

Power-Efficient and Fault-Tolerant

Circuits and Systems
Lei He﹡ and Yu Hu

Abstract — As devices become smaller, circuits and systems

are more vulnerable to soft errors caused by radiation and

other environmental upsets. Fault tolerance measured by

mean time to failure (MTTF) is desired, especially if no extra

area, power and delay and little change of the existing design

flow are introduced. Using FPGA as a testbed, this paper first

presents fault tolerance techniques applying (1) logic don't

care and path re-convergence (ROSE) and (2) in-place logic

re-writing (IPR). Both increase MTTF by 2X with little or no

overhead. Particularly, IPR does not change circuit placement

and routing, and can be readily used with the existing

industrial design flow. It also leads to a self evolution method

to enhance fault tolerance for FPGA based circuits and

systems. The ideas presented in the paper can be extend to

handle regular logic fabrics, which are natural to nano-

technologies and are also preferred by design for

manufacturability (DFM) in scaled CMOS technologies
1
.

Index Terms — Field Programmable Gate Array, Fault

Tolerance, Logic Synthesis

I. INTRODUCTION

As devices scale to nanometer regime, circuits and systems

are more vulnerable to soft errors caused by radiation and

other environmental upsets. Fault tolerance measured by mean

time to failure (MTTF) is desired, especially if no extra area,

power and delay and minimal change of the existing design

flow are introduced. Unfortunately, for those mission-critical

applications, e.g., aerospace and military applications,

rigorous requirement for robustness is often coupled with

excessive redundancy, resulting in area, power and delay

overhead. On the other hand, mission-non-critical applications

(e.g., enterprise servers and internet routers) can tolerate

certain level of soft errors using software and protocol

redundancy (e.g., resend a packet if data are corrupted in an

internet router) or system reloading. However, "critical" faults

may cause frequent system reloading or even system

breakdown, which result in a reduced MTTF.

In this paper, we study the fault tolerance for mission-non-

critical applications, and use SRAM-based field

programmable gate array (FPGAs) as the testbed. For fault-

tolerant FPGA designs, both error detection and correction are

important. Various fault-tolerant encoding schemes (e.g.,

error-correction-code (ECC)) have been applied to

commercial SARM-based FPGAs, e.g., Xilinx Virtex-5, to

detect or correct soft error-induced bit flips or data corruption.

However, they cannot be applied to in real-time due to the

1 Both Lei He and Yu Hu are with the Electrical Engineering Department,

University of California Los Angeles (UCLA), Los Angeles, CA 90066, USA.
(e-mail: {lhe,hu}@ee.ucla.edu).

severe latency caused by the slow scan-based readback (the

longest readback CRC scan time could be up to 100ms [1]). In

this paper, we focus on the CAD approaches applicable to any

existing FPGAs to optimize the robustness of an FPGA-based

circuit and system with minimal overhead for area, delay and

power, and therefore they can be applied to real-time

applications for an increased MTTF.

Specifically, two fault-tolerant logic synthesis algorithms

are presented, namely robust resynthesis (ROSE) and in-place

reconfiguration (IPR). Both algorithms leverage logic masking

to reduce the probability that a fault is propagated to the

primary outputs. In addition to logic masking, ROSE also uses

a robust logic template (with path re-convergence) that can be

realized by any LUT-based FPGAs to further strengthen the

robustness. ROSE and IPR have complementary features.

ROSE reduces logic area, and therefore effectively produces

designs with lower power. IPR preserves the topology (or

layout) of the netlist, and therefore requires no re-placement

and re-routing, resulting in minimal change of the existing

design flow and a faster design closure. It also leads to a self

evolution method to enhance fault tolerance for FPGA-based

circuits and systems. Both ROSE and IPR have about 2X

MTTF increase on the QUIP benchmark set [12].

We show that the proposed approaches can be extended to

consider other optimization objectives (e.g., leakage power

minimization), and handle regular logic fabrics, which are

natural to nano-technologies and are also preferred by design

for manufacturability (DFM) in scaled CMOS technologies.

Particularly, IPR can be applied in post-silicon debugging (e.g.

