
Convolution Engine: Balancing Efficiency & Flexibility in
Specialized Computing

Wajahat Qadeer, Rehan Hameed, Ofer Shacham,
Preethi Venkatesan, Christos Kozyrakis, Mark A. Horowitz

Stanford University, California
{wqadeer, rhameed, shacham, preethiv, kozyraki, horowitz}@stanford.edu

ABSTRACT
This paper focuses on the trade-off between flexibility and effi-
ciency in specialized computing. We observe that specialized units
achieve most of their efficiency gains by tuning data storage and
compute structures and their connectivity to the data-flow and data-
locality patterns in the kernels. Hence, by identifying key data-flow
patterns used in a domain, we can create efficient engines that can
be programmed and reused across a wide range of applications.

We present an example, the Convolution Engine (CE), special-
ized for the convolution-like data-flow that is common in compu-
tational photography, image processing, and video processing ap-
plications. CE achieves energy efficiency by capturing data reuse
patterns, eliminating data transfer overheads, and enabling a large
number of operations per memory access. We quantify the trade-
offs in efficiency and flexibility and demonstrate that CE is within a
factor of 2-3x of the energy and area efficiency of custom units op-
timized for a single kernel. CE improves energy and area efficiency
by 8-15x over a SIMD engine for most applications.

Categories and Subject Descriptors
C.5.4 [Computer Systems Implementation]: VLSI Systems—
Customization, Heterogeneous CMP; C.1.3 [Processor Architec-
tures]: Other Architecture Styles—Heterogeneous (Hybrid) Sys-
tems

General Terms
Algorithms, Performance, Computational Photography

Keywords
Convolution, H.264, Demosaic, Specialized Computing, Energy
Efficiency, Tensilica, Computational Photography

1. INTRODUCTION
The slowdown of voltage scaling has made all chips energy lim-

ited: the energy per transistor switch now scales slower than the
number of transistors per chip. Paradoxically, we must use these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM ACM 978-1-4503-2079-5/13/06 ...$15.00.

additional transistors to reduce the number of transistors switched
in each operation to improve energy efficiency. The primary way
to achieve this goal is to create application specific accelerators to
remove the overhead of predicting, fetching, decoding, scheduling,
and committing instructions in a normal processor [7, 20, 31]. Ac-
celerators provide as much as three orders of magnitude improve-
ments in compute efficiency over general-purpose processors. Het-
erogeneous chips combining processors and accelerators already
dominate mobile systems [4, 2] and are becoming increasingly com-
mon in server and desktop systems [17, 10]. Large specialized
units perform hundreds of operations for each data and instruction
fetch, reducing energy waste of programmable cores by two orders
of magnitude [20]. Significant research is now focusing on auto-
matic generation of specialized units from high-level descriptions
or templates in order to reduce design costs [27, 13, 31, 19, 26].

This paper explores the energy cost of making a more general
accelerator, one which can be user programmed. Current accel-
erators, whether designed manually or automatically generated, are
typically optimized for a single kernel, and if configurable, are con-
figured by experts in firmware. Clearly it would be better to create
units that are specialized enough to reach close to ASIC compute
efficiency, but retain some of the flexibility and reuse advantages of
programmable cores.

An example of a programmable accelerator prevalent in embed-
ded and desktop processors is the SIMD unit which targets data-
parallel algorithms. However, SIMD units are still one to two or-
ders of magnitude less efficient compared to algorithm-specific cus-
tom units [20]. This paper shows that it is possible to build more
efficient programmable accelerators by exploiting the fact that spe-
cialized units achieve most of their efficiency gains by tuning data
storage structures to the data-flow and data-locality requirements
of the kernel. This tuning eliminates redundant data transfers and
facilitates creation of closely coupled datapaths and storage struc-
tures allowing hundreds of low-energy operations to be performed
for each instruction and data fetched. Hence, if we identify data-
flow and data locality patterns that are common to a wide range of
kernels within a domain, we can create specialized units that are
highly energy efficient, but can be programmed and reused across
a wide range of applications.

We concentrate on computational photography, image process-
ing, and video processing applications that are popular on mo-
bile systems. We find that a common motif is a convolution-like
data flow: apply a function to a stencil of the data, then perform
a reduction, then shift the stencil to include a small amount of
new data, and repeat. Examples include demosaic, feature extrac-
tion and mapping in scale-invariant-feature-transform (SIFT), win-
dowed histograms, median filtering, motion estimation for H.264
video processing and many more. In contrast to the current solu-

24

tions that create different accelerators for each of the applications
[4, 2, 20], we describe the design of a flexible domain-specific Con-
volution Engine (CE) for all these applications. This means that our
CE must handle differences in the size and dimensions of the sten-
cil, the function applied on the stencil, the reduction function, and
even the variance in shift across applications. We implement CE as
an extension to a Tensilica processor and not as a stand alone ac-
celerator, which means programmers can interact with it much like
they use traditional SIMD extensions (e.g., SSE4 or NEON).

To better understand the context of this work, the next section
introduces some image processing background, and the hardware
currently used in this application domain. Section 3 then intro-
duces the convolution abstraction and the five application kernels
we target in this study. Section 4 describes the CE architecture fo-
cusing primarily on features that improve energy efficiency and/or
allow for flexibility and reuse. It also presents how multiple CE
engines aggregate into a larger engine if needed. We then compare
this Convolution Engine to both general-purpose cores with SIMD
extensions and highly customized solutions for individual kernels
in terms of energy and area efficiency. Section 5 first introduces the
evaluation methodology and Section 6 shows that the CE is within a
factor of 2-3x of custom units and almost 10x better than the SIMD
solution for most applications.

2. BACKGROUND AND RELATED WORK
Imaging and video systems are already deeply integrated into

many of our devices. In addition to traditional cameras, cell phones,
laptops and tablets all capture high-resolution images and high defi-
nition video is quickly becoming standard. These imaging systems
push a large number of pixels through an image pipeline in real
time and thus have very high computational requirements. Further-
more, compressing these individual frames into a video bit-stream
requires complex video codecs such as H.264. Figure 1 shows a
simplified imaging pipeline that processes still images and individ-
ual video frames, often implemented as an ASIC hardware acceler-
ator to meet the tight time and energy budgets.

The field of computational photography [5, 25] employs addi-
tional digital image processing to enhance captured images using
algorithms such as high dynamic range imaging [5, 16], digital im-
age stabilization [23], flash no-flash imaging [24] and many more.
Another class of applications augment reality by combining real-
time vision algorithms with real time imaging systems. Most of
these applications depend on feature detection and tracking algo-
rithms such SIFT [22] and SURF [8] to find correspondences be-
tween multiple images or frames, perform object detection or other
similar functions.

Interestingly, even though the range of applications is very broad,
a large number of kernels in these applications "look" similar. These
are kernels where the same computation is performed over and
over on (overlapping) stencils within, and across frames. For ex-
ample, demosaicing takes squares of n x n Bayer patterned pix-
els and interpolate the RGB values for each pixel. This is similar
to the sum-of-absolute-differences (SAD) applied on n x n sten-
cils used for motion estimation. We categorize this class of stencil
operation as convolution-like. Unfortunately programmable plat-
forms today do not handle convolution-like computation efficiently
because their register files are not optimized for convolution. To
address this issue, traditional camera and camcorder manufactur-
ers typically use their own ASICs to implement camera pipelines
such as Canon’s DIGIC series [1], Nikon’s Expeed processors [14]
and Sony’s Bionz processors[15]. Cellphone SoCs, including TI’s
OMAP [2], Nvidia’s Tegra [4] and Qualcomm’s Snapdragon [3]
platform take a similar approach.

