix (recall remark 1).

A36. → p(n+ 1, A) = p(n,A)×A
As before, the statement of A36σ is lengthy due to the notational shorthand × in LAp, which
condenses a much longer formula involving nested λij and

∑
constructions.

The proofs of axioms A32σ, A33σ, A34σ, A35σ, and A36σ are similar to their proofs when
interpreted into V⊕L; note that we will use lemma 4 (for integers) in place of lemma 2 (for
F2).

5.2.1 A note on inverses

The integral domain Z does not have multiplicative inverses, so no interpretation has been provided
above for LAp terms of the form a−1. Thus this interpretation is incomplete. It remains a useful tool,
and the main theorem – that results provable in LAp are also provable in V#L – is still attainable.
As noted in [SK01, SC04], multiplicative inverses are only used to prove two results in LAp.

These two results concern the “hard matrix identities”:

AB = I, AC = I, → B = C (I)
AB = I → AC 6= 0, C = 0 (II)
AB = I → BA = I (III)

AB = I → AtBt = I (IV)
If A, B are n× n and the last column of A is 0, then AB 6= I. (V)
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Theorem 3.1 of [SC04] proves that LA (without matrix powering or multiplicative inverses) proves
I ⇔ II ⇔ III ⇔ IV .

Theorem 5 (4.1 of [SC04]) LAp (over any field) proves that the Cayley-Hamilton theorem im-
plies the hard matrix identities I-IV.

This result is provable over an integral domain.

Proof of theorem 4.1: This V#L proof is only a slight modification of the original LAp proof
[SC04].

Since theorem 3.1 [SC04] shows that the hard matrix identities I-IV are equivalent (without using
inverses), it suffices to consider the identity III:

AB = I → BA = I

Using the C-H theorem, p(A) = 0 where p is the characteristic polynomial of A. Since p has leading
coefficient 1, it is not the zero polynomial. There must be k ≥ 0 and a polynomial q with non-zero
constant term q0 such that

0 = p(A) = q(A)Ak

From AB = I, using induction, AkBk = I. Thus

0 = 0Bk = q(A)AkBk = q(A)I = q(A)

Separating the constant and non-constant parts of q,

q̂(A)A = −q0I

Multiplying on the right by B and using the assumption that AB = I,

q̂(A) = q̂(A)I = q̂(A)AB = −q0B

Thus −q0BA = −q0I; by the properties of a module (without using multiplicative inverses), q0(I −
BA) = 0. In an integral domain, there are no zero divisors; either q0 or I −BA must be zero. But
q0 6= 0, so it must be that BA = I.

The second result from [SK01, SC04] states that:

Lemma 6 (3.1 of [SC04]) LA proves the equivalence of (V ) and (I)− (IV ).

The proof that III implies V is straightforward and does not require inverses.
In the other direction, the proof in [SK01, SC04] uses multiplicative inverses in order to cancel

terms, and prove that V implies II. Although the inverse axiom cannot be interpreted, we can add
a cancellation axiom. (A cancellation law is clearly implied by the inverse axiom.) By extending
V#L with a cancellation axiom, we can obtain the same result in a slightly larger theory.

(Steve suggested that there should be an easy way to prove this without using multiplicative
inverses, since it seems obviously true in an integral domain. After some examination, the proof
without inverses is not apparent. Email follow-up with Michael ensues. Dec 8 2009)

6 Conclusion

Two mappings are provided above for interpreting Soltys’ theory LAp over F2 and Z into the
Cook-Nguyen-style theories V⊕L and V#L, respectively. These interpretations are useful tools,
as they preserve provability; anything provable in LAp is provable (in translation) in V⊕L and
V#L. This increases the ease of working in V⊕L and V#L, since LAp has more convenient and
natural mathematical notation; thus V⊕L and V#L are more useful theories. Additionally, these
interpretations fit LAp into the hierarchy of theories established in [CN10].
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