
THIRD GENERATION DATA MINING:

TOWARDS SERVICE-ORIENTED

KNOWLEDGE DISCOVERY

SoKD’09

September 7, 2009

Bled, Slovenia

Editors:

Vid Podpečan
Nada Lavrač
Jožef Stefan Institute, Ljubljana, Slovenia

Joost N. Kok
Jeroen de Bruin
LIACS, Leiden University, Leiden, The Netherlands

Preface

A major challenge for third generation data mining and knowledge discovery systems
is the integration of different data/knowledge resources (which are highly diverse in na-
ture in terms of representation and data formats) and computer systems (tools for data
integration, data mining and knowledge discovery) which are distributed across the net-
work. While the first generation data mining systems supported a single algorithm or a
small collection of algorithms that are designed to mine attribute-valued data, today’s
second generation systems are characterized by supporting high performance interfaces
to databases and data warehouses and by providing increased scalability and increased
functionality; for example, second generation systems can mine larger and more com-
plex data sets and provide increased flexibility by supporting a data mining schema and
a data mining query language.

The emerging third generation data mining and knowledge discovery systems should
be able to mine distributed and highly heterogeneous data found on intranets/extranets/
grid and integrate efficiently with operational data/knowledge management and data
mining systems. The key technologies which will make third generation data mining
and knowledge discovery possible is to provide meta-data (semantic annotations) of
different information resources (data, human-coded knowledge, and machine-induced
patterns and predictive models) and data mining and knowledge discovery systems (pat-
tern mining and model discovery tools) and implementation of data mining and knowl-
edge discovery tools as services available on the web. Such service-oriented data mining
and knowledge discovery systems will enable meta-level search of data/knowledge re-
sources and systems, enabling the construction of knowledge discovery workflows (rep-
resenting potentially repeatable sequences of data mining and data integration steps),
resulting in improved pattern and model discovery.

Papers presented at the workshop addressed the following main topics: service-
oriented knowledge discovery, data mining services, data mining ontologies, ontologies
as background knowledge used for learning, information fusion, dealing with heteroge-
nous data sources, and data mining workflows.

Ljubljana, Leiden, August 2009 Vid Podpečan
Nada Lavrač
Joost N. Kok

Jeroen de Bruin

Workshop Organization

Workshop Chairs

Vid Podpečan (Jožef Stefan Institute)
Nada Lavrač (Jožef Stefan Institute)
Joost N. Kok (Leiden University)
Jeroen de Bruin (Leiden University)

Program Committee

Vid Podpečan
Nada Lavrač
Joost N. Kok
Jeroen de Bruin
Michael Berthold
Igor Mozetič
Filip Železny
Hendrik Blockeel
Melanie Hilario

Additional Reviewers

Darko Čerepnalkoski
Joaquin Vanschoren
Celine Vens
Fabian Guiza

Table of Contents

Towards Cooperative Planning of Data Mining Workflows 1
Jörg-Uwe Kietz, Floarea Serban, Abraham Bernstein, and Simon Fischer

KDDONTO: An Ontology for Discovery and Composition of KDD Algorithms . . 13
Claudia Diamantini, Domenico Potena, and Emanuele Storti

Towards a Service-Oriented Knowledge Discovery Platform 25
Vid Podpečan, Matjaž Juršič, Monika Žáková, and Nada Lavrač

Advancing Data Mining Workflow Construction: A Framework and Cases using
the Orange Toolkit . 39

Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

The Fantom Service for Subgroup Discovery in Score Lists 52
Jeroen de Bruin, Nada Lavrač, and Joost N. Kok

Definition of a Metadata Schema for Describing Data Preparation Tasks 64
Miguel Hidalgo, Ernestina Menasalvas, and Santiago Eibe

A Data Mining Ontology for Algorithm Selection and Meta-Mining 76
Melanie Hilario, Alexandros Kalousis, Phong Nguyen, and Adam Woznica

Stand on the Shoulders of Giants: Towards a Portal for Collaborative Experimen-
tation in Data Mining . 88

Joaquin Vanschoren and Hendrik Blockeel

Towards Service-Oriented Knowledge Discovery in Biomedical Research 100
Tu Bao Ho, Katsuhiko Takabayashi, Pham Tho Hoan, Nguyen Thanh Phuong,
Saori Kawasaki, and Tran Dang Hung

OntoDM: Towards an Ontology of Data Mining Investigations (Ext. Abstract) . . . 114
Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Towards Cooperative Planning of Data Mining
Workflows

Jörg-Uwe Kietz1, Floarea Serban1, Abraham Bernstein1, and Simon Fischer2

1 University of Zurich, Department of Informatics,
Dynamic and Distributed Information Systems Group,

Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
{kietz|serban|bernstein}@ifi.uzh.ch

2 Rapid-I GmbH, Stockumer Str. 475, 44227 Dortmund, Germany
fischer@rapid-i.com

Abstract. A major challenge for third generation data mining and
knowledge discovery systems is the integration of different data mining
tools and services for data understanding, data integration, data prepro-
cessing, data mining, evaluation and deployment, which are distributed
across the network of computer systems. In this paper we outline how
an intelligent assistant that is intended to support end-users in the diffi-
cult and time consuming task of designing KDD-Workflows out of these
distributed services can be built. The assistant should support the user
in checking the correctness of workflows, understanding the goals behind
given workflows, enumeration of AI planner generated workflow comple-
tions, storage, retrieval, adaptation and repair of previous workflows. It
should also be an open easy extendable system. This is reached by basing
the system on a data mining ontology (DMO) in which all the services
(operators) together with their in-/output, pre-/postconditions are de-
scribed. This description is compatible with OWL-S and new operators
can be added importing their OWL-S specification and classifying it into
the operator ontology.

1 Introduction

In the early days of data mining the biggest challenge for data miners was finding
the right algorithm for their task. Todays typical 2nd generation KDD Support
Systems (KDDSS) overcome these issues by providing a plethora of operators.
The commercial systems such as SAS Enterprise Miner and SPSS Clementine or
the Open-Source Systems RapidMiner and MiningMart have 100+ (RapidMiner
which includes WEKA even 500+) different operators to support modeling the
KDD process. These KDDSS have eased the problem of providing access to appli-
cable data mining operators. They do, however, give rise to a new problem: How
can data miners navigate the multitude of data mining operators to construct a
valid and applicable data mining process?

Indeed this problem gets even aggravated. When considering the whole KDD
process [7] the universe of possible combinations is enormous. Consider CRISP-
DM [4]: It consists of 6 phases and 24 tasks. Granted 6 of the tasks are of

1

an organizational nature, but the remaining 18 technical tasks open a huge
design space [16] of possible KDD processes. As a consequence, most users are
overwhelmed with the decisions they have to face and only explore a small part
of the possible design space.

In this paper we propose that one should use a cooperative planning ap-
proach for designing the KDD process. A third generation KDDSS should em-
ploy a mixed initiative planning [8] approach to user interaction simplifying the
following tasks:

– Effective representation of hundreds of operators used in KDD-workflows.
– Checking the correctness of KDD workflows
– Enumeration of (partial) KDD workflows
– Retrieval of previous (partial) KDD workflows
– Understanding and explanation of given KDD workflows
– Adaptation and repair of KDD workflows

In this paper we focus on the base of such a cooperative KDDSS. Specifically,
we present a Data Mining Ontology (DMO) able to effectively organize hundreds
of operators, which is the base for checking the correctness of KDD workflows and
an HTN based planning component able to effectively enumerate useful KDD-
workflows3. This is the base for our future work concerning a KDD-workflow
explanation component and a KDD process adaptation component, which can be
seen as a case-based planning component assuming that a case base is available.

In the remainder of the paper we first outline related work, and then discuss
DMO and HTN in detail.

2 Previous Work

Several attempts have been made to create KDD support systems but none of
them provides full support for generation of KDD workflows.

Žáková et. al [18] tried to automatically generate workflows using a knowledge
ontology (DM ontology) and a planning algorithm based on the FastForward
(FF) system. They limit themselves only to return the optimal workflow with
the smallest number of processing steps, any other alternative workflows are
not generated. The system does not involve user interaction during workflow
generation.

The IDEA system [2] consists of an Intelligent Discovery Assistant (IDA)
which provides users with systematic enumerations of valid DM processes and
effective process rankings by different criteria (speed, accuracy, etc.). It is based
on an ontology of DM operators that guides the workflow composition and con-
tains heuristics for the ranking of different alternatives. The user is guided in her
choices by choosing weights to trade-off the rankings of the alternatives along

3 This is a report about work in progress. Check http://www.e-lico.eu/eProPlan to
see the current state of the ontology as well as to download the Protege plug-ins we
released so far.

2

the different dimensions (e.g., speed, accuracy, comprehensiblity) of her desider-
ata. The rankings are based on heuristics contained in the ontology as well as
auto-experimentation.
The NExT system [1] is an extension of IDEA using Semantic Web technology
Specifically it employs an OWL-S [11] ontology to specify the DM operators and
relies on XPlan [10] for planning. While IDEA and NExT provide the user with
a number of alternatives and guide the choice among them they are limited to
proposing simple, non-splitting process flows, unless specific splitting templates
are provided.

MiningMart [12] is a KDD preprocessing tool specialized in data mining
on large data stored in relational databases. The meta-model M4 is used to
store data on two levels: the logic level – describes the database schema and
allows consistent access to information and the conceptual (ontology) level –
uses concepts with features and relationships to model data [6]. The ontology
captures all the data preprocessing therefore gives a better understanding and
reuse of the data. However this meta-model is expressed in UML/XML and
not in an ontology language. The system lacks automatic workflow creation of
DM processes but enables the reuse of preprocessing phases across applications
through case-based reasoning.

The CITRUS project [17] consists of an IDA which offers user-guidance
through mostly a manual process of building the workflows. It uses planning
for plan decomposition and refinement. The system is based on an extension of
SPSS Clementine, which provides a visual interface to construct DM processes
manually.

3 A Data Mining Ontology (DMO) for Planning

We designed a Data Mining Ontology (DMO) to contain all the information nec-
essary to support a 3rd generation KDDSS. As Figure 1 shows (left to right), the
DMO contains information about the objects manipulated by the KDDSS (I/O-
Object), the Meta Data needed, the operators (i.e., algorithms) used by the tool,
and a goal description that formalizes the user’s desiderata. Here we succinctly
describe the I/O-Object and the Meta Data before providing a slightly more
extensive discussion of the Goals and Operators in the following subsections.

Fig. 1. The Upper-Structure of the Data Mining Ontology (simplified)

3

I/O-Objects are everything that is used or produced by operators. Every I/O-
Object produced by an operator can be used as an input to any operator oc-
curring at some later stage of the KDD workflow. Examples of I/O-Objects
are Data (used and produced), Models (used and produced) and Reports
(produced only).
All of the above have several sub-concepts to specify the description of op-
erator inputs and outputs I/O in a more specific fashion and to be used as
conditions and effects of operators.
Sub-concepts of Data could be AttributeValueDataTable, MissingValueFree-
Data, ScalarDataTable, NominalDataTable, TimeSeries, UnivariateTimeSeries,
MultivariateTimeSeries, etc. Prediction models, delivered by data mining
operators are, e. g., DecisionTree, Decisionlists, RuleSet, LinearModel,

MetaData is used to describe I/O-Objects in more detail, i.e., the DataFormat
such as tables, relations, images, etc. DataColumns can take specific value
types like numerical or categorical values, and have particular roles such as
“weight”, “id”, or “label”.
Furthermore, the meta data can contain aggregate information about the
values found in this column. Examples are mean, variance, range, modal
value, or a flag indicating whether there are missing values.

3.1 Specification of KDD goals and input

A planner requires a goal description consisting of a start state and a final (or
goal) state. A KDD-Workflow final state is reached when the workflow solves
the ”Data Mining Goal” ([4], Sec. II.1.3) and also contains all the evaluation
and reporting needed to let the user assess if it fulfills the ”Success Criterion”.
Additionally, all conditions of the operators included in the workflow have to be
fulfilled.

In the DMO we model goal descriptions using subclasses of Goal (see Figure 1
for a simplified extract.). When specifying the ”Data Mining Goal” the user has
to choose (or compose) a subclass of MainGoal. This main goal can be extended
with compatible OptionalSubGoals (which ones are compatible is modeled with
object-properties in the DMO). For example, the user can specify ”I would like
a KDD-Workflow for PredictiveModeling, evaluated on an IndependentTestSet,
where the performance is reported by a Profit-Chart.”

Several of these Goals require (again modeled as an object-property) that
input (data) is available. Namely, PredictiveModeling requires trainingData and
IndependentTestSet requires testData. So the user is prompted to specify a data
file to be analyzed and to extend it according the meta-data in the DMO.

3.2 Operator Ontology

Operators in KDD-workflows differ from operators usually used in planning in
two very important aspects. First, they do produce new objects. Consequently,
we face a (potentially) infinite planning domain and not a finite one as most
previous work about planning assumes. Second, they only produce new things

4

but never destroy old things. Thus, our world is monotonically growing with ad-
ditional operator applications, i.e., everything that was valid (or known) in our
world before executing an operator is still valid (known) afterwards. An infinite

Fig. 2. The Top-Level Abstract Operators in the DMO

planning domain usually means that it is undecidable if a planning problem has
a solution. Fortunately, the existence of plans is not really a concern for KDD-
workflows. They always have a number of trivial solutions. E. g. for prediction
tasks we could just compute the mean value or modal value of the target at-
tribute, and build a model that always predicts that value, ignoring everything
else.

Thus, we are not only looking for a plan, but rather for a good plan. The
quality of a plan can be guided by the meta data information by which we enrich
the objects exchanged by our operators. Note that the quality of a plan can be
measured in various ways, but that some of the information is not available at
plan-time. Especially not, the quality of a plan measured as expected predictive
quality of a prediction model, e.g. its accuracy. This main success criterion of
Data Mining is not available before executing the plan. Also, in real-world appli-
cations, we have to respect estimated non-functional constraints such as memory
consumption and computation time of the workflow during planning.

As an example, consider the problem of cleaning a data set from missing val-
ues. Whereas a missing value imputation operation which replaces missing values

5

by training a model for each column containing missing values, is usually the
preferable method, this may be prohibitively expensive in terms of computation
time when the number of columns is large. In that case, it may be better to go
with the simpler solution of filling in missing values by using the column mean
value. In order for a planner to be capable of taking these considerations into ac-
count, we annotate operators and I/O-Objects with the respective information.
”RapidMiner.ID3”:

Superclass: ClassificationLearning and

(uses exactly 1 AttributeValueDataTable) and

(produces exactly 1 Model) and

(simpleParameter1(name=”minimal size for split”) exactly 1 integer) and

(simpleParameter2(name=”minimal leaf size”) exactly 1 integer) and

(simpleParameter3(name=”minimal gain”) exactly 1 real)

Condition: (AttributeValueDataTable and MissingValueFreeData and

(inputAttribute only (hasAttributeType only Categorial)) and

(targetAttribute exactly 1 (hasAttributeType only Categorial))

)(?D), noOfRecords(?D,?Size), ?P1 is ?Size / 100

→ uses(this,?D), simpleParameter2(this,?P1)

Effect: uses(this,?D), hasFormat(?D,?F), inputAttribute(?D,?IA),targetAttribute(?D,?TA),

→ new(?M,?D), DecisionTree(?M), produces(this,?M), hasFormat(?M,?F)

inputAttribute(?M,?IA),predictedAttribute(?M,?TA),

Fig. 3. A basic operator: RapidMiner.ID3

Operator in- and output and parameters. The behaviour of each Data
Mining operator is controlled by a set of parameters usually specified as key-
value-pairs for an operator. Such parameters can be quite simple (e.g. k in a
k-fold cross validation), quite complex (such as a reference to a column in a
DataTable on which the operator is supposed to operate or an SQL statement
as a target expression for attribute construction), or sometimes even structured
(like a list of parameters to be optimized by an optimization operator).

Such restrictions on in- and output and parameters of operators are specified
in OWL-DL. Every input of any operator must be a sub-object-property of uses,
every output of any operator must be a sub-object-property of produces, and ev-
ery parameter of any operator must be a sub-data-property of simpleParameter.
uses and produces have a domain restriction to Operator and a range restriction
to I/O-Object. Figure 3 shows an example.

Operator conditions and effects. Operators may specify restrictions on their
input. E. g., most data mining operators will only operate on data sets satisfying
particular properties (e.g., having numerical or categorical attributes, or not
containing any missing values).

The effects of operators depend on parameter values and on the operator’s
input. E. g., a discretization operator’s output is equal to its input with the
exception of a set of columns, which are specified by a parameter. In the output
data set, these columns’ value types will be changed to categorical.

6

Operator conditions and effects are described as rules expressed in the Se-
mantic Web Rule Language (SWRL [9]). As an extension to SWRL we have the
special object reference this, which is the operator instance to which the rule
refers. Also, we added three new built-in predicates that allow the creation of
new unique object IDs for the generated outputs in the operator effects. They
are permitted in the consequent of effect-rules only. These are:
new(NewObject). Exactly one new unique object ID is generated and bound

to the argument variable for each such literal (independent of how many
solutions satisfy the premisses).

new(NewObject,OldObject). Exactly one new unique object ID is gener-
ated and bound to the argument variable for EVERY different OldObject
computed by the preconditions (independently of how often this OldObject
is part of a solution satisfying the premisses).

copy(NewObject,OldObject,Except). One new unique object ID is gener-
ated and bound to the argument variable for EVERY different OldObject
computed by the preconditions (independently how often this OldObject
is part of a solution satisfying the premisses), additionally all stored prop-
erty facts involving the OldObject except those in Except are copied to the
NewObject. Except is a conjunction of property literals where the OldObject
must be one of the arguments.

The condition of an operator is a set of SWRL rules, where the antecedent
specifies the condition and the consequent contains all the input- and parameter-
properties of the operator. Effects are also sets of SWRL rules, they can contain
all three new built-in predicates, must contains all the output-properties of the
operator and may also create new meta-data to describe the new I/O-Objects.
All variables that occur in the conclusion of a condition or effect rule must be
either bound by the premisses of the effect rule or be returned as a NewObject by
one of the above special literals. If there is more than one rule for conditions and
or effects, the resulting condition/effect-rule is the union of all antecedent of the
condition/effect-rules imply the union of all consequents of the condition/effect-
rule.

Operator nesting. Operators can be nested, i.e., they can contain sub-workflows.
E. g., a cross-validation can contain a data mining operator for generating a pre-
diction model from a training set and an operator for applying the model on
a test set. But usually, such a nesting is not restricted to single operators, but
may involve complex workflows. Therefore we allow such operators to reference
nested HTN tasks (see Section 4). Similar to the post-conditions specified for
each operator, we specify conditions that the enclosing operator guarantees to
and requires from its nested workflow.

Operator Inheritance & Subsumption Any operator not only inherits the
IO restrictions from it’s super classes (via normal ontological reasoning), it also
inherits all conditions and effects from them (to be handled by our operator

7

extension). If an operator has several rules for conditions or effects, the resulting
condition- or effect-rule is the union of all antecedent → the union of all conse-
quent. This leads to the following intuitive definition of an operator subsuming
another:

1. the more special operator satisfies all input, output, and parameter restric-
tions of the more general operator,

2. the more general operator is applicable in all the situations, the more specific
operator can be applied to, and

3. the more specific operator has at least all the effects of the more general one.

Formally, this can be captured by combining class subsumption (vDL) for
I/O restrictions and instance reasoning with respect to a set of ontological axioms
(a tbox) (|=(tbox)) together with θ-subsumption for conditions and effects.

Definition 1 (Operator Subsumption). An operator OP1 subsumes another
operator OP2 (written OP1 vOP OP2), iff OP1 vDL OP2, and there exist a
substitution θC for the condition and θE for the effects such that:

– antecedent(condition(OP2)) |=(tbox) θCantecedent(condition(OP1)),
– consequent(condition(OP2)) |=(tbox) θCconsequent(condition(OP1))
– antecedent(effects(OP2)) |=(tbox) θEantecedent(effects(OP1)), and
– consequent(effects(OP2)) |=(tbox) θEconsequent(effects(OP1)).

3.3 Using OWL-S to import operators

The operators present in the DM ontology are of course limited to the existing
operators sources (RapidMiner, Weka, etc.). As new operators will be developed
our ontology must be extendible, to allow the users to use them for planning.
Thus, we envisaged a way of extending the ontology with new operators based
on a description of the operators in a language compatible with the specification
from our ontology.

Each new operator has to be available as a Web service, described using a
description language (WSDL) and needs to be semantically described in OWL-
S [11]. I.e. it describes what it does in the ServiceProfile, how it works in the
ServiceModel and how to access it in the ServiceGrounding. An operator can be
added in the DM ontology if the given OWL-S description matches our operator
description. From the OWL-S description we are mainly interested in the Ser-
viceProfile and ServiceGrounding, while the ServiceModel does not concern our
approach for now.

The ServiceProfile describes what the service does, it is similar to our Op-
erator concept from the DM ontology. Both the ontology and OWL-S have to
specify the Inputs, Outputs, Preconditions and Effects. The Preconditions and
Effects should be specified in SWRL to be compatible to our representation
from the ontology. The Inputs and Outputs need to be described by using the
concepts from our ontology.

8

ServiceGrounding specifies how the service can be accessed and executed.
It contains the WSDL location of a given operator that can be stored in our
ontology as an annotation of the operator to be passed to an execution engine.

Therefore enhacing the operators with OWL-S facilitates the process of im-
porting new operators thus allowing a flexible and standardized way to enrich
the DM ontology.

4 An HTN for Data Mining

Hierarchical Task Network planning (HTN) [14, 13] originates from more than 30
years ago. It provides a powerful planning strategy using hierarchical abstraction
and by that is able to handle large and complicated real world domains [13]. Also
it is more expressive than classical planning being able to express undecidable
problems, and therefore it is also4 undecidable, if a plan exists in general [13].

Recently, AI planning techniques have been proposed as a way to automate
(totally or partially) workflow composition especially Web services composition
[15, 10]. Several planning techniques were compared in the context of Web ser-
vices composition and as a conclusion HTN planning performs best in automa-
tion of Web services composition [3].

For us an HTN (similar to [5, 13]) consists of the following:

– A set of available tasks to achieve the possible Goals.
– Each task has an I/O specification (a list of property - ?variable : class) and

a set of associated methods (that share the I/O specification of the task)
that can execute it.

– Each method has a
condition restricting it’s possible applications, and a
contribution specifying which Goals it reaches, and a
decomposition into a sequence of (sub-)tasks and/or operators, that - ex-

ecuted in that order - achieve the task.

Therefore an HTN planning problem consists of decomposing the initial task
using applicable method that contribute to the current goals into applicable
operators and sub-tasks and then recursively decompose each sub-task until we
obtain a sequence of applicable operators only.

Fig.4 shows an example HTN to illustrate how one could specify the gener-
ation of KDD-workflows.

Even this simple HTN already contains some special built-in tasks, namely
the getPlan/reapplyPlan and the chooseOp/applyOp pairs of tasks. It also illus-
trates the use of negation as failure (unknown) available in conditions. getPlan
normaly plans the task it gets as it’s first argument, it only additionally returns
the plan it generated for that task, such that it can be reused later again. If the
training data need a transformation before modeling this transformation needs

4 The introduction of new objects, leads to potentially infinite - and therefore unde-
cidable - planning problems (Sec.3.2).

9

Task: DoDatamining

I/O: [goal - ?G:UserGoal].

Method: ”Propositional predictive Data Mining of attribute value data”.

condition: trainingData(?G,?RTD), AttributeValueDataTable(?RTD),

unknown(subgoal(?G, ?E), LearnTestSetSplit(?E))

contribution: PredictiveModeling(?G).

decomposition:

ReadData([produces - ?RTD]),

chooseOp(SupervisedLearner([in - ?RTD]),?G,?ModelOp,?Requirements),

getPlan(TransformData([in - ?RTD, out - ?TD, goal -?Requirements]),?DataTransformationPlan),

applyOp(?ModelOp,[uses -?TD, produces - ?M]),

ReadData([produces - ?RED]),

OptionalEvaluation([goal - ?G, model - ?M, preprocessing - ?DataTransformationPlan]),

OptionalApplication([goal - ?G, model - ?M, preprocessing - ?DataTransformationPlan]).

Method:

. . .

Task: OptionalEvaluation

I/O: [goal - ?G:UserGoal, model - ?M:Model, preprocessing - ?DataTransformationPlan:Plan]

Method: ”No evaluation wanted”

condition: unknown(subgoal(?G, ?E), Evaluation(?E))

contribution: .

decomposition: .

Method: ”Evaluation of model performance on independent testdata”

condition: subgoal(?G, ?E), testData(?E,?RED), AttributeValueDataTable(?RED).

contribution: subgoal(?G, ?E), IndependentTestSet(?E).

decomposition:

reapplyPlan([in- ?RED, out - ?ED],?DataTransformationPlan]),

EvaluateModel([data - ?ED, model - ?M, produces - ?E),

GenerateReport([uses - ?E]).

Fig. 4. A simple extract from our HTN under development

to be reapplied (using reapplyPlan) on evaluation and application data, before
the learned model can be applied to them as well. This is not just a simple
”do the same again”. The data transformation generated by the planner may
involve operations like ”feature selection”, ”Discretisation”, ”random sampling”
that would behave differently on different data. Therefore the reapplication of
plans must adapt the plans to corresponding dual operations ”Select the same
features”, ”Discretize into same Bins” ”don’t sample”, i.e. all data dependent
operations have to store their choices into ”preprocessing models” and must have
a dual re-application operator (specified in the ontology). HTN planning does
straight forward planning, i.e. when an operator is applied all its input is already
produced and available. However, in KDD-workflows selection of the modeling
operator is usually done before preprocessing to set up the goals of preprocess-
ing. This is achieved with the chooseOp/applyOp pair. chooseOp selects5 an
operator from the operator class specified in its first argument just as normal
planning does, but opposed to planning it doesn’t test applicability nor does
it execute the effects, it only returns the conditions and the chosen operator.
applyOp is just a meta-call that allows the operator to be a variable.
5 Currently just by enumeration, maybe later with some heuristic guidance

10

5 Conclusions

In this paper we presented the basis of an open system for cooperative plan-
ning of KDD-Workflows. The system is currently developed within the e-LICO
project as a set of Protege 4 plugins. The plugins (goal editor, condition/effect
editor, OWL-S im-/export, restricted abox/rule reasoning, operator subsump-
tion, workflow-checking and an HTN-planner) as well as the DMO are to be
released to the public within this year.

We expect HTN-planning to be more successful in generating useful KDD-
workflows, in the presence of a realistic (high) amount of operators, than forward
planning tried in previous work so far, as the HTN grammar rules allow addi-
tional expert knowledge to be coded into the plan generation process, which
is not possible in simple Strips-like forward planning. Nevertheless, we expect
the most gain in user-productivity of the 1st version described here lies in the
correctness-checking of (user-designed) KDD-workflows at design-time – check-
ing for slight errors in operator applicability that are already detected before
execution and will not crash the workflow execution (after some hours).

Planning of KDD-workflows is always limited by the information available
at design/plan time. However designing optimal performing KDD-workflows is
still a highly creative and interactive process, where most insights and design
decisions are based on and revised according to the performance measured in
the evaluation-phase of the KDD-workflows, i.e. with information available after
execution and not at plan-time.

Data-Mining-Performance optimized KDD-workflows resulting from this ex-
pensive iterative design cycle are, therefore, very valuable and should be recorded
in a case-base. Especially as the current knowledge on data mining does not allow
to distinguish good from bad performing workflows without executing them. For
future work we plan to extend the system to case-based planning, i.e. retrieval
and adaptation of partial fitting KDD-workflows. This will allow to make this
valuable and costly acquired knowledge available to later workflow design.

Acknowledgements: This work is partially supported by the European Com-
munity 7th framework program ICT-2007.4.4 under grant number 231519 “e-
Lico: An e-Laboratory for Interdisciplinary Collaborative Research in Data Min-
ing and Data-Intensive Science”. The DMO described in this paper is the result of
ongoing collaborative work within the e-LICO project of Ingo Mierswa, Melanie
Hilario, Alexandros Kalousis, Nguyen Phong and the authors. For ease of pre-
sentation we made some simplifications with respect to the full e-Lico DMO.

References

1. A. Bernstein and M. Daenzer. The NExT System: Towards True Dynamic Adap-
tions of Semantic Web Service Compositions (System Description). In Proceedings
of the 4th European Semantic Web Conference (ESWC ’07). Springer, March 2007.

2. A. Bernstein, F. Provost, and S. Hill. Towards Intelligent Assistance for a Data
Mining Process: An Ontology-based Approach for Cost-sensitive Classification.

11

IEEE Transactions on Knowledge and Data Engineering, 17(4):503–518, April
2005.

3. K. S. M. Chan, J. Bishop, and L. Baresi. Survey and comparison of planning
techniques for web services composition. Technical report, Univ. of Pretoria, 2007.

4. P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and
R. Wirth. Crisp–dm 1.0: Step-by-step data mining guide. Technical report, The
CRISP–DM Consortium, 2000.

5. K. Erol, J. Hendler, and D. Nau. HTN planning: Complexity and expressivity. In
Proceedings of the National Conference on Artificial Intelligence, pages 1123–1123.
JOHN WILEY & SONS LTD, 1995.

6. T. Euler and M. Scholz. Using Ontologies in a KDD Workbench. In P. Buitelaar,
J. Franke, M. Grobelnik, G. Paa?, and V. Svatek, editors, Workshop on Knowledge
Discovery and Ontologies at ECML/PKDD ’04, pages 103–108, 2004.

7. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The kdd process for extracting
useful knowledge from volumes of data. Commun. ACM, 39(11):27–34, 1996.

8. G. Ferguson, J. Allen, and B. Miller. Trains-95: Towards a mixed-initiative plan-
ning assistant. In Proceedings of the Third Conference on Artificial Intelligence
Planning Systems (AIPS-96), pages 70–77. AAAI Press, 1996.

9. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

10. M. Klusch, A. Gerber, and M. Schmidt. Semantic Web Service Composition Plan-
ning with OWLS-XPlan. In Proceedings of the 1st Intl. AAAI Fall Symposium on
Agents and the Semantic Web. AAAI Press, 2005.

11. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-
vasan, and K. Sycara. OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, 2004.

12. K. Morik and M. Scholz. The MiningMart Approach to Knowledge Discovery in
Databases. In N. Zhong and J. Liu, editors, Intelligent Technologies for Informa-
tion Analysis, pages 47–65. Springer, 2004.

13. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 2004.

14. D. Nau, S. Smith, and K. Erol. Control strategies in HTN planning: Theory versus
practice. In Proceedings of the National Conference on Artificial Intelligence, pages
1127–1133. JOHN WILEY & SONS LTD, 1998.

15. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on the
World Wide Web, 1(4):377–396, 2004.

16. K. T. Ulrich and S. D. Eppinger. Product Design and Development. McGraw-Hill,
New York, 3rd rev. ed. edition, 2003.

17. R. Wirth, C. Shearer, U. Grimmer, T. P. Reinartz, J. Schlösser, C. Breitner, R. En-
gels, and G. Lindner. Towards process-oriented tool support for knowledge discov-
ery in databases. In PKDD ’97: Proceedings of the First European Symposium on
Principles of Data Mining and Knowledge Discovery, pages 243–253, London, UK,
1997. Springer-Verlag.

18. M. Žáková, P. Křemen, F. Železný, and N. Lavrač. Planning to learn with a
knowledge discovery ontology. In Planning to Learn Workshop (PlanLearn 2008)
at ICML 2008, 2008.

12

KDDONTO: An Ontology for Discovery and
Composition of KDD Algorithms

Claudia Diamantini, Domenico Potena and Emanuele Storti

Dipartimento di Ingegneria Informatica, Gestionale e dell'Automazione �M. Panti�,
Università Politecnica delle Marche - via Brecce Bianche, 60131 Ancona, Italy

{diamantini,potena,storti}@diiga.univpm.it

Abstract. Knowledge Discovery in Databases (KDD) is a highly com-
plex process, where a lot of tools are needed to achieve the discovery
goal. It implies that an user has both to choose the algorithms more
suitable to her goal, and to compose them for designing a process. In
order to support the user, in this paper we introduce KDDONTO, an
ontology formalizing the domain of KDD algorithms. For the design of
KDDONTO we follow a formal ontology building methodology aimed to
de�ne goal-oriented ontologies satisfying quality requirements. We �rst
identify the basic terms characterizing algorithms, and analyzing them
we formally derive classes and relations of the ontology. Finally, an OWL-
DL implementation is proposed and its evaluation is discussed.