Some domains have been able to create user programmable ap-
plication accelerators. GPUs are perhaps the most successful ex-
ample. They are optimized for massively data parallel graphics
applications and employ a large number of low control overhead
cores, sacrificing single thread performance in favor of very high
throughput. Large numbers of threads allow GPUs to efficiently
hide memory latencies. By specializing for their workload charac-
teristic, GPUs are able to get much higher throughput performance
and lower energy than general purpose processors. Unfortunately,
as we will show later, GPUs use more than 10x too much energy
for most image processing tasks.

We explore creating a similar user programmable architecture,
but geared for the image processing space. This architecture is op-
timized for convolutional data flow, and is described in Section 4.
Before describing the architecture, the next section explains our no-
tion of a generalized convolution, and the applications we will map
onto our CE.

3. CONVOLUTION ABSTRACTION
Convolution is the fundamental building block of many scien-

tific and image processing algorithms. Equation 1 and 2 provide
the definition of standard discrete 1-D and 2-D convolutions. When
dealing with images, Img is a function from image location to pixel
value, while f is the filter applied to the image. Practical kernels re-
duce computation (at a small cost of accuracy) by making the filter
size small, typically in the order of 3x3 to 8x8 for 2-D convolution.

(Img ∗ f)[n]
def
=

∞X
k=−∞

Img[k] · f [n− k] (1)

(Img ∗ f)[n, m]
def
=

∞X
l=−∞

∞X
k=−∞

Img[k] · f [n− k, m− l] (2)

We generalize the concept of convolution by identifying two
components of the convolution: a map operation and a reduce op-
eration. In Equation 1 and 2, the map operation is multiplication
that is done on pairs of pixel and tap coefficient, and the reduce
operation is the summation of all these pairs to a single value at
location [n,m]. Replacing the map operation in Equation 2 from
x · y to |x − y| while leaving the reduce operation as summation,
yields a sum of absolute numbers (SAD) function which is used for
H264’s motion estimation. Further replacing the reduce operation
from

P
to max will yield a max of absolute differences operation.

Equation 3 generalizes the standard definition of convolution, to a
programmable form. We refer to it as a convolution engine, where
f, Map and Reduce (’R’ in Equation 3) are the pseudo instructions,
and c is the size of the convolution.

(Img
CE∗ f)[n, m]

def
=

R|l|<c{R|k|<c{Map(Img[k], f [n− k, m− l])}}
(3)

To increase the space of applications further, we extend the oper-
ations possible in the reduction stage to allow a non-commutative
function, and provide a permutation network between the registers
and the map function units. This allows us to perform more com-
plex data combining in the reduce stage than true reductions. The
following sections describe our test applications and how we map
their kernels onto this generalized convolution framework.

3.1 Motion Estimation
Motion estimation is a key component of many video codecs

including H.264. When the codec is implemented in software,

25

Demosaic	
 Tone	
 Mapping	
 White	
 Balance	
 Denoising	
 Sharpening	

Figure 1: Typical (simplified) imaging pipeline.

motion estimation accounts for ∼90% of the execution time [11,
20]. The kernel operates on sub-blocks of a video frame, trying to
find each sub-block’s location in a previous and/or future reference
frame of the video stream. In particular, in H.264, motion estima-
tion is computed in two steps: IME and FME.

Integer Motion Estimation (IME): IME searches for an image-
block’s closest match from a reference image. It then computes a
vector to represent the observed motion. The search is performed at
each location within a two dimensional search window, using sum
of absolute differences (SAD) as the cost function. IME operates
on multiple scales with various blocks sizes from 4x4 to 16x16,
though all of the larger block results can be derived from the 4x4
SAD results. Note how SAD fits quite naturally to a convolution
engine abstraction: the map function is absolute difference and the
reduce function is summation.

Fractional Motion Estimation: FME refines the initial match
obtained at the IME step to a quarter-pixel resolution. FME first
up-samples the block selected by IME, and then performs a slightly
modified variant of the aforementioned SAD. Up-sampling also fits
nicely to the convolution abstraction and actually includes two con-
volution operations: First the image block is up-sampled by two
using a six-tap separable 2D filter. This part is purely convolution.
The resulting image is up-sampled by another factor of two by in-
terpolating adjacent pixels, which can be defined as a map operator
(to generate the new pixels) with no reduce.

3.2 SIFT
Scale Invariant Feature Transform (SIFT) looks for distinctive

features in an image [22]. Typical applications of SIFT use these
features to find correspondences between images or video frames,
performing object detection in scenes, etc. To ensure scale invari-
ance, Gaussian blurring and down-sampling is performed on the
image to create a pyramid of images at coarser and coarser scales.
A Difference-of-Gaussian (DoG) pyramid is then created by com-
puting the difference between every two adjacent image scales.
Features of interest are then found by looking at the scale-space
extrema in the DoG pyramid [22].

Even though finding scale-space extrema is a 3D stencil compu-
tation, we can convert the problem into a 2D stencil operation by
interleaving rows from different images into a single buffer. The
extrema operation is mapped to convolution using compare as a
map operator and logical AND as the reduce operator.

3.3 Demosaic
Camera sensor output is typically a red, green, and blue (RGB)

color mosaic laid out in Bayer pattern [9]. At each location, the two
missing color values are then interpolated using the luminance and
color values in surrounding cells. Because the color information
is undersampled, the interpolation is tricky; any linear approach
yields color fringes. We use an implementation of Demosaic that is
based upon adaptive color plane interpolation (ACPI) [12], which
computes image gradients and then uses a three-tap filter in the
direction of smallest gradient. While this fits the generalize convo-
lution flow, it requires a complex “reduction" tree to implement the
gradient based selection. The data access pattern is also non-trivial
since individual color values from the mosaic must be separated
before performing interpolation.

Y0 = x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3 + ….. + xn * cn
Y1 = x1 * c0 + x2 * c1 + x3 * c2 + x4 * c3 + ….. + xn+1 * cn
Y2 = x2 * c0 + x3 * c1 + x4 * c2 + x5 * c3 + ….. + xn+2 * cn
……

Figure 2: We use the n-tap 1D convolution presented here to
explain our SIMD implementation. For SIMD the equation is
parallelized across outputs and executed one column at a time.

…………….	
 x16	
 x17	
 x18	
 x31	

X	
 X	
 X	
 X	

……….	
 0	
 1	
 7	
 ……….	
 8	
 9	
 15	

Two 16x8 bit
Input
Registers

Coefficient Value

Two 8x16 bit
Accumulators

Core Kernel:!
 Load input!
 Out0 =0; Out1 = 0; !
 For I = 1 ... 15!

! Load coefficient i!
! Out0 = Out0 + Input_Lo * Coeff_i!
! Out1 = Out1 + Input_Hi * Coeff_i!
! Shift Input Register 0!
! Shift Input Register 1!

 End For!
 Normalize Output!
 Store to mem!

......	
 x0	
 x1	
 x7	
 	
 x8	
 x9	
 x15	

X	
 X	

C0	
 C0	
 	
 C0	
 C0	
 C0	
 	
 C0	

......	
 	

Figure 3: 1D Horizontal 16-tap convolution on a 128-bit SIMD
machine, similar to optimized implementation described in
[29]. 16 outputs are computed in parallel to maximize SIMD
usage. Output is stored in two vector registers and two
multiply-accumulate instruction are required at each step.

3.4 Mapping to Convolution Abstraction
Table 1 summarizes the kernels we use and how they map to the

convolution abstraction. The table further describes how each al-
gorithm is divided into the map and reduce operator and what is its
data flow pattern such as 2D convolution or 1D vertical convolu-
tion. Although, two kernels could have identical map and reduce
operators and data flow patterns, they may have differences in the
way they handle the data. For example up-sampling in FME pro-
duces four times the data of its input image while Demosaic, also
an interpolation algorithm, needs to separate out the different color
channels from a single channel two-dimensional image before op-
erating on the data. These requirements differentiate them from
simple filtering operations and require additional support in hard-
ware as we will see next.