[24]) and engineering change order (ECO) for a quicker

timing closure.

The remaining of this paper is organized as follows. Section

II and Section III briefly reviews the previous fault-tolerant

techniques for PLDs, and provides the preliminaries,

respectively. Section IV and Section V describe the proposed

fault-tolerant synthesis algorithms, ROSE and IPR,

respectively. A hardware-based emulation for optimization

and validation is presented Section VI. Some experimental

results are highlighted in Section VII, and the paper is

concluded in Section VIII.

II. PREVIOUS WORK

Fault tolerance techniques have been studied extensively for

PLDs [1]. Without considering dynamic re-configuration

during runtime, the following techniques have been developed

to tolerate faults for PLDs: (a) Locating and masking faults by

circuit redundancy. For example, column-based redundancy,

proposed in [2, 3], has been used in Altera’s Stratix II FPGA

[4]. If one logic block in a column of logic blocks is found

defective during testing of the device, the entire column is

bypassed and its function is implemented by the redundant

column. Besides redundant column and rows, some fine-

grained redundancy architectures were also proposed, e.g., in

[5, 6], where redundant routing resources are evenly

distributed in the FPGA to tolerate faults. The aforementioned

tolerance is transparent to FPGA users, and the same synthesis

can be used for all chips of the same FPGA application. This

manufacturer-masking approach lowers synthesis cost for

massive production, but suffers from low fault coverage, large

area overhead, and extra delay due to the bypass circuit. For

example, only defective logic blocks within the same column

are tolerated with one extra column as in Stratix II. (b) Chip-

wise synthesis, which has been applied to circuits with high

fault rates, especially for nano-technologies [7, 8, 9]. Here,

each fault is located, and then placement and routing is

customized for each chip in order to work around faults. Chip-

wise synthesis is not suitable for massive production of one

FPGA application, and testing costs could be intolerably high

for a large number of faults, although there is active research

in reducing the testing cost. (c) Triple-modular redundancy

(TMR) [10]. Compared to the previous two approaches ((a)

and (b)), TMR does not require to locate faults during

synthesis and it can tolerate transient soft errors. However it

has the practically highest overhead on area, power and

performance. (d) Multiple configurations. EasyPath by Xilinx,

pre-develops multiple synthesis solutions for an FPGA

application. During testing, each chip chooses a synthesis that

can tolerate manufacturing defects for the particular

application. Compared to chip-wise synthesis, multiple

configurations reduce testing and synthesis costs. Compared to

TMR, multi-configuration has reduced circuit overhead but

cannot tolerate transient soft errors. Thus, existing techniques

suffer from either expensive testing overhead, excessive

overhead on performance, power and area, long design time,

or a low fault coverage rate.

III. PRELIMINARIES

A. Boolean Network

A logic template H consists of a network of interconnected

logic devices with a set of input pins and an output pin. A K-

LUT is an LUT with K inputs, one output, and 2
K
 LUT

configuration bits.

An LUT-based Boolean network is represented using a

directed acyclic graph (DAG) whose nodes correspond to

LUTs and directed edges correspond to wires connecting the

LUTs. The nodes in the lowest level of the DAG are called

circuit inputs (CIs), which include the primary inputs (PIs) and

the outputs of registers. The nodes in the highest level are

called circuit outputs (COs), which include primary outputs

(POs) and the inputs to registers.

A fanin (resp. fanout) cone of node n is a sub-network

whose nodes can reach the fanin edges of n (resp. can be

reached from the fanout edges of n). A maximum fanout free

cone (MFFC) of node n is a subset of the fanin cone such that

every path from a node in the subset to the CO passes through

n. Informally, the MFFC of a node contains all the logic used

exclusively by the node. When a node is removed or

substituted, its MFFC can be removed.

A cut C of node n is a set of nodes of the network such that

each path from a CI to n passes through at least one node in C;

node n is called the root of cut C. A cut is K-feasible if the

number of nodes in it does not exceed K. A logic block is a

sub-network which covers all nodes found on the path from

the outputs (called root nodes of the logic block) to the cut,

including the roots and excluding the cut. In this paper, we

consider multi-input, singleoutput (MISO) logic blocks, but

the proposed algorithm can be applied to multi-output, multi-

output (MIMO) logic blocks [13], as well.