1 Introduction
Knowledge Discovery in Databases (KDD) is the research �eld studying ad-
vanced techniques and methodologies aimed at the extraction of previously un-
known, potentially useful knowledge from data [1]. A KDD process is a highly
complex, iterative and interactive process, with a goal-driven and domain depen-
dent nature. The huge amount of algorithms for data manipulation and the con-
tinuous development of new ones, their many characteristics, the performances
shown by di�erent algorithms on di�erent kinds of data, introduce some issues
to deal with for e�ectively designing a KDD process.

In last years researchers in Data Mining and Knowledge Discovery in Da-
tabases �elds have shown more and more interest in knowledge representation
techniques for giving support in the design of knowledge discovery process. Early
works represent such a knowledge by exploiting relational meta-model [2], object-
oriented paradigm [3] and conceptual hierarchy [4]. In particular, models in [2]
and [3] are introduced for supporting the building of a work�ow of KDD tools,
whereas [4] introduces a taxonomy of KDD algorithms, that is exploited for
designing a KDD process facing with cost-sensitive classi�cation problems.

Following the mainstream of Semantic Web, recent researches experienced
the introduction of ontologies for formally represent knowledge. Most of the
available ontologies focus on software and algorithms for Data Mining, which
is one of the phases of the wider and more complex KDD �eld [1, 5]. The �rst
ontology of this kind is DAMON (DAta Mining ONtology) [6], that is built for

13

simplifying the development of distributed KDD applications on the Grid, o�er-
ing to domain experts a taxonomy for discovering tasks, methods and software
more suitable for a given goal. In [7], the ontology is exploited for selecting algo-
rithms on the basis of the speci�c application domain they are used for. Finally,
an interesting work is [8], where OntoDM is proposed as a general purpose top-
level ontology aimed to describe the whole Data Mining domain. Since OntoDM
is not conceived for achieving speci�c support requirements, like discovery of
algorithms and process composition, systems based on such an ontology can be
used for di�erent activities, but providing ine�cient supports in each of them.
Recently, [9] introduces a KDD ontology representing algorithms and any piece
of knowledge involved in a KDD process (dataset and model), that is exploited
for guiding a planning algorithm in the design of a KDD work�ow.

Unlike [8], previous approaches do not exploit a formal and explicit methodol-
ogy for building the ontology. We think that the lack of a formal design method-
ology could lead to an ambiguous, inconsistent and incomplete ontology, that
does not satisfy quality requirements as those discussed in [10].

The main contribution of this work is the design of KDDONTO, an ontology
for supporting both the discovery of suitable KDD algorithms and the compo-
sition of KDD processes. To this end, we use an ontology building methodology
aimed to de�ne goal-oriented ontologies satisfying quality requirements. Each
step of this methodology returns as output a valid ontology represented in a
di�erent language. At �rst, the basic terms characterizing KDD algorithms are
identi�ed and organized in a glossary, then classes and relations of the ontology
are formally derived from it in axiomatic form. Finally, an OWL-DL implemen-
tation of the KDDONTO is obtained.

This work is part of the Knowledge Discovery in Databases Virtual Mart
(KDDVM) project1, a more general project for the development of an open and
extensible environment where users can look for implementations, suggestions,
evaluations, examples of use of tools implemented as services. In this framework,
the KDDONTO is exploited for supporting both the discovery of web services
implementing KDD algorithms, and their composition for building KDD pro-
cesses. In particular, the use of such an ontology guarantees to obtain valid,
useful and unknown results [11, 12].

The next Section of the paper discusses the ontology building methodology
that will be used throughout the paper. In Section 3 such a methodology is
exploited for designing KDDONTO, whereas in Section 4 a discussion on the
evaluation of KDDONTO is provided. Finally, Section 5 ends the paper.

2 Design Methodology

Ontology building is a complex task, which requires formal care and a proper
domain knowledge to be accomplished. In order to avoid errors and to obtain a
valid and useful ontology, a knowledge engineer has �rstly to de�ne the ontology
1 http://boole.diiga.univpm.it

14

goals and then to choose the design methodology. An ontology can be developed
either for realizing an unifying framework for a speci�c domain, or for describing
useful domain information that can be exploited for giving support to speci�c
applications, e.g. KDD algorithm discovering and process composition.

At present, a standard methodology for ontology design has not been identi-
�ed, and methodologies proposed in literature are mainly borrowed from software
engineering �eld, among others [13�16]. These methodologies de�ne interactive
and iterative steps which, starting from the identi�cation of main representative
terms of the domain, lead to the �nal ontology through step-wise re�nements.
In particular, [15] describes an ontology development process made of a set of
activity to be performed in order to build a sound ontology, namely: conceptu-
alization/formalization/implementation/evaluation. The methodology Ontology
Development 101 proposed in [16] identi�es a set of standard questions about
the ontology goal, helping the engineer to understand the fundamental terms of
the domain and their properties. Then terms become classes, while properties
are used to group classes into taxonomies and to de�ne other relations among
classes. This methodology de�nes also some techniques for verifying the correct-
ness of the ontology at each re�nement step, for example through checking the
balance of the classes in the taxonomies.

Although there are many similarities between software engineering and on-
tology �elds, like class and property concepts, the goal of a software engineer is
the development of implementable classes, while a knowledge engineer focuses
on the representation of the domain.

In [10], authors propose some criteria speci�cally conceived for ontology de-
sign, which are based on concepts and theories derived from logics, linguistics
and analytical philosophy areas. The main idea is to realize an ontology as an
axiomatic theory, that is a set of logical axioms formalizing relationships among
domain concepts. The �rst step is individuate �primitive� concepts, from which
any other domain concept is then derived. Formalization guarantees some ben-
e�ts: it helps to clarify and disambiguate the meaning of terms, it represents
a common logical language, understandable by scientists with di�erent back-
grounds, and supporting the integration and comparison of distinct theories
about a given domain. Moreover it is general, therefore is it can be used in
various domains for e�ciently making meaning explicit.

An original and important characteristic of such an approach is the intro-
duction of a set of quality requirements that a formal ontology has to satisfy.
These properties are:

� coherence: the ontology must be intrinsically non-contradictory, that is if a
sentence that can be inferred from the axioms contradicts a de�nition, then
the ontology is incoherent;

� clarity : an ontology should e�ectively communicate the intended meaning of
de�ned terms in a non-ambiguous fashion. All de�nitions should be docu-
mented with natural language;

� extensibility : the ontology should be extended and specialized for satisfying
new goals without a revision of the existing de�nitions;

15

� minimization of encoding bias: an encoding bias results when representation
choices are made purely for the convenience of notation or implementation.
The conceptualization should be speci�ed at the knowledge level without
depending on a particular symbol-level encoding;

� minimization of ontological commitment : an ontology should require the min-
imal ontological commitment su�cient to support the intended knowledge
sharing activities. It can be minimized by specifying the weakest theory (al-
lowing the most models) and de�ning only those terms that are essential to
the communication of knowledge consistent with that theory.

It is to be noted that [10] gives the design criteria for building an ontology,
without clearly de�ning the designing steps. For this reason, the methodology we
use for building KDDONTO is based the steps described in [15] and on the goal-
oriented step-wise strategy de�ned in [16] where the previous introduced quality
requirements are taken into account. The steps of the employed methodology
are the following:

� Concepts identi�cation and de�nition: this step allows to identify the prim-
itive concepts of domain and to provide as accurate as possible de�nitions
of concepts in natural language. The output of such a phase is the glossary
of terms describing domain concepts;

� Building of a conceptual schema: concepts are represented through classes
and relations. Each concept de�nition should be represented, whether pos-
sible, throught axioms and formal statements. At the end of this phase the
axiomatic theory is provided;

� Implementation: the goal of this phase is the translation of axioms in a ma-
chine readable language, on which automatic inference may be applied. The
language must be enough expressive, for representing the domain in a proper
way. However, an excessive expressiveness could lead to time-consuming in-
ferential procedures or even to undecidable inferences. For such a reason, a
balance between expressiveness and decidability is needed.

Furthermore, at the end of each step the satisfaction of functional and non-
functional requirements is veri�ed.

3 KDD Ontology Design

In this Section, we apply the above discussed methodology to the design of
KDDONTO, an ontology describing the domain of KDD algorithms. Such an
ontology is conceived for supporting the discovery of algorithms and their com-
position. Discovery is the activity of searching algorithms on the basis of the
KDD goal to achieve, the dataset at hand, and functional and non-functional
characteristics, whereas algorithm composition is the activity of linking suitable
algorithms in order to build valid and useful knowledge discovery processes.

16

3.1 Concepts Identi�cation and De�nition
The goal of this phase is to identify key concepts in the domain of interest. Being
KDD a research �eld born of preexistent areas (e.g.: Machine Learning, Statis-
tics, Databases), an open issue concerns with the existence of heterogeneous
interpretations about several terms used in Data Mining and KDD �elds. A ho-
mogeneous conceptual synthesis has not been achieved yet, and same concepts
are described in di�erent ways by several authors, among others [1, 5, 17, 18].
Furthermore, terms de�nitions are often incomplete, there exist exceptions and
overgeneralizations due to the gap between the world (continuous) and terms
used to represent it (discrete). Thus, the �rst activity we performed has been
the analysis and comparison of distinct interpretations, with the aim to identify,
if possible, similarities among them and to choose the most shared ones, compat-
ible with KDDONTO goals. Furthermore, since knowledge sharing and reusing
represent a central help in knowledge engineering activity, a common practice
in ontology building is the reuse of already tested solutions. Hence, we also took
into account other KDD ontologies, and in particular the DAMON ontology for
concepts regarding the Data Mining �eld.

In order to minimize the ontological commitment, we used a constructivist
approach, identifying the least number of primitive concepts, which will be used
in the next phase for de�ning the others. De�nitions reported below are the
results of such e�orts.

The key concept of KDDONTO is algorithm, because it is the basic compo-
nent of each process. An algorithm can be de�ned as �a formal �nite sequence of
basic instructions that, executed in a precise order, leads to solve a class of prob-
lems�. A Data Mining algorithm is a procedure that, given an input, yelds an
output in the form of a model. Uniqueness in descriptions cannot exist, because
an algorithm can be described from many points of view: the task it accom-
plishes, the sequence of instructions, its performance, its input/output models.
As suggested in [17], it is needed a form of reductionism, which allows to focus
on similarities and di�erences among algorithms, reducing them to their basic
elements. Other fundamental concepts are the following:
� method : a methodology, a technique used by an algorithm to extract know-

ledge from input data; e.g. the C4.5 algorithm uses a �decision tree� method;
� phase: a phase of a KDD process. According to CRISP-DM process model

[5], a KDD process can be split into the following phases: Business Under-
standing, Data Understanding, Data Preparation, Modeling, Evaluation and
Deplyoment. Only some of them are automatable and taken into considera-
tion for the purposes of this work;

� task : the goal at which aims who execute a KDD process. Among others there
are descriptive tasks like Clustering and Feature Extraction, and predictive
ones like Classi�cation and Regression;

� model : model in KDD �eld is used in heterogeneous ways, ranging from
a schema representing the discovered knowledge to a way to represent it.
Hereafter, we de�ne model as a set of constructs and rules for representing
knowledge, whereas a pattern is an instance of a model used for representing

17

speci�c knowledge. Di�erent kinds of models exist: �decision tree�, �Labeled
Vector Quantization�, �neural network�, �Support Vectors� are classi�cation
models; in a �tree� model, for example, nodes describe conditions on features,
while leaves describe the predicted class. According to feature value of an
instance, it is possible to go through the tree to reach the prediction;

� dataset : a set of data in a proper format. It describes a set of objects by
means of their measurable features;

� parameter : any information required in input or produced in output by an
algorithm; the whole set of parameters de�nes its interface;

� precondition/postcondition: speci�c features that an input (or output) must
have in order to be used by a method or an algorithm. Such conditions can
concern data format (normalized dataset), data type (numeric or literal val-
ues), or data quality (missing values, balanced dataset) properties of an input
datum. The same elements can describe postconditions, that are features of
an output datum. For example, the RemoveMissingValues algorithm yelds
in output a dataset with the postcondition �no missing values�;

� performance: an index and a value about the way an algorithm works; scal-
ability, complexity, accuracy, entropy are some indexes;

� optimization function: the function that an algorithm or a method optimizes
with the aim to obtain the best predictive/descriptive model; e.g. C4.5 builds
the tree by optimizing, at each iteration, an �information gain�.

3.2 Building of a Conceptual Schema

The aim of this phase is to de�ne a set of classes and relations among them
in order to represent the KDD domain. Representing classes through axioms
helps to make the model clearer, and also enable to represent the schema with
a formal language. In this way deductive inference can be performed on the
model, with the aim to extract hidden knowledge and to check consistency and
its non-contradictory nature. Hereafter descriptions are given in a Description
Logics-like syntax.

Starting from the basic terms identi�ed in the previous paragraph, the top
level classes and main relations have been identi�ed. Top level classes are:

� Algorithm, Method, Phase and Task, corresponding to concepts with the
same name;

� Data, which contains as subclasses Model, Dataset and GeneralParameter.
The �rst two correspond to homonymous concepts, whereas the last ad-
dresses the parameter concept;

� DataFeature, corresponding to precondition/postcondition;
� PerformanceIndex and PerformanceClass. The former describes perfor-

mance indexes (e.g. COMPLEXITY, ACCURACY, ...), the latter aggregates per-
formance values, if possible and needed, in a �nite number of classes (e.g.
for COMPLEXITY: LINEAR, POLYNOMIAL, ...);

� ScoreFunction, corresponding to optimization function.

18

A more formal description of main classes goes beyond the goal of this work,
and according to [19] it would need a top level ontology to completely clarify
semantics. Main relations are:
� specifies_phase, between Task and Phase. An instance of Task can belong

to more than one Phase;
� specifies_task, between Method and Task. Cardinality can be more than

1; for example SVM, a Method instance, can be used for two di�erent tasks:
REGRESSION and CLASSIFICATION;

� uses, between Algorithm and Method;
� has_input/has_output, a n-ary relation with domain Algorithm, Method

or Task and codomain Data, and optionally DataFeature.
In addition, has_input joins the classes to a boolean value that states the
optional or mandatory nature of the input datum and to a number that
expresses the strength of the precondition: a value equal to 1.0 corresponds
to a mandatory precondition, while lower values to optional ones; also inverse
properties input_for/output_for have been introduced;

� has_performance, a n-ary relation with domain Algorithm, Method, or
Task and codomain PerformanceIndex and PerformanceClass and a string
which represents the speci�c value of the performance index.
Subclasses are de�ned by means of existential restrictions on main classes,

that can be considered as fundamental bricks for building the ontology. At
�rst some Phase instances are introduced, namely PREPROCESSING, MODELING,
POSTPROCESSING. They represent the main phases in a KDD process and are
used to start the subclassing as follows:
� Task specializes in the following subclasses, according to the argument of

specifies_phase:
• PreProcessingTask v Task u ∃specifies_phase{PREPROCESSING}
• ModelingTask v Task u ∃specifies_phase{MODELING}
• PostProcessingTask v Task u ∃specifies_phase{POSTPROCESSING}

� Method is detailed in subclasses according to the tasks that each method
speci�es by means of specifies_task relation. Some examples:
• ClassificationMethod v Method

u ∃specifies_task{CLASSIFICATION}
• FeatureExtractionMethod v Method

u ∃specifies_task{FEATURE EXTRACTION}
� Algorithm specializes in subclasses according to uses and has_output re-

lations, in the following way:
• ClassificationAlgorithm v Algorithm

u ∃uses.ClassificationMethod
u ∃has_output.ClassificationModel

while a ClassificationAlgorithm subclass can be de�ned as follows:
• TreeAlgorithm v ClassificationAlgorithm

u ∃uses{DECISION TREE}
u ∃has_output.DecisionTreeModel

19

Fig. 1. KDDONTO: main classes and relations

� Model is further detailed in subclasses, on the basis of the task which the
models are used for. For example:
• ClassificationModelv Model u ∃output_for{CLASSIFICATION}

A top-level view of described classes and relations is shown in Figure 1.
Any KDD process is built for achieving a speci�c goal, namely a KDD task,

by means of various manipulations of a given dataset. Hence, the procedure we
use for process composition starts from the goal and goes backwards iteratively
adding one or more algorithms to a process, until the head of the process is
not able to directly elaborate the given dataset. Although such a procedure
is mainly based on the use of the has_input/output relations for matching
algorithms with a common interface, we introduce other relations for composing
valid processes. In the rest of this section we discuss the most interesting.

In some cases, two KDD methods, even if they have compatible input and
output, cannot be used in the same process, because they may lead to useless pro-
cesses. In this case the incompatibility can be expressed through the symmetric
relation not_with. Furthermore, the transitive relation not_before means that
a method cannot be in a process before another one. In both relations domain
and codomain is the class Method.

Relations in_module and out_module allow to connect an instance of algo-
rithm to others, which can be executed respectively before or after it. These
relations provide suggestions about process composition, representing in an ex-
plicit fashion KDD experts' experiences about process building.

Each Model is de�ned by a structure, that in turn can be recursively de-
�ned through substructures, e.g. a Labeled Vector Quantization model (LVQ) is
made of a VQ model and a Labeling function. Hence, part_of (and its inverse
has_part) represents the relation between a model and an its component (a

20

generic Data instance). Among the many di�erent meanings of parthood rela-
tion studied by works in mereology theory, in this work we refer to a compo-
nent/integral part-of, i.e. a con�guration of parts within a whole. The parthood
relation o�ers bene�ts also for algorithm discovery, for example it is possible
to retrieve algorithms working on similar models, i.e. having common substruc-
tures. Note that subsumption (is-a) and parthood (part-of) can be jointly used
to de�ne not only exact but also approximate matches between algorithms in-
terfaces, allowing also to de�ne ranking strategies of generated processes. Due
to page limitations, we refer to [12] for details about the composition procedure,
algorithm matchmaking and ranking strategies.

Finally, we like to highlight that KDDONTO schema does not limit the map-
ping among instances of Algorithm, Task and Phase. This choice allows us to
overcome a limitation introduced in [4] and [6], where an algorithm belongs to
only a phase or a task. Moreover, unlike [4], where in a process �preprocessing
precedes induction, which precedes postprocessing�, we do not use Phase for
constraining the sequence of algorithms in a process. Hence, we can obtain pro-
cesses where a K-NN algorithm is used both for removing missing value (i.e. as
preprocessing) and for inducing a classi�cation model (i.e. as modeling).

3.3 Implementation
The �nal step in development process concerns the translation of the axiomatic
theory in a machine readable language, that must be enough expressive in order
to represent the domain of KDD algorithm in a proper way. However, an excessive
expressiveness implies that inferential procedures, applied on the ontology, could
result too much complex from a computational point of view. For such a reason
it is necessary to �nd a balance between expressiveness and decidability.

Nowadays OWL is the de-facto standard language for building ontologies,
on which automatic inference may be applied. For KDDONTO implementation,
among the OWL sublanguages we chose OWL-DL, whose logical model is based
on Description Logics and is decidable. Some classes of the axiomatic model can
be directly mapped to the OWL-DL Class construct without any problem. How-
ever, due to expressive restrictions of OWL-DL semantics, some issues arise in
translation of properties related to Data, Model and PerformanceIndex classes.
As matter of fact, in OWL-DL it is not possible to have a class as a property
value: for example it is not feasible to express the property has_output between
CLASSIFICATION, that is an instance of ModelingTask, and Classification-
Model class. An other restriction is the impossibility to de�ne n-ary relations,
because only binary ones are allowed in DL logic model, hence the properties
has_performance and has_input/output cannot be mapped to any construct.

According to shared best practices [20, 21], such issues can be solved by means
of a di�erent modeling, that keeps unaltered the meaning of the concepts. As
regards the �rst issue, anonymous instances, that are instances with no spec-
i�ed name, have been introduced. They can be used as property values, but
they assume the meaning of Class. From a practical point of view, an anony-
mous instance can be implemented as an OWL class with a single instance.

21

Bene�ts of such an approach are manyfold. Firstly, instances can be connected
to classes, at any abstraction level, e.g. CLASSIFICATION task can be linked to
the anonymous instance of ClassificationModel, while a speci�c instance of
ClassificationAlgorithm can have as output a speci�c subclass of Classifi-
cationModel. Secondly, resulting ontology is compatible with OWL-DL. Lastly,
DL-based reasoners are able to infer a hierarchy among anonymous instances as
well as among classes.

For the issue related to n-ary relations, the solution is similar to the rela-
tionship rei�cation in the context of database engineering. In this way the n-ary
relation is translated into more binary relations between the anonymous instance
and other instances. Hence, input/output and performance relations are rei�ed
with the introduction of new classes.

At present the KDDONTO implementation is formed of 95 classes, 31 rela-
tions and more than 140 instances, representing some algorithms of preprocess-
ing, modeling and postprocessing phases. In particular we described algorithms
implementing Feature Extraction, Classi�cation, Clustering, Evaluation and In-
terpretation tasks. For lack of space we cannot show the whole KDDONTO,
which is available at the project website2.

4 Discussion
Ontology evaluation is an important issue in ontology building �eld, and various
approaches have been proposed in literature. From the survey [22], we derive that
an ontology has to be evaluated on the basis of both the domain description it
provides, and the advantages it gives to an application task.

According to approaches described in [22], the former evaluation could be
achieved by comparing the ontology to a golden standard, or to a source of data.
As already stated in 3.1, both of them are not suitable for KDDONTO, because
so far there is neither a wide accepted standard for the KDD domain nor a corpus
of documents from which signi�cant terms can be extracted. However, the use
of the design methodology discussed in in Section 2 leads KDDONTO to satisfy
quality requirements, allowing us to also state that the domain is correctly and
e�ectively described. In particular, following the �rst and the second steps of
the methodology we build a clear ontology, where the meaning of each primitive
concept is �rst given in natural language, and then used as bricks for compos-
ing complex concepts, by means of logical restrictions. This accurate choice of
the basic concepts allows us to also satisfy the minimal ontological commitment
requirement. The division into phases supports in the minimization of the encod-
ing bias, solving implementation issues only after a conceptual schema is built.
The coherence of KDDONTO has been checked through Pellet3, one of the most
used open source OWL-DL reasoner. Finally, the design choices do not prevent
the extension of KDDONTO, both introducing new taxonomies and importing
KDDONTO as part of other ontologies. It is also to be noted that at each step
2 http://boole.diiga.univpm.it/kddontology.owl
3 http://clarkparsia.com/pellet

22

of the methodology we have a valid ontology represented in a di�erent language;
this enables, for instance, the possibility to translate KDDONTO in an other
language without performing again the �rst two steps.

KDDONTO has been designed for giving support both in discovering and
composition of KDD algorithms, therefore it has to be evaluated w.r.t. both
these application tasks. For lack of space, in this work we cannot detail the
advantages KDDONTO gives to these tasks, but refer the interested reader to
our previous works. As concerns the discovery task, in [11] we plugged a pre-
liminary version of KDDONTO into the KDDVM Broker. It turns out that the
use of relations like is-a and in/out_module led to increase the accuracy in
retrieving algorithms. On the other hand, we proved that KDDONTO enables
the semi-automatic building of valid processes, in which reasoning capabilities
based mainly on has_input/output, is-a and part_of relations are exploited
for linking two algorithms [12].

5 Conclusion
A KDD process is a highly complex, iterative and interactive process, with a
goal-driven and domain dependent nature. In order to e�ectively design such
a process the user has 1) to individuate suitable algorithms for achieving her
goal starting from the data at hand, and 2) to correctly compose the algorithms
for forming a valid process. In order to give support to users in both these
activities, within the Knowledge Discovery in Databases Virtual Mart project
we are developing discovery and composition support services, that are based on
KDDONTO, a formal ontology describing the domain of KDD algorithms.

In this paper we have discussed the design of KDDONTO. We �rst discussed
the necessity to follow a formal methodology, then we use an ontology building
methodology aimed to de�ne goal-oriented ontologies, satisfying quality require-
ments. As results, the glossary of domain characteristic terms, the set of logical
axioms, and the OWL-DL implementation of KDDONTO have been obtained.

While KDDONTO-based services for supporting algorithms discovery have
been developed and are available at the project web site, we are at present
working on the development of a service supporting the semi-automatic KDD
process composition.

References
1. Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. In: From data mining to

knowledge discovery: an overview. American Association for Arti�cial Intelligence,
Menlo Park, CA, USA (1996) 1�34

2. Morik, K. and Scholz, M.: The MiningMart Approach to Knowledge Discovery in
Databases. In Zhong, N. and Liu, J., ed.: Intelligent Technologies for Information
Analysis. Springer (2004) 47�65

3. Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlösser, J.J., Breitner, C.,
Engels, R. and Lindner, G.: Towards Process-Oriented Tool Support for Knowl-
edge Discovery in Databases. In: PKDD '97: Proceedings of the First European

23

Symposium on Principles of Data Mining and Knowledge Discovery, London, UK,
Springer-Verlag (1997) 243�253

4. Bernstein, A., Provost, F. and Hill, S.: Towards Intelligent Assistance for a Data
Mining Process: An Ontology Based Approach for Cost-Sensitive Classi�cation.
IEEE Transactions on Knowledge and Data Engineering 17(4) (2005) 503�518

5. CRISP-DM site. http://www.crisp-dm.org
6. Cannataro, M. and Comito, C.: A data mining ontology for grid programming.

In: Proc. 1st Int. Workshop on Semantics in Peer-to-Peer and Grid Computing, in
conjunction with WWW2003. (2003) 113�134

7. Yu-hua, L., Zheng-ding, L., Xiao-lin, S., Kun-mei, W. and Rui-xuan, L.: Data
mining ontology development for high user usability. Wuhan University Journal
of Natural Sciences 11(1) (2006) 51�56

8. Panov, P., Dºeroski, S. and Soldatova, L.: OntoDM: An Ontology of Data Mining.
In: Proc. of the 8th IEEE Int. Conf. on Data Mining Workshops. 1st Int. Workshop
on Semantic Aspects in Data Mining. (2008) 752�760

9. �áková, M., K°emen, P., �elezný F. and Lavra£, N.: Using Ontological Reasoning
and Planning for Data Mining Work�ow Composition. In: SoKD: ECML/PKDD
2008 workshop on Third Generation Data Mining: Towards Service-oriented
Knowledge Discovery. (2008)

10. Gruber, T.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43(5-6) (1995) 907�928

11. Diamantini, C. and Potena, D.: Semantic Annotation and Services For KDD Tools
Sharing and Reuse. In: Proc. of the 8th IEEE Int. Conf. on Data Mining Work-
shops. 1st Int. Workshop on Semantic Aspects in Data Mining. (2008) 761�770

12. Diamantini C., Potena D., and Storti E.: Ontology-driven KDD Process Com-
position. In Adams, N. et al., ed.: Proc. of the 8th International Symposium on
Intelligent Data Analysis. Volume 5772 of LNCS. Springer, Lyon, France (Aug 31
- Sep 2 2009) 285�296

13. Missiko�, M. and Navigli, R.: Applying the Uni�ed Process to largescale Ontology
Building. In: Proc. of 16th IFAC World Congress. (2005)

14. Staab, S., Studer, R., Schnurr, H. and Sure, Y.: Knowledge Processes and Ontolo-
gies. IEEE Intelligent Systems 16(1) (2001) 26�34

15. Fernandez, M., Perez, A. and Juristo, N.: METHONTOLOGY: from Ontological
Art towards Ontological Engineering. In: Proc. of the AAAI97 Spring Symposium
Series on Ontological Engineering, Stanford, USA (March 1997) 33�40

16. Noy, N. and McGuinnes, D.L.: Ontology Development 101: A Guide to Creating
Your First Ontology. Stanford University (2002)

17. Hand, D.J., Mannila, H. and Smyth, P.: Principles of Data Mining (Adaptive
Computation and Machine Learning). The MIT Press (August 2001)

18. Sumathi, S. and Sivanandam, S.N.: Introduction to Data Mining and its Applica-
tions. Springer (2006)

19. Guarino, N.: Formal Ontology and Information Systems. In: Proc. of the 1st Int.
Conf. on Formal Ontologies in Information Systems (FOIS98), Trento, Italy, IOS
Press (1998) 3�15

20. Noy, N., ed.: Representing Classes as Property Values on the Semantic Web. W3C
Working Group Note (2005)

21. Noy N. and Rector, A., ed.: De�ning N-ary Relations on the Semantic Web: Use
with Individuals. W3C Working Group Note (2006)

22. Brank, J., Grobelnik, M. and Mladenic, D.: A survey of ontology evaluation tech-
niques. In: Proc. of the Conference on Data Mining and Data Warehouses (SiKDD).
(2005)

24

Towards a Service-Oriented Knowledge Discovery

Platform

Vid Podpe£an1, Matjaº Jur²i£1, Monika �akova2, Nada Lavra£1,3

1 Joºef Stefan Institute, Ljubljana, Slovenia
2 Czech Technical University, Prague, Czech Republic

3 University of Nova Gorica, Nova Gorica, Slovenia

Abstract. The paper addresses a challenge of third-generation data
mining systems: the ability to make use of distributed data processing/
mining algorithms and potentially distributed heterogeneous informa-
tion/knowledge sources. It proposes a Serviceoriented Knowledge Discov-
ery (SoKD) framework and its prototype implementation, based on the
Orange toolkit, which implements three main new functionalities: �rstly,
simple creation of graphical work�ow components (Orange widgets) from
distributed web services; secondly, the composition of data mining work-
�ows from local and distributed data processing/mining algorithms ap-
plied to a combination of local and distributed data/knowledge sources;
and thirdly, an implementation of a toolkit for producing new web ser-
vices from existing data processing/mining algorithms. The proposed
approach has been demonstrated on the task of constructing a work�ow
combining Orange processing components with Weka data mining ser-
vices, as well as a work�ow of text mining services combined with the
widely known Pubmed database.

1 Introduction

Knowledge discovery and data mining have a long tradition, and two generations
of knowledge discovery and data mining systems have already emerged. While
the �rst-generation systems support a single or a few data mining algorithms
designed to mine simple attribute-valued data [26], today's second-generation
systems are characterized by high-performance interfaces to databases and data
warehouses, the provision for inductive queries and by increased algorithm scal-
ability. However, these second-generation mining systems fail to provide support
for the analysis of distributed and poorly structured data/knowledge sources.
They also lack more advanced inductive and reasoning capabilities, both of which
are required to support the discovery and design processes involved in modern
science and engineering.

Primarily focusing on the growing volumes of mainly homogeneous data,
second-generation data mining methods and systems have failed to recognize
the huge opportunities (and challenges) presented by fast-growing volumes of
complex and geographically dispersed information and knowledge sources pub-
licly available on the web. Neither existing data mining nor contemporary in-
formation retrieval technologies are designed to handle complex and dispersed

25

knowledge sources which permeate all current science and technology develop-
ment activities, thereby creating a fundamental bottleneck in scienti�c discovery
and technology development.

A Service-oriented Knowledge Discovery (SoKD) approach, proposed in this
paper, aims at developing a thirdgeneration knowledge discovery framework
[1,7,10] and its implementation that is intended to address the bottlenecks dis-
cussed above. The proposed SoKD framework is targeted to become the enabling
technology for scienti�c discovery, assisting the human scientist by providing ac-
cess to information fusion and data analysis mechanisms and by enabling the
construction of work�ows of data processing/mining algorithms implemented as
web services.

A practical implementation of the third-generation knowledge discovery plat-
form, named Orange4WS, aims to support scientists in the creation of new sci-
enti�c hypotheses from the wealth of knowledge and services available on the
web. The third-generation data mining paradigm shift implies the need for a
substantially di�erent knowledge discovery platform, aimed at supporting hu-
man experts in scienti�c discovery tasks. In comparison with the current pub-
licly available data mining platforms (e. g. Weka [26], KNIME4, Orange [4],
R-Bioconductor5), the SoKD platform should give access to open-source data
processing and mining tools, designed as SOAP-based web services6, in our fu-
ture work to be supported by a suitable meta-data approach7.