4. CONVOLUTION ENGINE
Convolution operators are highly compute-intensive, particularly

for large stencil sizes, and being data-parallel they lend themselves
to vector processing. However, existing SIMD units are limited in

26

Table 1: Mapping kernels to convolution abstraction. Some kernels such as subtraction operate on single pixels and thus have no
stencil size defined. We call these matrix operations. There is no reduce step for these operations.

Map Reduce Stencil Sizes Data Flow
IME SAD Abs Diff Add 4x4 2D Convolution
FME 1/2 Pixel Upsampling Multiply Add 6 1D Horizontal And Vertical Convolution
FME 1/4 Pixel Upsampling Average None – 2D Matrix Operation
SIFT Gaussian Blur Multiply Add 9, 13, 15 1D Horizontal And Vertical Convolution
SIFT DoG Subtract None – 2D Matrix Operation
SIFT Extrema Compare Logical AND 3 1D Horizontal And Vertical Convolution
Demosaic Interpolation Multiply Complex 3 1D Horizontal And Vertical Convolution

.............	
 0	
 1	
 15	

64	
 Mul+pliers	

Reduc+on	

Normalize	

0	
 1	
 2	
 3	

…………….	
 31	
 0	
 1	
 2	
 3	

…....	
 0	
 1	
 15	

…....	
 0	
 1	
 15	

…....	
 0	
 1	
 15	

…....	
 1	
 2	
 16	

…....	
 0	
 1	
 15	

…....	
 2	
 3	
 17	

…....	
 0	
 1	
 15	

…....	
 3	
 4	
 18	

256-bit Shift register

128-bit coefficient register

Shifted Broadcast Input

Broadcast Coefficient

128-bit output register

Shift in pixels

Figure 4: 1D Horizontal 16-tap convolution using a shifter reg-
ister with shifted broadcast capability. Computes 4 output pix-
els per instruction.

the extent to which they can exploit the inherent parallelism and lo-
cality of convolution due to the organization of their register files.
Figure 2 presents equations for an n-tap 1D convolution that form
the basis of a SIMD based convolution implementation presented
in Figure 3. We demonstrate in Figure 3 the limitations of a SIMD
based convolution implementation by executing a 16-tap convolu-
tion on a 128-bit SIMD datapath. This is a typical SIMD imple-
mentation similar to the one presented in [29], and the SIMD data-
path is similar to ones found in many current processors. To enable
the datapath to utilize the vector registers completely irrespective
of the filter size, the convolution operation is vectorized across out-
put locations allowing the datapath to compute eight output values
in parallel.

Given the short integer computation that is required, one needs
a large amount of parallelism per instruction to be energy efficient
[20]. While this application has the needed parallelism, scaling the
datapath by eight times to perform sixty four 16-bit operations per
cycle would prove extremely costly. It would require an eight times
increase in the register file size, inflating it to 1024-bits, greatly
increasing its energy and area. To make matters worse, as shown
in Figure 3, the energy efficiency of the SIMD datapath is further
degraded by the fact that a substantial percentage of instructions
are used to perform data shuffles which consume instruction and
register energy without doing any operations. Alternatively, one
can reload shifted versions of vectors from the memory to avoid
data shuffles; however, that also results in substantial energy waste
due to excessive memory fetches. These data motion overheads are
worse for vertical and 2-D convolution.

GPUs target massively data parallel applications and can achieve
much higher performance for convolution operations than SIMD.
However, due to their large register file structures and 32-bit float-

Figure 5: Block Diagram of Convolution Engine. The interface
units (IF) connect the register files to the functional units and
provide shifted broadcast to facilitate convolution. Data shuf-
fle (DS) stage combined with Instruction Graph Fusion (IGF)
stage form the Complex Graph Fusion Unit. IGF is integrated
into the reduction stage for greater flexibility.

ing point units, we don’t expect GPUs to have very low energy
consumption. To evaluate this further we measure the performance
and energy consumption of an optimized GPU implementation of
H.264 SAD algorithm [28] using GPUGPUSim simulator [6] with
GPUWattch energy model [21]. The GPU implementation runs
forty times faster compared to an embedded 128-bit SIMD unit, but
consumes thirty times higher energy. Even with a GPU customized
for media applications we do not expect the energy consumption to
be much better than the SIMD implementation as the GPU energy
is dominated by register file, which is central to how GPUs achieve
their high degree of parallelism.

CE reduces most of the register file overheads described earlier
with the help of a shift register file or a FIFO like storage structure.
As shown in Figure 4, when such a storage structure is augmented
with an ability to generate multiple shifted versions of the input
data, it can not only facilitate execution of multiple simultaneous
stencils, but can also eliminate most of the shortcomings of tradi-
tional vector register files. Aided by the ability to broadcast data,
these multiple shifted versions can fill sixty four ALUs from just a
small 256-bit register file saving valuable register file access energy
as well as area.

Our CE facilitates further reductions in energy overheads by sup-
porting more complex operation in the reduction tree, allowing
multiple "instructions" to be fused together. This fusion also offers
the added benefit of eliminating temporary storage of intermediate
data in big register files saving valuable register file energy. Fur-

27

thermore, by changing the shift register to have two dimensions,
and by allowing column accesses and two dimensional shifts, these
shift registers possess the potential to extensively improve the en-
ergy efficiency of vertical and two dimensional filtering. As Figure
5 shows, these 1D and 2D shift registers sit at the heart of our Con-
volution Engine.

CE is developed as a domain specific hardware extension to Ten-
silica’s extensible RISC cores [18]. Augmented with user-defined
hardware interfaces called TIE ports, developed using Tensilica’s
TIE language [30], these RISC cores control the program flow of
CE by first decoding the instructions in their instruction fetch unit
and then routing the appropriate control signals to CE using TIE
ports. Since the number of cores that interface with CE can be more
than one, the TIE ports are muxed. The cores are also responsible
for memory address generation, but the data is sent/return directly
from the register files within CE. The next sections discuss the key
blocks depicted in Figure 5.

4.1 Load/Store Unit and Register Files
The load/store unit loads and stores data to and from the various

register files. To improve efficiency, it supports multiple memory
access widths with the maximum memory access width being 256-
bits and can handle unaligned accesses.

The Convolution Engine uses a 1D shift register to supply data
for horizontal convolution flow. New image pixels are shifted hori-
zontally into the 1D register as the 1D stencil moves over an image
row. 2D shift is used for vertical and 2D convolution flows and sup-
ports vertical row shift: one new row of pixel data is shifted in as
the 2D stencil moves vertically down into the image. The 2D regis-
ter provides simultaneous access to all of its elements enabling the
interface unit to feed any data element into the ALUs as needed. A
standard vector register file, due to its limited design, is incapable
of providing all of this functionality.

The 2D Coefficient Register stores data that does not change as
the stencil moves across the image. This can be filter coefficients,
current image pixels in IME for performing SAD, or pixels at the
center of Windowed Min/Max stencils. The results of filtering op-
erations are either written back to the 2D Shift Register or the Out-
put Register. The Output Register is designed to behave both as
a 2D Shift register as well as a Vector Register file for the vector
unit. The shift behavior is invoked when the output of the stencil
operation is written. This shift simplifies the register write logic
and reduces the energy. This is especially useful when the stencil
operation produces the data for just a few locations and the newly
produced data needs to be merged with the existing data which re-
sults in a read modify write operation. The Vector Register file be-
havior is invoked when the Output Register file is interfaced with
the vector unit shown in the Figure 5.

4.2 MAP & Reduce Logic
As described earlier we abstract out convolution as a map step

that transforms each input pixel into an output pixel. In our imple-
mentation interface units and ALUs work together to implement
the map operation; the interface units arrange the data as needed
for the particular map pattern and the functional units perform the
arithmetic.