B. Boolean Matching

Given a logic template H and a Boolean function F, the

Boolean matching problem (BM) either maps function F to

logic template H by describing an appropriate setting of the

LUT configuration bits, or concludes that logic template H

cannot implement function F. Boolean matching [14] is one of

the most important sub-problems in logic synthesis and

technology mapping for FPGAs.

The Boolean matching problem can be formulated as a

(quantified) Boolean satisfiability problem in the following

way [15]. Consider a logic template H with inputs x'1, … , x'k,

output G, intermediate wires z1, …, zm, and LUT configuration

c1, … , cn. Let F be a Boolean function of k inputs, given as a

truth table.

We can write a set of Boolean constraints that define each

internal and output wire of H in terms of its inputs (see, e.g.,

[15]). For example, the internal wire z1 for a 4-LUT can be

defined as

(𝑥1
′ ⋀ 𝑥2

′ ⋀ 𝑥3
′ ⋀ 𝑥4

′ → (𝑧1 ↔ 𝑐0))⋀…⋀

(𝑥1
′ ⋀𝑥2

′ ⋀𝑥3
′ ⋀𝑥4

′ → (𝑧1 ↔ 𝑐15))

Let Ψ(𝐻) be the conjunction of constraints defining each wire

of H. Similarly, the truth table for function F can be expressed

as a set of constraints between the input variables x1, …, xk

and the output F:

Ψ 𝐹 = (𝑥1
 ⋀ 𝑥2

 ⋀ … ⋀ 𝑥𝑘
 → 𝐹0)⋀

 (𝑥1 ⋀ 𝑥2
 ⋀ … ⋀ 𝑥𝑘

 → 𝐹1)⋀… ⋀

 (𝑥1 ⋀ 𝑥2 ⋀ … ⋀ 𝑥𝑘 → 𝐹2𝑘−1), (1)

where Fi=F if F(i)=1, otherwise, 𝐹𝑖 = 𝐹 .

 The Boolean matching problem for (H, F) can then be

expressed as the quantified Boolean formula problem that

asks, does there exist some setting of the LUT configuration

c1, … , cn such that for all inputs x1, … , xk, the output G of H

is equivalent to F? Formally, we ask:

 ∃𝑐1 …𝑐𝑛 ∀𝑥1 …𝑥𝑘∃𝑧1 …𝑧𝑚 Ψ 𝐻 ⋀Ψ(𝐹)⋀(𝐺 ↔ 𝐹) (2)

By replicating formula (2) for each possible valuation to the

bits x1, … , xk, we reduce the quantified formula to an

(existential) satisfiability problem. Each satisfying assignment

gives an instantiation of the LUT configuration bits that

implement the same function F.

C. Fault Model

In the presence of faults in the LUT configurations or

intermediate wires between LUTs, we extend the Boolean

matching algorithm in the following way. We model faults in

LUT configurations and the faults in intermediate wires as

random variables, and assume that the probability that an LUT

configuration bit or an intermediate wire is defective is

known. Under these fault sources, the fault rate of a circuit is

the percentage of primary input vectors under which the

circuit does not produce the desired logic output values. While

we assume single fault in our experiments, our algorithms

allows multiple faults to occur simultaneously.

D. Logic Don’t-cares

Logic don’t-cares arise from both satisfiability don’t-cares

(SDCs) due to some combinations not being produced as input

vectors of a node, and observability don’t-cares (ODCs)

because under some conditions, the output value of a node

does not propagate to the COs (i.e., the output value is

controlled by certain input vectors) [16].

In this paper, we use the ODC mask [17] to represent the

ODCs of the maximum fanout cone of a node. The ODC mask

of node n is defined as follows.

Definition 1 (ODC Mask) Let <X1, … ,XK> be a sequence of K

input vectors for node n. The ODC mask of n, written ODCmask(n),

is a K-bit sequence where ith bit is 0 if the input vector Xi is in the

don’t-care set of n; otherwise, the ith bit is 1. Formally, ODCmask(n)

∈ {0, 1}K such that ODCmask(n)i ≡ Xi ∉ ODC(n), where ODC(n) is

the don’t-care set of n.