The described paradigm shift can be achieved through the integration of
existing and newly developed data mining and knowledge discovery services, us-
ing the knowledge retrieved from publicly available sources in di�erent formats
(tabular data, text data, rules and other descriptive patterns, rule sets and other
predictive models). The SoKD paradigm shift can potentially lead to the devel-
opment of a novel service-oriented knowledge discovery process model for data
mining (extending the current CRISP-DM data mining standard8). This will
enable the orchestration of web-based data mining services and fusion of infor-
mation of various formats, as well as simple design of repeatable data mining
and information fusion work�ows used in novel life science, bioinformatics and
e-science applications.

In summary, this paper addresses a challenge of third-generation data min-
ing systems: the ability to make use of distributed data processing (mining)
algorithms applied to distributed and heterogeneous information and knowledge
sources. It proposes a service-oriented knowledge discovery framework, and the
prototype implementation of the SoKD platform which upgrades the Orange
data mining toolkit [4].

4 http://www.knime.org/
5 http://www.bioconductor.org/
6 In the future also ReST-based or a combination of both, once WSDL2.0 becomes
more widely accepted.

7 Using technologies such as SA-WSDL, OWL-S, WSDL-S, SWSF-SWSL, WSMO-
WSML

8 http://www.crisp-dm.org/

26

The paper is structured as follows. Section 2 presents a selection of past
and current service-oriented data analysis approaches. Section 3 provides a mo-
tivating use case based on data mining services from the Weka environment.
Section 4 is the core of this paper, presenting the SoKD framework and its im-
plementation, named Orange4WS, upgrading the Orange data mining toolbox
with the following new functionalities: �rstly, simple creation of Orange widgets
from distributed web services; secondly, the composition of data mining work-
�ows from local and distributed data processing/mining algorithms applied to
a combination of local and distributed data/knowledge sources; and thirdly, an
implementation of a toolkit for producing new web services. Section 5 shows the
application of the proposed approach used in the construction of work�ows of
text mining services combined with the widely known Pubmed database. Section
6 concludes by discussing the main advantages and shortcomings of the proposed
framework.

2 Related work

This section discusses the idea of scienti�c work�ows and introduces the term
Service-oriented Computing. Main advantages and shortcoming of web services
in the context of knowledge discovery are presented along with some general
principles of service-orientation.

2.1 Work�ow construction

Construction of analytic work�ows has attracted a lot of development in recent
years. Our work is mainly concerned with the composition of data processing/
mining work�ows composed of data mining algorithms available in data min-
ing toolkits, combined with the execution of algorithms available as services on
the web. Moreover, we are concerned with the analysis and use of distributed
data/knowledge sources. In this sense, our work is related to the goal of providing
an adequate work�ow editing environment focused on the integration of compu-
tational resources and middleware and e�cient execution, such as Triana [23],
the system for scienti�c work�ows developed in Kepler 9, WCT developed within
the K-WF grid10 and the tools developed within the DiscoveryNet project [16]
and projects ADMIRE [11] and Weka4WS [21]. Furthermore, the Taverna [15]
environment for work�ow development and execution developed within the my-
Grid11 project, uses an ontology focused on operations speci�c to bioinformatics
tasks.

Similarly to the FAEHIM [2] project, we concentrate on the subdomain of sci-
enti�c knowledge discovery connected to data mining. Similar to our approach,
the toolkit developed within FAEHIM allows for manual composition of work-
�ows, but the system is not implemented on top of an existing data mining
9 http://kepler-project.org

10 http://www.kwfgrid.eu
11 http://www.mygrid.org.uk

27

platform, and hence it lacks the basic collection of data mining/knowledge dis-
covery algorithms, visualization techniques and testing routines.

There have been some e�orts to provide a systematic description of data and
processes for the classical data mining tasks. The systems developed in the Min-
ingMart project [12] and in the DataMiningGrid project [19] focus on mining
propositional patterns from data stored in a relational database, each contain-
ing a meta-model for representing and structuring information about data and
algorithms. The systems CITRUS [25] uses an object oriented schema to model
relationships between the algorithms, while CAMLET [20] uses an ontology of
algorithms and data structures, making a limited use of planning for process
decomposition starting from a manually de�ned structure. Particularly relevant
to our work is the problem of web service composition. In [14] BPEL4WS12 is
used for task formulation and work�ow representation, but the adaptation of
BPEL4WS to scienti�c work�ows is still not standardized [18].

2.2 Service-oriented design and web services for knowledge

discovery

Service-oriented architecture (SOA) is a term that represents a model in which
automation logic is decomposed into smaller, distinct units of logic [5] (within
SOA, these units are known as services). Some of the key principles of service-
orientation [5,13] are as follows: loose coupling, autonomy, reusability, stateless-
ness, abstraction, composability, and discoverability.

In general, service-oriented architecture can be implemented using a wide
range of technologies including SOAP, REST, RPC, DCOM, CORBA, Web Ser-
vices or WCF. Most commonly, web services are used as the key technology as
they are platform and language independent, simple, standardized, and �exi-
ble. It should be noted that web services are not neccesarily inherently service-
oriented which means that they can be designed to duplicate the behaviour and
functionality found in complex distributed systems instead of being fully SOA-
compliant (in this paper we mostly focus on the design based on SOA-compliant,
loosely coupled, composable web services). Probably the most important char-
acteristics of web services is that the data exchange is based on open standards.
Messages are traveling from one web service to another via globally standard-
ized and accepted protocols. Moreover, messages themselves are standardized
and the use of SOAP, WSDL, XML, and XML schema allows for messages to be
self-contained. All this, combined with their simplicity, distributed nature, and
possibility of accessing large online databases make web service an appealing
choice for various knowledge discovery tasks. However, there are several open
issues and we will shortly discuss the most important.

In contrast with early machine learning and data mining algorithms current
methods are focused on mining knowledge from large data sources (several gi-
gabytes or even terabytes of raw and structured data). While usually this is not

12 http://www.ibm.com/developerworks/library/speci�cation/ws-bpel

28

a problem for the mining algorithms themselves, there is a problem of commu-
nication as the communication capabilities of computer systems are much worse
than their internal data transfer abilities. Obviously, some principles of service-
orientation have to be broken in order to apply the concept of web services to
such large-scale problems. Most notably, web services will loose statelessness and
will also become more tightly connected. For example, only pointers to data are
exchanged between services and only pointers to results are returned. Clearly,
such services have states and all depend on the central service, which provide
storage and a collection of methods for the analysis.

Another, even more serious problem, is the lack of standards for exchanging
data and knowledge. There are some advances in this direction, e.g. Predictive
Model Markup Language13 (PMML) for describing various data mining and sta-
tistical models, and ExpML language for sharing machine learning information
[24], but are mostly unsupported by the general community. Moreover, there is
no common and generally accepted XML-based language for describing tabular
and other types of data. Old style data formats [4,26] like csv, tab or ar� are not
acceptable for the third-generation of knowledge discovery tools as they are not
extensible nor self-describing. Consequently, most available knowledge discovery
services are still in their infancy (including most services presented in this pa-
per), communicating using data and models encoded in implementation speci�c
representations.

Finally, as in the case of all web-related entities there is a problem of avail-
ability, security, and privacy. While little can be done about availability except
by providing a certain level of redundancy, there are numerous WS-* extensions
[5,13] dealing with security14.

3 SoKD platform: A motivating example

This section presents a motivating use case for developing and using a service-
oriented knowledge discovery platform (SoKD). The use case is built upon Weka
[26] web services provided by A. Bosin15. Available web services are based on
Weka version 3.4.6 and are running on Apache Tomcat web server using Apache
Axis2 web service tools. There are 8 available services: attributeRank, attributeS-
elect, datasetFilter, datasetDiscretize, classi�erBuild, clustererBuild, modelTest,
and modelApply. All parameters of all services are implementation speci�c (Weka
models, ar� data format, etc), which is not appropriate for the following reasons:

1. Validity of parameter values can be checked only internally (Weka) as all
strings are accepted by the web server. This is a waste of resources as Weka
methods are invoked even with invalid parameter values. Also, error messages
are more di�cult to understand.

13 http://www.dmg.org/pmml-v3-2.html
14 We will not discuss them here as this is out of scope of this paper.
15 http://www.dsf.unica.it/∼andrea/webservices.html

29

2. Models, encoded as hexadecimal strings are completely unportable. Only
two exactly the same versions of Weka can exchange such models. Encoding
and decoding models in PMML would be a better choice.

Although these services have poor connectivity with outer world processing units,
they can be interconnected to produce better than trivial work�ows because the
major functionality of Weka is available (attribute evaluation, data �ltering,
model creation and testing).

Firstly, this use case supports the idea of service-oriented knowledge discovery
by combining distributed processing components into non-trivial, easily under-
standable diagrams, which can be stored and executed on demand. Secondly, it
demonstrates the general ability of the SoKD platform to import, connect, ex-
ecute, and combine web services with local components. In our implementation
of the SoKD platform, built on top of the Orange data mining toolkit [4] the
local components are the Orange data/knowledge processing algorithms (Orange
widgets), and simpler components providing integral data types (i.e. numbers,
strings, and booleans).

Fig. 1. A work�ow of Weka data mining services, combined with Orange's local process-
ing elements constructed within the Orange4WS platform. Components with numbers
3, 6, 11, 12, 13, and 14 are web services, components with numbers 1 and 5 are native
Orange widgets. Other components are supporting widgets provided by Orange4WS.
Names of parameters on connecting lines are not shown for the sake of simplicity.

Apart from the shortcomings, stated above, there are also several advan-
tages which support the idea of exposing Weka implementations of data mining
algorithms as web services. Most notably, Weka web services distribute the ac-
tual processing between the user's computer and a remote computer system (or

30

systems). Moreover, implementations of data mining algorithms are now self-
contained, platform independent, and do not need the entire Weka environment.
Obviousy, this greatly expands the range of potential users as Weka algorithms
can now be integrated into any software solution capable of making use of web
services. Finally, if these services are maintaned and updated regularly, all of
their users always have access to the latest implementations without any e�ort.

Our use case implements the following processing steps: (1) loading the data
from a local �le, (2) ranking of attributes to manually select few best, (3) parti-
tioning the data into the training and test set, (4) building a classi�er and evalu-
ating it on the test set, (5) reporting results to the user. This is accomplished by
connecting 15 processing entities 6 of which are web services, 2 are native Orange
Widgets while the rest are supporting widgets provided by Orange4WS (data
transformation and production of integral data types). The work�ow, created
and executed within the Orange4WS platform is shown in Figure 1.

4 The implementation of Orange4WS

This section brie�y describes the structure and design of the presented SoKD
software platform. We explain and comment our decisions about technologies
and software tools that were used. The main part of the section is a description
of the design of Orange4WS and the acompanying toolkit for producing new web
services.

4.1 Design choices and technological background

The proposed software solution, named Orange4WS, is built on top of two open-
source scienti�c community driven projects:

� Orange16 data mining framework [4], which provides a range of preprocess-
ing, modelling and data exploration techniques, and

� Python Web Services project17 [8,9], which provides libraries for the de-
velopment of web services using the Python programming language18 by
implementing various protocols including SOAP, WSDL, etc.

Among other alternatives the following tools were also considered: Weka, Triana,
KNIME, and Taverna. The �nal decision, however, was Python and Orange due
to simplicity and power of the Python scripting language19, and availability
16 The Orange data mining toolkit consists of the C++ layer with interfaces to the

Python language, the Canvas, which is essentially a large collection of processing
elements, called Orange Widgets, and the work�ow execution engine.

17 http://pywebsvcs.sourceforge.net/
18 Use of the pythonic branch of the WSO2 seb service framework (based on Apache

Axis2/C) is planned in the future.
19 This decision has ruled out Java-based tools, even though they provide many de-

sirable features like large-scale data mining (KNIME), widely accepted implemen-
tations (Weka), support for various forms of distributed computing (Triana) and
support for numerous biology-oriented web services (Taverna).

31

of numerous data mining algorithms and powerful visualization techniques in
Orange. By using an interpreted language it is possible to avoid the compile-test-
recompile development cycle and, what is more important, dynamic languages
are a perfect choice for the dynamic world of web-related technologies, especially
web services.

Our ultimate goal was to provide a simple, user-friendly software tool, able
to seamlessly integrate web services and local components in terms of work�ow
composition, originating from di�erent communities: data mining, text mining
and knowledge discovery in general, systems biology, etc. Therefore, having in
mind that the construction of work�ows of processing elements will be the central
feature of our tool and that the implementation of a user-friendly work�ow
management is a very time consuming process, the decision was to retain the
complete Orange work�ow engine at the �rst stage of development and provide
only additional capabilities which will be later able to evolve into a more powerful
data �ow engine.

4.2 Design and implementation of Orange4WS

Orange4WS consists of two layers: the supporting level which deals with technical
details of web services (information extraction, execution, error reporting, data
transfer and transformation, code generator) and the upper level, which simply
uses low-level functionalities to enable web services as building blocks of the
Orange Canvas. This section describes the structure of Orange4WS followed by
the description of the accompanying tool for production of new web services in
Section 4.3

The key element of programmatic use of web services is the Web Services
Description Language (WSDL). Orange4WS does not parse WSDL �les directly
as this functionality is provided by the tools from the Python for Web Services
Project. However, the results of deep parsing of message objects de�ning web
service inputs and outputs are not available directly to the user but through
auto-generated clients. Thus, Orange4WS provides two modules to get all the
required information: the extractor and the importer module which handle web
service message communication and automatically generate web service client
code, respectively.

The actual invocation of the web service is performed by the executor module.
This component provides threaded execution monitor and custom HTTP con-
nection class with timeout. The latter is essential as there is no guarantee that
the called web service will ever return a response message (reliability problems
were discussed in Section 2.2). The structure of Orange4WS, described above,
is summarized in Figure 2.

As the principal design guideline of Orange4WS is simplicity and automa-
tization, a mapping mechanism is required which is able to provide seamless
integration of web services into the Orange Canvas. This mechanism must hide
all details of web service communication and provide a widget-like interface to
all supported services. The Orange4WS generator module, also shown in Fig-
ure 2, provides the this functionality by producing valid Python code which is

32

essentially an Orange Widget and uses the same communication mechanisms as
other �native� widgets. Thus, all technical details regarding the integration of
web services are summarized as one user interface command, namely �import web

service� which combines all the necessary steps to produce new Orange widgets
from speci�ed web services. All details about the communication with a web
service20 are hidden and can be summarized from the user's perspective as a
normal widget operation: (1) receiving data, (2) widget internal processing, and
(3) outputting processed data.

Fig. 2. The structure of Orange4WS platform, built on top of the Orange data mining
toolkit.

4.3 Production of new web services

A separate part of our service-oriented knowledge discovery platform is a package
of tools which ease the production of new services based on the code in languages,
callable from Python (e.g. C/C++, Java, Fortran, C#). These tools closely
follow the general �WSDL �rst� design principle [5,13]. This principle promotes
clearly designed, interoperable and reusable services by separating the design
of interfaces from the actual logic. The package provides a simple-to-use web
server, which is based on the server included in the ZSI package which itself is
based on the server provided by the standard Python distribution. Additionally,
multi-threading, logging and address �ltering were enabled and the resulting
server is lightweight, secure, and easy to use.

20 Our treatment of web services is deliberately simpi�ed as one of our primary goals
is simplicity. Thus, we consider only primitive, synchronous request-resonse MEPs
(message exchange patterns).

33

5 A text mining use case

In Section 3 we presented a motivating use case which employs machine learning
(data mining) web services based on Weka's implementations. The second use,
which is presented in this section, demonstrates the use of text mining web
services, available from the LATINO21 project.

LATINO is a software library providing a range of data mining and machine
learning algorithms with the emphasis on text mining, link analysis, and data
visualization. Recently, its functionalities are becoming available as web services
to ease the use of the library and consequently broaden its user community.

In our use case �ve LATINO services were used in combination with the
Pubmed search service, local Orange graph visualization tool and supporting
services from Orange4WS.

Fig. 3. A wor�ow of text mining services. Components numbered 3, 4, 5, 6, 7, and 8 are
web services, components 1, 2 and 9 are Orange4WS supporting widgets, component
10 is a native Orange graph visualizer.

The goal of the use case is to produce a term graph which could poten-
tially give insight into relations between biological, medical and chemical terms,
relevant to the subject of the query. Also, it shows the ability of Orange4WS
to combine publicly available data repositories (Pubmed) with third-party data
analysis tools (LATINO) and powerful local visualization components (Orange
graph visualizer). The work�ow of processing components is shown in Figure 3.

Firstly, Pubmed is queried with a query string and maximal number of doc-
uments (components 1, 2, and 3). It returns a collection of IDs of relevant doc-
uments. Then, obtained IDs are used to collect titles, abstracts and keyword of

21 http://sourceforge.net/projects/latino

34

Fig. 4. A term graph obtained by querying Pubmed. Querry: �stem+cell�, max. number
of documents: 15. Because of the space limitations names of vertices and values of lines
are not shown.

Fig. 5. A zoomed component from a term graph in Figure 4.

35

these documents (component 4). Afterwards, bag-of-words (BoW) sparse vec-
tors are created from the collection of words (component 6). To simplify setting
the parameters for unexperienced users there is a service providing a suitable
set of default values which can be used as an input to the web service which
constructs BoW vectors (component 6). Then, BoW vectors are transposed and
a term network is created (we omit the details how this graph is produced as
it is out of the scope of this paper). Component 8 produces a network in the
widely used Pajek's .net format [3], which is �nally loaded into Orange's native
graph structure and visualized with the Net explorer widget.

For example, the query string �stem+cell� with the limit of 15 documents
produced a graph which is shown in Figure 4. A zoomed component is shown in
Figure 5.

6 Discussion

This paper proposes a third-generation knowledge discovery framework and its
implementation named Orange4WS. Based on a second-generation data mining
toolkit (Orange) that supports execution of work�ows of processing components,
our new platform upgrades its capabilities by transparent integration of web
services. As web services are an extremely versatile and powerful concept which
is becoming more and more popular, we believe their use in knowledge discovery
will increase rapidly.

There are, however, many issues and shortcomings which still need to be
resolved. As mentioned in Section 2.2, the most important issues are the stan-
dardization of knowledge and data representation and intelligent handling (pro-
cessing and transfer) of large amounts of data. Our proposed platform is already
targeted at semantics of web services although we did not explicitly address this
issue22. Also, we took into consideration intelligent data handling, especially in
connection with text mining services o�ered by the LATINO project where large
amounts of data are being processed.

Our future work will be mainly focused on the semantic level of service-
oriented knowledge discovery trying to reach the ultimate goal: a third-generation
knowledge discovery platform. Several technologies, many of which are still un-
der development will have to be considered for use and/or integration, e.g. SA-
WSDL23, WSDL-S24, SWSF-SWSL25, OWL-S26, WSMO-WSML27 etc. Finally,
as one of the main goals of our platform is to be used by researchers with di�er-
ent background knowledge and di�erent knowledge discovery tasks and a user

22 Semantic annotations of algorithms and annotated data mining work�ow construc-
tion is addressed in [27].

23 http://www.w3.org/TR/sawsdl/
24 http://www.w3.org/Submission/WSDL-S/
25 http://www.w3.org/Submission/SWSF-SWSL/
26 http://www.w3.org/Submission/OWL-S/
27 http://www.w3.org/Submission/WSML/

36

community is expected to be formed, the platform will have to provide capabil-
ities of sharing solutions of various knowledge discovery tasks, provided by its
users.

Acknowledgments

The work presented here was partially supported by the European Commission
under the 7th Framework Programme FP7-ICT-2007-C FET-Open, contract
no. BISON-211898. The authors are grateful to Andrea Bosin for providing a
repository of web services of Weka algorithms, and Miha Gr£ar for his work on
the LATINO library.

References

1. R. Agrawal, J. C. Freytag, R. Ramakrishnan (eds.) Data Mining: The Next Gen-
eration. Dagstuhl Seminar Proceedings 04292, 2004.

2. A. Ali, O. Rana, and I. Taylor, Web services composition for distributed data
mining. In Proceedings of the 2005 IEEE International Conference on Parallel

Processing Workshops, ICPPW, 2005.
3. V. Batagelj, A. Mrvar, Pajek - Analysis and Visualization of Large Networks.

Graph Drawing Software, Springer, 77-103, 2003.
4. J. Dem²ar, B. Zupan, and G. Leban, Orange: From experimental machine learning

to interactive data mining, White Paper, 2004.
5. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-

Hall. 2006.
6. U. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From Data Mining to Knowledge

Discovery in Databases, AI Magazine, 37�54, Fall 1996.
7. T. Finin et al. (eds.) National Science Foundation Symposium on Next Genera-

tion of Data Mining and Cyber-Enabled Discovery for Innovation (NGDM'07):
Final report. http://www.cs.umbc.edu/∼hillol/NGDM07/abstracts/NGDM07-
Report.pdf

8. C. Hobbs: Using ZSI. Technical report. Nortel Advanced Technology Research,
2007.

9. H. Joukl: Interoperable Python ZSI WSDL/SOAPWeb Services tutorial. Technical
report. LBBW Financial Market Technologies, 2008.

10. H. Kargupta, A. Joshi, K. Sivakumar and Y. Yesha (eds.). Data Mining: Next

Generation Challenges and Future Directions. AAAI Press, 2004.
11. N.L. Khac, M.T. Kechadi, and J. Carthy. Admire framework: Distributed data

mining on data grid platforms. In Proceedings of the First Int. Conf. on Software

and Data Technologies, vol. 2, pp. 67�72, 2006.
12. K. Morik and M. Scholz: The MiningMart approach to knowledge discovery in

databases. In Proc. of the International Conference on Machine Learning, pp. 47�
65, 2004.

13. E. Newcomer, G. Lomow. Understanding SOA with Web Services. Addison Wesley,
2005.

14. M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
monitoring web service composition. In Proceedings of AIMSA, pp. 106�115, 2004.

37

15. D. D. Roure, C. Goble, and R. Stevens. The design and realisation of the my-
experiment virtual research environment for social sharing of work�ows. Future
Generation Computer Systems, vol. 25, pp. 561�567, 2008.

16. A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo. The discovery
net system for high throughput bioinformatics. Bioinformatics, vol. 19, pp. 225�
231, 2003.

17. J. C. Schlimmer: Concept Acquisition Through Representational Adjustment. Doc-
toral dissertation, Department of Information and Computer Science, University
of California, Irvine, CA, 1987.

18. A. Slominski, Adapting BPEL to scienti�c work�ows. In I. Taylor, E. Deelman,
D. Gannon, and M. Shields, Eds., Work�ows for e-Science, pp. 208�226, Springer,
2007.

19. V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kindermann,
and W. Dubitzky, Grid-enabling data mining applications with DataMiningGrid:
An architectural perspective, Future Generation Computer Systems, vol. 24(4), pp.
259�279, 2008.

20. A. Suyama, N. Negishi, and T. Yamagchi, Composing inductive applications using
ontologies for machine learning. In Proceedings of the First International Confer-

ence on Discovery Science, pp. 429�431, 1998.
21. D. Talia, P. Trun�o, O. Verta, Weka4WS: A WSRF-enabled Weka Toolkit for

Distributed Data Mining on Grids. In Proceedings of the 9th European Conference

on Principles and Practice of Knowledge Discovery in Databases, vol. 3721, pp.
309-320, 2005.

22. I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds., Work�ows for e-Science,

Scienti�c Work�ows for Grids. Springer, 2007.
23. I. Taylor, M. Shields, I. Wang, and A. Harrison, The Triana work�ow environment:

Architecture and applications. In Work�ows for e-Science, I. Taylor, E. Deelman,
D. Gannon, and M. Shields, Eds. Springer, pp. 320�339, 2007.

24. J. Vanschoren, B. Pfahringer, and G. Holmes: Learning From The Past with Exper-
iment Databases. Working Paper Series 08/2008, Computer Science Department,
University of Waikato, 2008.

25. R. Wirth, C. Shearer, U. Grimmer, T. P. Reinartz, J. Schloesser, C. Breitner, R.
Engels, and G. Lindner, Towards process-oriented tool support for knowledge dis-
covery in databases. In Proceedings of the First European Symposium on Principles

of Data Mining and Knowledge Discovery, vol. 1263, pp. 243�253, 1997.
26. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. 2nd Edition, Morgan Kaufmann, 2005.
27. M. �akova, Petr Kremen, Filip �elezny and Nada Lavra£. Using Ontologi-

cal Reasoning and Planning for Data Mining Work�ow Composition. SoKD:
ECML/PKDD 2008 workshop on Third Generation Data Mining: Towards Service-
oriented Knowledge Discovery, 2008.

38

Advancing Data Mining Workflow Construction:

A Framework and Cases using the Orange

Toolkit

Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

Czech Technical University in Prague, Czech Republic
{zakovm1,zelezny}@fel.cvut.cz

Jožef Stefan Institute, Ljubljana, Slovenia
{nada.lavrac,vid.podpecan}@ijs.si

Abstract. The paper presents a framework for automatic construction
of data mining workflows based on input and output specification of the
data mining task. An ontology of data mining components is used for
the formalization of the data mining task, knowledge types and algo-
rithms. The ontology is then used for automated workflow construction
using an algorithm that combines planning and ontological reasoning.
The paper demonstrates how enhancing the classical planning with on-
tological reasoning can address some of the challenges of data mining
workflow construction, including complex objects passed between the
algorithms, constraints formulation and workflow presentation. The pro-
posed methodology was tested in a case study annotating algorithms
available in the Orange data mining toolkit and extending Orange to
enable the execution of the generated data mining workflows consisting
of algorithms available in Orange.

Key words: data mining workflows, ontology, planning

1 Introduction

Integration of heterogeneous data sources and inferring new knowledge from
such combined information is one of the key challenges in present-day science.
Consider e.g. bioinformatics, where for virtually any biological entity (a gene, for
example) vast amounts of relevant background information are available from
public web resources. A principled fusion of such relevant data requires the
interplay of diverse specialized algorithms resulting in highly intricate workflows.

While the mutual relations of such algorithms and principles of their appli-
cability may be mastered by computer scientists, their command cannot be ex-
pected from the end user, e.g. a life scientist. A formal capture of this knowledge
is thus needed, e.g. in the form of ontologies of relevant services and knowl-
edge/data types, to serve as a basis for intelligent computational support of
knowledge discovery workflow composition. A formal capture of the knowledge
discovery task can be used to improve repeatability of experiments and to enable
reasoning on the results to facilitate reuse of workflows and results.

39

2 Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

In our work we define knowledge discovery workflow as a progression of steps
(inductive, deductive, format-conversion procedures etc.) involved in generalizing
specific data (e.g. measurements) into models and patterns, which, under appro-
priate interpretation, may represent novel knowledge about the problem domain
under investigation. Therefore it can be viewed as a special form of scientific
workflows [28], covering the data preparation and modeling stages of the stan-
dard CRISP-DM data mining methodology1.

This work was originally motivated by the complex knowledge discovery
workflow of interleaving inductive, deductive and format-conversion procedures
which had to be manually constructed in our previous study in bioinformatics
[30]. A methodology combining planning and ontological reasoning to construct
this type of workflows is described in [32],[33]. Its key ingredients are an ontol-
ogy of knowledge discovery algorithms, named the KD ontology, and a planning
algorithm.

To evaluate the generality of our methodology and to identify additional
challenges, this paper concentrates automatic generation of workflows of data
processing and data mining algorithms available within a single selected toolkit.
Algorithms available in the Orange [7] data mining toolkit were annotated using
the KD ontology. Two challenges were identified. Firstly, there are collections of
algorithms, which are equivalent from the point of view of input/output descrip-
tion (e.g. set of ranking algorithms resulting in redundant search and a large
number of generated workflows). Secondly, indefinitely long graphs can be con-
structed from the algorithms (e.g. using a sequence of preprocessing steps). These
two problems were addressed by imposing additional constraints, implemented
in the prototype solution described in this paper.

In this paper we present an enhanced version of the planning algorithm (de-
scribed in [33]), which is able to exploit the hierarchy of algorithms to reduce
the search space and also for filtering and a more user-friendly presentation of
the discovered workflows. Moreover we present a framework for integrating our
methodology into the Orange toolkit based on an ontology mapping between
the representation of algorithms in Orange and the representation using KD
ontology.

The paper is structured as follows: Section 2 describes related work in area of
data mining ontologies and planning, Section 3 presents an overview of the KD
ontology and an example annotation of an Orange algorithm using the KD ontol-
ogy. Section 4 describes the algorithm used for automatic workflow construction
and Section 5 presents the prototype implementation of our framework.

2 Related Work

Our work is mainly concerned with automatic composition of data mining and
knowledge discovery workflows and we view this problem in the context of plan-
ning. We currently focus on generating abstract workflows, i.e. workflows without

1 http://www.crisp-dm.org

40

Data Mining Workflow Construction: A Framework and Cases using Orange 3

mapping to concrete computational resources, rather than providing a workflow
editing environment focused on the integration of computational resources and
middleware and efficient workflow execution, such as Triana [29].

The most relevant for our work is the IDA system described in [3]. The
system uses an ontology, which provides a relatively detailed structure of the
propositional DM algorithms and is built on OWL-S [17]. Workflow construction
focuses on classical DM processes, which contain three subsequent steps: pre-
processing, model induction and post-processing. In contrast, we address more
complex, relational DM workflows with possibly multiple interleaved occurrences
of steps pertaining to the three categories. Furthermore, the workflows generated
by the IDA system are linear, whereas our workflows are directed acyclic graphs.
Another system for automatic workflow construction using a knowledge discovery
ontology is described in [4], however this work is focused only on automatic
formation of linear sequences of tasks.

The systems CITRUS [31] and CAMLET [27] aim at providing a systematic
description of data and processes for the propositional DM tasks and make a lim-
ited use of planning for process decomposition starting from a manually defined
structure. [31] uses an object oriented schema to model relationships between
the algorithms, while [27] uses an ontology of algorithms and data structures.
The FAEHIM [1] project also focused on creating DM workflows. In contrast
to our approach, the toolkit developed within FAEHIM supports only manual
workflow composition and does not use any formally defined conceptualization
of the domain.

Other efforts to provide a systematic formalization of the DM tasks include
projects MiningMart [16], DataMiningGrid [26] and systems described in [5] and
[14]. The systems [16] and [26] focus on mining propositional patterns from data
stored in a relational database. Each contains a meta-model for representing and
structuring information about data and algorithms, however, none of the meta-
models is expressed in an ontology language. Also, the systems do not provide
means for automatic workflow creation.

In parallel to our work, the OntoDM [18] ontology is being developed on the
basis of [8]. A principled top-down approach was adopted to the development
of OntoDM aiming at its maximum generality. Given the complexity of the
domain subject to modeling, the ontology is currently not sufficiently refined for
purposes of workflow construction [19]. Also, unlike our ontology, OntoDM is
not compatible with OWL-S.

Several previous works have explored planning in the context of workflows
outside of the DM domain. Notably, within the Pegasus project [6] a planner
is used to construct a concrete workflow given an abstract workflow. We tackle
a related yet different goal; given an ontology and a task description, we use a
planner to construct an abstract workflow.

Also relevant are solutions to the problem of web service composition in the
framework of planning. The work of [13] relies on computing a causal link matrix
for all the available services. However we work with a more general, non-linear

41

4 Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

notion of a plan, where the inputs of an algorithm (action) combine the outputs
of multiple other algorithms.

Work reported in [23], [12] and [15] translate an OWL description to a plan-
ning formalism based on PDDL. While the work presented in [12] and [15] use
classical STRIPS [9] planning, in [23], Hierarchical Task Network (HTN) plan-
ning [22] is employed. HTN is not applicable in our framework not constrained
to tree-based task decomposition. The approach presented in [15] and [12] uses
a reasoner in the pre-processing phase; we make a step beyond by integrating
a reasoning engine directly with the planner. Planning directly in description
logics is addressed in [11]. Currently the algorithm can only deal with DL-Lite
descriptions with reasonable efficiency.