Interface Units: Interface Units (IF) arrange data from the shift
register into a specific pattern needed by the map operation. Cur-
rently this includes providing shifted versions of 1D and 2D blocks,
and column access to 2D register, though we are also exploring a
more generalized permutation layer to support arbitrary maps. All
of the functionality needed for generating multiple shifted versions
of the data is encapsulated within the IFs. This allows us to shorten

Figure 6: Complex Graph Fusion Unit.

the wires by efficiently generating the needed data within one block
while keeping the rest of the datapath simple and relatively free of
control logic. Since the IFs are tasked to facilitate stencil based
operations, the multiplexing logic remains simple and prevents the
IFs from becoming the bottleneck.

The Horizontal Interface generates multiple shifted versions of
the 1D data and feeds them to the ALU units. The data arrange-
ment changes depending on the size of the stencil so this unit sup-
ports multiple power of 2 stencil sizes and allows selecting between
them. Column Interface simultaneously access the columns of the
2D Shift register to generate input data for multiple locations of a
vertical 1D filtering kernel. The 2D interface behaves similarly to
the Vertical interface and accesses multiple shifted 2D data blocks
to generate data for multiple 2D stencil locations. Again multiple
column sizes and 2D block sizes are supported and the appropriate
one is selected by the convolution instruction.

Functional Units: Since all data re-arrangement is handled by
the interface unit, the functional units are just an array of short
fixed point two-input arithmetic ALUs. In addition to multipliers,
we support difference of absolute to facilitate SAD and other typi-
cal arithmetic operations such as addition, subtraction, comparison.
The output of the ALU is fed to the Reduce stage.

Reduce Unit: The reduce part of the map-reduce operation is
handled by a general purpose reduce stage. Based upon the needs
of our applications, we currently support arithmetic and logical re-
duction stages. The degree of reduction is dependent on the ker-
nel size, for example a 4x4 2D kernel requires a 16 to 1 reduction
whereas 8 to 1 reduction is needed for an 8-tap 1D kernel. The
reduction stage is implemented as a tree and outputs can be tapped
out from multiple stages of the tree. the function of the reduce unit
can be increased by the Graph Fusion Unit which is described next.

4.3 Complex Graph Fusion Unit
To increase the domain of applications which can effectively use

the CE, we allow a more complex combining tree than just imple-
menting true reductions. This extra complexity enables us to merge
many different convolution instructions into a single “super instruc-
tion" which allows a small program to be executed for each pixel
in one convolution instruction. Demosaic is a good example, since

28

Figure 7: Details of Instruction Graph Fusion Stage.

it needs to adjust its operation depending on its local gradients.
While Demosaic could use a conventional CE, it would first need
to compute its gradients. Then it would need to compare the gradi-
ents to find out which direction was more stable, and finally using
this information it could compute the needed output. Since all the
information required is available from the original input data, and
the total computation is not complex, a more complex combining
tree can do the entire computation in one step. This increases the
computational efficiency proportionally to the reduction in required
instructions (∼5x).

This extra capability is provided by the programmable complex
graph fusion unit (CGFU) presented in Figure 6. The CGFU has the
ability to fuse together up to nine arithmetic instructions. CGFU
obtains its input from both the input and the output registers. Since
this more complex data combination is not commutative, the right
data (output of the map operation) must be placed on each input to
the combining network. Thus the CGFU includes a very flexible
swizzle network that provides permutations of the input data and
sends it to a shifter unit which takes the shuffled data to perform
element level shifts. These two units combine to form a highly
flexible swizzle network that can reorder the data to support 1D
horizontal, 1D vertical and even 2D window based fusions. This
flexibility costs energy, so it is bypassed on standard convolution
instructions. We also separate the data shuffle stage (DS) from the
actual instruction graph fusion stage, since often many convolution
instructions can use the data once it is shuffled.

While the DS stage is tasked with data reordering, the Instruc-
tion Graph Fusion (IGF) stage is responsible for executing the more
complex data combining to implement the fused instruction sub-
graphs. The energy wasted in register file accesses is reduced by
employing dedicated storage structure called Data Shuffle Regis-
ter file to communicate between IGF and data shuffle stages. The
most critical parts of the IGF stage are the two fusion arrays which
are shown in Figure 7. Each array supports a variety of arithmetic
operations and can implement data dependent data-flow by using
predicated execution. These units are pipelined, so bits of the Sta-
tus Register which are set from computation early in the combining
tree can be used later in the computation to generate the desired
output. Like the normal reduction network, the outputs of the two
arrays are also fed to a two dimensional output register where they

Figure 8: Executing a 4x4 2D Filter on CE. The grayed out
boxes represent units not used in the example. The sizes of all
of the resources are defined which will be explained in a later
section.

are stored in pairs. The absorption of IGF into the reduction stage
does entail higher energy costs for convolution operations, but our
experiments indicate that the overheads remain less than 15%.

4.4 SIMD & Custom Functional Units
To enable an algorithm to perform vector operations on the out-

put data, we have added a 16-element SIMD unit that interfaces
with the Output Register. This unit accesses the 2D Output Reg-
ister as a Vector Register file to perform regular Vector operations.
This is a lightweight unit which only supports basic vector add and
subtract type operations and has no support for higher cost opera-
tions such as multiplications found in a typical SIMD engine.

An application may perform computation that conforms neither
to the convolution block nor to the vector unit, or may otherwise
benefit from a fixed function implementation. If the designer wishes
to build a customized unit for such computation, the Convolution
Engine allows the fixed function block access to its Output Regis-
ter File. This model is similar to a GPU where custom blocks are
employed for rasterization and such, and that work alongside the
shader cores. For these applications, we created three custom func-
tional blocks to compute motion vector costs in IME and FME and
the Hadamard Transform in FME.

4.5 A 2-D Filter Example
Figure 8 shows how a 4x4 2D filtering operation maps onto the

convolution engine. Filter coefficients reside in first four rows of
the Coefficient Register. Four rows of image data are shifted into
the first four rows of the 2D Shift register. In this example we
have 64 functional units so we can perform filtering on up to four
4x4 2D locations in parallel. The 2D Interface Unit generates four
shifted versions of 4x4 blocks, lays them out in 1D and feeds them
to the ALUs. The Coefficient Register Interface Unit replicates
the 4x4 input coefficients 4 times and send them to the other ALU
port. The functional units perform an element-wise multiplication
of each input pixel with corresponding coefficients and the output
is fed to the Reduction stage. The degree of reduction to perform
is determined by the filter size which in this case is 16:1. The four
outputs of the reduction stage are normalized and written to the
Output Register.

Since our registers contain data for sixteen filter locations, we
continue to perform the same operation described above; however,
the 2D Interface Unit now employs horizontal offset to skip over

29

Table 2: Sizes for various resources in CE.
Resource Sizes

ALUs 64 10-bit ALUs
1D Shift Reg 40 x 10bit
2D Input Shift Reg 16 rows x 18 cols x 10bit
2D Output Shift Register 16 rows x 18 cols x 10bit
2D Coefficient Register 16 rows x 16 cols x 10bit
Horizontal Interface 4, 8, 16 kernel patterns
Vertical Interface 4, 8, 16 kernel patterns
2D Interface 4x4, 8x8 , 16x16 patterns
Reduction Tree 4:1, 8:1, 16:1, 32:1, 64:1

Table 3: Energy for filtering instructions implemented as pro-
cessor extensions with 32, 64 or 128 ALUs. Overhead is the
energy for instruction fetch, decode and sequencing.