The ODC mask quantifies the impact of the node on the

primary output. Given the definition of the ODC mask, we can

define the criticality of node n as

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦_𝑁𝑜𝑑𝑒 𝑛 =
 𝑋𝑖 ∈ 𝑂𝐷𝐶(𝑛)𝐾

𝑖=1

𝐾

where K is the number of input vectors.

IV. ROSE ALGORITHM

The fault rate of a circuit is impacted by both the synthesis

algorithm and the topological structure of the implementation.

In this section, we first describe the overall flow of our

proposed robust resynthesis algorithm ROSE, and then present

a robust logic template which enables better fault tolerance

with ROSE.

A. Overall Algorithm of ROSE

Our procedure takes an application mapped to K-LUTs and

scans the combinational portion of the circuit in topological

order from primary inputs to primary outputs. In the course of

scanning, new logic blocks are generated by combining the

logic blocks at the input LUTs. Each logic block is mapped

against one or more pre-defined logic templates; if a mapping

with the minimal fault rate is found by FTBM (fault-tolerant

Boolean matching), the logic block can be substituted by the

logic template. However, any substitution that increases the

local logic depth or area is discarded. This ensures that the

logic depth and area does not increase. In our implementation,

only MFFCs are considered as candidates for mapping.

As the resynthesis of a logic block will change the fault rate

of its output and therefore change the fault rates observable by

the inputs of the downstream network, ROSE processes all

MFFCs in a topological order (from CIs to COs) to guarantee

that the input fault rates of a logic block have been correctly

updated before the block is resynthesized. To calculate the

fault rate for a logic block, both faults in LUT configurations

and the inputs of the block need to be considered. After

resynthesis, we can obtain the fault rate of the block output

and need to update the fault rates for all downstream

intermediate pins under the fanout cone of the block output.

B. Robustness of Logic Templates

Besides an effective robust resynthesis algorithm, it is also

important to find an effective logic template for fault

tolerance, because different templates may have significantly

different capability of carrying fault tolerance and therefore

they can pre-determine the potential of the effectiveness of

FTBM.

We consider Boolean functions with up to 10 inputs.

According to [12], there are three possible logic templates

with no-more-than three 4-LUTs to implement a Boolean

function with up to 10 inputs (see Figure 4 (a), (b) and (c) in

[18]). The inherent disadvantage of these area efficient logic

templates is the lack of opportunities to place don’t-cares,

which are the major source of logic masking and fault

mitigation. Inspired by a well-known observation that

reconvergence is a prime reason for don’t-cares, we propose a

new logic template, R-PLB, as shown in Figure 1, which

requires four 4-LUTs and forms re-convergent paths from

input to output. It has been shown that R-PLB can carry both

SDCs and ODCs. Note that R-PLB can be realized by any

LUT-based FPGAs.

Fig. 1. R-PLB: a robust logic template for more logic don’t-cares.

C. Fault-Tolerant Boolean Matching (FTBM)

We now describe an algorithm for FTBM, which is the core

of ROSE, and discuss implementation issues. Recall the CNF

encoding procedure described in Section III.B, after solving

(2), a set of LUT configurations c1, … , cn will be returned by

the SAT solver if F can be implemented by H. There might

exist multiple distinct implementations (i.e., different

configurations) for H all of which implement F. In fact, we

can obtain partial or even all feasible configurations by

iteratively adding the negation of previously obtained

configurations into the CNFs and solving an augmented SAT

problem. For each of these feasible configurations, C = (c1, …

, cn), we evaluate the fault rate at the output of this logic block

under this configuration setting. The configuration, C∗, which

results in the minimal fault rate, is chosen as the candidate for

mapping or resynthesis. The fault rate calculation in FTBM

can be solved by functional simulation for single fault or

stochastic SAT [18] for multiple faults. Interested readers are

referred to [18] for further details.