3 Knowledge Discovery Ontology

We have provided a formal conceptualization of the knowledge discovery do-
main by developing the Knowledge Discovery Ontology (KD ontology, for short).
The ontology defines relationships among the ingredients of knowledge discovery
scenarios, both declarative (various knowledge representations) and algorithmic.
The primary purpose of the ontology is to enable the workflow planner to rea-
son about which algorithms can be used to produce the results required by a
specified knowledge discovery task and to query the results of the knowledge
discovery tasks.

The framework for data mining proposed in [8] (to be implemented in On-
toDM [18]) identifies three basic concepts of data mining: ‘data’, ‘patterns and
models’ and ‘data mining task’. In contrast our three core concepts are: knowl-
edge, capturing the declarative elements in knowledge discovery, algorithms,
which serve to transform knowledge into (another form of) knowledge, and
knowledge discovery task, which we have extended to involve workflows.

The ontology is implemented in the description logic variant of the semantic
web language OWL-DL [20]. Our primary reasons for this choice were OWL’s
sufficient expressiveness, modularity, availability of ontology authoring tools and
optimized reasoners. The core part of the KD ontology currently contains around
150 concepts and is available online.2 More details on the ontology are presented
in [33]. The structure of workflows is described using OWL-S [17].

In the following subsections we focus only on the description of the Algorithm
class of the KD ontology and provide details of the annotation of algorithms
available in the Orange toolkit.

3.1 Algorithms

The concept of algorithm is central to the work presented in this paper. The
Algorithm class is a base class for all algorithms, like the Apriori (algorithm
for association rule induction implemented in Orange [7]), in the example be-
low. For this work we have refined the hierarchy of fully defined classes, like

2 http://krizik.felk.cvut.cz/ontologies/2008/kd.owl

42

Data Mining Workflow Construction: A Framework and Cases using Orange 5

DecisionTreeAlgorithm or DataPreprocessingAlgorithm for fine-grained cat-
egorization of DM algorithms according to their functionality. The hierarchy of
algorithms allows for the formulation of additional constraints on the workflows.
E.g. there should be at most two preprocessing algorithms on each branch of the
workflow.

Each algorithm configuration is defined by its input and output knowledge
specifications and by its parameters. The Algorithm class is defined as a special-
ization of the OWL-S class Process and an algorithm configuration is an instance
of its subclass NamedAlgorithm. Both the input knowledge and the parameters
are instances of AlgorithmParameter and defined using the input property.
The output knowledge specifications are instances of AlgorithmParameter and
defined using the output property. The parameter instances are then mapped
to the appropriate Knowledge subclasses using the isRangeOf property.

3.2 Annotating Orange Algorithms

The KD ontology was used to annotate most of the algorithms available in the
Orange toolkit. More than 60 algorithms have been annotated so far. As an
example we present a definition of the Apriori algorithm in the description logic
notation using the extended ABox syntax [2]:

{Apriori} ⊑ NamedAlgorithm

⊓ ∃ output · {Apriori-O-Rules}

⊓ ∃ input · {Apriori-I-Dataset}

⊓ ∃ input · {Apriori-I-MinSupport}

⊓ ∃ input · {Apriori-I-MinConfidence}

{Apriori-I-Dataset-Range} ≡ isRangeOf · {Apriori-I-Dataset}

≡ Dataset ⊓ ∀ hasFormat · {TAB}

⊓∀ hasExpressivity · SingleRelationStructure

⊓∀ hasAttributesType · {dDiscrete}

{Apriori-O-Rules-Range} ≡ isRangeOf · {Apriori-O-Rules}

≡ Patternset ⊓ ∀ contains · AssociationRule

The Apriori algorithm is defined as an algorithm that can be applied to a
single relation dataset in the TAB format containing only discrete attributes and
produces a result in the form of a set of association rules. It has two parameters:
minimal support and minimal confidence of the rule. All three parameters are
specified by integer values. The other input parameters were omitted from this
example.

43

6 Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

Fig. 1. An example of a workflow generated for the task of producing rules distinguish-
ing between two types of leukemia on the basis of gene expression and annotations of
genes using the GO ontology.

The algorithms were annotated manually, since no systematic description
of these algorithms e.g. in PMML3 or WSDL4 was available. The annotated
algorithms also served as case studies to validate and extend the KD ontology,
therefore developing a procedure for semi-automatic annotation is a subject for
future work.

4 Automated workflow construction

Our methodology focuses on automatic construction of abstract workflows of
DM algorithms. The mapping to concrete computational resources, particular
data sets and algorithm parameters are not taken into account during workflow
construction. Each generated workflow is stored as an instance of the Workflow

class and can be instantiated with a specific algorithm configuration either man-
ually or using a predefined default configuration. We treat the automatic work-
flow construction as a planning task, in which algorithms represent operators
and their input and output knowledge types represent preconditions and effects.
However since the information about the algorithms, knowledge types and the
specification of the knowledge discovery task is encoded through an ontology, we
implemented a planning algorithm capable of directly querying the KD ontology
using a reasoner [33]. The Pellet [24] reasoner was used. The main motivation for
using Pellet was its ability to deal with literals, availability in Protégé5, which
we used for ontology development, and processing of SPARQL-DL [25] queries.

Our original work was motivated mainly by complex relational DM tasks
such as discovery of rules to distinguish between two types of leukemia based on
gene expression and gene annotations using terms of the Gene Ontology6. An
example of a workflow generated for this task is shown in Figure 1. Since complex
algorithms are needed for this task, the number of alternative workflows, which
can be produced, is quite small.

3 http://www.dmg.org/pmml-v4-0.html
4 www.w3.org/TR/wsdl
5 http://protege.stanford.edu/
6 www.geneontology.org

44

Data Mining Workflow Construction: A Framework and Cases using Orange 7

When we extended our ontology with annotations of algorithms available in
the Orange toolkit, we encountered the problem of having sets of algorithms,
which on the basis of their inputs and outputs subsume each other or are even
equivalent. For tasks such as inducing association rules from a propositional
dataset, this led to producing a large number of workflows, a lot of which were
very similar. In this work we alleviate this problem by exploiting the algorithm
subsumption hierarchy.

In the next sections we present an enhanced version of the algorithm de-
scribed in [33], which exploits the algorithm hierarchy for planning at multiple
abstraction levels. Furthermore, a post-processing step using the ontology was
added for a more user-friendly presentation of the KD workflows, in case the
task is weakly constrained and thus a relatively large number of workflows is
generated.

4.1 Exploiting algorithm hierarchy

The planning algorithm used to generate abstract workflows automatically is
based on the Fast-Forward (FF) planning system [10]. We have implemented
the basic architecture of the FF planning system consisting of the enforced hill
climbing algorithm and the relaxed GRAPHPLAN. Since the planning problem
in workflow construction contains no goal ordering, no mechanisms for exploiting
goal ordering were implemented.

The planner obtains neighboring states during enforced hill-climbing by match-
ing preconditions of available algorithms with currently satisfied conditions. Each
matching is conducted in the planning time via posing an appropriate SPARQL-
DL query to the KD ontology. In the original version of the planner presented
in [33], there are no mechanisms for exploiting the algorithms hierarchy. We
have enhanced the algorithm in two ways: a hierarchy of algorithms based on
defined classes and input/output specifications computed and in searching for
neighboring states the planner exploits the algorithm hierarchy.

A hierarchy of algorithms is inferred before the actual planning. It needs to
be recomputed only when a new algorithm is added to the ontology. The hier-
archy of algorithms is based on the inputs and outputs of the algorithms and
on the defined algorithm classes such as PreprocessingAlgorithm. An algo-
rithm Aj ⊑ Ai, if for every input of Iik Ai there is an input Ijl of algorithm Aj

such that range of Iik ⊑ Ijl. An algorithm Ai ≡ Aj , if Aj ⊑ Ai and Ai ⊑ Aj .
The subsumption relation on algorithms is used to construct a forest of algo-
rithms with roots given by the explicitly defined top-level algorithm classes e.g.
DataPreprocessingAlgorithm.

The planning algorithm was adapted so that in the search for the next possi-
ble algorithm it traverses the forest structure instead of only a list of algorithms
and considers a set of equivalent algorithms as a single algorithm. Currently, only
constraints on repetition of some kind of algorithms in a linear part of the work-
flow are built into the planner. The additional constraints on workflows are used
only in filtering of workflows during post-processing (procedure filterWork-

flows). Workflows for all the members of an equivalence set are generated using

45

8 Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

task - instance of KnowledgeDiscoveryTask, maxSteps - max length of the workflow,
constr - additional constraints on the workflows
generateWorkflows(task, maxSteps, constr):
classify KD ontology;
algs := {instances of NamedAlgorithm};
algforest := inferAlgorithmHierarchy(algs);
workflows := runPlanner(task, algforest, maxSteps);
atomicW := expandWorkflows(workflows, algforest);
filteredW := filterWorkflows(atomicW , constr);

Fig. 2. A skeleton of the procedure for workflow composition using the KD ontology.

Fig. 3. An example of workflows for discovering association rules in Orange.

the procedure expandWorfklows. The information about algorithms subsump-
tion is also used in workflow presentation. An overview of the whole procedure
for workflow generation is shown in Figure 2.

The generated workflows are presented to the user using an interactive visual-
ization, which enables the user to browse the workflows from the most abstract
level to specific combination of algorithm instances. The workflows with the
smallest number of steps are presented first. An example of a set of workflows
generated for discovering association rules in Orange is in Figure 3.

5 A framework for workflow execution in Orange

We have developed a framework for integrating our methodology into the Or-
ange data mining platform, so that workflows, which were constructed manually
using the Orange GUI, can be automatically annotated using the KD ontology.
The annotated workflows can then be used for querying and reasoning. All the
information required for the Orange representation is preserved in the anno-
tation; therefore Orange workflows can be recreated from the annotations and
executed again in the Orange toolkit. On the other hand, workflows generated
by the planner using KD annotations of Orange algorithms can be converted to
the Orange representation and executed in Orange. An overview of the frame-
work is shown in Figure 4. The module Orange2Onto, which acts as an interface

46

Data Mining Workflow Construction: A Framework and Cases using Orange 9

Fig. 4. An overview of the framework for integration annotations and planning into
Orange.

between Orange and ontology representation does not work directly with inter-
nal representation of Orange, but it works with the OWS format used in the
standard Orange distribution to store workflows in XML format.

In order to capture formally the mapping between the internal Orange rep-
resentation and the representation of algorithms using the KD ontology, the
Orange-Map (OM) ontology was developed defining templates for mapping of
algorithms, data and parameters. The template for a parameter represented us-
ing a set of radio buttons in Orange is shown below:

OrangeRadioParamMapping ⊑ ∃ parameter · {kd:AlgorithmParameter}

⊓ ∃ radioValue · OrangeRadioValue

⊓ ∃ orangeAlias · string

OrangeRadioValue ⊑ ∃ paramURI · {anyURI}

⊓ ∃ rbNumber · int

47

10 Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

Currently in the Orange format for storing the workflows, a parameter value
is represented only by the number of the selected radio button. It is specified
in the mapping using the property rbNumber. In the KD ontology it is mapped
into an instance with URI specified using paramURI.

The OM ontology is then used for converting the automatically generated
workflows into the Orange representation. In order to facilitate the creation of
the mapping for new algorithms, the mapping can be specified using an XML file.
The corresponding instances in the ontology are then generated automatically.

Annotation of a new algorithm available in Orange thus requires the following
steps:

1. create instances of AlgorithmParameter for all inputs and outputs
2. create an instance of NamedAlgorithm
3. for each instance of AlgorithmParameter create a class defining its range

(if not yet defined, add the necessary subclasses of Knowledge - this should
be required only when a new type of algorithm is added)

4. create an XML file defining a mapping between the algorithm representation
in Orange and in the KD ontology

5. run a script for generating a mapping using the OM ontology

Annotations of Orange workflows containing algorithms not annotated using
the KD ontology can also be created automatically. The missing information
about input/output types of the algorithms is then either deduced from the
links with annotated algorithms or considered to be some Knowledge expressed
as string. The annotations of such workflows can therefore be used for some
querying and repeating of experiments, however the generated annotation of the
unknown algorithm is not suitable for planning.

The procedures for converting Orange representation to OWL and vice versa
are implemented in Python using JPype7 to call the Jena8 ontology API imple-
mented in Java.

6 Evaluation

We carried out experiments comparing the enhanced planner exploiting the al-
gorithm hierarchy with the original classical planner. We used each planner for
two tasks. The first task was the complex and specialized task of discovering
descriptive rules in the genomics domain. The second task was a simple task
of discovering association rules. The KD ontology including the subontologies
for annotation of the individual algorithms contains about 500 classes and 500
individuals.

The results summarized in Table 1 indicate that the HierarchyPlanner ex-
ploiting the algorithm hierarchy needs shorter time for planning for all the tested
settings. With increasing number of equivalent algorithms the time taken for

7 http://jpype.sourceforge.net/
8 http://jena.sourceforge.net/

48

Data Mining Workflow Construction: A Framework and Cases using Orange 11

Task No. of Planner HierarchyPlanner
algorithms Prep. Plan Prep. Plan

GEN 71 72 0.854 115 0.560
GEN 99 104 1.123 155 0.568

ASSOC 71 94 27.291 125 25.154
ASSOC 99 98 107.549 153 24.354

Table 1. Planner performance results, with respect to the task, the number of algo-
rithms available. The time for preprocessing (Prep.) and planning (Plan) is shown in
seconds.

planning rises less rapidly for the HierarchyPlanner. The preprocessing stage
lasts longer for the HierarchyPlanner due to the construction of algorithms hi-
erarchy, however this task can be performed offline and repeated only when the
ontology changes.

The example of a set of generated workflows shown in Figure 3 illustrates
the use of algorithm hierarchy for workflow presentation. Since there are 4 dis-
cretization, 4 sampling, 5 ranking and 6 continuization algorithms, it would be
infeasible to present all the generated workflows without using the algorithm
hierarchy. The automatic selection of some relevant subset of workflows is non-
trivial and will be a subject of future work.

7 Conclusions and Future Work

The primary objective of this study was to investigate challenges of data mining
workflow construction resulting mainly from sets of similar or equivalent algo-
rithms, which are typically available in a data mining toolkit and to develop a
methodology for integrating our approach to automatic workflow composition to
a data mining toolkit, which contains means for manual workflow creation and
execution.

We have developed a planner, which exploits the hierarchy of algorithms
annotated using the KD ontology, and shown that during the planning stage,
this planner is faster than the classical planner. The construction of algorithm
hierarchy is time consuming, however it needs to be recomputed only when a new
algorithm is added to the ontology. Moreover the hierarchy can also be exploited
in the presentation of the workflows to the user.

We have also proposed a methodology for integrating annotation and plan-
ning into a data mining platform by means of an ontology describing a mapping
between KD representation and native representation of the data mining plat-
form. The methodology was implemented in the Orange toolkit. It could be
modified to other data mining platform, however it is less feasible if the data
mining platform does not have any structured form of external representation of
algorithms e.g. as XML.

A new version of the Orange data mining toolkit, named Orange4WS, which
is able to import algorithms available as web services into Orange, is currently

49

12 Monika Žáková, Vid Podpečan, Filip Železný, and Nada Lavrač

being developed [21]. In future work we are planning to integrate semantic anno-
tations and automatic workflow construction into the new toolkit Orange4WS,
containing a wider range of data mining algorithms. We also plan to include
additional constraints and user preferences into the planner.

Acknowledgments

MZ was supported by the 1ET101210513 project Relational Machine Learning
for Biomedical Data Analysis. FZ is supported by the Czech Science Founda-
tion project number 201/08/0509. NL and VP are supported by the Knowledge
Technologies project funded by the Slovenain Research and Technology Agency.

References

1. A. Ali, O. Rana, and I. Taylor, “Web services composition for distributed data
mining,” in Proc. of the IEEE Int. Conf. on Parallel Processing Workshops, 2005.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, Eds.,
The Description Logic Handbook, Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

3. A. Bernstein, F. Provost and S. Hill, “Toward Intelligent Assistance for a Data
Mining Process: An Ontology-Based Approach for Cost-Sensitive Classification, ”
in IEEE Trans. on Knowledge and Data Engineering, vol. 17, pp. 503-518, 2005.

4. P. Brezany, I. Janciak and A. M. Tjoa, “Ontology-based construction of grid data
mining workflows,” in Data Mining with Ontologies: Implementations, Findings and

Frameworks. IGI Global, 2007.

5. D. T. A. Congiusta and P. Trunfio, “Distributed data mining services leveraging
WSRF,” Future Generation Computer Systems, vol. 23(1), p. 2007, 34-41.

6. E. Deelman, J. Blythe, G. Yolanda, C. Kesselman, S. Koranda, A. Lazzarini,
G. Mehta, M. A. Papa, and K. Vahi, “Pegasus and the pulsar search: From metadata
to execution on the grid,” in Parallel Processing and Applied Mathematics, 2004.

7. J. Demsar, B. Zupan, and G. Leban, “Orange: From experimental machine learning
to interactive data mining,” White Paper, 2004. Available: www.ailab.si/orange

8. S. Džeroski, “Towards a general framework for data mining,” in Knowledge Dis-

covery in Inductive Databases KDID’06, LNCS, vol. 4747. Springer, 2007, pp.
259–300.

9. R. Fikes and N. Nilsson, “STRIPS: a new approach to the application of theorem
proving to problem solving,” Artificial Intelligence, vol. 2, pp. 189–208, 1971.

10. J. Hoffmann and B. Nebel, “The FF planning system: Fast plan generation through
heuristic search,” Journal of Artificial Intelligence research, vol. 14, p. 2001, 253-302.

11. J. Hoffmann, “Towards efficient belief update for planning-based web service com-
position,” in Proc. of ECAI 2008, 2008, pp. 558–562.

12. M.Klusch, A. Gerber, and M. Schmidt, “Semantic web service composition plan-
ning with owls-xplan,” in Procs of 1st Intl. AAAI Fall Symposium on Agents and

the Semantic Web, 2005.

13. A. D. F. Lécué and A. Léger, “Applying abduction in semantic web service com-
position,” in Proc. of the ICWS 2007, 2007, pp. 94–101.

50

Data Mining Workflow Construction: A Framework and Cases using Orange 13

14. Y. Li and Z. Lu, “Ontology-based universal knowledge grid: Enabling knowledge
discovery and integration on the grid,” in Proc. of the 2004 IEEE Int. Conf. on

Services Computing, 2004.
15. Z. Liu, A. Ranganathan, and A. Riabov, “A planning approach for message-

oriented semantic web service composition,” in Proc. of the Nat. Conf. on AI, vol.
5(2), 2007, pp. 1389–1394.

16. K. Morik and M. Scholz, “The MiningMart approach to knowledge discovery in
databases,” in Proc. of the ICML 2004, 2004, pp. 47–65.

17. D. Martin, Ed., “OWL-S: Semantic markup for web services,” W3C Mem-
ber Submission, 2004. [Online]. Available: http://www.w3.org/Submission/2004/
SUBM-OWL-S-20041122/

18. P. Panov, S. Džeroski, and L. N. Soldatova, “OntoDM: An ontology of data min-
ing,” in IEEE ICDM Workshops 2008, 2008, pp. 752–760.

19. P. Panov and S. Džeroski, 2009, Personal communication.
20. P. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL web ontology language se-

mantics and abstract syntax,” W3C Recommendation, 2004. [Online]. Available:
http://www.w3.org/TR/owl-semantics/

21. V. Podpečan, Monika Žáková and N. Lavrač, “Towards a Service-Oriented Knowl-
edge Discovery Platform,” accepted to SOKD-2009 in July 2009.

22. E. D. Sacerdoti, “Planning in a hierarchy of abstraction spaces,” Artif. Intell., vol.
5(2), pp. 115–135, 1974.

23. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN planning for web service
composition using shop2,” Journal of Web Semantics, vol. 1(4), pp. 377–396, 2004.

24. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical
owl-dl reasoner,” Journal of Web Semantics, vol. 5(2), p. 2007, 51-53.

25. E. Sirin and B. Parsia, “SPARQL-DL: SPARQL query for OWL-DL,” in Proc. of

the OWLED 2007 Workshop on OWL: Experiences and Directions, 2007.
26. V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kindermann,

and W. Dubitzky, “Grid-enabling data mining applications with datamininggrid:
An architectural perspective,” Future Generation Computer Systems, vol. 24(4),
pp. 259–279, 2008.

27. A. Suyama, N. Negishi, and T. Yamagchi, “Composing inductive applications us-
ing ontologies for machine learning,” in Proc. of the First Int. Conf. on Discovery

Science, 1998, pp. 429–431.
28. I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds., Workflows for e-Science,

Scientific Workflows for Grids. Springer, 2007.
29. I. Taylor, M. Shields, I. Wang, and A. Harrison, “The Triana workflow environment:

Architecture and applications,” in Workflows for e-Science, Springer, 2007, pp. 320–
339.

30. I. Trajkovski, F. Železný, N. Lavrač, and J. Tolar, “Learning relational descriptions
of differentially expressed gene groups,” IEEE Trans. Sys Man Cyb C, vol. 38(1),
pp. 16–25, 2008.

31. R. Wirth, C. Shearer, U. Grimmer, T. P. Reinartz, J. Schloesser, C. Breitner,
R. Engels, and G. Lindner, “Towards process-oriented tool support for knowledge
discovery in databases,” in Proc. of the 1st European Symposium on Principles of

Data Mining and Knowledge Discovery, vol. 1263, 1997, pp. 243–253.
32. M. Žáková, P. Křemen, Železný and N. Lavrač, “Planning to Learn with a Knowl-

edge Discovery Ontology,” in Proc. of PlanLearn 2008, 2008.
33. M. Žáková, P. Křemen, Železný and N. Lavrač, “Automating Knowledge Discov-

ery Workflow Composition through Ontology-based Planning,” submitted to IEEE
TASE, March 2009.

51

The Fantom Service for Subgroup Discovery in

Score Lists

Jeroen de Bruin1, Nada Lavrac2, Joost N. Kok1

1 LIACS, Leiden University, Leiden, The Netherlands
2 Jozef Stefan Institute, Ljubljana, Slovenia

Abstract. We describe a Subgroup Discovery Service called Fantom
that finds subgroups given a set of elements with scores. The subgroups
are described by conjunctions of predicates and are given a measure of
interestingness based on an idea from Bioinformatics. For the generation
of interesting subgroups we use frequent structure mining, which exhaus-
tively searches for all relevant subgroups above a minimal interestingness.
As a use case we apply Fantom to data from microarray experiments.

1 Introduction

Consider the following generic problem in data mining: As input we have a
number of data elements with a score for each element. We want to find all
subgroups that

– have a high score for the subgroup (i.e. a score for a set of elements based
on the score of the individual scores of the elements in the set) indicating
that this subgroup is very interesting.

– can be described by a conjunction of predicates (rules) which all elements of
the subgroup have in common.

Hence we need a score not just for individual data elements, but also for sets
of elements. We propose to use a score on set of elements that is inspired by a
scoring function in Bioinformatics (Gene Enrichment). Furthermore, we need to
make a choice for the predicates that can be used. A natural choice is to use
terms of ontologies in the domain. Moreover, we want to do some pruning on
the output (predicates can imply other predicates and we strive for most specific
rules as well as the highest scores).

We propose a service called Fantom that finds all subgroups above a certain
size and above a minimum score (both conditions are provided as configurable
parameters). It is built in a generic way so that we can apply it in a variety
of fields. As input, it uses a set of identifiers coupled to a set of scores and
allowed predicates. As an output, it presents the user with a set of rules and an
appreciation of those rules in the form of the score.

We apply this service to a specific field of research, namely to data from
microarray experiments. A natural outcome of a microarray experiment is a set
of genes together with their t-values. There are a number of ontologies available

52

about genes, their function and in which pathways they play a role. Moreover,
there is information about interaction with other genes. We experimented on a
standard data set of genes discussed in [GST+99].

The rest of the paper is partitioned as follows. In Section 2, we will discuss
work related to our Fantom approach, and discuss various knowledge sources
that are used in Fantom as well. In Section 3, we will discuss Fantom itself, as
well as specific algorithms and technologies used to implement the case study. In
Section 4 we discuss the case study and its results, together with some statistics.
Finally, in Section 5, we will make some preliminary conclusions, and discuss
research and improvements that can be done in the future work.

2 Related Work

In this section we present some work related to the Fantom algorithm, as well
as work related to structured knowledge sources, knowledge mappings and other
sources of information used in Fantom.

2.1 Ontologies

An ontology, as seen in information science, is the hierarchical structuring of
knowledge about things by subcategorising them according to their essential
(or at least relevant and/or cognitive) qualities [Ont]. Over time, many efforts
have been done by the computer science community together with field experts
to create and reason about ontologies for diverse scientific fields such as chem-
istry [OAM+03], web-mining and the semantic web [Dav06] and Bioinformatics
[ABB+00,OGS+99].

Due to the increased attention in data mining with ontologies, related tech-
nologies such as representations of ontologies, description logic and ontology
reasoning have been given alot of attention as well. Currently, there is a wide
range of (ontology) description languages available, and each of them has their
own specific role. For representation of ontology elements and data, usually a
form of the eXtended Markup Language (XML) [XML] is applied, sometimes
together with the Resource Description Format (RDF) [RDF]. For representa-
tion of relations among the data elements and extensions to allow reasoning over
these entity-relationship models, currently the Web Ontology Language (OWL)
[OWL] and the older F-Logic [Bal93] are commonly used. A good overview of
ontology languages is provided in [TS06].

2.2 Annotations and Mappings

Within Fantom we seek to generate knowledge in terms of conjunctions of onto-
logical terms by using a ranked list. This would not be possible if there was no
mapping that asssociates or correlates an identifier with one or more ontology
terms. Considering the field of BioInformatics, ther are many identifiers that can
be used in genomics and proteomics [MOPT05,PTM07,MCOW05,Wai] and they

53

are usually accompanied by mappings between those identifiers and ontologies,
or those identifiers and other identifiers. For example, for GO terms there are
several mappings (their default identifier is ENTREZ) that are updated either
daily or monthly [go-]. KEGG maps work with KEGG orthologies, but also to
HUGO gene symbols. [keg].

Another crucial mapping is the mapping of interactions between data ele-
ments. Fantom provides an option to mine for knowledge not based on direct
association, but through degrees of interaction, assuming a transitive closure
between elements; If A acts on B, and B acts on C, then A acts on C. By using
a data source that states interactions between identifiers, Fantom can uncover
knowledge that describes these indirect relations. In BioInformatics, interactions
are being monitored in the GeneRIF project [Gen] and Reactome [VDS+07].

2.3 Related Algorithms

The Fantom algorithm was originally based on [TZTL06] and [TLT07]. While
SEGS uses a simliar method to Fantom, it is restricted to only one entry per
(sub)ontology, is tailored specifically to microarray experiments, and does not
seem to prune rules that provide redundant information. In [LRS+08] subgroups
are matched to a subset of GO terms in a probibalistic way, which induces a
greater portion of error and false discoveries than an exhaustive search through
the search-space. The GOEAST [ZW08] algorithm also checks for gene enrich-
ment in GO terms, but only checks for a single go term, and takes as input raw
microarray data, which again restricts its apllicability.

Alot of work has also been done on scoring functions. Typically, there is not
just one scoring function that is considered the best, it all depends on what
the someone is researching and what properties are considered interesting. In
the case of Fantom the aim is to have a score for a subset of elements from a
list of identifiers and scores; the group score is thus dependent on the score of
individual elements. In Bioinformatics, well-known algorithms that perform this
kind of scoring are [GST+99,LB06].

3 The FANTOM Service

The Frequent pAtterN Tree-based Ontology Miner algorithm, or FANTOM, is
a service that takes as input a set of identifiers and their weights (scores), back-
ground knowledge in the form of ontologies, mappings and interaction data, a
preferred scoring function that is applicable to the experiment domain, and spe-
cific thresholds for rule generation, and through rule generation and pruning
delivers a non-redundant set of rules that describe subgroups of the input set.
In this section we will discuss the inputs, internal mechanics and outputs of
Fantom.

54

3.1 Inputs

Context The context parameters are used to define the experimental context
needed for the algorithm to function correctly. Based on these context parameters
the correct versions of mappings and ontologies will be presented.

Set of Identifiers The set of identifiers is a table with two columns. The
first column contains the identifiers, which have to be unique and each one has
to correspond to an identifier in the provided mapping. The second column is
the score, or weight, of the identifier. There are no limits to these weights, but
Fantom assumes that a higher weight means a higher importance.

Ontologies The ontology format is a table with six columns. The first one is the
element identifier, which has to be unique across all ontologies. The second col-
umn represents the predicate. Usually each ontology has only one predicate, but
in the case of GO, for example, there are three predicates (three sub-ontologies
as it were). The third column is a natural language description for the element,
basically the elements normal name. Columns four and five are collections of
identifiers, the fourth column specifying aliases of this element, the fifth one
specifying its parents. The sixth column is reserved as an indicator, indicating
the element is deprecated, in which case the collection of aliases specifies the
alternative identifiers.

Mappings and Interactions Both mapping and interaction files have the same
structure, a table with two columns. The first column specifies the identifier to
map, and the second one specifies one or more identifiers that they map to, either
as a different ID type in case of mappings, or a set of other identifiers that this
identifier interacts with.

Scoring Functions The user can select a list of predefined scoring functions.
By default, the Enrichment Score (ES) function [GST+99] is selected, which
calculates the score of a subgroups based on the score of the individual members
as well as the members not in the subgroup:

– Sort the list of N identifiers according to their score with score function s,
whereby sj = s(idj). For the resulting list L = (id1, id2, ..., idN) it holds that
s1 >= s2) >= >= sN .

– For each position i in L, evaluate the identifiers in the subgroup S conform-
ing to the conjunction of ontology terms weighed by their score, and the
identifiers not in S but still present in L at a higher position than i:

Pincluded(S, i) =
∑

idj∈Sj≤i
|sj |∑

idj∈S
sj

Pexcluded(S, i) =
∑

idj /∈Sj≤i
1

N−NS

55

– The ES is the maximum deviation from zero of Pincluded − Pexcluded

Note that Fantom only uses this score function, and is not tailored to it. Fantom
is generic enough to allow any kind of scoring function that adheres to the
follwoing principles:

– A higher score indicates a higher interestingness.
– The score conforms to the provided .Net framework architecture and inter-

face specified in Fantom.

Thresholds Fantom allows the user to work with two thresholds: minimum
support and minimum score. Minimum support indicates how much genes a
subgroup should contain at least, and heavily influences the duration of an ex-
periment. The second threshold indicates the minimum score a rule should have.
It is primarily used for pruning rules in a postprocessing step, but can sometimes
also be used to help decrese the number of generated rules.

3.2 Algorithm and Structures

The core of the Fantom algorithm is based on the Apriori principle freqently
used in itemset mining [AIS93] and refined many times since its conception
[HPY00,Bod03]. Given that it is a proven technique that has been used in many
fields, it was considered generic enough to be used in Fantom. Within Fantom,
the algorithm repeatedly executes three stages: rule generation, rule appreciation
and rule pruning.

Rule Generation Rule generation proceeds on the basis of subset combina-
tion. Let us illustrate this by an example: Suppose we have two rules which both
contain n ontology elements. Then for those rules to make up a new rule together
of n + 1 elements, they have to share n− 1 elements, while the other two should
not be related to each other; the unshared element in the first rule should not
be a descendant or ancestor of the unshared element in the second rule.

Suppose that there are m rules of n ontology elements. That means that
there are at maximum m ∗ n subsets. Let Si be the ith subset, and the number
of elements in that subset kSi

. Then the number of rule generations would be at
maximum:

∑(m∗n)
i=0 (kSi

− 1)!

It is easy to see that this number is equal to, but usually alot smaller than
the brute force method, which consider (m− 1)! possibilities.

Rule Appreciation The rule appreciaton phase is the phase where all rules
generated in the rule generation phase are being assigned a score on the basis
of the selected score function. Two scores are being calculated; the score of the

56

rule and the maximum score that the minimum number of elements involved in
this rule could possibly have (note that this minimum is equal to the minimum
support parameter). If this maximum score is below the score threshold, that
means that this rule can be pruned in the next phase.