32 ALUs 64 ALUs 128 ALUs
Total Energy (pJ) 156 313 544
Overhead Energy (pJ) 37 39 44
Percent Overhead 24 12 8

already processed locations and to get the new data while the rest
of the operations execute as above. Once we have filtered sixteen
locations, the existing rows are shifted down and a new row of data
is brought in and we continue processing the data in the vertical di-
rection. Once all the rows have been processed we start over from
the first image row, processing next vertical stripe and continue ex-
ecution until the whole input data has been filtered.

For symmetric kernels the interface units combine the symmetric
data before coefficient multiplication (since the taps are the same),
allowing it to use adders in place of multipliers. Since adders take
2-3x lower energy, this further reduces wasted energy. The load/s-
tore unit also provides interleaved access where data from a mem-
ory load is split and stored into two registers. An example use is
in demosaic, which needs to split the input data into multiple color
channels.

4.6 Resource Sizing
Energy efficiency and resource requirements of target applica-

tions drive the sizes of various resources within CE. Energy over-
heads such as instruction fetch and decode affect the efficiency of
programmable systems and can only be amortized by performing
hundreds of arithmetic operations per instruction as shown in [20].
However, the authors in [20] studied small data such as 8-bit addi-
tion/subtraction, while convolution is typically dominated by mul-
tiplication that takes more energy per operation. To determine how
to size the ALUs for CE with the goal of keeping overheads as low
as possible, we present the energy dissipated in executing filtering
instructions using 32, 64 and 128 10-bit ALUs (the precision re-
quired) in Table 3. In this table the total energy is comprised of the
energy wasted in the processor overheads including fetch, decode
and sequencing as well as the useful energy spent in performing the
actual compute. As the number of ALUs increases, the overhead
energy as a percentage of the total energy reduces. We choose 64
as the number of ALUs in CE as a compromise between efficiency
and flexibility because it is easier to chain small units. The rest of
the resources are sized to keep 64, 10-bit ALUs busy. The size and
capability of each resource is presented in Table 2. These resources
support filter sizes of 4, 8 and 16 for 1D filtering and 4x4, 8x8 and
16x16 for 2D filtering. Notice that that the register file sizes devi-
ate from power of 2; this departure allows us to handle boundary

Convolu'on	

Slice	
 0	

Slice	
 1	
 Slice	
 2	
 Slice	
 3	

Fixed	

Func'on	

Blocks	

Control	
 IF	

Processor	
 0	
 Processor	
 1	

Each Slice contains:
64 ALU’S
1 – 40 element 1D Shift Register
1 – 18 x 16 2D Shift Register
1 – 16 x 16 Coefficient 2D Register
1 – 18 x 16 Output Register File

Figure 9: Convolution Engine CMP.

conditions common in convolution operations efficiently.

4.7 Convolution Engine CMP
To meet the diverse performance and energy requirements of dif-

ferent applications effectively, we have developed a CE chip multi-
processor (CMP) shown in Figure 9. The CMP consists of four
CEs and two Tensilica’s extensible RISC processors communicat-
ing with the CEs through muxed TIE ports as described earlier in
this section. The decision to support two independent threads of
control in the form of two processors is influenced largely by the
requirements of the applications of interest, but also to a lesser ex-
tent by energy efficiency as smaller TIE port muxes keep energy
wasted per instruction low. In the CMP, each instance of the CE
is referred to as a slice and the slices possess the capability to op-
erate completely independent of other slices and also in concate-
nation to perform an even larger number of operations per cycle.
Dynamic concatenation of slices is especially desirable when the
performance requirements of an algorithm cannot be satisfied by
one slice or when the algorithm operates on small data requiring
more than 64 operations per cycle to amortize overheads. When
the slices are concatenated dynamically the register files and in-
terface units of the interconnected slices are joined through short
wires that run from one slice to another. Since the slices are laid
out in close proximity to one another as shown in 9, these wires
waste very little energy; therefore, not influencing the energy effi-
ciency of connected slices. In addition to connecting multiple slices
together to form a bigger slice with wide registers and ALU arrays,
it is also possible to shut off the ALUs in the additional slices and
use their registers as additional independent storage structures. Al-
though, all the slices offer the same functionality, slices 0 and 1 are
also equipped with complex graph fusion units integrated into their
reduction blocks. The side effect of this integration is the additional
10-15% cost incurred by convolution operations executed on these
slices. The processors and the slices are fed by dual-ported 16K
instruction and 32K data caches. As has been discussed earlier, the
processors are responsible for data address generation for the con-
nected slices, but the flow of data into and out of the data cache is
controlled by the slices themselves.

4.8 Programming the Convolution Engine
Convolution Engine is implemented as a processor extension and

adds a small set of instructions to processor ISA. These CE instruc-
tions can be issued as needed in regular C code through compiler
intrinsics. Table 4 lists the major instructions that CE adds to the
ISA and Listing 1 presents a simplified example code which im-

30

Table 4: Major instructions added to processor ISA.
Description

SET_CE_OPS Set arithmetic functions for MAP and REDUCE steps
SET_CE_OPSIZE Set convolution size
LD_COEFF_REG_n Load n bits to specified row of 2D coeff register
LD_1D_REG_n Load n bits to 1D shift register. Optional Shift left
LD_2D_REG_n Load n bits to top row of 2D shift register. Optional shift row down
ST_OUT_REG_n Store top row of 2D output register to memory
CONVOLVE_1D_HOR 1D convolution step - input from 1D shift register
CONVOLVE_1D_VER 1D convolution step - column access to 2D shift register
CONVOLVE_2D 2D Convolution step with 2D access to 2D shift register

plements 15-tap horizontal filtering for a single image row. There
are mainly 3 types of instructions. Configuration instructions set
options which are expected to stay fixed for a kernel such as con-
volution size, ALU operation to use etc. Other options which can
change on a per instruction basis are specified as instruction operands.
Then there are load and store operations to store data into appro-
priate registers as required. There is one load instruction for each
input register type (1D input register, 2D input register, Coefficient
register). Finally there are the compute instructions, one for each of
the 3 supported convolution flows – 1D horizontal, 1D vertical and
2D. For example the CONVOLV_2D instruction reads one set of
values from 2D and coefficient registers, performs the convolution
and write the result into the row 0 of 2D output register. The load,
store and compute instructions are issued repeatedly as needed to
implement the required algorithm.

// Set MAP function = MULT, Reduce function = ADD
SET_CE_OPS (CE_MULT, CE_ADD);

// Set convolution size 16, mask out 16th element
SET_CE_OPSIZE(16, 0x7fff);

// Load 16 8-bit coefficients into Coeff Reg Row 0
LD_COEFF_REG_128(coeffPtr, 0);

// Load & shift 16 input pixels into 1D shift register
LD_1D_REG_128(inPtr, SHIFT_ENABLED);

// Filtering loop
for (x = 0; x < width - 16; x += 16) {

// Load & Shift 16 more pixels
LD_1D_REG_128(inPtr, SHIFT_ENABLED);

// Filter first 8 locations
CONVOLVE_1D_HOR(IN_OFFSET_0, OUT_OFFSET_0);

// Filter next 8 locations
CONVOLVE_1D_HOR(IN_OFFSET_8, OUT_OFFSET_8);

// Add 2 to row 0 of output register
SIMD_ADD_CONST (0, 2);

// Store 16 output pixels
ST_OUT_REG_128(outPtr);

inPtr += 16;
outPtr += 16;

}

Listing 1: Example C code implements a 15-tap filter for one
image row and adds 2 to each output.

The code example in Listing 1 brings it all together. First CE
is set to perform multiplication at MAP stage and addition at re-
duce stage which are the required setting for filtering. The the
convolution size is set which controls the pattern in which data
is fed from the registers to the ALUs. Filter tap coefficients are

then loaded into the coefficient register. Finally the main process-
ing loop repeatedly loads new input pixels into the 1D register and
issues 1D_CONVOLVE operations to perform filtering. While 16
new pixels are read with every load, our 128-ALU CE configuration
can only process eight 16-tap filters per operation. Therefore two
1D_CONVOLVE operations are performed per iteration, where the
second operation reads the input from an offset of 8 and writes its
output at an offset of 8 in the output register. For illustration pur-
poses we have added a SIMD instruction which adds 2 to the filter-
ing output in row 0 of 2D output register. The results from output
register are written back to memory.