V. IPR ALGORITHM

A. Motivation of IPR

Before explaining the motivation of IPR algorithm, the

follows are some notions which are frequently used in the rest

of the section. An input vector of an LUT has a logic output

specified by a configuration bit, e.g., for 4-LUT, input vector

0011 generates logic output 0 if the configuration bit c0011 is 0.

For an input pin i, a K-LUT has 2
K
−1 pairs of configuration

bits associated with it. E.g., for a 2-LUT, both pair (c00, c10),

and pair (c01, c11) are pairs of configuration bits associated

with input pin 1. In the rest of the section, without specific

declaration, let the node under optimization be nopt, and pairs

of configuration bits refer to the ones in the fanout LUT driven

by nopt.

Figure 2 is an example for the motivation of IPR. When a

fault happens to nopt making some 0's in nopt's output sequence

flip to 1s, LUT A cannot tolerate any fault, while LUT B can

tolerate all because its configuration pairs (c00, c10) and (c01,

c11) are the same to each pair. We call a pair of configuration

bits with a same configuration value as a symmetric pair of

configuration. Therefore, to reduce propagation of fault from

nopt, intuitively, we want to have more symmetric pairs of

configurations in the fanouts of nopt. However, such

reconfiguring most likely changes the function of an LUT.

Yet, it may be possible to reconfigure multiple LUTs

simultaneously to maximize the number of symmetric pairs

and at the same time, preserve the functions and topology of

the LUT-based logic network.

Fig. 2. Motivation example of IPR.

B. Overall Algorithm of IPR

Algorithm 1 is the overview of the IPR algorithm. First, the

criticalities for each pair of configuration bits for all the

fanouts of nopt are calculated. Let the set of all the fanouts of

nopt be SFO, and Powerset(SFO) be the power set for SFO, i.e., it

includes all the sets consisting of all combinations for fanouts

of nopt. Also, let fanouts SN be an element of Powerset(SFO).

We process each SN according to the descendant order of its

size. For each SN, SP is initialized as all the pairs of

configuration bits of all fanouts in SN. Then we iteratively

search a feasible cone containing SN by function

constructCone (SN). We check whether there is an LUT

reconfiguration for all LUTs in the cone without changing the

function and topology of the LUT-based cone after making all

the pairs in SP symmetric by function Boolean Matching (SP,

CF). If so, the new LUT configuration is applied and IPR for

nopt is terminated. Otherwise, Pleast, the pair of configuration

bits with the least criticality in SP is deleted from SP, and a

new round is invoked with the new SP. Finally, we terminate

the IPR algorithm when the size of SN is 1. Because when

there is only one fanout of nopt to be reconfigured, either the

fanout can already tolerate the fault from nopt, or there is no

valid solution.

Fig. 3. Pseudo-code of IPR algorithm.

The calculation of the criticality of the configuration bits

can be carried out in the similar way presented in Section III.D

based on ODC masking and the functional simulation. The

Boolean matching in IPR again is based on the SAT-based

BM presented in Section III.B with the addition of the

following CNF constraints for each try:

𝑐𝑖 ⟷ 𝑐𝑗 , (5)

which makes a pair of configuration bits (ci, cj) in an LUT

symmetric. For a detailed description of IPR algorithm,

interested readers are referred to [19].

VI. EMULATION-BASED VALIDATION AND OPTIMIZATION

Simulation is used in both ROSE and IPR for the following

tasks, i.e., (a) criticality calculation during optimization and

(b) validation of the full-chip fault rate after optimization. The

software-based simulation is timing consuming and not

practical for large circuits. To improve the runtime efficiency

of the simulation in the fault-tolerant synthesis, we use

hardware emulation-based simulation using FPGAs. In the

following, we present two types of emulators with

complementary features.

A. Virtual FPGA-based Emulator

The virtual FPGA-based emulator uses the existing block

RAMs in an FPGA to implement an abstract of a circuit in

logic-level for technology in-dependent optimization. Using

virtual LUTs as the building block (see Figure 4), it stores the

configuration bits for LUTs, FFs and other reconfigurable

elements. One can dynamically reconfigure a specific LUT or

FF by change the proper address in the block RAM. This

approach enables dynamic reconfiguration without the

physical support from FPGA vendors. In addition, it allows

one to locate and reconfigure a specific element (LUT or FF)

in a logic netlist without the knowledge of the physical FPGA

architecture. Figure 4 shows the schematic of the virtual

FPGA-based emulator, which can be implemented in RTL and

then synthesized to any FPGAs as long as the area fits.