Rule Pruning Within each stage, rule pruning is done in three phases. First,
rules generated and appreciated in the previous two phases are now compared
to the input constraints; all rules not satisfying the support or minimum score
constraint are pruned, leaving the rest as possible candidates for the next rule
generation epoch.

The second phase identifies redundant knowledge within rules of the same
amount of ontology elements, also called the rule dimensionality. All rules of the
same dimensionality are compared to each other (in a similar manner as rule
generation, through subgroups) and the ontologies to identify if one or more
ontology terms in one rule are more general than the terms in another. If this is
the case, and the score of the more specific rule is higher or equal than the score
of the more general rule, then the more general rule is discarded as a rule (but
still be kept for the next epoch).

Finally, in the third phase, subgroups of 1...i− i ontology elements are gen-
erated for each remaining rule of dimensionality i, and these are subgroups of
rule elements are compared in the same way as phase two, only now to rules
generated in past epochs.

3.3 Output

As an output, Fantom generates a textfile that contains all the remaining rules
after pruning, and a summary of ontology terms in those rules, and how often
they appeared in all the rules together. Furthermore, rules with the same subset
of identifiers are clustered together, improving readability. An example rule from
the use case looks like this:

Rule 1

Score: 0,761302007553004

A participants: [Epha1, Epha2, Epha8, Ephb2, Ephb3, Ephb4, Ptk2, Met, Ephb1]

All genes in the subgroup

have the following properties:

molecular_function(protein tyrosine kinase activity),

molecular_function(ATP binding),

biological_process(protein amino acid phosphorylation),

biological_process(receptor protein tyrosine kinase signaling pathway),

KEGG_pathway(Axon guidance)

Fantom can also generate rules that take into account interaction genes with
other genes. When interaction rules are generated, the conjunctions of ontology

57

terms do not describe the subgroup mentioned in the Participants header, but
rather an anonymous subgroup that all the subroup participants interact with.
Below is an example of such an interaction rule.

Rule 1

Score: 0,915794797276831

Participants: [Acat1, Acat2, Cycs, Cyct, Dld, Mdh2, Ogdh, Uqcrq, Uqcrc1]

All genes in the subgroup

have interaction with a gene (or genes) that has the following properties:

molecular_function(ATP binding),

cellular_component(mitochondrial envelope),

biological_process(tricarboxylic acid cycle),

KEGG_pathway(Citrate cycle (TCA cycle)),

KEGG_pathway(Alzheimer’s disease)

3.4 Implementation

Implementation of the ontology and mapping generation as well as the interac-
tion files was done in the Python language and run on Python 2.5.2. The web
service implementations were done in Microsoft C++ .Net 2008 and Microsoft
C-Sharp 2008, both using the .Net Framework wersion 2.0 and 3.5.

4 Use Case

In this section we present the use case, where the FANTOM algorithm was
applied to one of the microarray data sets used in [GST+99]. We discuss the
dataset used, what transformations we applied to get a ranking of genes, and
what parameters we supplied to Fantom. We also present some performance
statistics that address both speed and pruning.

4.1 Dataset and Inputs

In this use case we used a well know publicly available dataset that compares gene
expression profiles of Acute Lymphoblastic Leukemia (ALL) and Acute Myeloge-
nous Leukemia (AML) [ASS+02]. In this dataset, gene expression profiles were
taken from 24 patients suffering from ALL and 24 patients suffering from AML.
We first normalized the raw data using Quantile normalization [BIAS03]. After
that, we performed mapping of the probes to entrez genes using the Hu6800
annotations supplied by Affymetrix. We discarded any entries that could not be
mapped succesfully to a single identifier, to reduce the uncertainty error. Finally,
we performed a t-value calculation with the Student’s T-test between those two
groups, thus researching what all overexpressed genes have in common. If a gene
had multiple T-values, the average of those values was taken.

58

As ontology inputs the GO and KEGG ontologies were used, combined with
GSEA score metric. Context inputs were set to homo sapiens, and identifier was
kept default to Entrez.

4.2 Embedded Fantom Service

As can be seen in Figure 1, FANTOM can be easily embedded as a service in
a larger workflow. In this experiment we used the Taverna [MyG] workbench
to create and run a workflow where we automatically collect the newest ontol-
ogy definitions from GO and KEGG and their newest mappings (all happens
through webservices made available by ECBI and GenomeNet), and then run
the FANTOM algorithm (the run function below).

Fig. 1. Taverna workflow of FANTOM

Statistics concerning speed and pruning with various thresholds are presented
below. In Figure 2, performance measurements are shown for different minimal
support sizes S (the graph on the left) and different minimum score thresholds
C.

As can be seen in Figure 2(a), the increase of the minimum participants has
a profound effect on the performance of the algorithm. The same effect can be
seen in Figure 2(b) where the minimum score was increased, though at a lesser
extend with bigger subgroups. Still, if we extrapolate the lines in Figure 2(b), it
is still obvious that pruning based on the ES measurement improves performance
greatly (one can simulate the lack of ES pruning by taking a minimum score of
0).

59

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35

T
im

e(
s)

Minimum Support

Support-Based Performance Measurement

C=0.60
C=0.65
C=0.70
C=0.75

(a)

 0

 100

 200

 300

 400

 500

 600

 0.55 0.6 0.65 0.7 0.75 0.8

T
im

e(
s)

Minimum Score

Score-Based Performance Measurement

S=10
S=15
S=20
S=30

(b)

Fig. 2. Performance Measurements

Another interesting question is how these two thresholds affect pruning. In-
tuitively, lower smaller subgroups and lower minimum scores cause more rule
generation, and therefor more rules pruned, but if we examine the percentages
of rules pruned we see that with both thresholds it is fairly stable aroung 99.8%.
These results are shown in Figure 3. As can be seen, the pruning algorithm is

 99
 99.1
 99.2
 99.3
 99.4
 99.5
 99.6
 99.7
 99.8
 99.9
 100

 5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e

of
 R

ul
es

 P
ru

ne
d

Minimum Support

Support-Based Pruning Influence

C=0.60
C=0.65
C=0.70
C=0.75

(a)

 99
 99.1
 99.2
 99.3
 99.4
 99.5
 99.6
 99.7
 99.8
 99.9
 100

 0.55 0.6 0.65 0.7 0.75 0.8 0.85

P
er

ce
nt

ag
e

of
 R

ul
es

 P
ru

ne
d

Minimum Score

Score-Based Pruning Influence

S=10
S=15
S=20
S=30

(b)

Fig. 3. Pruning Measurements

slightly more eradic in the support cutoff seen in Figure 3(a) than in the score
cutoff shown in Figure 3(b), but overall both are monotonically increasing.

5 Conclusions and Future Work

In this paper we discussed a Subgroup Discovery Service called Fantom that finds
subgroups given a set of weighed elements. We explained the technologies behind
the algorithm, its data sources, and its way of combining that data to generate
comprehensive pieces of knowledge that are tailored to the expert knowledge of

60

the researcher.
In our use case, we have shown several statistics on the Golub et al. dataset,

which we normalized and then extracted the participating genes and their scores.
We have shown that with pruning can be done with both a monotonical con-
straint as support, but also by adapting a non-monotonical constraint such as
GSEA using the support. This yielded in less rule generation and increased prun-
ing, which rendered at least 99.85% of all the rules generated useless. For
future work, efforts have to be made to increase rule statistics, not only with
GSEA scores, but also p-values for confidence. Furthermore, more score funtion
than just GSEA should be present. A wide overview is presented in [AS09], and
plans are to at least support a few of them. Of course, a qualitative re-assessment
of the rules with different score measures will have to be made then, as well as
research into the performance / Quality tradeoff.
For the immediate future, research will be focussed on adapting more ontolo-
gies, and adapting FANTOM to more closely resemble related work discussed
in [TLT07], [LRS+08] and [ZW08]. Currenty the rules generated in this paper
are under reevision by BioInformaticist, who will compare them to rules gen-
erated on the same dataset by [TLT07], so that we can also give a qualitative
comparison of FANTOM with SEGS.

References

[ABB+00] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.
Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the
unification of biology. the gene ontology consortium. Nat Genet, 25(1):25–
29, May 2000.

[AIS93] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993, pages 207–216. ACM Press, 1993.

[AS09] M. Ackermann and K. Strimmer. A general modular framework for gene
set enrichment analysis. BMC Bioinformatics, 10:47+, February 2009.

[ASS+02] S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den
Boer, M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub, and S. J.
Korsmeyer. Mll translocations specify a distinct gene expression profile
that distinguishes a unique leukemia. Nat Genet, 30:41–47, Jan 2002.

[Bal93] Mira Balaban. The f-logic approach for description languages. Annals of
Mathematics and Artificial Intelligence, 15:15–19, 1993.

[BIAS03] B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison
of normalization methods for high density oligonucleotide array data based
on variance and bias. Bioinformatics, 19(2):185–193, January 2003.

[Bod03] Ferenc Bodon. A fast apriori implementation. In FIMI, volume 90 of CEUR
Workshop Proceedings. CEUR-WS.org, 2003.

[Dav06] J. Davies. Semantic Web Technologies: Trends and Research in Ontology-
based Systems. John Wiley & Sons, July 2006.

61

[Gen] Generif – gene reference into functions.
http://www.ncbi.nlm.nih.gov/projects/GeneRIF/.

[go-] Mappings of external classification systems to go.
http://www.geneontology.org/GO.indices.shtml.

[GST+99] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D.
Bloomfield, and E. S. Lander. Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science,
286(5439):531–537, October 1999.

[HPY00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD Conference, pages 1–12. ACM, 2000.

[keg] Kegg patway mappings. ftp://ftp.genome.jp/pub/kegg/pathway/map.
[LB06] Elo Leung and Pierre R. Bushel. Page: phase-shifted analysis of gene

expression. Bioinformatics, 22(3):367–368, 2006.
[LRS+08] Y. Lu, R. Rosenfeld, I. Simon, G. J. Nau, and Z. Bar-Joseph. A probabilis-

tic generative model for go enrichment analysis. Nucl. Acids Res., pages
gkn434+, August 2008.

[MCOW05] X. Mao, T. Cai, J. G. G. Olyarchuk, and L. Wei. Automated genome
annotation and pathway identification using the kegg orthology (ko) as a
controlled vocabulary. Bioinformatics, April 2005.

[MOPT05] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova. Entrez gene: gene-
centered information at ncbi. Nucleic Acids Res, 33(Database issue), Jan-
uary 2005.

[MyG] MyGrid. Taverna workbench 2.0. http://taverna.sourceforge.net/.
[OAM+03] Angele Moench Oppermann, J. Angele, E. Moench, S. Staab, and

D. Wenke. Ontonova @ project halo. In in Proceedings of the Second In-
ternational Semantic Web Conference (ISWC2003). 2003, pages 913–928.
Springer Verlag, 2003.

[OGS+99] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. Kegg:
Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 27(1):29–34,
January 1999.

[Ont] Ontology definition in information science. http://www.computer-
dictionary-online.org/ontology.htm?q=ontology.

[OWL] Web ontology language (owl). http://www.w3.org/2004/OWL/.
[PTM07] K. D. Pruitt, T. Tatusova, and D. R. Maglott. Ncbi reference sequences

(refseq): a curated non-redundant sequence database of genomes, tran-
scripts and proteins. Nucleic Acids Res, 35(Database issue):D61–D65, Jan-
uary 2007.

[RDF] Resource description framework (rdf). http://www.w3.org/RDF/.
[TLT07] I. Trajkovski, N. Lavrač, and J. Tolar. Segs: Search for enriched gene sets

in microarray data. J Biomed Inform, December 2007.
[TS06] C. Todorova and K. Stefanov. Selection and use of domain ontologies

in learning networks for lifelong competence development. In Proceedings
of the 2006 International Workshop on Learning Networks for Lifelong
Competence Development, pages 11–17. Springer Verlag, 2006.

[TZTL06] I. Trajkovski, F. Zelezný, J. Tolar, and N. Lavrac. Relational subgroup
discovery for descriptive analysis of microarray data. In CompLife, volume
4216 of Lecture Notes in Computer Science, pages 86–96. Springer, 2006.

[VDS+07] I. Vastrik, P. D’Eustachio, E. Schmidt, G. Joshi-Tope, G. Gopinath,
D. Croft, B. de Bono, M. Gillespie, B. Jassal, S. Lewis, L. Matthews, G. Wu,

62

E. Birney, and L. Stein. Reactome: a knowledgebase of biological pathways
and processes. Genome Biology, 8:R39+, March 2007.

[Wai] Lush M. Ducluzeau F. Povey S. Wain, H. M.
[XML] Extensible markup language (xml) 1.0 (fifth edition).

http://www.w3.org/TR/REC-xml/.
[ZW08] Qi Zheng and Xiu-Jie J. Wang. Goeast: a web-based software toolkit for

gene ontology enrichment analysis. Nucleic acids research, May 2008.

63

Definition of a Metadata Schema for Describing
Data Preparation Tasks

Miguel Hidalgo, Ernestina Menasalvas? and Santiago Eibe??

Facultad de Informática, Universidad Politécnica de Madrid, Spain
mahidalgo@alumnos.upm.es, emenasalvas@fi.upm.es, seibe@fi.upm.es

Abstract. The effort involved during data preparation phase needs to
be minimized through the automation of preparation tasks as possible.
Within the mobile and dynamic environment we interact, the changing
nature of data and the speed it is generated, demands that autonomy be a
top priority. Based on this idea, we aim to address the automation of data
preparation tasks in ubiquitous environments. With this goal in mind,
we think it’s necessary to identify requirements for a data preparation
task, and the semantics related to the expertise of a user as well. In
this paper, we propose a number of steps to gather the requirements for
a documented data preparation task and we define a metadata schema
that would allow the creation of semantics to support this process. At the
end, a case study demonstrates the application of such metadata schema,
however its continuous application to complex tasks, will determine if an
extension would be needed.

1 Introduction

Although data miners utilize the well-known CRISP-DM[1] process model, they
know that data preparation phase is not trivial because it demands a lot of
expertise. The number of tasks in the data preparation phase varies according to
the objective of a particular data mining project, but the tasks are usually group
into cleaning, construction, integration and formatting tasks[2]. Due to data
preparation phase represents the previous step when applying mining algorithms,
the interaction with modeling phase occurs frequently.

On one hand, CRISP-DM doesn’t indicate how to perform a data preparation
task, and on the other hand, it’s necessary to minimize the human participation
when executing such preparation tasks. In order to benefit both, expert and
non-expert users, the automation of data preparation tasks will reduce the time
and effort involved. For accomplish this, we think it’s necessary to indicate how
to proceed with the execution of a data preparation task, in particular, or any
other data mining task, in general.

Nowadays, most of the people interact in a mobile environment. The mobile
devices like sensors or wireless networks produce huge amounts of data that can

? Project partially financed by Project TIN2008-05873
?? Project partially financed by Project CCG06-UPM/ESP-0259

64

be analyzed with the aim of enriching the patterns obtained. In turn, mobile
devices like cell phones or personal digital assitants (PDA) have processing ca-
pabilities that represent a new framework to achieve some tasks. These facts
represent an interesting opportunity for data mining, and the relation between
data mining & mobile devices, has derived in a scenario called ubiquitous data
mining [3]. The realization of the data preparation phase within ubiquitous envi-
ronments, forces us to re-think how to achieve the preparation tasks with certain
degree of autonomy.

In order to achieve it, we think that the utilization of annotations can greatly
support the automation of a data preparation task. The benefits can be double:
the automation of a data preparation task in ubiquitous environments, as the
main goal, and the assistance to users during the realization of such tasks, as a
secondary matter. With the main goal in mind, it’s necessary to find out what
sort of information will adequately describe a data preparation task. We propose
a categorization of the information needs for a data preparation task with the
aim of classifying every requirement accordingly.

In this paper, we also specify a number of steps to gather the information
needs, in the form of metadata, for a data preparation task. The steps utilize
a modeling language and a XML-based metadata schema, in order to describe
the actions performed by an expert when executing a data preparation task.
In consequence, the experience obtained in the data preparation phase could
motivate the extension to other parts of the data mining process.

The rest of the paper is organized as follows: In section 2 we present related
work with the description of the data mining process and we briefly stress what
PMML elements are related to data preparation phase. Section 3 explains the
proposed steps to model a data preparation task, as well as the XML-based
metadata schema that supports its description. Then in section 4, a case study
shows the resulting metadata for an already documented data preparation task.
Finally, section 5 presents conclusions and ongoing work.

2 Related Work

Krishnaswamy et al.[4] propose the creation of services among data mining fed-
eration systems. The DDMS-ML language defines the functionality and charac-
teristics of a data mining system, and its section Specializations and Features
is used to describe services. However, the descriptions emphasize general cate-
gories like pre-processing, visualization or algorithms. The preprocessing service
is not fully described, because the architecture focuses on the distributed nature
of data mining systems. As a result, there are not enough elements to address a
data preparation task.

MiningMart[5] is a framework based on KDD test-cases that defines the
needed steps for a pre-processing chain through a metadata model. Metadata
represent pre-processing steps that utilize operators that are executed by a com-
piler. To translate a pre-processing chain, the compiler relates each conceptual
entity (operators for a task) to its relational entity (business data), establish-

65

ing the parameters and the expected output. A similarity of MiningMart with
our research is the fact that we consider metadata as a mechanism to guide the
achievement of data mining tasks.

KDDML[6] is a XML-based language used to represent data, models and
queries in high level data mining systems. The data mining process is seen as a
query, where syntactical elements of a KDDML document represent operations
on data or passing parameters among those operations. For data pre-processing,
KDDML utilize a fixed group of operators already defined, such as: data selec-
tion, filtering or aggregation. The operators use a function that defines input
and output parameters in the form of attributes. Due to operator’s number is
low, creation of new ones requires to extend DTD in order to use them.

DMPML[7] is another XML-based framework that establishes a language
for the data preparation phase. To describe a data mining task, it proposes
the creation of several XML files. This separation corresponds to original data,
data preparation project directives and transformed data that will be submitted
to a data mining technique. The framework uses XSLT transformation rules
to map original data to transformed data, in order to be utilized according to
different data mining algorithms. We agree to the use of XML for description
purposes. However, we extend such descriptions to consider the execution flow
of a preparation task.

Othman et al.[8] propose a framework for data preparation based on agents.
The main advantages of such implementation are the decrease of expert’s depen-
dency and the associated cost of the data mining model update. The agents pro-
pose the best preprocessing technique according to an appropriate domain. We
stress the requirements identification achieved by the authors for pre-processing
phase, because it facilitates agent’s coordination for a complete task execution.

Within an autonomous agents environment, Rajan et al.[9] identify a group
of steps related to data selection and transformation. The framework achieves
the identification of data, proper selection of mining algorithm and presentation
of results. In particular, the user interface intelligent agent, performs tasks like
selection of attributes or identification of attribute data type, but complex tasks
are not specified because the authors focus on a theoretical methodology.

With regard to data mining standards, PMML[10] supports interoperability
of data mining models. However, PMML has several elements related to data
preparation. For example, the data dictionary element focuses on data fields
types and value ranges. The transformation dictionary defines various types
of simple transformations, e.g. normalization, discretization, aggregation, etc.
Other important elements are: statistics, output, functions and built-in functions.

3 Steps for Gathering Metadata for Data Preparation

3.1 Objective

The goal of this paper is twofold. On one hand, we present a number of steps
that model a data preparation task with the purpose of obtaining its information

66

needs for deriving metadata from them. On the other hand, we explain the
development of a XML-based metadata schema, necessary to adapt the task’s
requirements with the elements defined in this schema. The proposed steps are
presented in figure 1.

Task modelling
with UML

Identify
requirements

and classify them
Transformation of UML
diagrams into medatata

Fig. 1. Steps for identifying metadata for a data preparation task.

3.2 Relevant aspects

Step 1. Task Modeling with UML

– Utilization of terms: task and activity. The data mining process is or-
ganized in phases according to CRISP-DM. Each phase identifies a group
of tasks to perform. Therefore, information needs must focus on a task, be-
cause it represents a need in the data mining process. Due to task concept
is broaden, it’s necessary to break it down into small units called activities.
Thus, execution of task’s activities achieves a task’s goal. CRISP-DM es-
tablishes a four level hierarchy to carry out tasks in a data mining project.
The levels are: phase, generic task, specialized task and process instance[11].
With the purpose of being coherent with CRISP-DM, task and activity terms
are related to generic task and specialized task, respectively.

– Modeling data preparation tasks with UML. The UML diagrams [12]
represent an excellent mechanism to specify inherent requirements for a sys-
tem, a process or a task. Due to it’s feasible to model information needs for a
business process with UML, we consider this approach could be equally ap-
plied to the data mining process, in particular, to the tasks in each phase[13].
The UML modeling for a data preparation task contributes to the identi-
fication of its requirements with the aim of describing it. This will avoid
to forget any requirement, or to cause any inconsistency when executing a
data preparation task automatically. We propose to utilize use case and ac-
tivity diagrams. These diagrams represent our starting point and they will
model different requirements. For each data preparation task, a pair of UML
diagrams will be obtained.
The use case diagram will model a data preparation task using the elements:
actors, use cases and a template. The use case diagram will provide a general
view of the task. Every use case will have an associated template, and each
template will provide the following information: use case name, actor name,
preconditions and basic flow. However, a particular template for identifying
a preparation task will be created.
The activity diagram will model the data preparation task through activities,
which are mapped from the basic flow described in the templates of the

67

use case diagram. For example, if a task called “remove zero values from
an attribute” has one template with eight steps in its basic flow, then its
activity diagram will be built with these eight “steps”.

Step 2. Requirements Identification and Classification

– Requirements for a task. It’s important to identify what information is
needed by a task, with the aim of executing it and obtaining a result. We
have to follow an order when working with data preparation tasks and, we
need to verify whether a result satisfies the need of another preparation
task or not. Every task in the data mining process responds to different and
particular needs according to its objective. However, it’s possible to identify
general requirements, such as: how to execute a task?, what data it needs?,
what is the result of the task?, and what resources do we need to perform
it?. To sum up, the information collected through requirements will allow
the configuration and execution of a task.

– Requirements categorization. An adequate task documentation will con-
tribute to requirements identification, but in fact, there is a lack of documen-
tation for the data preparation tasks. Hence, it’s of paramount importance
to establish a categorization of all needed requirements. In this paper, we
propose the following categories:

• Objective category: Indicates the purpose of a data preparation task.
• Output category: It corresponds to the result of a data mining task

execution. It must indicate the type of output obtained.
• Definition category: Represents identification information for a prepara-

tion task, i.e. task name, task identifier and task executor. It’s important
to establish the task priority and task restrictions as well. For example,
if a task has high priority over another task, it could be executed first.

• Control category: It corresponds to control elements, e.g. information
about input & output parameters for a task and its activities.

• Flow category: It establishes the execution mode for a task among the
rest of tasks in the same phase, e.g. executing two or more tasks in
parallel. Besides, it’s necessary to establish an order of how the task’s
activities will be executed. For this, XPDL1 will be used, in particular,
its workflow process element[14].

• Content category: It establishes information of the data sources accessed
by a task. It’s important for a task to know how the data source is struc-
tured, because in this way, it will possible to determine the attribute’s
type or its role in the dataset.

• Composition category: It describes information about the number and
the name of the activities that built a data preparation task.

• Execution category: It describes information related to the verification
of a correct task execution. That is, to indicate if a task’s execution
performed correctly or not, and the errors produced in case of failure.

1 XML Process Definition Language

68

MetadataDictionary MetadataSet MetadataItem

MetadataFlow

itemName

itemValue

itemDescription

flowID
sourceID
targetID

itemID

subPhase

Attributes

setID

setName

Attributes

MetadataSubject

MetadataCategory

subjectID

subjectName

categoryID

categoryName

ManagementUnit

unitID
unitName
unitValue

1..* 1..*

1..*

processPhase

Identification

Subject

Category

Management

unitType

Fig. 2. Metadata schema.

Step 3. Transformation of UML diagrams into metadata

– Metadata schema definition. The metadata schema has elements (figure
2) that will represent the requirements of a data preparation task. Every
element of the schema has a particular purpose and in general, all of them
are related to the semantics of a data preparation task. A special feature of
this schema is about life cycle elements related to a metadata instance. Such
life cycle has the purpose of providing information to update each metadata.
The explanation of the schema elements is presented as follows.

• MetadataDictionary: This element is the root of the metadata schema
and consists of one or more MetadataSet elements.

• MetadataSet: It has been determined that a MetadataSet element is
related to the data preparation phase. However, other phases of the data
mining process can be considered. A MetadataSet consists of three at-
tributes and two elements. The information about the identifier (setID),
name (setName) and phase (processPhase) for a MetadataSet, is man-
aged by the attributes. With regard to the elements MetadataItem and
MetadataFlow, a MetadataSet can have one or more of them.

• MetadataItem: Each metadata used to describe information for a task
or activity is represented with a MetadataItem instance. A MetadataItem

69

has four sections: Identification, Subject, Category and Management.
Identification section has five attributes and they refer to an identi-
fier (itemID), the data preparation subphase it belongs (subPhase), its
name (itemName), its value (itemValue) and its purpose (itemDescrip-
tion) Subject section is represented by MetadataSubject. Its purpose is
to indicate the object to be described, e.g. a task or an activity. For
each object, an identifier (subjectID) and a name (subjectName) are
needed. Category section associates each MetadataItem with a require-
ment category. For each category, an identifier (categoryID) and a name
(categoryName) are needed. Management section relates to the life cycle
for a MetadataItem through the ManagementUnits element. Each infor-
mation unit needs an identifier (unitID), a name (unitName), a value
(unitValue) and a type (unitType). Some basic ManagementUnits are:
creationDate, creationTime, actualValue, previousValue, createdBy, etc.

• MetadataFlow: This element is related to the flow transitions between
data preparation tasks or activities in a single preparation task. For each
transition, it’s necessary to use a global identifier (flowID), a source iden-
tifier (sourceID) and a target identifier (targetID).

– Transformation of diagrams. According to the steps defined in figure 1,
it’s necessary to perform a transformation of UML diagrams into metadata
with the aim of describing a preparation task. The significance of metadata
is demonstrated with the usage[15], content[16] and management of data[17].
In data mining, metadata represent two important aspects:
• Metadata is considered another type of data susceptible of extracting

knowledge[18].
• Metadata can guide the data mining process[18],[19].

Once categories for requirements were established, it’s possible to indicate
what categories will be mapped to use case and activity diagrams.
The basic template of a use case diagram represents standard information
for any use case. However, according to section 3.2 - step 1, we need to
create a particular template for identifying a data preparation task. This
additional template will collect the information mentioned in the definition
category. Thus, use case diagram will fulfill the requirements for definition,
flow, objective and output categories.
The activity diagram will detail how a task is performed. As mentioned in
section 3.2 - step 1, the basic flow described in each use case template will
help to develop the activity diagram for the current task. Thus, activity dia-
gram will fulfill the requirements for composition, control, content, execution
and flow categories.
So far, transformation process is done manually. With regard to how to name
a metadata, the process is the following: we put appropriate words together
that semantically have a meaning. For example, for creating a metadata to
give a name to a data preparation task, we create taskName.

70

With regard to which elements from the use case and activity diagrams
are mapped to the schema of figure 2, the explanation is as follows: Each
requirement extracted from the templates of the use case diagram is linked
to a category that is mapped to the MetadataCategory element. Due to the
basic flow is detailed in the activity diagram, each oval from the diagram
is mapped to the MetadataItem element. The arrows in such diagram, are
mapped to the MetadataFlow element. The initial node is related to the
attribute sourceID and the final node is related to the attribute targetID
(see section 3.2 - step 3 & figure 2 for further details).
With the aim of offering a small set of metadata instances to the user, we
consider that the PMML elements related to data preparation phase can
represent a basic support.

4 Case Study

In order to apply the steps defined in the previous section, we present a data
preparation task. This task is taken from[20] and represents a well-explained and
documented example. A dataset of patients is used to predict diabetes, based on
the following measurements: age, systolic blood pressure, diastolic blood pressure
and weight. The data preparation task consists in binning a numerical variable
called weight, according to: if weight is less than 60kg, category is low ; a weight
between 60 and 100kg, category is medium, and if weight is more than 100kg,
category is high. The attribute is located in a table called Patients and it’s stored
in a database called Hospital. We will refer to this task as binatt.

4.1 Example development

We consider that binatt has already been executed and the new attribute has
been obtained. In a mobile scenario, the device needs the metadata that binatt
requires, with the purpose that the device conducts the execution of binatt in
an autonomous way. This is necessary, because any model installed in the device
can demand new data to be pre-processed, regardless of its characteristics of
memory, battery or CPU.

Step 1. Task modeling with UML. With regard to the identification infor-
mation of binatt, we create a particular template (Table 1). Binatt needs the
use case and activity diagrams as well. The use case diagram has one use case
called Binning an Attribute, related to the actor “Expert”. However, this use
case includes a second use case called Access Data Source and a second actor
appears: Database. With the previous information and the basic flow of each use
case, the templates are created (Tables 2 and 3).

Taking into account the basic flow of both use cases, the activity diagram is
derived (figure 3). The arrows of the activity diagram represent the transitions
among the nine activities.

71

Table 1. Template for task identification.

Item Value
Identifier DT1
Name Binning an attribute
Executor Expert
Priority 1
Restrictions None

Table 2. Template for Binning an Attribute use
case.

Use case name Binning an Attribute
Actor Expert
Preconditions Execute Access Data Source

use case
Basic flow 1. Ask attribute to transform

2. Read value
3. Assign it a category
4. Write result

Table 3. Template for Access Data Source use
case.

Use case name Access Data Source
Actor Database
Preconditions None
Basic flow 1. Ask data source path

2. Ask database name
3. Ask user ID
4. Ask user password
5. Ask table name

Ask attribute
to transform

Read
value

Assign it a
categoryWrite result

Ask data
source path

Ask database
name Ask ID Ask

password
Ask table

name

Fig. 3. Activity diagram for binatt task.

Step 2. Identify and categorize requirements. All requirements for binatt
are assigned according to the categories defined in section 3. Hence, the result
is as follows:

– Objective category: The requirement is to obtain a new the attribute.
– Output category: The name of the new attribute will be weightCategorized.
– Definition category: From the additional template, five requirements are

identified. Task identifier is “DT1”, task name is binning an attribute, task
executor is Expert, task priority is 1 and the task has no restrictions.

– Control category: Three requirements are identified. The access path is
“/users/desktop”, the user name is “us023” and the password is “default”.

– Flow category: The execution mode of the activities is sequential.
– Content category: Three requirements are identified. The database name is

Hospital, table name is Patients and the attribute to categorize is weight.
– Composition category: The number of activities is nine. These are repre-

sented in the activity diagram through ovals.
– Execution category: The result of the execution will have a value of 1 (failure)

or 0 (normal).

72

Step 3. UML modeling transformation into metadata. In this step,
the naming process for each requirement takes place. Table 3 shows the Meta-
dataItem instances obtained from this process. Each row in the table represents
a MetadataItem with its name and its value. In order to show how a particular
MetadataItem fits to the four sections of the schema (figure 2), we detail the
MetadataItem called taskName (Table 4).

Table 4. Metadata derived from templates and activity diagram.

Category MetadataItem MetadataItem MetadataItem
.itemID .itemName .itemValue

Objective 1 taskGoal Create new attribute
Output 2 taskOutput weightCategorized

Definition 3 taskName Binning an attribute
4 taskID DP1
5 taskExecutor Expert
6 taskPriority 1
7 taskRestriction none

Control 8 accessPath /users/desktop
9 userID us023
10 userPassword default

Content 11 DBName Hospital
12 tableName Patients
13 attributeToCategorize weight

Composition 14 activitiesNumber 9
Flow 15 executionMode sequential

Table 5. Further details for the MetadataItem taskName.

Section Prefix: MetadataItem. Value

Identification

itemID met-dt-01
subPhase data transformation
itemValue Binning an attribute
itemDescription Name given to a particular task

Subject
MetadataSubject.subjectID subject1
MetadataSubject.subjectName task

Category
MetadataCategory.categoryID category3
MetadataCategory.categoryName Definition

Management
ManagementUnit.unitID met-mu-01
ManagementUnit.unitName creationDate
ManagementUnit.unitValue 14-01-2009
ManagementUnit.unitType static

As a result of the previous steps, the metadata required for binatt were
generated with the aim of deploy them to the mobile device. This would allow
the execution of binatt at any time in an autonomous way.