It is important to note that unlike a stand-alone accelerator the
sequence of operations in CE is completely controlled by the soft-
ware which gives complete flexibility over the algorithm. Also CE
code is freely mixed into the C code which gives added flexibil-
ity. For example in the filtering code above it is possible for the
algorithm to produce one CE output to memory and then perform a
number of non-CE operations on that output before invoking CE to
produce another output.

4.9 Generating Instances with Varying Degrees
of Flexibility

The programmable convolution engine as described has full flex-
ibility in silicon to perform any of the supported operations, and the
desired operation is selected at run time through a combination of
configuration registers and instruction operands. However, we also
want to study the individual impact of various programmability op-
tions present in CE. To facilitate that, we have designed the CE in a
highly parameterized way such that we can generate instances with
varying degrees of flexibility ranging from fixed kernel as shown in
Figure 4, to fully programmable. When the fixed kernel instance is
generated in Figure 4 the whole 2D register with its associated in-
terface unit goes away. The 1D interface also goes away, replaced
by the hardwired access pattern required for the particular kernel.
The remaining registers are sized just large enough to handle the
particular kernel, the flexible reduction tree is replaced by a fixed
reduction and the ALU only supports the single arithmetic opera-
tion needed.

The efficiency of this fixed kernel datapath matches the custom
cores. The programmability options that convolution engine has
over this fixed kernel datapath can be grouped into three classes
which build on top of each other:

Multiple kernel sizes: This includes adding all hardware re-
sources to support multiple kernel sizes, such that we still support
only a single kernel, but have more flexibility. The support for that
primarily goes in interface units which become configurable. Reg-
ister files have to be sized to efficiently support all supported kernel
sizes instead of one. The reduction stage also becomes flexible.

Multiple flows: This step adds the remaining data access pat-

31

terns not covered in previous step, such that all algorithm flows
based on the same arithmetic operations and reduction type can
be implemented. For example for a core supporting only 2D con-
volutions, this step will add vertical and 1D interfaces with full
flexibility and also add any special access patterns not all already
supported including offset accesses, interleaved writes and so on.

Multiple arithmetic operations: This class adds multiple arith-
metic and logical operations in the functional units, as well as mul-
tiple reduction types (summation versus logical reduction).

The next section describes how we map different applications to
a Convolution Engine based CMP and the experiments we perform
to determine the impact of programmability on efficiency. By in-
crementally enabling these options on top of a fixed kernel core we
can approach the fully programmable CE in small steps and assess
the energy and area cost of each addition.

5. EVALUATION METHODOLOGY
To evaluate the Convolution Engine approach, we map each tar-

get application on CE based CMP described in 4.7. As already
discussed this system is fairly flexible and can easily accommodate
algorithmic changes such as changes in motion estimation block
size, changes in down-sampling technique etc. Moreover, it can be
used for other related algorithms such as a different feature detec-
tion scheme like SURF, or other common operations like sharpen-
ing or denoising etc.

To quantify the performance and energy cost such a programmable
unit, we also build custom heterogeneous chip multiprocessors (CMPs)
for each of the three applications. These custom CMPs are based
around application-specific cores, each of which is highly special-
ized and only has resources to do a specific kernel required by the
application. Both the CE and application-specific cores are built
as a datapath extension to the processor cores using Tensilica’s
TIE language [30]. Tensilica’s TIE compiler uses this description
to generate simulation models and RTL as well as area estimates
for each extended processor configuration. To quickly simulate
and evaluate the CMP configurations, we created a multiproces-
sor simulation framework that employs Tensilica’s Xtensa Model-
ing Platform (XTMP) to perform cycle accurate simulation of the
processors and caches. For energy estimation we use Tensilica’s
energy explorer tool, which uses a program execution trace to give
a detailed analysis of energy consumption in the processor core as
well as the memory system. The estimated energy consumption is
within 30% of actual energy dissipation. To account for intercon-
nection energy, we created a floor plan for the CMP and estimated
the wire energies from that. That interconnection energy was then
added to energy estimates from tensilica tools. The simulation re-
sults employ 45nm technology at 0.9V operating voltage with a
target frequency of 800MHz. All units are pipelined appropriately
to achieve the frequency target.

To further extend the analysis, we quantify the individual cost of
different programmability options discussed in Section 4.9. Start-
ing from a fixed kernel datapath closely matching the custom hard-
ware, we add the programmability options in steps. That way we
can identify the incremental cost of each programmability class and
understand if some types of programmability options are costlier
than others.

Figure 10 presents how each application is mapped to our CE
based CMP. This mapping is influenced by the application’s perfor-
mance requirements. In this study, like most video systems these
days, we support HD 1080P video at 30FPS. This translates to an
input data rate of around 60 MPixels/s. For still images we want to
support a similar data rate of around 80-100 MPixels/s which can
be translated for example to processing 10MP images at 8-10FPS

Slice	
 0	
 Slice	
 1	
 Slice	
 2	
 Slice	
 3	

H.2.64	
 IME	
 FME	

SIFT	
 DOG	
 Extrema	

DEMOSAIC	
 Demosaic	

Figure 10: Mapping of applications to CE CMP.

or 5MP images at a higher rate of 16-20FPS etc. H.264 motion es-
timation only deals with video data, whereas SIFT and Demosaic
can be applied to both video and still images. However, when SIFT
and Demosaic are applied to full HD video streams the resolution
drops from 5MP to 2.1MP increasing the frame rate substantially.
Now, we describe the mapping in detail for each application.

H.264 Motion Estimation: Our mapping allocates one proces-
sor to the task of H.264 integer motion estimation. The 4x4 SAD
computation is mapped to the convolution engine block, and the
SIMD unit handles the task of combining these to form the larger
SAD results. This requires a 16x32 2D shift register and 128 ABS-
DIFF ALU units, so 2 slices are allocated to this processor. In ad-
dition a fixed function block is used to compute motion vector cost,
which is a lookup-table based operation. Fractional motion estima-
tion uses up only 64 ALU units, but requires multiple register files
to handle the large amount of data produced by up-sampling, so
it takes up 2 slices. The convolution engine handles up-sampling
and SAD computation. A custom fixed function block handles the
Hadamard transform.

SIFT: Each level in the SIFT Gaussian pyramid requires five 2D
Gaussian blur filtering operations, and then down-sampling is per-
formed to go to the next level. The various Gaussian blurs, the
difference operation and the down-sampling are all mapped to one
of the processors, which uses one convolution engine slice. The
Gaussian filtering kernel is a separable 2D filtering kernel so it is
implemented as a horizontal filter followed by a vertical filter. The
second processor handles extrema detection, which is a windowed
min/max operation followed by thresholding to drop weak candi-
dates. This processor uses 2 slices to implement the windowed
min across 3 difference images and SIMD operations to perform
the thresholding. SIFT generates a large amount of intermediate
pyramid data, therefore 64x64 image blocking is used to minimize
the intermediate data footprint in memory. The minima operation
crosses block boundaries so buffering of some filtered image rows
is required. Moreover, the processing is done in multiple passes,
with each pass handling each level of the pyramid.

Demosaic: Demosaic generates a lot of new pixels and inter-
mediate data and thus needs multiple 2D shift register files. It uses
register resources from two slices and further uses register blocking
to get multiple virtual registers from the same physical register. De-
mosaicing is the first step in a typical camera pipeline. In our cur-
rent mapping, the second processor and remaining two slices are
idle when demosaicing is in operation. However, these resources
can be used to implement next steps in the imaging pipeline such
as white balance, denoising, and sharpening which are also based
on convolution-based kernels.