Although it is flexible and easy to implement, the virtual

FPGA-based emulator has the following drawbacks. (a) It

requires about 5x area overhead compared with the original

circuit; (b) Interconnect faults cannot be simulated directly as

it is only a logic level and technology independent abstraction

of the circuit under optimization. Therefore, this approach is

mainly used to calculate (or update) the criticality during the

course of optimization.

Fig. 4. Schematic for the virtual FPGA-based emulator.

B. Partial Reconfiguration-based Emulator

Partial reconfiguration-based emulator uses the (partially)

dynamic reconfiguration feature provided by FPGA vendors.

Particularly, Xilinx XAPP864 [11] allows one to set an

address of a configuration bit, and flip that bit during the

runtime. In such a way, one can inject faults over the full-chip

without rerun the CAD flow. However, due to the IP issues,

FPGA vendors do not provide APIs to locate and inject faults

in a specific LUT, i.e., a link between logic-level netlist and

the physical layout in the bitstream-level is missing.

Therefore, the partial reconfiguration-based emulator cannot

be applied to compute the criticality for a specific LUT.

Instead, it is mostly suited to be used to compute the full-chip

fault rate in the post-optimization stage, and it can easily take

into account faults in interconnect and other heterogeneous

components (e.g., DSP and RAM) for a more accurate

estimation of the full-chip fault rate.

Combining the emulator-based simulation and the proposed

fault-tolerant synthesis, we can build a new robust synthesis

paradigm, called self-evolution system, which dynamically

changes implementation for a better fault tolerance. Under

such a paradigm, we can study the system-level vulnerability

[23], including the predication and mitigation of errors, by

linking the system-level vulnerability to the criticality of a

configuration bit in the circuit level.

VII. EXPERIMENTAL RESULTS

We have implemented both ROSE and IPR in C++ and used

miniSAT2.0 [20] as the SAT solver. All experimental results

are collected on a Ubuntu workstation with 2.6GHZ Xeon

CPU and 2GB memory. We test our algorithms on QUIP

benchmarks [12]. We assume that all configuration bits have

an equal possibility to be defective, and only a single fault

occurs at the same time. For verification, the fault rate of the

chip is the percentage of the primary input vectors that

produce the defective outputs. We calculate the fault rate by

Monte Carlo simulation with 20K iterations where one bit

fault is randomly injected in each iteration.

Figure 5 shows the CAD flow used in our experiments. We

first map each benchmark by the Berkeley ABC mapper [22]

for 4-LUTs, then perform and compare the following synthesis

flows: (1) ABC followed by physical synthesis, VPR [21],

without any defect-oriented logic resynthesis, (2) ABC

followed by physical synthesis, and finally in-place

optimization by IPR, and (3) ABC followed by ROSE and

physical synthesis, and finally in-place optimization by IPR.

In each synthesis flow, the logic depth produced by ABC is

preserved. The number of configuration bits in the

interconnects is extracted after the routing. Considering faults

in configuration bits of both LUTs and interconnects, Monte

Carlo simulation is performed to calculate the full-chip fault

rate.

The experimental results are summarized in Figure 6. In

terms of fault rate, all these three flows give similar reduction

of fault rate, i.e., about 50% less than the synthesized circuit

resulted from ABC. While reducing fault rate, ROSE also

reduces area (i.e., LUT number) by 20%, compared to ABC,

which further increases the MTTF. In terms of runtime, IPR is

about 50x faster than ROSE. A combination of ROSE and IPR

(flow (3)) gives a 2X MTTF improvement. Depending on the

MTTF, area and runtime requirement for a specific design,

one can use the proper CAD flow of ROSE and IPR.

Fig. 5. CAD flow used in experiments.