The metadata can be structured in XML-based documents, according to the
sections defined in the metadata schema. Each XML document will have all the
MetadataItem and MetadataFlow elements for each data preparation task.

5 Conclusions

The interaction between people and mobile devices produces a lot of data that
would be interesting for applying data mining techniques. The data preparation
phase in an ubiquitous scenario demands an automation of such tasks. In order

73

to perform it, we need to identify those requirements for each preparation task.
In this paper, we have established a set of categories to map such requirements
and we have defined a metadata schema that supports the semantics for that
sort of tasks. Our proposal has to be applied to more data preparation tasks
and some issues require a thorough analysis. The incorporation of a life cycle
for metadata represents an interesting approach due to the changing nature of
data. The activities for further analysis are: the creation of a relational schema to
store MetadataItem instances; the identification of ManagementUnits elements;
the identification of XPDL standard execution modes for data preparation tasks,
and last but not least, the utilization of a service-oriented approach to offer the
execution of a data preparation task in an automatic way. Finally, we have
started the development of a software application that checks the validity of
a document, according to the metadata schema, and we are working in the
incorporation of PMML data preparation elements.

References

1. CRISP-DM. http://www.crisp-dm.org (2008)

2. Han. J, K.M.: Data Mining:Concepts & Techniques. Morgan Kaufmann (2001)

3. Hsu, J.: Data mining trends and developments: The key data mining technolo-
gies and applications for the 21st century. The Proceedings of the 19th Annual
Conference for Information Systems Educators (ISECON 2002)

4. Krishnaswamy, S., Zaslavsky, A., Loke, S.W.: Federated data mining services and
a supporting xml-based language. Proceedings of the 34th Annual Hawaii Inter-
national Conference on System Sciences (HICSS-34) 3 (2001)

5. Zücker, R., Kietz, J., Vaduva, A.: Miningmart: Metadata-driven preprocessing.
Proceedings of the ECML/PKDD Workshop on Database Support for KDD (2001)

6. Romei, A., Ruggieri, S., Turini, F.: Kddml: A middleware language and system for
knowledge discovery in databases. Data & Knowledge Engineering 57(2) (2006)

7. Goncalves, P., Arnaud, A., Barros, R.: Data mining preparation markup language.
AICCSA. IEEE/ACS International Conference on Computer Systems and Appli-
cations (2008) 116–125

8. Othman, Z., Hamdan, A., Omar, A., Shuib, K., Liyana, N.: Agent based prepro-
cessing. ICIAS. International Conference on Intelligent and Advanced Systems
(2007) 219–223

9. Rajan, J., Saravanan, V.: A framework of an automated data mining system using
autonomous intelligent agents. ICCSIT. International Conference on Computer
Science and Information Technology (2008) 700–704

10. DMG: Predictive Modeling Markup Language. http://dmg.org/v4-
0/GeneralStructure.html (2009)

11. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,
Wirth, R.: Crisp-dm:step-by-step data mining guide. CRISP-DM (2000)

12. Miles, R., Hamilton, K.: Learning UML 2.0. O’Reilly Media, Inc. (2006)

13. Marban, O., Mariscal, G., Menasalvas, E., Segovia, J.: An engineering approach
to data mining projects. LNCS 4881 (2007) 578

14. Workflow Management Coalition: Process Definition InterfaceXML Process Defi-
nition Language, 2.1. Wfmc-tc-1025 edn. (2008) http://www.wfmc.org/.

74

15. Stephens, R.: Utilizing metadata as a knowledge communication tool. Proceedings
IPCC. International Professional Communication Conference (2004) 55–60

16. Orso, A., Harrold, M., Rosenblum, D.: Component metadata for software engineer-
ing tasks. 2nd Int. Workshop on Engineering Distributed Objects (2001) 129–144

17. Marco, D.: Building and managing the Meta Data Repository: A Full Life-Cycle
Guide. John Wiley & Sons, Inc. New York, NY, USA (2000)

18. Thuraisingham, B.M.: Xml Databases and the Semantic Web. CRC Press (2002)
19. Nocke, T., Schumann, H.: Meta data for visual data mining. Proceedings Computer

Graphics and Imaging, CGIM 2 (2002)
20. Myatt, G.: Making Sense of Data: A Practical Guide to Exploratory Data Analysis

and Data Mining. Wiley-Interscience (2007)

75

A Data Mining Ontology for

Algorithm Selection and Meta-Mining

Melanie Hilario, Alexandros Kalousis, Phong Nguyen, Adam Woznica

University of Geneva, Department of Computer Science
Arti�cial Intelligence Laboratory

CUI - 7, route de Drize, CH-1227 Carouge, Switzerland
{Melanie.Hilario, Alexandros.Kalousis, Phong.Nguyen, Adam.Woznica}@unige.ch

Abstract. Given a learning task, the standard approach is to experi-
ment with a broad range of algorithms and parameter settings, and select
the model which performs best according to some performance criterion.
One of the aims of meta-learning is to at least restrict the space of can-
didate models by exploiting insights gained from previous experiments.
This has been done over the years by correlating dataset characteris-
tics with the observed performance of algorithms viewed as black boxes.
We have started to pry open these black boxes to sort out salient algo-
rithm features such as the structure and parameters of the models built,
the data partitions e�ected in data space, the cost function used and
the optimization strategy adopted to minimize this cost function. The
immediate goal is to build a data mining ontology formalizing the key
components that together compose an algorithm's inductive bias. Based
on this ontology, a meta-learner could infer algorithm selection guidelines
by correlating an algorithm's intrinsic bias with empirical evidence of its
performance.

1 Introduction

The medium-term goal of the work reported in this paper is to build an e-
Laboratory for Interdisciplinary COllaborative research (e-LICO) in data mining
and data-intensive sciences. The proposed e-lab comprises three layers: the e-
science and data mining layers form a generic research environment that can be
adapted to di�erent scienti�c domains by customizing the application layer. The
e-science infrastructure integrates semantic web technologies for resource sharing
and integration to support collaborative scienti�c research. The main innovation
of the data mining (DM) layer is a self-improving, planner-based DM assistant.
Improvement with experience is ensured by a meta-miner that thrives on data
and meta-data collected from groups of committed scientists. The term meta-
mining speci�cally designates meta-learning applied not only to the learning
phase, but to the complete knowledge discovery process, in particular to all
tasks that require search in the space of applicable methods. The DM assistant

76

draws its intelligence not only from its planning and meta-mining capabilities
but also from the wealth of domain-speci�c and domain-independent knowledge
at its disposal.

A key source of domain-independent knowledge is the data mining ontology
(DMO), which can be viewed as the repository of the intelligent assistant's data
mining expertise. The DMO plays a major role throughout the lifecycle of the
DM e-lab. As a compendium of knowledge about DM tasks, algorithms, data
and models, it will be used: 1) to plan the DM process using hierarchical task
networks and generate alternative work�ows; 2) to guide algorithm and model
selection for critical tasks such as learning and dimensionality reduction; 3) to
meta-mine experimentation records in order to improve algorithm and model
selection; 4) to provide a controlled vocabulary for semantic annotation of DM
tools and services o�ered in e-LICO. Use of the DMO to plan the knowledge
discovery process is discussed in [17]. This paper describes how the DMO has
been designed to support algorithm selection and meta-learning. Section 2 pro-
poses a novel approach to the algorithm selection problem; Section 3 discusses
related work concerning algorithm selection, meta-learning, and DM ontologies.
Sections 4 and 5 give an overview of the DMO and its conceptualization of
tasks and methods to support algorithm selection and meta-learning. Section 6
concludes with a discussion of major open issues and future work.

2 Algorithm selection and meta-learning

It is now a matter of consensus that no learning algorithm can outperform all
others across broad classes of problems and domains [26]. Thus an essential step
in any machine learning experiment is selecting the algorithm that will perform
best for a given task and data set. As pointed out in a recent survey [24], research
on algorithm selection �nds its origins outside machine learning, in a broader
framework that cuts across diverse areas of mathematics and computer science.
In 1976 a seminal paper by John Rice [23] proposed a formal model comprising
four components: a problem space X or collection of problem instances describ-
able in terms of features de�ned in feature space F , an algorithm space A or
set of algorithms considered to address problems in X , and a performance space
P representing metrics of algorithm e�cacy in solving a problem. Algorithm se-
lection can then be formulated as follows: Given a problem x ∈ X characterized
by f(x) ∈ F , �nd an algorithm α ∈ A via the selection mapping S(f(x)) such
that the performance mapping p(α(x)) ∈ P is maximized. A schematic diagram
of the abstract model is given in Fig. 1.

In Rice's model, selection mapping from problem space X onto algorithm spaceA
is based solely on features f ∈ F over the problem instances. In machine learning
terms, the choice of the appropriate induction algorithm is conditioned solely on
the characteristics of the learning problem and data. Strangely, meta-learning
research has independently abided by the same restriction from its inception to

77

Fig. 1. Rice's model of the algorithm selection problem. Adapted from [23,24]

the present. Learned meta-rules are generally of the form: if the given dataset has
characteristics C1, C2, ..., Cn, then use algorithm A1. Sometimes the conclusion
can take other forms such as "don't use algorithm A2" or "prefer A1 to A2" ;
in all cases, however, these rules represent mappings from data set features to
algorithms viewed essentially as black boxes.

So far no attempt has been made to correlate dataset and algorithm characteris-
tics, in other words to understand which aspects of a given algorithm explain its
expected performance given the features of the data to be modelled. As a conse-
quence, current meta-learners cannot generalize over algorithms as they do over
data sets. To illustrate this problem, suppose that three algorithms are observed
to achieve equivalent performance on a collection of datasets representing a task
family. Meta-learning would yield three disjunctive rules with identical condi-
tions and distinct recommendations. There would be no way of characterizing in
more abstract terms the class of algorithms that would perform well on the given
task domain. In short, no amount of meta-learning would reap fresh insights into
the commonalities underlying the disconcerting variety of algorithms.

To overcome this di�culty, we propose to extend the Rice framework and pry
open the black box of algorithms. To be able to di�erentiate similar algorithms
as well as detect deeper commonalities among apparently unrelated ones, we
propose to characterize them in terms of components such as the model struc-
ture built, the objective functions and search strategies used, or the type of
data partitions produced. This compositional approach is expected to have two
far-reaching consequences. Through a systematic analysis of all the ingredients
that constitute an algorithm's inductive bias, meta-learning systems (and data
miners in the �rst instance) will be able to infer not only which algorithms
work for speci�c data/task classes but�more importantly�why. In the long
term, they should be able to operationalize the insights thus gained in order to
combine algorithms purposefully and perhaps design new algorithms. This novel
approach to algorithm selection is not limited to the induction phase; it should
be applicable to other data and model processing tasks that require search in
the space of candidate algorithms. The proposed approach will also be adapted
to model selection, i.e., �nding the speci�c parameter setting that will allow a
given algorithm to achieve acceptable performance on a given task. This will
require an extensive study of the parameters involved in a given class of algo-

78

Fig. 2. Proposed model for algorithm selection

rithms, their role in the learning process or their impact on the expected results
(e.g., on the complexity of the learned model for induction algorithms), and their
formalization in the data mining ontology.

The proposed revision of Rice's model for algorithm selection is visualized in Fig.
2. It includes an additional feature space G representing the space of features
extracted to characterize algorithms; selection mapping is now a function of both
problem and algorithm features. The revised problem formulation now is: Given
a problem x ∈ X characterized by f(x) ∈ F and algorithms a ∈ A characterized
by g(a) ∈ G, �nd an algorithm α ∈ A via the selection mapping S(f(x), g(a))
such that the performance mapping p(a(x)) ∈ P is maximized.

3 Related work

Of the few data mining ontologies reported in the literature, the majority
focus on planning the DM process and building work�ows [4,28,27], sometimes
in the speci�c context of Grid computing [8,7]. We shall not delve into their
content which is not directly relevant to the focus of this paper. A recent paper
proposes a data mining ontology aimed at "the uni�cation of the �eld of data
mining" [20] but de�nes no speci�c use case that it is intended to support. To our
knowledge, the DMO is the �rst data mining ontology that has been designed
to support, among other tasks, algorithm/model selection and meta-learning.

Algorithm and model selection in data mining has been the object of in-
tensive experimentation and large-scale comparative studies, a comprehensive
review of which is outside the scope of this paper. (e.g., [19,14,18,9,12]). More
interestingly, choosing the right algorithm and parameter setting has been cast
as a learning problem in itself: meta-learning for algorithm and model selection
has been an active area of investigation for the past two decades [22,1,6,16,13,2].
As pointed out in Section 2, most research on this topic has been implicitly done
within the bounds of Rice's framework, where black-box algorithms are selected
based solely on problem/data descriptions. An important body of meta-learning
research has been devoted to dataset characterization. The Statlog project [19]

79

yielded several dozen dataset features grouped into three categories: simple
counts (e.g., number of instances, features or classes), statistical measures (e.g.,
feature covariance) and information-theoretic measures (e.g., feature entropy).
Thereafter, other researchers have tried to expand this set by exploring new fea-
tures that might yield clues on which algorithms work best for which dataset
characteristics [11,10].

The use of landmarking [21,3] in the METAL project gave new impetus to the
study of algorithm performance on datasets. This approach uses two sets of
algorithms: so-called landmarkers and the actual candidate algorithms. Land-
markers are simple and fast learners (preferably with di�erent inductive biases)
whose performance on a set of di�erent learning tasks serve to chart the space
of learning problems. To generate meta-rules, both landmarkers and candidates
are trained and evaluated on a given set of datasets. Each learning task/dataset
then becomes a meta-learning instance which is characterized, in addition to
standard predictive features, by the di�erent landmarkers' performance scores.
The label of each meta-instance is the candidate algorithm with the best per-
formance measure. The meta-learner is then trained to predict the winning al-
gorithm by identifying tasks in which landmarkers' performance correlate with
that of a particular candidate. An example of a learned meta-rule is: If error-
LINEAR-DISCR ≤ 0.0652 ∨ (num-inst ≥ 10 ∧ num-classes ≥ 5 ∧ maxclass ≥
0.547) then choose LTREE , else choose RIPPER [21]. However, despite the use
of learners to landmark areas of expertise of other learners, no attempt is made
to explain observed performance of algorithms on the basis of landmarkers' or
their own characteristics. In landmarking, as before, learners remain black boxes.

4 The data mining ontology

As indicated in Section 1, the DMO is meant to support a number of use cases.
This section presents a speci�c view of DMO based on the algorithm selection
use case. The most important competency questions that the ontology should
be able to answer include the following: Given a data mining task/data set,
what is the set of potentially applicable methods/algorithms? Given a set of
candidate methods/algorithms for a given task/data set, which data set char-
acteristics should be taken into account in order to select the most appropriate
one? Given a set of candidate methods/algorithms for a given task/data set,
which method/algorithm characteristics should be taken into account in order
to select the most appropriate one?

The DMO is currently being developed in OWL2 using the Protégé 4 editor. To
support algorithm selection, it provides a conceptualization of data mining tasks,
methods/algorithms and datasets. The task hierarchy is divided into two major
subtrees: the �rst represents the user task which is more relevant to the plan-
ning use case described in [17], while the concept of GenericDMTask subsumes
four major task classes: data processing, modelling, model transformation, and

80

model evaluation. Since the focus of this paper is on algorithm selection for
classi�cation, Fig. 3 shows an extract of the ModellingTask hierarchy where Pre-
dictiveModellingTask subsumes three subclasses distinguished by the data type
of their output: categories for classi�cation, scalars for regression, and complex
objects (e.g., tuples, trees) for structured prediction.

Fig. 3. The ModellingTask subtree

For each leaf class of the task hierarchy, there is a corresponding Method subtree
whose branches represent broad classes of methods that address the task. For in-
stance, classi�cation methods can be divided into three broad categories [5] that
form the main branches of the Classi�cationMethod subtree (Fig. 4). Generative
methods compute the class-conditional densities p(x|Ck) and the priors p(Ck)
for each class Ck, then use Bayes' theorem to �nd posterior class probabilities
p(Ck|x). They can also model the joint distribution p(x, Ck) directly and then
normalize to obtain the posteriors. In both cases, they use statistical decision
theory to determine the class for each new input. Examples of generative meth-
ods are normal discriminant analysis and Naive Bayes. Discriminative methods
such as logistic regression compute posteriors p(Ck|x) directly to determine class
membership. Discriminant functions build a direct mapping f(x) from input x
onto a class label; neural networks and support vector machines (SVMs) are
examples of discriminative methods.

5 Algorithm characterization in the DMO

The DMO's conceptualization of learning algorithms hinges on the 4-tuple of
concepts (Task, DataSet, Method, Model). For instance, a Classi�cationTask is

81

Fig. 4. The Classi�cationMethod subtree

achieved by applying a Classi�cationMethod to a LabelledDataSet, producing a
Classi�cationModel. As we go down the classi�cation method subtree in Fig.4,
the broad approaches described in the previous section split into more special-
ized methods which in turn give rise to formally speci�ed algorithms such as
those on the right side of the �gure. In ontological terms, these speci�c method
subclasses are simultaneously declared as instances of the Algorithm meta-class;
their subclasses represent operators, de�ned as concrete software implementa-
tions of algorithms. In the same vein, these subclasses are themselves instances
of the Operator meta-class. For example, DiscriminantFunctionMethod subsumes
RecursivePartitioning which in turn subsumes algorithms LTREE, CART and C4.5.
The black triangle to the right of C4.5 depicts its (hidden) subclasses, operators
Weka-J48 and RapidMiner-DecisionTree.

We now zoom in on the key components of classi�cation algorithms; these are
represented by datatype and object properties of Algorithm instances. For the
purposes of this paper, we focus on characterizing how algorithms work and
ignore shallow algorithm characteristics such as ease of implementation, com-
putational cost or readability. To do this, we must �rst characterize the models
they were designed to produce.

A Classi�cationModel is de�ned by its ModelStructure and by the ModelParam-
eters that instantiate this basic structure. It is the ModelStructure that distin-
guishes the major classi�cation models: a GenerativeModel's basic structure is

82

a JointProbabilityDistribution, that of a DiscriminativeModel is a PosteriorProba-
bilityDistribution. DiscriminantFunctionMethods produce diverse model structures
such as decision trees and neural networks, depending on the nature of the map-
ping function. Within each model family, a variety of models are produced by
coupling the model structure with di�erent types/values of model parameters.
To see this, consider the di�erence between linear and quadratic discriminant
analysis under the Gaussian assumption. The NormalQuadraticDiscriminantModel
has the same model structure and �rst model parameter as NormalLinearDiscrim-
inantModel shown in Fig. 5. However, its second model parameter is not a single
SharedCovarianceMatrix, but as many class-speci�c covariance matrices as there
are classes in the given dataset. The outcome is a major di�erence in the ge-
ometry of the resulting models: one draws a linear (value of the doesDataSplit
property, Fig. 5) and the other a quadratic boundary between the classes.

Fig. 5. Characterization of two generative algorithms and models

In probabilistic (generative and discriminative) models, another property that
further speci�es the model structure to yield diverse models is the DensityEstima-
tionMethod used. For instance, although the two generative models in Fig. 5 use a
JointProbabilityDistribution structure, the NormalLinearDiscriminantModel uses a
Gaussian distribution whereas NaiveBayesKernel [15] estimates a non-parametric
distribution by �tting a Gaussian kernel around each training instance. This
entails clear di�erences in the type of model parameters: the su�cient statistics
of the estimated Gaussian distribution are the NormalLinearDiscriminantModel's
mean and covariance matrices, whereas those of NaiveBayesKernelModel are all
the training instances.

Given a model structure and its parameters, the learning process is nothing more
or less than the automated adjustment of these parameters to produce a fully
speci�ed, operational model. This is the task of the learning algorithm. The goal
is to determine the set of parameter values that will maximize classi�cation per-
formance as gauged by some criterion. Independently of the manner in which
the learned model will be evaluated after the learning process, the learner should

83

de�ne a cost (or objective) function, which quanti�es how close the current pa-
rameter values are to the optimum. Learning stops when the cost function is
minimzed. In its simplest version, the cost function can be simply some measure
of error or more generally of loss (e.g. misclassi�cation rate or sum of squared
errors). However, minimizing training set error can lead to over�tting and gen-
eralization failure. The more general concept of CostFunction used in the DMO
can be formalized as F = ε+ λc, where ε is a measure of loss, c is a measure of
model complexity, and λ is a regularization parameter which controls the trade-
o� between loss and complexity. The components of the cost function used in
SVM learning are shown in Fig. 6.

Fig. 6. Characterization of a discriminant function algorithm and model

The search for the right setting can be cast as an optimization problem that con-
sists in minimizing the cost function. Hence an OptimizationStrategy is another
essential component of a learning algorithm. In certain cases, optimization is
straightforward. This is the case of NormalLinearDiscriminantAnalysis (Fig. 5),
where the cost function is the log likelihood, and the maximum likelihood esti-
mates of the model parameters have a closed form solution: it su�ces to take
the derivatives of the log likelihood with respect to the di�erent parameters, set
them to 0, and solve for the parameters. Logistic regression, on the other hand,
estimates the maximum likelihood parameters using methods such as Newton-
Raphson. SVMs use Sequential Minimal Optimization (SMO), a quadratic pro-
gramming method rendered necessary by the quadratic complexity component
of the cost function (L2 norm in Fig. 6).

A learning algorithm's model structure and its strategy for �nding the optimal
model parameters are essential ingredients of its inductive bias, without which
no generalization is possible. Despite such design options that restrict the space
of target functions that a learning algorithm can explore, the combinatorics
of search remains daunting. Thus many algorithms allow the user to restrict
further the space of considered models or steer the search in regions deemed
promising. This is the role of hyperparameters: they allow the user to reinforce an
algorithm's built-in inductive bias by specifying choices that might be informed

84

by prior knowledge. In SVMs, for instance, a single generic algorithm can give
rise to a number of di�erent models based on the hyperparameter values selected
by users. One such hyperparameter is the kernel function, which is de�ned by the
kernel type (e.g., polynomial, Gaussian) and its associated parameters: the order
or degree of a polynomial kernel, or the bandwidth of a Gaussian kernel. The
kernel function selected by the user (depicted as <Kernel> in Fig.6) speci�es
the LinearCombinationOfKernels that comprises the model structure. Adjustment
of the model parameters (the kernel coe�cients) is controlled by yet another
hyperparameter called C. As shown in the �gure, the value of C becomes the
regularization parameter that controls the trade-o� between error (measured by
Hinge Loss) and model complexity (quanti�ed by the L2 norm of the kernel
coe�cients). This is expressed in OWL through the SWRL rule: If SVM (?x) ∧
hasCostFunction(?x, ?y) ∧ hasHyperparameter(?x, ?z) ∧ hasValue(?z, ?c) ->
hasRegularizationParameter(?y, ?c).

6 Conclusion

In this paper we presented our vision of a data mining ontology designed to
support meta-learning for algorithm (and subsequently model) selection. Previ-
ous research has focused obsessively on aligning experiments and performance
metrics while little e�ort has gone into explaining observations in terms of the in-
ternal logic and mechanisms of learning algorithms. In this sense, meta-learning
research has remained within the strict bounds of the Rice framework, which re-
lates dataset descriptions to performance of algorithms viewed mainly as black
boxes. We propose to extend the Rice model by adding algorithm features to
dataset features as parameters of the algorithm selection function. To do this,
we need to investigate the building blocks that comprise algorithms in order to
reveal commonalities underlying their apparent diversity; more ambitiously, the
goal is to identify the components of inductive bias that characterize each algo-
rithm and algorithm family. Key components are: the structure and parameters
of the models produced, the cost function used to quantify the appropriateness
of a model, and the optimization strategy adopted to �nd the model parameter
values that minimize this cost function.

Ongoing work involves two broad groups of issues. First, we should sort out a
number of ontology engineering problems. The main hurdle we face concerns the
limitations of description logic; we need the power of �rst-order logic to formulate
the underlying mathematics of learning in an ontological framework. However,
we must weigh the trade-o� between expressive power and interoperability with
OWL-based e-science platforms. Collaboration with specialists in formal ontolo-
gies is crucial at this point. Second, the priority data mining issue is identifying
other components of bias for learning algorithms, in addition to those described
in this paper. This task concerns classi�cation in the �rst instance, but could be
fruitfully extended to other predictive and descriptive data mining tasks.

85

This two-pronged research agenda is clearly beyond the reach of a single research
group or even of a small-scale European project. The short-term goal is to gather
interested data miners and ontology engineers to consolidate the core concepts
and orientation of the DMO. The next step will be to show how the DMO can
be used to improve algorithm selection through meta-learning. Here again, it is
indispensable to establish broad collaborations and leverage the results of teams
working actively in the area. For instance, the wealth of meta-data gathered
in extensive empirical comparisons [9] and community-based experimentation
platforms [25] will certainly help to overcome the well-known bottleneck of meta-
data sparsity that has always hindered meta-learning research.

Acknowledgements

This work was supported by the European Union within FP7 ICT project e-
LICO (Grant No 231519).

References

1. D. W. Aha. Generalizing from case studies: a case study. In D. Sleeman and
P. Edwards, editors, Proc. of the 9th International Workshop on Machine Learning,
pages 1�10. Morgan Kaufmann, 1992.

2. S. Ali and K. Smith-Miles. A meta-learning approach to automatic kernel selection
for support vector machines. Neurocomputing, 70(1-3):173�186, 2006.

3. H. Bensusan and C. Giraud-Carrier. Discovering task neighbourhoods through
landmark learning performances. In Proceedings of the Fourth European Conference
on Principles and Practice of Knowledge Discovery in Databases, pages 325�330,
2000.

4. A. Bernstein, F. Provost, and S. Hill. Toward intelligent assistance for a data
mining process: An ontology-based approach for cost-sensitive classi�cation. IEEE
Transactions on Knowledge and Data Engineering, 17(4):503�518, 2005.

5. C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
6. P. B. Brazdil and R. J. Henery. Analysis of results. In Michie et al. [19], chapter 10,

pages 175�212.
7. P. Brezany, I. Janciak, and A. Min Tjoa. Ontology-based construction of grid

data mining work�ows. In H. O. Nigro, S. E. Gonzalez Cisaro, and D. H. Xodo,
editors, Data Mining with Ontologies: Implementations, Findings and Frameworks.
IGI Global, 2008.

8. M. Cannataro and C. Comito. A data mining ontology for grid programming. In
Proc. 1st Int. Workshop on Semantics in Peer-to-Peer and Grid Computing, in
conjunction with WWW2003, pages 113�134, 2003.

9. R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learn-
ing algorithms. In Proceedings of the 23rd International Conference on Machine
Learning, Pittsburgh, PA, 2006.

10. Christian Kopf Charles, Charles Taylor, and Jorg Keller. Meta-analysis: From
data characterisation for meta-learning to meta-regression. In Proceedings of the
PKDD-00 Workshop on Data Mining, Decision Support,Meta-Learning and ILP,
2000.

86

11. S. J. Cunningham. Dataset cataloging metadata for machine learning applica-
tions and research. In Proceedings of the Sixth International Workshop on AI and
Statistics 1997, Fort Lauerdale, FL, 1997.

12. J. Demsar. Statistical comparisons of classi�ers over multiple data sets. Journal
of Machine Learning Research, 7:1�30, 2006.

13. W. Duch and K. Grudzinski. Meta-learning: Searching in the model space. In
Proc. of the Int. Conf. on Neural Information Processing (ICONIP), Shanghai
2001, pages 235�240, 2001.

14. A. Feelders and W. Verkooijen. On the statistical comparison of inductive learning
methods, chapter 26, pages 271�279. Springer, 1996.

15. G. H. John and P. Langley. Estimating continuous distributions in bayesian clas-
si�ers. In P. Besnard and S. Hanks, editors, Procs. Eleventh Conference on Uncer-
tainty in Arti�cial Intelligence, pages 338�345. Morgan Kaufmann, 1995.

16. A. Kalousis and M. Hilario. Model selection via meta-learning. International
Journal on Arti�cial Intelligence Tools, 10(4), 2001.

17. J. U. Kietz, F. Serban, A. Bernstein, and S. Fischer. Towards cooperative planning
of data mining work�ows. In Submitted to the ECML/PKDD-2009 Workshop on
Third Generation Data Mining: Service Oriented Knowledge Discovery, 2009.

18. T. Lim, W. Loh, and Y. Shih. A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classi�cation algorithms. Machine
Learning, 40:35�75, 2000.

19. D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine learning, neural
and statistical classi�cation. Ellis-Horwood, 1994.

20. P. Panov, S. Dzeroski, and L. Soldatova. Ontodm: An ontology of data mining.
In Proceedings of the 2008 IEEE International Conference on Data Mining Work-
shops, pages 752�760, 2008.

21. B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by landmarking
various learning algorithms. In Proc. Seventeenth International Conference on
Machine Learning, ICML'2000, pages 743�750, San Francisco, California, June
2000. Morgan Kaufmann.

22. L. Rendell and E. Cho. Empirical learning as a function of concept character.
Machine Learning, 5:267�298, 1990.

23. J. Rice. The algorithm selection problem. Advances in Computing, 15:65�118,
1976.

24. K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys, 41(1), 2008.

25. Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, and Geo� Holmes.
Experiment databases: Creating a new platform for meta-learning research. In
Planning to Learn Workshop, ICML/COLT/UAI-2008, pages 10�15, Helsinki, July
2008.

26. D. Wolpert. The lack of a priori distinctions between learning algorithms. Neural
Computation, 8(7):1381�1390, 1996.

27. Monika �áková, Petr K°emen, F. �elezný, and N. Lavra£. Using ontologi-
cal reasoning and planning for data mining work�ow composition. In SoKD:
ECML/PKDD 2008 workshop on Third Generation Data Mining: Towards Service-
oriented Knowledge Discovery, 2008.

28. Monika �áková, Petr K°emen, Filip �elezný, and Nada Lavra£. Planning to learn
with a knowledge discovery ontology. In Planning to Learn Workshop (PlanLearn
2008) at ICML 2008, 2008.

87

Stand on the Shoulders of Giants: Towards a

Portal for Collaborative Experimentation in

Data Mining

Joaquin Vanschoren and Hendrik Blockeel

Computer Science Dept., K.U.Leuven, Leuven, Belgium

Abstract. Data mining is a science guided by experimentation. Still,
there exists only limited support to automate such experimentation,
making it a laborious and error-prone process. In this paper, we plead
for a more collaborative approach in which researchers build upon prior
efforts by other researchers in setting up and running experiments, and
in turn share the fruits of their experimentation with the community. To
this aim, we propose an online portal : a web service which collects anno-
tated datasets, algorithms, experimental setups and millions of empirical
evaluations sent to it by data mining tools and individual users, organizes
them in one searchable central resource, and assists researchers in set-
ting up and running new experiments. Such a service could drive many
useful applications, from online platforms where all stored experiments
can be explored in great depth and discovered trends can be discussed,
to advanced data mining tools that interact with the service to speed up
the setup and execution of experiments and upload new experiments to
allow a more in-depth exploration of the acquired results.

1 Introduction

Data mining (DM) is a science guided by the interpretation of experimental
results. Whether or not a new technique is noteworthy is assessed by empiri-
cal evaluation. Yet, while advances in high throughput computing have made
it easier to run ever larger numbers of experiments, this has not been equally
matched by tools that facilitate the setup of extensive experimental evaluations.
Setting up and running experiments and interpreting their results is still a very
labour-intensive and error-prone process, which not only slows down the thor-
ough evaluation of new ideas, but in practice also limits the depth of many
evaluations. For instance, algorithms are typically run on only a portion of the
available datasets, or important effects such as the impact of algorithm param-
eters, data properties or preprocessing techniques are not investigated.