6. RESULTS
Figures 11 and 12 compare the performance and energy dissi-

pation of the proposed Convolution Engine against a 128-bit data-
parallel (SIMD) engine and an application specific accelerator im-
plementation for each of the five algorithms of interest. In most
cases we used the SIMD engine as a 16-way 8-bit datapath, but in
a few examples we created 8-way 16-bit datapaths. For our algo-

32

0	

1	

10	

100	

SIFT	
 -­‐	
 DoG	
 SIFT-­‐Extrema	
 H.264	
 -­‐	
 FME	
 H.264-­‐	
 IME	
 Demosaic	

En
er
gy
	
 N
or
m
al
iz
ed

	
 T
o	

Cu

st
om

	

(L
ow

er
	
 is
	
 b
eI

er
)	

Custom	
 Convolu+on	
 Engine	
 SIMD	

Figure 11: Energy Consumption normalized to Custom imple-
mentation: Convolution Engine vs Custom Cores and SIMD.

rithms, making this unit wider did not change the energy efficiency
appreciably.

The fixed function data points truly highlight the power of cus-
tomization: for each application a customized accelerator required
8x-50x less energy compared to an optimized data-parallel engine.
Performance per unit area improves a similar amount, 8x-30x higher
than the SIMD implementation. Demosaic achieves the smallest
improvement (8x) because it generates two news pixel values for
every pixel that it loads from the memory. Therefore, after the cus-
tomization of compute operations, loads/stores and address manip-
ulation operations become the bottleneck and account for approxi-
mately 70% of the total instructions.

Note the biggest gains were in IME and SIFT extrema calcula-
tions. Both kernels rely on short integer add/subtract operations
that are very low energy (relative to the multiply used in filtering
and up-sampling). To be efficient when the cost of compute is low,
either the data movement and control overhead should be very low,
or more operations must be performed to amortize these costs. In
a SIMD implementation these overheads are still large relative to
the amount of computation done. These kernels also use a 2D data
flow which requires constant accesses and fetches from the register
file. Custom hardware, on the other hand, achieves better perfor-
mance at lower energy by supporting custom 2D data access pat-
terns. Rather than a vector, it works on a matrix which is shifted
every cycle. Having more data in flight enables a larger number
arithmetic units to work in parallel, better amortizing instruction
and data fetch.

With this analysis in mind, we can now better understand where
a Convolution Engine stands. The architecture of the Convolution
Engine is closely matched to the data-flow of convolution based al-
gorithms, therefore the instruction stream difference between fixed
function units and the Convolution Engine is very small. Com-
pared to a SIMD implementation, the convolution engine requires
8x-15x less energy with the exception of Demosaic that shows an
improvement of 4x while the performance to area ratio of CE is
5-6x better. Again Demosaic is at the low end of the gain as a con-
sequence of the abundance of loads and stores. If we discount the
effect of memory operations from Demosaic, assuming its output is
pipelined into another convolution like stage in the image pipeline,
the CGFU based Demosaic implementation is approximately 7x
better than SIMD and within 6x of custom accelerator. The higher
energy ratio compared to a custom implementation points up the
costs of the more flexible communication in CGFU compared to
CE’s blocks optimized for convolution.

0.0	

0.1	

1.0	

10.0	

SIFT-­‐DoG	
 SIFT-­‐Extrema	
 H.264-­‐FME	
 H.264-­‐IME	
 Demosaic	

O
ps
/m

m
2 	
 N

or
m
al
iz
ed

	
 to
	
 C
us
to
m
	

(H
ig
he

r	

is
	
 b
eI

er
)	

Custom	
 Convolu+on	
 Engine	
 SIMD	

Figure 12: Ops/mm2 normalized to Custom implementation:
Number of image blocks each core processes in one second, di-
vided by the area of the core. For H.264 an image block is a
16x16 macroblock and for SIFT and demosaic it is a 64x64 im-
age block.

The energy overhead of the CE implementation over application
specific accelerator is modest (2-3) for the other applications, and
requires only twice the area. While these overheads are small, we
were interested to better understand which programmability option
discussed in Section 4.9 added the most overhead compared to cus-
tom accelerators. To generate these results, For each convolution
algorithm we start with an accelerator specialized to do only the
specific convolution kernels required for that algorithm, and then
gradually add flexibility. These results are shown in Figures 13 and
14.

For SIFT’s filtering stage, the first programmability class entails
an increase in energy dissipation of just 25% which is relatively
small. The fixed function hardware for SIFT already has a large
enough 1D shift register to support a 16-tap 1D horizontal filter
so adding support for smaller 4 and 8 tap 1D filters only requires
adding a mall number of multiplexing options in 1D horizontal IF
unit and support for tapping the reduction tree at intermediate lev-
els. However, the second programmability class incurs a bigger
penalty because now a 2D shift register is added for vertical and
2D flows. The coefficient and output registers are also upgraded
from 1D to 2D structures, and the ALU is now shared between
Horizontal, Vertical and 2D operations. The result is a substantial
increase in register access energy and ALU access energy. More-
over, the 2D register comes with support for multiple vertical and
2D kernel sizes as well as support for horizontal and vertical offsets
and register blocking, so the area gets a big jump shown in 14 and
consequently the leakage energy increases as well. The final step
of adding multiple compute units has a relatively negligible impact
of 10%.

For SIFT extrema the cost of adding multiple kernel sizes is
again only 1.3x. However, supporting additional access patterns
adds another 2x on top of that bringing the total cost to roughly
2.5x over the fixed kernel version. Unlike filtering stage, SIFT ex-
trema starts with 2D structures so the additional cost of adding the
1D horizontal operations is relatively low. However, the 2D and
vertical IF units also become more complex to support various hor-
izontal and vertical offsets into the 2D register. The cost of mul-
tiplexing to support these is very significant compared to the low
energy map and reduce operations used in this algorithm. The re-
sult is a big relative jump in energy. The last step of supporting
more arithmetic operations again has a relatively small incremen-

33

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

SIFT	
 DoG	
 SIFT	
 Extrema	
 H.264	
 FME	
 H.264	
 IME	

En
er
gy
	
 n
or
m
al
iz
ed

	
 to
	
 fi
xe
d	

ke
rn
el
	

Fixed	
 Kernel	
 Flexible	
 Kernel	
 Size	
 Flexible	
 Size	
 and	
 Pa>ern	
 Full	
 flexibility	

Figure 13: Change in energy consumption as programmability
is incrementally added to the core.

tal cost of around 1.2x. The final programmable version still takes
roughly 12x less energy compared to the SIMD version.

Like SIFT extrema, IME also has a lightweight map step (abso-
lute difference), however, it has a more substantial reduction step
(summation). So the relative cost of muxing needed to support mul-
tiple 2D access patterns is in between the high-energy-cost filtering
operations and low-energy-cost extrema operations. The cost of
supporting multiple kernel sizes and multiple arithmetic operations
is still relatively small.

FME differs slightly from other algorithms in that it takes a big
hit when going to multiple kernel sizes. The fixed function core
supports 1D-Horizontal and 1D-Vertical filtering for a relatively
small filter size of 8 taps. The storage structures are sized accord-
ingly and consist of two small 2D input and two even smaller 2D
output shift registers. Adding support for multiple kernel sizes re-
quires making each of these registers larger. Thus multiple stencil
sizes not only require additional area in the interface units, but the
bigger storage structures also make the muxes substantially bigger,
increasing the register access cost. This is further exacerbated by
the increase in the leakage energy brought about by the bigger stor-
age structures which is fairly significant at such small feature sizes.
Thus the first programmability class has the most impact on the en-
ergy efficiency of FME. The impact of the second programmability
class is relatively modest as it only adds a 2D interface unit – most
of the hardware has already been added by the first programmabil-
ity class. The cost of supporting multiple arithmetic operations is
once again small suggesting that this programmability class is the
least expensive to add across all algorithms.