Fig. 6. Summary of experimental results

VIII. CONCLUSIONS AND FUTURE WORK

Targeting FPGAs, we have presented two fault-tolerant

logic synthesis algorithms, ROSE and IPR, which increase the

MTTF by 2X with minimal overhead for area, power,

performance and the existing CAD flow, and therefore eases

the design closure. Hardware emulation is used for efficient

criticality calculation and post-optimization validation for the

fault-tolerant synthesis.

In the future, the proposed paradigm can be easily extended

to cope with other objective functions, such as leakage power

reduction and timing optimization, and they can also handle

ASIC circuits for timing closure during the engineering

change order (ECO) or post-silicon debugging.

REFERENCES

[1] A. Djupdal and P. C. Haddow, “Yield enhancing defect tolerance techniques

for FPGAs,” in MAPLD International Conference, 2006.
[2] S. Durand and C. Piguet, “FPGA with self-repair capabilities,” in FPGA,

1994.

[3] N. J. Howard, A. M. Tyrrell, and N. M. Allinson, “The yield enhancement of

field-programmable gate arrays,” in TVLSI, 1994.

[4] "Altera stratix II features," in

http://www.altera.com/products/devices/stratix2/, 2006.

[5] A. Doumar and H. Ito, “Design of switching blocks tolerating defects/faults

in FPGA interconnection resources,” in DFT, 2000.
[6] A. J. Yu and G. G. Lemieux, “Defect-tolerant FPGA switch block and

connection block with fine-grain redundancy for yield enhancement,” in FPL,

2005.

[7] H. Naeimi, “A greedy algorithm for tolerating defective crosspoints in

NanoPLA design,” in Master Thesis, California Institute of Technology,

2005.

[8] M. Joshi and W. Al-Assadi, “Development and Analysis of Defect Tolerant
Bipartite Mapping Techniques for Programmable cross-points in Nanofabric

Architecture,” Springer Netherlands, 2007.

[9] R. Bonam, Y.-B. Kim, and M. Choi, “Defect-tolerant gate macro mapping

and placement in clock-free nanowire crossbar architecture,” in DFT, 2007.

[10] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to

improve computer reliability,” in IBM Journal of Research and Development

, 1962.

[11] Ken Chapman and Les Jones, SEU Strategies for Virtex-5 Devices,
Application Note, XAPP864 (v1.0.1), March 5, 2009.

[12] "Altera: QUIP for Quartus II V5.0," in

http://www.altera.com/education/univ/.

[13] Yu Hu, Victor Shih, Rupak Majumdar, and Lei He, FPGA Area Reduction by

Multi-Output Function Based Sequential Resynthesis, DAC, 2008.

[14] J. Cong and Y.-Y. Hwang, “Boolean matching for LUT-based logic blocks

with applications to architecture evaluation and technology mapping,” in

TODAES, 2001.
[15] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting symmetry in SAT-

based boolean matching for heterogeneous FPGA technology mapping,” in

ICCAD, 2007.

[16] A. Mishchenko and R. K. Brayton, “SAT-based complete don’t-care

computation for network optimization,” in DATE, 2005.

[17] S. Krishnaswamy, S. Plaza, I. Markov, and J. Hayes, “Signature-based SER

analysis and design of logic circuits,” TCAD, 2009.
[18] Yu Hu, Zhe Feng, Lei He, Rupak Majumdar, “Robust FPGA resynthesis

based on fault-tolerant Boolean matching,” ICCAD 2008: 706-713

[19] Zhe Feng, Yu Hu, Lei He and Rupak Majumdar, “IPR: In-Place

Reconfiguration for FPGA Fault Tolerance”, ICCAD, 2009

[20] N. Een and N. Sorensso, minisat2.0, http://minisat.se/.

[21] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for

FPGA research,” FPL, 1997.

[22] “ABC: A system for sequential synthesis and verification,” in
http://www.eecs.berkeley.edu/ alanmi/abc/.

[23] Vilas Sridharan and David Kaeli, “The Effect of Input Data on Program

Vulnerability,” SELSE 2009.

[24] Kai-hui Chang, Igor L. Markov and Valeria Bertacco, “Reap What You Sow:

Spare Cells for Post-Silicon Metal Fix,” ISPD 2008

http://www.altera.com/education/univ/
http://minisat.se/