Obviously, this raises question marks over the generality of conclusions in
many papers. First, a study by Hand [5] has highlighted some of the issues that
many comparisons fail to take into account, to the extent that the purported
superiority of certain algorithms may well be illusory. A lot depends on which
datasets were selected, which evaluation metrics were chosen, whether or not cost

88

functions are involved and last but not least, the researcher’s experience with
the involved algorithms and her ability to squeeze the best performance from
them. Another study by Perlich et al. [9] showed that the number of data points
selected from each dataset has a marked effect on the relative superiority of many
algorithms and Hoste and Daelemans [6] showed how parameter optimization,
data sampling, feature selection and their interaction all have a profound effect
on the relative superiority of algorithms. Still, many comparisons do not take
these factors into account.

Furthermore, the lack of standardized experimentation also makes it very
hard for researchers to disseminate their original experiments, which have much
more value beyond their initial interpretation presented in papers. This also
holds for the many experiments that do not get published. Indeed, experiments
are also used for exploring new ideas, searching for relationships, comparing
alternatives or trying to understand the behavior of algorithms [3]. Experiments
are the lifeblood of data mining research, and it is unfortunate that these cannot
be easily shared.

First, because descriptions of experiments in papers are usually quite vague,
making it hard to verify, revise or refine previous conclusions. Different algo-
rithm comparisons may use very different algorithm implementations, datasets
may also have been preprocessed without it being clear how, and different scripts
to split the data or compute evaluation metrics may yield different results. All
this makes it quite easy to find different answers to the same questions, without
it being clear what causes the deviating results. Second, even simple questions
about the behavior of certain algorithms require the setup of new experiments,
while they could perhaps be answered by simply exploring the combined results
of many different studies. Third, especially in benchmark studies, the same algo-
rithms are run on the same datasets over and over again, using time and resources
that could have been put to better use. And finally, it impedes interaction be-
tween different subfields in data mining. For instance, new data preprocessing
techniques may greatly enhance the utility of certain learning algorithms, yet,
since the preprocessed datasets are not available, the algorithm designer may be
hesitant to investigate this because it requires the execution and fine-tuning of
techniques she may not be familiar with.

In the remainder of this paper, we motivate how data mining research could
benefit greatly from a more collaborative approach to experimentation in Section
2. Next, Section 3 describes how we plan to implement this portal. We propose
two ways in which to do this: the first is to provide interfaces for toolboxes and
individual algorithm implementations, the second is to design DM techniques
as web services which automatically interact with the portal. Finally, Section 4
illustrates the benefits of such a portal in a typical use case.

2 A Collaborative Approach

In the words of Isaac Newton, “If I have seen further it is by standing on the
shoulders of giants.” Indeed, scientific progress always builds on existing ideas,

89

data and methods, and the fields of machine learning (ML) and data mining are
no exception [11]. To accelerate the progress (and reduce the cost) of research,
many sciences, such as astronomy, bio-informatics and high-energy physics have
started to use shared databases to store very detailed descriptions of various
kinds of data and have turned to modern web technologies to use the web as a
large, user-driven collaborative workspace [7, 12].

Similarly, we believe that the best way to solve the aforementioned issues
in DM and ML is to take a more collaborative approach to experimentation,
in which experimental procedures, algorithms, datasets and all obtained evalua-
tions are freely exchanged between large groups of researchers, and subsequently
reused to speed up and automate this process as much as possible. We plan to
realize this by implementing an online community ‘portal’ for data mining ex-
perimentation which interacts with data mining tools to automatically exchange
experimental details and resources, and which organizes all this information so
it can be easily explored by researchers.

This portal can take the form of a web service that collects algorithms,
datasets, experimental setups and results sent to it by data mining tools, or-
ganizes them in one searchable central resource, and, upon request, provides the
necessary components to quickly setup and run new experiments. Its core con-
sists of a database that stores experimental results in an organized fashion, as
well as detailed descriptions of the used algorithms, datasets and experimental
setups. Such databases have already been described [2], and allow a thorough
exploration of all stored results and meta-information by means of very flexible
querying capabilities.

However, when implemented as a web service, it can be expanded into a true
platform for collaboration, offering many more services and interacting auto-
matically with other data mining tools and services, so that researchers don’t
need to manually describe their experiments in order to share them. As such,
it should offer interfaces for clients to upload new experiments, resources (such
as datasets and algorithms) and meta-information (such as characterizations of
datasets), as well as interfaces to answer specific queries over all stored exper-
imental results and meta-information. Moreover, it should also be able to run
new experiments, either by providing data mining tools with all information and
resources necessary to run the experiments locally, or by automatically calling
on algorithms implemented as web services.

Such a portal essentially acts as a window on the behavior of data mining
techniques. It surveys all data sources, algorithms and experiments ever submit-
ted, as well as specific domain knowledge such as properties of algorithms or
datasets, procedures used for model evaluation, general knowledge about how
to set up experiments and so on. All this information can be accessed automat-
ically, by sending requests, or manually by writing queries to it, for instance to
test hypotheses, to rearrange the stored data to gain new insights, or to retrieve
specific datasets and algorithm implementations.

The rest of this paper is organized as follows. First, we motivate how data
mining research could benefit greatly from a collaborative approach to experi-

90

Fig. 1. The architecture of Experiment Databases.

mentation in Section 2. Next, Section 3 describes how we plan to implement this
portal. We propose two ways in which to do this: the first is to provide interfaces
for toolboxes and individual algorithm implementations, the second is to design
DM techniques as web services which automatically interact with the portal.
Finally, Section 4 illustrates the benefits of such a portal in a typical use case.

3 Implementation

In this section, we discuss some of the ways in which the portal described above
could be implemented. Still, there are many open issues which warrant further
investigation.

3.1 Experiment Databases

The implementation we envision builds upon experiment databases [2], a plat-
form designed to collect large numbers of data mining experiments. The compo-
nents of this platform are shown in Fig. 1. First of all, it contains an XML-based
language to describe experiments, dubbed ExpML, which is formally described in
Vanschoren et al. [15]. It is meant to allow experiments to be exchanged between
the database and external data mining tools and web services. The ExpML for-
mat describes complete experiment setups, including pointers to the necessary
data sources and executables. We show an example in Sect. 3.3. To facilitate the
generation of ExpML descriptions by external tools, a Java API is provided to
compose the descriptions programmatically and submit them to the system.

91

The experiments are then stored in a relational database designed to be
extensible, scale easily to large numbers of experiments and allow queries on
practically any aspect of the experimental setup and outcome. It is implemented
in MySQL and currently contains over 600,000 experiments on 67 classification
and regression algorithms, 149 different datasets and 2 data preprocessing tech-
niques. Access is provided through web services for submitting experiments and
launching queries.

There are several ways to use the database (illustrated at the bottom of
Fig.1). First, the platform offers two query interfaces to explore all the stored
information. Both are available at http://expdb.cs.kuleuven.be, including
example queries and video tutorials. The first is a website which offers a query
interface and basic online visualizations of the returned results. The second is
a stand-alone explorer tool offering more advanced querying and visualization
features. In the latter case, the database returns the requested experimental
data in the JSON format. SQL queries can be written to test a wide range
of hypotheses, provide overviews, or even download lots of experimental data
and look for patterns in algorithm performance or to provide advise to users of
particular algorithms. The querying abilities have been illustrated in great detail
elsewhere [2, 16], so we will not discuss them any further here.

Still, this platform needs to be extended in various ways to offer the func-
tionalities described in Section 1.

3.2 An Open Discussion Platform

A first, simple, extension is to provide a platform where researchers can discuss
certain experimental results (whether they were published in papers or not). The
result of a query, or any other selection of experiments, can be visualized and
posted online to instigate discussion about the observed behavior. This is an easy
way for researchers to work together or start discussions about the conclusions
of previous studies.

3.3 Ontological Descriptions

An important prerequisite for automated experimentation is an ontology that
provides a formal, controlled vocabulary for the setup and results of data mining
experiments1. They provide clear meaning to various concepts in data mining
experimentation, refine certain concepts where necessary and describe their re-
lations with other concepts. For instance, the term ‘inductive algorithm’ can be
either a specification (abstract description), an implementation (an encoding in
a certain programming language) or an application (in which the algorithm is
given specific parameter settings and run on a training set). Furthermore, al-
gorithm specifications clearly state the structure of those algorithms, consisting
of base-learners, kernels, distance functions, internal preprocessing steps, split-
ting criteria, to name a few. In this work, we have developed an ontology in the

1 Such ontologies have been an important research goal in bio-informatics[12, 10].

92

OWL-DL format, dubbed Exposé, built upon previous proposals for ontologies
for data mining [4, 8, 18]. It is used to design flexible database schema, provide
clear structure and descriptors for ExpML descriptions (in which the meaning of
each tag is clearly defined), to allow independently developed systems (e.g. web
services) to work together to exchange information and to build clear interfaces
for users who wish to query every aspect of the stored data or experimental
setups.

An example description of an experiment in the ExpML format is shown be-
low. It this case, we use an implementation of the ‘Bagging’ algorithm from the
WEKA toolbox [17], supply it with parameter settings and a base-learner, and
run it on the ‘pendigits’ datasets from the UCI repository, which is first prepro-
cessed by removing 10% of the data points. Data transformation applications
are given a local id so that data transformation workflows can be described us-
ing a ‘preceeds’ relation (which may have multiple targets). The evaluation will
happen with a cross-validation procedure, also implemented in WEKA, with the
given number of folds and the given random seed used to split the data into train
and test sets. It also enlists all evaluation metrics that should be computed.

<experiment>

<learner evaluation>

<task>

<s ing le target c la s s i f i ca t ion target_attribute=" -1" />

</task>

<algorithm appl>

<algorithm impl name=" Bagging" version=" 1.31.2.2 " libname=" weka "/>

<parameter name=" bagsize_percentage " value=" 90 "/>

<parameter name=" nr_iterations " value=" 40 "/>

<component role=" base - learner">

<algorithm appl>

<algorithm impl name=" NaiveBayes " version=" 1.16 " libname=" weka "/>

</algorithm appl>

</component>

</algorithm appl>

<input data>

<dataset name=" pendigits " preceeds=" pp1 ">

<url>http : // a r ch i v e . i c s . u c i . edu/ml/</url>

</dataset>

<preprocessor appl id=" pp1 ">

<preprocessor impl name=" RemovePercentage " version=" 1.3 " libname=" weka " />

<parameter name=" downsampling_percentage " value=" 10 "/>

</preprocessor appl>

</input data>

<evaluation method appl>

<evaluation method impl name=" CrossValidation " version=" 1.53 " libname=" weka "

libversion=" 3.4.8 " />

<parameter name=" nbfolds " value=" 10 "/>

<parameter name=" randomseed " value="1"/>

</evaluation method appl>

<evaluation metric appl name=" build_cputime ">

<evaluation metric impl name=" build_cputime " version="1" libname=" expdb " />

</evaluation metric appl>

<evaluation metric appl name=" predictive_accuracy ">

<evaluation metric impl name=" pctCorrect " version=" 1.88 " libname=" weka " />

</evaluation metric appl>

. . .
</learner evaluation>

</experiment>

The previous example only shows part of an experiment description. After
the experiment has run, it can be extended with the outputs required for that

93

type of experiment, such as evaluation metric results and (probabilistic) predic-
tions2. Next to experiments, which consists of applications, the format also allows
the definition of new specifications and implementations of any entity (e.g. algo-
rithms, kernels, datasets, evaluation metrics,...), each of which can be described
in great detail and ‘tagged’ with properties such as dataset and algorithm char-
acteristics. These definitions require the minimal amount of information needed
to make ensuing experiments reproducible [2].

3.4 Algorithms, Scripts and Datasets

For the portal to supply researchers with the necessary resources to run experi-
ments, it needs to store, or know where to find certain datasets, algorithms and
scripts (for instance, to calculate evaluation metrics). Given enough resources,
such a portal could actually store datasets locally, and return them in a suitable
format upon request. The portal can even store many versions of datasets, for
instance, being preprocessed in many different ways. If the preprocessing meth-
ods can be executed by the portal itself, it could also preprocess the datasets
on the fly. However, many modern data mining techniques operate directly on
databases, and many data sources are implemented as web services. In this case,
the portal only needs to store pointers to those databases and services and return
the necessary information. In either case, to provide users with enough informa-
tion to interpret the outcome of experiments run on those datasets, the portal
should automatically tag these data sources by computing various important
data characteristics.

When it comes to algorithms and scripts, the portal can again store executa-
bles, as far as they are available3. In case the algorithms are part of publicly
available toolboxes, we only need to store (several versions of) those toolboxes
and pointers to the algorithms inside that toolbox. In case they are implemented
as web services, we can again simply store pointers to those services.

Ideally, the portal should also allow contributing users to define who can
download their datasets and implementations. Preliminary experiments could
also be kept private until all bugs are fixed.

3.5 Running Experiments

Finally, we also want the portal to assist us when running experiments. We
propose two ways in which to do this, the first method requires that algorithms
(or the toolboxes in which they feature) can read and write ExpML descriptions,
the latter that they are implemented as web services which interact with the
portal.

2 Generated models are not yet included (nor stored in the database), but fu-
ture extensions should allow, for instance, PMML descriptions of the models (see
http://www.dmg.org/pmml-v3-2.html).

3 As discussed in Sonnenburg et al. [11], there are many benefits to publishing even
preliminary versions of algorithms, and researchers should receive formal credit for
publishing good implementations.

94

Fig. 2. Automated experiment execution in data mining.

Using Interfaces A first way to generate experiments and execute them, is to
write interfaces that take ExpML descriptions as input, execute the experiments
and return the final results in the ExpML format. This is illustrated in Fig.2.

In this scenario, a user makes sure her algorithm can read and write ExpML
descriptions, and uploads a description of her new algorithm to the portal. Next,
she writes a query that asks the portal to generate a number of experiments us-
ing a previously stored experimental setup. The portal extracts all the necessary
information from the experiment database, checks which experiments still need
to be run, and generates a number of templates for experiment execution. The
templates are coupled with the necessary datasets, ExpML descriptions of the
experiments, and, if necessary, the executables of other algorithms or procedures
(e.g. a cross-validation procedure). The algorithm interfaces read the ExpML de-
scription, run the experiments with the stated parameters on the stated datasets,
using the stated experimental methodology. The results are then again written
in the ExpML format and submitted to the portal.

This is especially interesting when using algorithms and evaluation proce-
dures implemented in toolboxes, since then only one interface has to be written
per toolbox. In the currently implemented system, interfaces are provided only
for the WEKA toolbox, though new interfaces for other popular toolboxes could
be written quite easily. The templates it generates can be used for execution on
several HPC systems or simply on a local machine. While in this scenario, the
process has started from the query interface, this need not always be the case.

95

Future toolboxes could use their own interfaces to download prior experiments
from the portal, run new experiments locally and stream results back to the
portal.

Using Web Services Because of the highly diverse nature of data mining re-
sources, a more fundamental approach would be to implement algorithms and
other resources as web services which could then be called on by the portal,
or vice versa. Illustrations of how such web services for data mining could be
implemented can be found in de Bruin et al. [1], and illustrations of workflows
of web services can be found in the Taverna project [13]. Weka4WS[14] offers
some WEKA algorithms implemented as web services. This approach would con-
siderably facilitate the implementation of many aspects of the proposed portal,
such as making algorithms and datasets more easily available, making the design
and execution of KDD workflows easier and more intuitive, and improving per-
formance. Indeed, all these web services could automatically interact with the
portal to submit experimental results and download any information needed.
The ExpML language could be used to exchange details of experiments and
new definitions (algorithms, datasets, etc.) in SOAP messages. Moreover, the
portal could call on algorithms implemented as web services to automatically
run experiments. The simplest setting would be to just send them an ExpML
experiment description and leave it to the services to execute it and return the
results. This would require services to support such requests. Alternatively, the
portal could store some meta-information for each service detailing how to set
parameters and run the algorithms. In both cases, the data could be sent along,
or the web services could request it from the portal when they are ready to
execute the experiment.

4 A Use Case

We finish with a description of a use case illustrating how our portal could be
used to speed up experimentation in data mining. Of course, there are many
different kinds of experiments in data mining research. A very common scenario,
however, is that of evaluating a new technique by running it on a collection
of datasets, employing a certain evaluation metric to test the performance of
the new technique and to compare it with the performance of other algorithms
previously proposed to perform the same task. We follow Mary as she aims to
compare her new algorithm against the state-of-the-art in her field.

4.1 Collecting and Preparing Datasets

The first problem she encounters is to collect a number of datasets and to re-
format them so that her algorithms, and the ones she wishes to compare with,
can run on them. For instance, some algorithms may require missing values to
be removed or filled in.

96

Using the community portal, Mary can query for a list of all known datasets,
or for datasets with certain properties (e.g. relational or very large ones) or ones
that represent certain tasks (e.g. multi-label prediction). She can even query for
versions of those datasets which are already formatted by previous researchers
to work with certain algorithms. In case those datasets do not yet exist, she can
query for the data requirements for all the algorithms and for a list of useful
preprocessing implementations. If Mary has to select a subset of algorithms,
the portal could show her how often each dataset has been used in previous
comparisons, show all known dataset characteristics (size, skewness, landmarking
results,...), or directly return a balanced subset of various kinds of datasets. As
such, the portal can significantly facilitate the search for a good collection of
datasets.

4.2 Setting up Experiments

Mary now has to decide which experiments she needs to run in order to obtain
a clear result, and exactly how to evaluate the algorithms.

Again, the portal can help Mary to obtain more trustworthy results. First of
all, she can reuse the experiments on other algorithms, probably run by the orig-
inal authors. Since the original authors know best how to use their algorithms,
and how the parameters of those algorithms should be varied, it makes sense to
just reuse them. Of course, to compare with them, the exact same procedures
(e.g. data splits) should be employed to evaluate all algorithms. Luckily, the
portal has kept track of this, so it will be able to use the exact same procedure
for Mary’s experiments. Mary can thus browse the used setups, choose one that
fits her goal, and download all known results obtained with that setup. Issues
with certain setups may also be reported and a number of exemplary setups can
be proposed that can easily be adopted by others.

The portal will also show sensible ranges of parameter settings for all al-
gorithms (entered by their authors), preprocessing techniques that should be
considered, and a wide range of evaluation metrics to be computed so that the
results are useful for many different researchers. Yet, including many parame-
ter settings and preprocessing steps means that a lot more experiments have
to be computed to perform algorithm comparisons than is currently customary
in data mining research. However, the portal can make such large-scale studies
much more attainable by eliminating the labor-intensive step of setting up all
experiments by hand, by reusing many experiments run before and by making
experiment execution more efficient where possible. For instance, active learning
could be used to generate only the most interesting experiments (skipping, for
instance, useless parameter ranges), or experiments could be generated to run
on dedicate web services or high performance computing systems.

4.3 Exploring the Results

After she runs her experiments and her results are automatically uploaded, the
portal automatically links the new results to the properties of datasets and

97

algorithms. Instead of just ranking all algorithms on their average performance
over the selected datasets, Mary can use queries to investigate on which kinds
of datasets her algorithm has a clear advantage, and on which it doesn’t work
that well. This may help her to develop it further. To investigate her algorithm’s
robustness against certain data characteristics, she can run more experiments
on other dataset versions which were, for instance, downsampled, or in which
noise or random features were added, and query the ensuing results. Similarly,
she can also check whether other types of preprocessing (e.g. feature selection or
construction) are particularly useful for her algorithm. Many illustrations of the
power of such queries when analyzing algorithm behavior can be found elsewere
[16].

5 Conclusions

In this work, we propose an online portal to engender a more collaborative ap-
proach to data mining research. This portal can be implemented as a web service
which collects annotated datasets, algorithms, experimental setups and millions
of empirical evaluations sent to it by data mining tools and individual users,
organizes them in one searchable central resource, and assists researchers in set-
ting up and running new experiments. As illustrated, such a service could drive
many useful applications, from online platforms where all stored experiments
can be explored in great depth and discovered trends can be discussed, to ad-
vanced data mining tools that interact with the service to speed up the setup
and execution of experiments and upload new experiments to allow a more in-
depth exploration of the acquired results. However, some obstacles remain to
support the automatic setup and execution of experiments with arbitrary al-
gorithms. Two possible solutions are outlined based on a proposed XML-based
standard for experiment descriptions, linked to an ontology of DM experiments.
They require that algorithms (or the toolboxes in which they feature) can read
and write to this format, or that they are implemented as web services which
interact with the portal.

Acknowledgements

This research is supported by GOA 2003/08 ‘Inductive Knowledge Bases’ and
F.W.O.-Vlaanderen ‘Foundations of Inductive Databases for Data Mining’.

References

1. de Bruin, J., Kok, J., Lavrač, N., and Trajkovski, I.: Towards Service-Oriented
Knowledge Discovery: A Case Study. ECML 2008 Workshop on Third Generation
Data Mining: Towards Service-oriented Knowledge Discovery (2008).

2. Blockeel, H. and Vanschoren, J.: Experiment databases: Towards an improved ex-
perimental methodology in machine learning. PKDD ’07: Proceedings. Lecture Notes
in Computer Science 4702 (2007) 6-17

98

3. Drummond, C.: Finding a Balance between Anarchy and Orthodoxy. Proc. of the
Evaluation Methods for Machine Learning Workshop at the 25th ICML (2008)

4. Džeroski S.: Towards a General Framework for Data Mining. Lecture Notes in Com-
puter Science 4747 (2007) 259–300

5. Hand, D., J.: Classifier Technology and the Illusion of Progress. Statist. Sci. 21(1)
(2006), 1–14

6. Hoste, V. and Daelemans, W.: Comparing Learning Approaches to Coreference Res-
olution. There is More to it Than ’Bias’. Proceedings of the Workshop on Meta-
Learning (ICML-2005) (2005) 20–27

7. Nature. Let data speak to data. Nature, 438(7068) (2005), 531
8. Panov, P., Džeroski, S. and Soldatova, L.: OntoDM: An Ontology of Data Mining.

IEEE International Conference on Data Mining Workshops (2008) 752–760
9. Perlich, C. and Provost, F. and Siminoff, J.: Tree induction vs. logistic regression:

A learning curve analysis. Journal of Machine Learning Research 4 (2003) 211–255
10. Soldatova L. N., Clare A., Sparkes A., King R. D.: An ontology for a Robot Sci-

entist, Bioinformatics 22(14) (2006) 464–471
11. Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G.,

LeCun, Y., Müller, K.-R., Pereira, F., Rasmussen, C. E., Rätsch, G., Schölkopf,B.,
Smola, A., Vincent, P., Weston, J., and Williamson, R. The need for open source
software in machine learning. Journal of Machine Learning Research 8 (2007) 2443-
2466.

12. Stoeckert,C., Causton,H. and Ball,C.: Microarray databases: standards and ontolo-
gies. Nature Genetics 32 (2002) 469–473.

13. The Taverna workbench. http://taverna.sourceforge.net
14. Talia, D., Trunfio, P., Verta, O., Weka4WS: a WSRF-enabled Weka Toolkit for Dis-

tributed Data Mining on Grids. Lecture Notes in Artificial Intelligence 3721 (2005)
309–320.

15. Vanschoren, J. and Blockeel, H. and Pfahringer, B. and Holmes, G.: Organizing the
world’s machine learning information. Communications in Computer and Information
Science 17 (2008) 693–708

16. Vanschoren J. and Pfahringer B. and Holmes G.: Learning From The Past with
Experiment Databases. Lecture Notes in Artificial Intelligence 5351 (2008) 485–496.

17. Witten, I.H. and Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques (2nd edition). Morgan Kaufmann (2005)

18. Žakova, M. and Kremen, P. and Železny, F. and Lavrač,N.: Using Ontological Rea-
soning and Planning for Data Mining Workflow Composition. ECML 2008 Workshop
on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery
(2008).

99

Towards service-oriented knowledge discovery in
biomedical research

Tu Bao Ho1,4, Katsuhiko Takabayashi2, Pham Tho Hoan3,
Nguyen Thanh Phuong5, Saori Kawasaki1, Tran Dang Hung1

1Japan Advanced Institute of Science and Technology, Japan ?

2Chiba University Hospital, Chiba, Japan
3Hanoi University of Education, Hanoi, Vietnam

4Vietnamese Academy of Science and Technology, Vietnam
5The Microsoft Research, University of Trento, Italy

Abstract. Service-oriented knowledge discovery has the potential to
change the way work can be performed in knowledge discovery. Aiming at
analyzing biomedical data by computation programs to discover new and
useful knowledge, bioinformatics can become more useful if developed
within a service-oriented environment. By analyzing the service-oriented
architecture, the features of service-oriented knowledge discovery and
current service-oriented systems in biomedicine, this paper proposes five
main services in service-oriented bioinformatics: data integration, model
selection, workflow design and creation, interpretation of mining results,
and literature review.

1 Introduction

Bioinformatics is now becoming a key field to study the functionality of life
science. While the extremely complex nature of living organisms makes almost
all studies of life science in vitro expensive and laborious, the already available
large volumes of rapidly expanding and ever-changing biomedical databases al-
low biomedical scientists to effectively perform various additional studies in sil-
ico. Though bioinformatics is a relatively young science, its basic methods and
tools have become familiar to biomedical scientists. However, the understanding
of appropriateness between available bioinformatics tools and fundamental bio-
logical principles, and the knowledge to exploit these tools and data correctly to
generate useful results still remains a challenge.

As modern services industry is now contributing for more than half of most
developed economy, services computing has become an emerging cross discipline
that covers the science and technology of leveraging computing and information
technology to model, create, operate, and manage business services. The service-
oriented approach to science is also being emerged and recognized. Service-
oriented science has the potential to increase scientific productivity by making

? bao@jaist.ac.jp, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

100

powerful information tools available to all, and thus enabling the widespread
automation of data analysis and computation [8].

In this trend, a major view on the next generation of knowledge discovery and
data mining (KDD) is service-oriented KDD that aims at providing integration of
different data/knowledge resources and computer systems which are distributed
across the network [2].

As the main objective of bioinformatics is to discover biomedical knowledge
from biomedical data, it is natural to think of service-oriented knowledge dis-
covery in bioinformatics [4, 9]. A typical work on service-oriented biomedical
knowledge discovery is @neuLink [9], a component of the European Integrated
Project @neurIST, that aims at providing services for linking genetics to disease
with four concrete tasks. There have been also several proposals for architecture
of service-oriented bioinformatics systems or trials on service-oriented biomedical
systems. In [18], the authors developed Bio-jETI, a service integration, design,
and provisioning platform for orchestrated bioinformatics processes. In [16], the
authors presents Grendel, a bioinformatics Web service-based architecture for
accessing high performance computing resources. In [34], the authors developed
a service-oriented data integration and analysis environment for in silico ex-
periments and bioinformatics research. The target of various researches in this
direction is to support intelligent client for integrating bioinformatics services
[19] or Grid service oriented virtual bioinformatics laboratory [20] or for Grid-
based high-throughput genome analysis [28]. The key idea of why and how the
cyber-infrastructure with service orientation can empower the ‘third way’ in
biomedical research can be found in [4].

Based on our experience and lessons learned from knowledge discovery and
biomedical research and practice [10–12], this paper presents another view to-
wards a service-oriented environment for data mining in biomedical research that
is expected to fulfill the needs of biologists/scientists. By analyzing the features
of service-oriented architecture and modeling [1, 6, 7], the current bioinformatics
research and service-oriented bioinformatics systems, we argue that biomedical
applications can be developed and used more effectively and largely within a
service-oriented environment. In particular, we emphasize five important ser-
vices in the development of a service-oriented environment for bioinformatics:
data integration, model selection, workflow design and creation, interpretation of
mining results, and literature review. The main ideas as well as some initialized
work and experience for each of these services will also be addressed.

The paper is organized as follows. In section 2, we discuss the main features
of a service-oriented architecture and why knowledge discovery systems can be
beneficial when developed in the service-oriented architecture. In section 3, we
state that bioinformatics essentially employs data mining techniques and it meets
most challenging problems in data mining. Based on our past experience, on
issues in service-oriented knowledge discovery and on the current service-oriented
systems in bioinformatics, we argue and propose the features to be developed for
service-oriented environment for the bioinformatics research. Section 4 concludes
this investigation and proposal.

101

2 Service-oriented knowledge discovery

2.1 Service-oriented architecture

Intuitively, services are work done by someone for others to have the benefit.
So, there are at least two parties involved in the services, the service provider
and the service consumer. In terms of the service process, there are so-called
front-stage and back-stage activities in any business transaction – front-stage
activities are that come in contact with the consumer and back-stage ones are
that do not. In all cases, service requires substantial input from the consumer,
and thus service depends on having a high degree of front-stage activities to
interact with the consumer, and that improves consumer input to the production
process depending almost entirely on back-stage activities. For this reason and
as certain service process can be complicated, a third party – the service broker
who plays the intermediate role between these other two parties, can improve
the service process.

Generally speaking, a service-oriented architecture (SOA) is a framework that
allows us to easily reuse and combine the business process and services to make
up the business [1, 7]. The conceptual service-oriented architecture in [1] defines
an interaction model among three above-mentioned parties: the service provider,
who publishes a service description and provides the service implementation; the
service consumer, who can either invoke or use services via service description in
a service registry; and the service broker, who provides and maintains the service
registry. Figure 1 (adapted from [1]) depicts the relation among these parties,
and the link between the front-stage and the back-stage in the service-oriented
architecture.

Fig. 1. Conceptual model of service-oriented architecture ([1]).

102

A SOA usually contains several layers [1, 3]. For example, they are opera-
tional systems layer, enterprise component layer, services layer, business process
and composition layer, access and presentation layer, and integration layer. Im-
portantly, SOA should separate functions into distinct units or services, which
developers make accessible over a network in order that users can combine and
reuse them in the production of applications [7].

Another important feature of SOA is the loose coupling among the services, in
contrast to the functions that a linker binds together to form an executable, i.e.
services maintain a relationship that minimizes dependencies and only requires
that they maintain an awareness of each other. SOA services also run in ‘safe’
wrappers such as Java or .NET, and other programming languages that manage
memory allocation and reclamation, allow ad hoc and late binding, and provide
some degree of indeterminate data typing.

2.2 Why service-oriented knowledge discovery?

There are at least two reasons for developing service-oriented knowledge discov-
ery. One is the most challenging data to be mined are distributed and highly
heterogeneous and the other is knowledge discovery technologies should be made
and served for people who owns the data but do not know well how to exploit
them. We focus our discussion here on the second issue that we have had a num-
ber of lessons learned in the last ten years [11]. It can be seen that the following
aspects of knowledge discovery often cause difficulty for the user.

The knowledge discovery process is complicated and inherently contains sev-
eral steps. These steps are inherently iterative and interactive, i.e., one cannot
expect to extract useful knowledge by just pushing one time a large amount of
data into a black box without the user’s participation.

It is known that there is no inherent superior method/model in terms of gen-
eralization performance. In the absence of prior information about the problem
there are no reasons to prefer one learning algorithm or classifier model than
another. Model selection is difficult and non-trivial because it requires empiri-
cal comparative evaluation of discovered models and meta-knowledge on mod-
els/algorithms. The user has often to do a trial-and-error process to select the
most suitable models from competing ones. Clearly, trying all possible options is
impractical and an informed search process is needed to attain expected models.
Informed search requires both performance metrics and model characteristics
that are often not available for the user. In previous years we have developed
D2MS (Data Mining with Model Selection)–a visual data mining environment
that provides support for model selection [12].

Moreover, the user’s interest in discovered models is a subjective matter that
depends much on his/her domain knowledge and sometimes is very independent
of performance metrics provided by the system. Current data mining provides
multiple algorithms within a single system, but the selection and combination
of these algorithms are external to the system and specified by the user. This
makes the KDD process difficult and possibly less efficient in practice.

103

Unlike the major research tendency that aims to provide the user with meta-
knowledge for an automatic model selection as described in the next section, in
our view, model selection would be semi-automatic and it requires an effective
collaboration between the user and the discovery system. In such collaboration,
visualization has an indispensable role because it can give a deep understanding
of complicated models that the user cannot have if using only performance met-
rics. The research on visualization integrated with model selection is significant
because there is currently very limited visualization support for the process of
building and selecting models in knowledge discovery.

The literature review is likely to be very important for biomedical scientists
whose work is heavily based on literature. The medical literature is one of the
sources of background and domain knowledge that we need to exploit. In par-
ticular, MEDLINE – the source of life sciences and biomedical information with
nearly eleven million records – is very important and can be exploited with text
mining methods. MEDLINE has a special potential for any of biomedical ap-
plications. Services for help of extracting information/domain knowledge from
MEDLINE abstracts for biomedical scientists are certainly very useful and ex-
pected.