Our results show that the biggest impact on energy efficiency
takes place when the needed communication paths become more
complex. This overhead is more serious when the fundamental
computation energy is small. In general the communication path
complexity grows with the size of the storage structures, so over
provisioning registers as is needed in a programmable unit hurts ef-
ficiency. This energy overhead is made worse since such structures
not only require more logic in terms of routing and muxing, but
also have a direct impact on the leakage energy which is significant
at such small feature sizes. On the other hand, more flexible func-
tion units have small overheads, which provides flexibility at low
cost.

7. CONCLUSION
As specialization emerges as the main approach to addressing

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

4.50	

SIFT	
 DoG	
 SIFT	
 Extrema	
 H.264	
 FME	
 H.264	
 IME	

A
re
a	

no

rm
al
iz
ed

	
 to
	
 F
ix
ed

	
 K
er
ne

l	

Fixed	
 Kernel	
 Flexible	
 Kernel	
 Size	
 Flexible	
 Size	
 and	
 Pa4ern	
 Full	
 flexibility	

Figure 14: Increase in area as programmability is incremen-
tally added to the core.

the energy limitations of current architectures, there is a strong de-
sire to make maximal use of these specialized engines. This in
turn argues for making them more flexible, and user accessible.
While flexible specialized engines might sound like an oxymoron,
we have found that focusing on the key data-flow and data local-
ity patterns within broad domains allows one to build a highly en-
ergy efficient engine, that is still user programmable. We presented
the Convolution Engine which supports a number of different al-
gorithms from computational photography, image processing and
video processing, all based on convolution-like patterns. A single
CE design supports applications with convolutions of various size,
dimensions, and type of computation. To achieve energy efficiency,
CE captures data reuse patterns, eliminates data transfer overheads,
and enables a large number of operations per cycle. CE is within a
factor of 2-3x of the energy and area efficiency of single-kernel ac-
celerators and still provides an improvement of 8-15x over general-
purpose cores with SIMD extensions for most applications. While
the CE is a single example, we hope that similar studies in other ap-
plication domains will lead to other efficient, programmable, spe-
cialized accelerators.

8. ACKNOWLEDGEMENT
This material is based upon work supported by the Defense Ad-

vanced Research Projects Agency under Contract No. HR0011-
11-C-0007. Any opinions, findings and conclusion or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Defense Advanced Research
Projects Agency.

9. REFERENCES
[1] Digic Processors, Canon Inc.

http://learn.usa.canon.com/resources-
/articles/2012/digic_processors.htmlp.

[2] Omap 5 platform, texas instruments. www.ti.com/omap.
[3] Snapdragon Processors, Qualcomm Inc.

http://www.qualcomm.com/snapdragon/processors.
[4] Tegra processors. NVIDIA Corporation.
[5] A. Adams, D. Jacobs, J. Dolson, M. Tico, K. Pulli,

E. Talvala, B. Ajdin, D. Vaquero, H. Lensch, M. Horowitz,
et al. The frankencamera: an experimental platform for
computational photography. ACM Transactions on Graphics
(TOG), 2010.

34

[6] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt. Analyzing cuda workloads using a detailed gpu
simulator. In ISPASS: IEEE International Symposium on
Performance Analysis of Systems and Software, 2009.

[7] J. Balfour, W. Dally, D. Black-Schaffer, V. Parikh, and
J. Park. An energy-efficient processor architecture for
embedded systems. Computer Architecture Letters,
7(1):29–32, 2007.

[8] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. Computer Vision–ECCV 2006, pages
404–417, 2006.

[9] B. Bayer. Color imaging array, 1976. US Patent 3,971,065.
[10] J. D. Brown. The ibm power edge of network processor. In

The Technical Record of the 22nd Hot Chips Conference,
Aug. 2010.

[11] T. C. Chen. Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC encoder. IEEE
Transactions on Circuits and Systems for Video Technology,
16(6):673–688, 2006.

[12] Y. Cheng, K. Xie, Y. Zhou, and Y. Liu. An adaptive color
plane interpolation method based on edge detection. Journal
of Electronics (China), 2007.

[13] J. Cong, V. Sarkar, G. Reinman, and A. Bui. Customizable
domain-specific computing. IEEE Des. Test, 28(2):6–15,
Mar. 2011.

[14] N. Corporation. Expeed Digital Image Processors. Nikon
Corporation.,
http://imaging.nikon.com/lineup/microsite/d300.

[15] S. Corporation. BIONZ Image Processing Engine. Sony
Corporation.,
http://www.sony-mea.com/microsite/dslr/10/tech/bionz.html.

[16] P. Debevec, E. Reinhard, G. Ward, and S. Pattanaik. High
dynamic range imaging. In ACM SIGGRAPH 2004 Course
Notes, page 14. ACM, 2004.

[17] R. Golla and P. Jordan. T4: A highly threaded
server-on-a-chip with native support for heterogeneous
computing. In The Technical Record of the 23rd Hot Chips
Conference, Aug. 2011.

[18] R. Gonzalez. Xtensa: a configurable and extensible
processor. Micro, IEEE, 20(2):60–70, Mar/Apr 2000.

[19] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani,
N. Satish, K. Sankaralingam, and C. Kim. Dyser: Unifying
functionality and parallelism specialization for
energy-efficient computing. Micro, IEEE, 2012.

[20] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis,
and M. Horowitz. Understanding Sources of Inefficiency in
General-Purpose Chips. In ISCA ’10: Proc. 37th Annual
International Symposium on Computer Architecture. ACM,
2010.

[21] J. Leng, S. Gilani, T. Hetherington, A. ElTantawy, N. S. Kim,
T. M. Aamodt, and V. J. Reddi. Gpuwattch: Enabling energy
optimizations in gpgpus. In ISCA 2013: International
Symposium on Computer Architecture, 2013.

[22] D. Lowe. Distinctive image features from scale-invariant
keypoints. International journal of computer vision,
60(2):91–110, 2004.

[23] Y. Matsushita, E. Ofek, X. Tang, and H. Shum. Full-frame
video stabilization. In Computer Vision and Pattern
Recognition (CVPR), 2005. IEEE Computer Society
Conference on.

[24] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen,
H. Hoppe, and K. Toyama. Digital photography with flash
and no-flash image pairs. In ACM Transactions on Graphics
(TOG).

[25] R. Raskar. Computational photography. In Computational
Optical Sensing and Imaging. Optical Society of America,
2009.

[26] O. Shacham, S. Galal, S. Sankaranarayanan, M. Wachs,
J. Brunhaver, A. Vassiliev, M. Horowitz, A. Danowitz,
W. Qadeer, and S. Richardson. Avoiding game over:
Bringing design to the next level. In Design Automation
Conference (DAC), 2012 49th ACM/EDAC/IEEE, june 2012.

[27] A. Solomatnikov, A. Firoozshahian, W. Qadeer, O. Shacham,
K. Kelley, Z. Asgar, M. Wachs, R. Hameed, and
M. Horowitz. Chip Multi-Processor Generator. In DAC ’07:
Proceedings of the 44th Annual Design Automation
Conference, 2007.

[28] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, vLi
Wen Chang, N. Anssari, G. D. Liu, and W. mei W. Hwu.
Impact technical report. In IMPACT-12-01, 2012.

[29] Tensilica Inc. ConnX Vectra LX DSP Engine Guide.
[30] Tensilica Inc. Tensilica Instruction Extension (TIE)

Language Reference Manual.
[31] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,

V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor.
Conservation cores: reducing the energy of mature
computations. ASPLOS ’10. ACM, 2010.

35