For all of these reasons, services for supporting model selection in knowledge
discovery should be considered essential in the next KDD generation. In the other
words, it is service-oriented knowledge discovery. It is worth noting that among
the views on next generation of data mining [17, 5], the above two reasons for
service-oriented knowledge discovery also play important roles. The most popular
KDD tools Weka has been expanded to Weka4WS for the Web services [29].

3 Service-oriented knowledge discovery in bioinformatics

In this section we first address our view on the knowledge discovery aspects in
bioinformatics, then discuss a possible service-oriented environment for bioinfr-
matics.

3.1 Knowledge discovery in bioinformatics

It is well known that in ICDM 2005, the KDD community identified the 10
challenging problems in data mining [35]:

1. Developing a unifying theory of data mining
2. Scaling up for high dimensional data/high speed streams
3. Mining sequence data and time series data
4. Mining complex knowledge from complex data
5. Data mining in a network setting
6. Distributed data mining and mining multi-agent data
7. Data mining for biological and environmental problems
8. Data mining-process related problems
9. Security, privacy and data integrity

104

10. Dealing with non-static, unbalanced and cost-sensitive data

Bioinformatics is the field of science in which molecular biology, computer
science and information technology merge together to increase our understanding
of biological processes. These biological processes are essentially uncovered by
the analysis of biological data acquired by human, i.e. knowledge discovery [33].

It is worth noting that biological data and its analysis meet most of the
above challenging problems in data mining. First, the biological data is huge
and of high dimensional (e.g, microarray data) and in many cases are stream
data (e.g., the simulated data of water molecules that continuously move around
a protein). Second, the biological data is typically sequential (e.g., DNA se-
quences) and temporal (e.g., the relational temporal database on hepatitis given
to PKDD challenge in 2004-2005, [10]). Third, the biological data is complex
(e.g., they are represented in all kinds of complexly unstructured data such as
sequence, temporal, graph, text, etc.) and the mining usually aims to discover
the rich structure of relations among objects). Four, the biological data belong
to various communities who organize their changing data in different ways and
mining them strongly depends on the network development. Five, the biologi-
cal databases are distributed over the world, and discover biological knowledge
always requires integrating many of them together. Six, mining biological data
is hard as it relates to the most complicated knowledge of human–knowledge
about the life. Seven, mining biological data means mining the biological pro-
cesses. Eight, the biological data is highly private requiring secure and integrity.
Nine, the biological data is heavily non-statistic, unbalance and cost-sensitive.

Facing with such challenges a biomedical scientist have to deal with when
doing a study/research in bioinformatics, the question that motivates us is – as
service providers and service-oriented system developers – what are the most
needs of such consumers that we have to provide services? From our experience
they mainly are the followings:

– Tools and guidelines to efficiently access, review, visualise, integrate and
manage of various types of biomedical data so that the combination/compostion
of such services is the most appropriate and ready to be used by some mining
programs.

– Programs that are suitable to the mining target that enable to find sig-
nificant and useful knowledge in the fields of molecular biology (genomics,
proteomics, metabolomics) and its relation to diseases and drugs.

– Guidelines and tools to establish a workflow consisting various ordered steps
that the biomedical scientist has to do to reach the goals.

– Support for interpretation of the computed finding and express them in the
common language in biomedicine.

– Support to reuse and composite of available bioinformatics services.
– Support for the simulation and perturbation to verify the findings instead of

doing in wet-lab, i.e., for systems biology.
– Support for the re-design of existing, natural biological systems for useful

purposes, i.e., for synthetic biology.

105

As noticed, one of the most important issues for biomedical scientists is
to understand the appropriateness between fundamental biological principles
and bioinformatics tools available. In order to provide appropriate services in
bioinformatics research, we consider the following factors are essential.

1. View the biology problem in terms of computation. Many existing biomedical
problems can have computational solutions, and many new problems can be
formulated to solve with computational solutions. In all cases, it is important
to know which data could be used to solve the problem and how to integrate
them for the use. For example, when studying protein-protein interactions
the information on protein can be obtained from proteomic databases such
as Uniprot (for functional and structural information), Interpro (for protein
families, domain and functional sites), etc. but other information from ge-
nomic databases can be used such as MIPS (for molecular structures and
functional networks) or Gene Ontology (for molecular functions, biological
process and cellular component). A key question is which data to be used
and how to put them in a computational model when they are stored in very
different formats?

2. Understand the power of each data mining method and how the method can
be appropriately used to solve a given biomedical problem. It is known that
data mining methods can be generally divided into two groups for classi-
fication/prediction and description. Each method can only work well for
some tasks and its performance depends on various factors such as method’s
parameter setting. Usually, the bologists/scientists do not know well which
methods to be used for a given task and thus providing them such knowledge
is necessary.

3. Construct the workflow for mining biological data. The process of knowl-
edge discovery is complicated and should be seen inherently as a process
containing several steps. The first step is to understand the application do-
main, to formulate the problem and to collect data. The second step is to
preprocess the data. The third step is that of data mining with the aim
of extracting useful knowledge as patterns or models hidden in data. The
fourth step is to post-process discovered knowledge, and the fifth step is to
put discovered knowledge in practical use. Two data mining primary goals of
prediction and description are concerned with different tasks in the step of
data mining, such as those for characterization, discrimination, association,
classification and clustering. Also, there are different tasks of data clean-
ing, integration, transformation and reduction in the preprocessing step, and
those of interpretation, evaluation, exportation, and visualization of results
in the post-processing step. Moreover, each of these tasks can be done with
different methods and algorithms. To solve a given discovery problem, the
user usually has to go through these steps several times, each time she/he
has to run a series of algorithms [12]. A workflow is a depiction of a sequence
of operations in steps of the knowledge discovery process. How to formulate
an appropriate workflow is not a simple task for most biologists/scientists
when using knowledge discovery tools.

106

Fig. 2. Overview of our service-oriented environment for bioinformatics

4. Interpret and evaluate findings. The findings obtained from biomedical data
via data mining programs are in forms of models (such as decision trees
or regression lines) or patterns (such as induction rules). Understanding the
meaning of these findings in terms of computation language and interpreting
their biological meaning are the final importance. Usually, this is also a
difficult task for biologists/scientists as they either are not familiar with
computational representation of the findings or those findings can be very
new for them.

5. Find useful information from the literature. MEDLINE has a special poten-
tial for any of biomedical applications. For example, when studying hepatitis
we always have to look for information from more than 60,000 abstracts of
research papers concerning hepatitis in MEDLINE. How to help to extract
information/domain knowledge from MEDLINE abstracts is an expected
service for biomedical scientists.

The above critical issues in bioinformatics led us to provide necessary services.
Figure 2 shows the overall architecture and currently available resources and
tools in our environment being developed.

3.2 Towards a service-oriented environment for bioinformatics

From the analysis in previous section, we are working towards a service-oriented
environment for bioinformatics with the following five kinds of services:

– Services for selecting and integrating data,
– Services for selecting data methods,
– Services for workflow design and creation,
– Services for interpreting the findings,
– Services for supporting the literature review.

107

Services for selecting and integrating data. The proposed services for
preparation of data include

– Getting data from different databases distributed over the network for ready-
to-use. Currently, the available biological databases that are daily upgraded
include:
• Genome databases: DDBJ, EBI (Eukaryota, Agambiae, Ataliana, Bvul-

garis, Cbiggsa, Celegans, Hsapiens, Mmusculus), NCBI (Blast, Genebank,
Genomes, Refseq, B taurus, D rerio, H sapiens, LocusLink, M musculus,
R norvegicus, X tropicalis).

• Proteomic databases: DSSP, TRANSFAC, PIR, PMD, PRF, PRINTS,
PRODOM, PROSITE, InterPro, MINT, MIPS, MSMS

• Protein classification databases: YIPD, PFAM, CluSTr, TIGRFAMs,
CATH.

– Providing guidelines for integrating different types of data. In particular, we
provide schemes for two ways of integrating data
• By inductive logic programming (ILP): The technique allows the user to

convert any kind of data into ground facts in form of predicates [14, 22].
• By kernel methods: Kernel methods can deal with any data type (se-

quence, graph, text, numerical numbers, etc.) as representing the origi-
nal data by kernel matrices of real numbers. Multiple kernel learning is
the problem of integrating various kernels generated from different data
types [27]. Two simple but effective services for combining kernels are
introduced in [30].

– Providing ready-to-use integrated data for proteomics study within the ILP
framework [22, 23]; combining expression data and genomic location data
in study of transcriptional regulatory rules [25]; combining epigenetic data
and gene expression data in study of acetylation and methylation [26]; or
combining miRNA expression data with mRNA and miRNA binding data
in study of miRNA regulatory modules in human genome [32].

Services for selecting data methods. The proposed services for selecting
data mining methods include

– Meta-knowledge on data mining/machine learning methods and their usage
in concrete data mining task in form of rules in an expert systems [15].

– Meta-knowledge embedded in mining systems on the system methods such
as done in [12].

– Learning methods that frequently used in biomedical data analysis and their
guidance such as ILP [22], CN2-SD [25, 32], etc.

– Machine learning library that are developed for the Web services and thus
service-oriented systems such as Weka4WS [29].

– Available ready-to-use tools at the environment: BLAST, ClustalW, Cluster-
1.36, Cn2-sd, FPClose, Libsvm-2.84, Phmmts, FlexCRFs, Contrafold v1 10,
DroshaSVMs-1.0, GO-TermFinder-0.8, GraphViz-2.03, RNAz, ScorePin-1.0,
TermFinder, ViennaRNA, Wordspy1.5.

108

Fig. 3. Visualization of a discovered rule about hepatitis type C ([12, 13]).

Services for workflow design and creation. The proposed services for de-
sign and creation of workflow include

– Recently created Web-services related standards and technology using an
XML-standard for workflow specification, such as WSDL (Web services de-
scription language), BPEL4WS (business process execution language for
Web services) [5], etc.

– Tools for service-oriented modeling and design as a graphical process mod-
eling tools such as jABC [18], Taverna workbench [31], etc.

– The plan management module maintains profiles of algorithms available in
preprocessing, data mining, and post-processing of D2MS [12]. An algorithm
profile contains information about the algorithm functions, its requirements,
types and effect of its parameters. The registration of an algorithm is done
via a dialog box when it is added into a plan.

Services for interpreting the findings. The proposed services for interpre-
tation of mining results include

109

Fig. 4. A discovered rule is visualized in the relation with the others ([12, 24]).

– Visualization of a discovered rule and its relations with the others. Figure 3
illustrates the visualization of a rule discovered by our system D2MS [12,
13]. This rule describes hepatitis type C, where the rule is in the middle-
left window and visualized in the upper-right window; the set of rules each
with precision and coverage is given in the upper-left window; the bottom
window show the description of patient who matched this rule. Figure 4
shows another mode of rule visualization in D2MS where each condition
(yellow node) of the rule under consideration (Rule 2) is connected to all
other rules having it as a condition [24]. The light blue nodes are rules for
hepatitis type B while the brown nodes are rules for hepatitis type C.

– Exploiting findings represented into other forms such as Excel file [12].
– Providing the statistical significance of association rules in learning [11].
– Combining the findings, mining process and context of finding extracted

by literature into an integrated dynamic platform. It supports biomedical
scientists in interpretation and evaluation of the findings with accessibility
to every related sources including original data, intermediate relations, and
external references. Biomedical scientists tend to value not only statistical
evidence of the findings, but also intuitive accountability on them. This
point is indispensable in the discovery activity because most of the findings
from individual mining methods are generally fragment sets regarding some
certain medical facts, so that biomedical scientists have to reorganize and
reallocate them into a biomedical context fitting to their integrated expertise.

110

Services for supporting for literature review. It is useful if the biolo-
gists/scientists have services supporting for literature review. The literature re-
view is likely to very important for biomedical scientists who often do their job
based on literature [10]. Services concerning the literature review are proposed
to include the following tasks:

– Identifying the topics of interest.
– Searching and appraising public databases of literature to identify the valid

and applicable evidence.
– Mining contents of the collections of papers.
– Synthesizing and presenting reviews.
– Provide research trends by emerging trend detection [21].
– Extracting relations among medical tests attempted in [10] to complement

the findings from clinical data.
– Support constructing the context information to fulfil the functions for ser-

vices for interpreting the findings. This can be extracted based on the struc-
ture of medical articles because the appearance of biomedical literature like
structure, key phrases, statements and so on, reflects what kinds of biomed-
ical objects, techniques, relations motivate their investigations, and how the
experts think.

4 Conclusion

This paper addresses the issues of service-oriented environments for bioinfor-
matics research. By analyzing the features of service-oriented architectures, the
tendency of service-oriented knowledge discovery, the issues in bioinformatics
research, we argued that the service-oriented development is very significant in
bioinformatics. We also proposed five services towards service-oriented bioin-
formatics including data integration, model selection, workflow design, finding
interpretation, and literature review.

The construction of our service-oriented environment for bioinformatics is
now at the initialized stage but based on various components developed in the
past such as data mining methods, knowledge and data visualization, MEDLINE
abstract analysis, model selection, etc. We strongly believe that service-oriented
bioinforamtics will facilitate biomedical scientists in exploiting computational
programs to do their research.

References

1. Arsanjani, A.: Service-oriented architecture and modelling, IBM Online article,
http://www.ibm.com/developerworks/library/ws-soa-design1/, November 2004.

2. Bruin, J., Kok, J., Lavrac, N., Trajkovski, I.: Towards Service-Oriented Knowledge
Discovery: A Case Study, Workshop on Third Generation Data Mining: Towards
Service-oriented Knowledge Discovery, ECML/PKDD’08, 2008.

111

3. Bruin, J., Kok, J., Lavrac, N., Trajkovski, I.: On The Design of Knowledge Dis-
covery Services: Design Patterns and Their Application In A Use Case Imple-
mentation, Workshop on Third Generation Data Mining: Towards Service-oriented
Knowledge Discovery, ECML/PKDD’08, 2008.

4. Buetow, K.H.: Cyberinfrastructure: Empowering a “third way” in biomedical re-
search, Science, Vol. 308, No. 5723, 821–824, 2005.

5. Cheung, W.K., Zhang, X.F., Wong, H.F., Liu, J., Luo, Z.W., Tong, F.C.: Service-
oriented distributed data mining, IEEE Internet Computing, Jul-Aug., 44–54, 2006.

6. Guedes, D., Meira, W., Ferreira, R.: Anteater: An service-oriented architecture for
high-performance data mining, IEEE Internet Computing, Jul-Aug., 6–43, 2006.

7. Erl, T.: Service-oriented architecture–Concept, technique and design, in Service-
oriented architecture–Concept, technique and design, Printice Hall, 1–51, 2005.

8. Foster I.: Service-oriented science, Science, Vol. 308, 814–817, 2005.
9. Friedrich, C.M., Dach, H., Gattermayer, T., Engelbrecht, G., Benkner, S.,

Hofmann-Apitius, M.: @neuLink: a service-oriented application for biomedical
knowledge discovery, Studies in Health Technology and Informatics, Vol. 138, 165–
172, 2008.

10. Ho, T.B., Kawasaki, S., Takabayashi, K., Nguyen, C.H.: Integration of learning
methods, medical literature and expert inspection in medical data mining, IEICE
Trans. Information and Systems, Vol. E90-D, No. 10, 1574–1581, 2007.

11. Ho, T.B., Nguyen, T.D., Kawasaki, S.: Failures and Successes in Medical Data
Mining, Chapter 6 in Knowledge-Based Intelligent Systems for Health Care, T.
Ichimura and Yoshida, K. (Eds.), Advanced Knowledge International Publishers,
167–212, 2004.

12. Ho, T.B., Nguyen, T.D., Shimodaira, H., Kimura, M.: A knowledge discovery sys-
tem with support for model selection and visualization, Applied Intelligence, Vol.
19, Issue 1-2, 125–141, 2003.

13. Ho, T.B., Nguyen, T.D., Nguyen, D.D.: Visualization support for a user-centered
KDD process, ACM International Conference on Knowledge Discovery and Data
Mining KDD-02, Edmonton, 23-26 July, 519–524, 2002.

14. Ho, T.B., Nguyen, T.P., Tran, T.N.: Study of protein-protein interactions from
multiple data sources, Advances in Data Warehousing and Mining, David Taniar
(Ed.), IGC Publishers, 280–307, 2007.

15. Ho, T.B., Quinqueton, J., Ralambondrainy, H.: Using expert system techniques
for interpretation of data analysis results, Proceedings of COMPSTAT’86, 308–
311, 1986.

16. Hunter, A., Schibeci, D., Hiew, H.L., Bellgard, M.: Grendel: A bioinformatics Web
service-based architecture for accessing HPC resources, Australasian Workshop on
Grid Computing and e-Research, 29–32, 2005.

17. Kargupta, H., Han, J., Yu, P.S., Motwani, R., Kumar, V.: Next Generation of Data
Mining, CRP Press, 2008.

18. Margaria, T., Kubczak, C., Steffen B.: Bio-jETI: a service integration, design, and
provisioning platform for orchestrated bioinformatics processes, BMC Bioinfor-
matics, Vol. 9, Supp. 4, 1–17, 2008.

19. Navas-Delgado, I., Rojano-Munoz, M., Ramirez, S., Perez, A.J., Leon, E.A.,
Aldana-Montes, J.F., Trelles, O.: Intelligent client for integrating bioinformatics
services, Bioinformatics, Vol. 22, No. 11, 106–111, 2005.

20. Kelly, N., Jithesh, P.V., Donachy, P., Harmer, T.J., Perrott, J.H., McCurley, M.,
Townsley, M., McKee, J.J.S.: GeneGrid: A commercial Grid service oriented virtual
bioinformatics laboratory, IEEE International Conference on Services Computing,
Vol. 1, 43–50, 2005.

112

21. Le, M.H., Ho, T.B., Nakamori, Y.: Detecting Emerging Trends from Scientific
Corpora, International Journal of Knowledge and Systems Science, Vol. 2, No. 2,
53–59, 2005.

22. Nguyen, T.P., Ho, T.B.: An integrative domain-based approach to predicting
protein-protein interactions, Journal of Bioinformatics and Computational Biol-
ogy, Vol. 6, Issue 6, 1115–1132, 2008.

23. Nguyen, T.P., Ho, T.B.: Discovering signal transduction networks using signaling
domain-domain interactions, Genome Informatics, Vol. 17, No. 2, 35–45, 2006.

24. Nguyen, D.D., Ho, T.B., Kawasaki, S.: Knowledge Visualization in Hepatitis Study,
Asia Pacific Symposium on Information Visualization APVIS 2006, Austra-lian
Computer Society, 59–62, 2006.

25. Pham, T.H., Clemente, J., Satou, K., Ho, T.B.: Computational discovery of tran-
scriptional regulatory rules, Bioinformatics, Vol. 21, Supp. 2, 101–107, 2005.

26. Pham, T.H., Tran, D.H., Ho, T.B., Satou, K., Valiente, G.: Qualitatively predicting
acetylation and methylation areas in DNA sequences, Genome Informatics, Vol.
15, No. 2, 3–11, 2005.

27. Scholkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology,
The MIT Press, 2004.

28. Sulakhe, D., Rodriguez, A., D’Souza, M., Wilde, M., Nefedova, V., Foster, I., Malt-
sev, N.: GNARE: An environment for Grid-based high-throughput genome anal-
ysis, IEEE International Symposium on Cluster Computing and the Grid, Vol. 1,
455–462 2005.

29. Talia, D., Trunfio, P., Verta, O.: The Weka4WS framework for distributed data
mining in service-oriented Grids, Concurrency and Computation: Practice & Ex-
perience, Vol. 20, Issue 6, 1933-1951, 2008.

30. Tanabe, H., Ho, T.B., Nguyen, C.H., Kawasaki, S.: Simple but effective methods
of combining kernels for the prediction problem in biology, IEEE International
Conference on Research, Innovation, and Vision for the Future in Computing and
Communication Technologies RIVF08, Ho Chi Minh city, 71–78, 2008.

31. Taverna, [http://taverna.sourceforge.net]
32. Tran, D.H., Satou, K., Ho, T.B.: Finding microRNA regulatory modules in human

genome using rule induction, BMC Bioinformatics, Vol. 9, No. Supp 11, 1–10, 2008.
33. Wang. J.T.L., Zaki, M.J., Toivonen, H.T.T., Shasha, D. (Eds.): Data Mining in

Bioinformatics, Springer, 2005.
34. Xiang, X., Madey, G.: A service-oriented data integration and analysis environment

for in silico experiments and bioinformatics research, 40th Hawai International
Conference on System Science, 171–180, 2007.

35. Yang, Q., Wu, X.: 10 challenging problems in data mining research, International
Journal of Information Technology and Decision Making, Vol. 5, No. 4, 597–604,
2006

113

OntoDM: Towards an Ontology of Data Mining
Investigations (Extended Abstract) ?

Panče Panov1, Larisa N. Soldatova2, Sašo Džeroski1

1 Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
{Pance.Panov,Saso.Dzeroski}@ijs.si

2 Aberystwyth University, Penglais, Aberystwyth, SY23 3DB, Wales, UK
lss@aber.ac.uk

1 Introduction

In recent years use of term ontology has become prominent in the area of com-
puter science research and the application of computer science methods in man-
agement of scientific and other kinds of information. In this sense the term on-
tology has the meaning of a standardized terminological framework in terms of
which the information is organized. When one sets out to construct an ontology
then, what one is doing is designing a representational artifact that is intended
to represent the universals and relations amongst universals that exist, either in
a given domain of reality (e.g data mining domain) or across such domains.

In the domain of data mining and knowledge discovery, researchers have tried
to construct semantic representations describing data mining entities that were
targeted to solve specific problems. Most of the developments are with the aim
of automatic planning of data mining workflows [1, 17, 7, 5] and description of
data mining services on the GRID [4, 3]. Some of the focus has been put on
description of experiments in machine learning by Lot of work has been done in
the formalization of scientific investigations and experimentation mostly in the
area of biomedicine and automation of science [15, 8, 14].

Most of the semantic representations for data mining proposed so far are
based on so called light-weight ontologies [9].The current proposals for an on-
tology of data mining are not based on upper level ontology categories nor have
used a predefined set of relations based on an upper level ontology. In contrast to
many other domains, data mining requires elaborate inference over its entities,
and hence requires rigid heavy-weight ontologies with the aim of improving the
KDD (Knowledge Discovery in Databases) process and providing support for
development of new data mining approaches and techniques.

The motivation for developing a heavy-weight ontology of data mining is
multi-fold. Firstly, formalization of data mining entities and identification of the
relationships between the entities in the form of an ontology is the first step to-
wards developing a general framework for data mining. Secondly, the domain of
data mining needs to be described as broad as possible and lot of attention has
? Full version of this paper is presented in Procedings of Twelfth International Con-

ference on Discovery Science (DS09), Porto, Portugal, 3-5 October 2009

114

to be focused on the rigorous meaning of each entity by introducing semantically
rigorous relations between the entities and compliance to an upper level ontology
categories. Finally, an ontology of data mining should define what is the min-
imum information required for the description of a data mining investigation.
Biology is leading the way in developing standards for recording and represen-
tation of scientific data and biological investigations (e.g., already more than 50
journals require compliance of papers reporting microarray experiments to the
Minimum Information About a Microarray Experiment - MIAME standard [2]).
The researchers in the domain of data mining should follow this good practice
and the ontology of data mining would support development of standards for
performing and recording of data mining investigations.

In this work we propose an extended and updated version of the ontology
of data mining named OntoDM. Our ontology design takes into consideration
the best practices in ontology engineering. We use an upper level ontology BFO
(Basic Formal Ontology)3 to define the upper level classes, the OBO Relational
Ontology (RO)4 to define the semantics of the relationships between the data
mining entities, and provide is-a completeness and single is-a inheritance for
all DM entities. We also developed our ontology in the most general fashion
in order to be able to represent the complex entities in data mining that are
becoming more and more popular research areas such as mining structured data
and constraint-based mining.

2 OntoDM Design and Description

Our ontology of data mining (OntoDM) aims to provide a structured vocabulary
of entities sufficient for the description of data mining scenarios and workflows.
OntoDM aims to follow the OBO Foundry principles5 in ontology engineering
that are widely accepted in the biomedical domains. In this way, OntoDM is built
on a sound theoretical foundation, will be compliant with other (e.g., biological)
domains and can be widely re-usable. OntoDM is expressed in OWL-DL and
is being developed using the Protege ontology editor6. OntoDM is available at:
http://kt.ijs.si/panovp/OntoDM/.

In our preliminary work [10] we presented an initial version of OntoDM
sufficient for the representation of data mining tasks and complex data types.
The initial version of OntoDM was using the philosophy of Ontology of Scientific
Experiments (EXPO) [15] and ontology of biomedical investigations (OBI)7 for
identification and organization of entities in a is-a class hierarchy. The ontology
is based on the proposal for a general framework for data mining presented in
[6]. From the framework proposal we identified a set of basic entities of data
mining. The entities listed above are used to describe different dimensions of
3 BFO: http://www.ifomis.org/bfo
4 RO: http://www.obofoundry.org/ro/
5 OBO Foundry: http://ontoworld.org/wiki/OBO_foundry
6 Protege: http://protege.stanford.edu
7 OBI: http://obi-ontology.org/

115

data mining. These are all orthogonal dimensions and different combinations
among these should be facilitated. Through combination of these basic entities,
one should be able to describe most of the diversity present in data mining
approaches today.

The version of OntoDM described in the current paper has been sufficiently
updated in several ways. First, the structure of the ontology was fully aligned
with the top level structure of the OBI ontology. This procedure requested re-
vising the representation of several data mining entities and also introduced new
entities in the ontology in order to represent different aspects of data mining
entities: specification, implementation and process (e.g., the entity data min-
ing algorithm was split into three entities each capturing different dimension of
a description; algorithm specification, algorithm implementation and algorithm
description). It is necessary to have all three aspects represented separately in
the ontology as they have distinctly different nature and this will facilitate differ-
ent usage of the ontology. The process aspect can be used for constructing data
mining workflows and definition of participants of workflows and its parts; the
specification aspect can be used to reason about components of data mining algo-
rithms; the implementation aspect can be used for search over implementations
of data mining algorithms and to compare various implementations. Second, we
extended the set of relations used in the initial version with relations defined in
the OBI ontology in order to express the relations between informational enti-
ties, entities that are realized in a process and processes. Finally, we extended
the OBI classes with data mining specific classes for describing complex entities
(e.g., data mining scenarios, queries).

In this version of the ontology we mapped the entities more closely to the
structure of the OBI ontology. We use BFO upper level classes to represent en-
tities which exist in the real world (i.e., processes, informational entities created
in human brain), and in addition we use extensions of EXPO <abstract entity>
to represent mathematical entities. Recently, due to the limitations of BFO in
dealing with information, an Information Artifact Ontology (IAO) has been pro-
posed as a spin-off of the OBI project8. Currently IAO is available only in a draft
version, but we have included the most stable and relevant classes into OntoDM.

The OntoDM ontology includes and different types of formally defined onto-
logical relations in order to achieve the desired level of expressiveness. The initial
version of the ontology [10] included: fundamental relations (is-a, part-of), rela-
tions from RO [13] has-participant, has-agent , relations from EXPO/LABORS
[15] (has-representation), relations from EXACT[14](has-information) and re-
lations from OBI (has-role, has-quality, has-specified-input,has-specified-output).
In this version of the ontology we include relations for expressing relationships
between: a process and realizable entity (realizes), a planned process and objec-
tive specification (achieves-planned-objective) and informational entity about a
realizable and a realizable entity (is-concretized-as). These relations are defined
in the OBI ontology.

8 IAO:http://code.google.com/p/information-artifact-ontology/

116

3 Conclusion

The ontology OntoDM as presented here is in its early stages of development
and hence much work remains to be done. We first need to populate the pro-
posed classes of data mining entities with individuals, identify shortcomings of
our ontology in the process and refine the structure of OntoDM as needed. While
the current version of OntoDM is expressed in OWL-DL, the next level of de-
velopment would require it to be translated into first-order logic and extended
with axioms.

Formalizing the knowledge about the domain of data mining and building of
a heavy weight ontology of data mining is a time and resource consuming task
and should be a community effort. That is why one of the aims of our work
is also to invite researchers from the area of data mining to contribute to the
ontology by suggesting improvements in the definitions of the entities and by
using the knowledge in the ontology in their applications. Our goal is to have
a mature ontology of data mining that is sufficient and expressive enough to
describe the current trends in data mining. This would be also be a helpful step
in developing standards for data mining and would lead towards an ontology of
data mining investigations.

References

1. Abraham Bernstein, Foster Provost, and Shawndra Hill. Toward intelligent as-
sistance for a data mining process: An ontology-based approach for cost-sensitive
classification. IEEE Trans. on Knowl. and Data Eng., 17(4):503–518, 2005.

2. Alvis Brazma et al. Minimum information about a microarray experiment
(MIAME)-toward standards for microarray data. Nature Genetics, 29:365–371,
December 2001.

3. Peter Brezany, Ivan Janciak, and A Min Tjoa. Data Mining with Ontologies:
Implementations, Findings and Frameworks, chapter Ontology-Based Construction
of Grid Data Mining Workflows. IGI Global, 2007.

4. Mario Cannataro and Carmela Comito. A data mining ontology for grid program-
ming. In Proceedings of the 1st Int. Workshop on Semantics in Peer-to-Peer and
Grid Computing (SemPGrid2003), pages 113–134, 2003.

5. Claudia Diamantini and Domenico Potena. Semantic annotation and services for
kdd tools sharing and reuse. In ICDMW ’08: Proceedings of the 2008 IEEE In-
ternational Conference on Data Mining Workshops, pages 761–770, Washington,
DC, USA, 2008. IEEE Computer Society.

6. Sašo Džeroski. Towards a general framework for data mining. In Saso Dzeroski
and Jan Struyf, editors, KDID, volume 4747 of Lecture Notes in Computer Science,
pages 259–300. Springer, 2006.

7. Alexandros Kalousis, Abraham Bernstein, and Melanie Hilario. Meta-learning with
kernels and similarity functions for planning of data mining workflows. In Pavel
Brazdil, Abraham Bernstein, and Larry Hunter, editors, Proceedings of the Second
Planning to Learn Workshop (PlanLearn) at the ICML/COLT/UAI 2008, pages
23–28, 2008.

117

8. Ross D. King, Jem Rowland, Stephen G. Oliver, Michael Young, Wayne Aubrey,
Emma Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N. Soldatova,
Andrew Sparkes, Kenneth E. Whelan, and Amanda Clare. The Automation of
Science. Science, 324(5923):85–89, 2009.

9. Riichiro Mizoguchi. Tutorial on ontological engineering - part 3: Advanced course
of ontological engineering. New Generation Comput., 22(2), 2004.

10. Panče Panov, Sašo Džeroski, and Larisa Soldatova. OntoDM: An ontology of data
mining. In ICDMW ’08: Proceedings of the 2008 IEEE International Conference
on Data Mining Workshops, pages 752–760, Washington, DC, USA, 2008. IEEE
Computer Society.

11. Ross J. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., 1993.

12. D. Schober, W. Kusnierczyk, S. E Lewis, and J. Lomax. Towards naming conven-
tions for use in controlled vocabulary and ontology engineering. In Proceedings of
BioOntologies SIG, ISMB 2007, pages 29–32, 2007.

13. Barry Smith, Werner Ceusters, Bert Klagges, Jacob Kohler, Anand Kumar, Jane
Lomax, Chris Mungall, Fabian Neuhaus, Alan L Rector, and Cornelius Rosse.
Relations in biomedical ontologies. Genome Biology, 6(5), 2005.

14. Larisa N. Soldatova, Wayne Aubrey, Ross D. King, and Amanda Clare. The exact
description of biomedical protocols. Bioinformatics, 24(13), 2008.

15. Larisa N. Soldatova and Ross D. King. An ontology of scientific experiments.
Journal of the Royal Society Interface, 3(11):795–803, 2006.

16. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, second edition, June 2005.

17. Monika Zakova, Petr Kremen, Filip Zelezny, and Nada Lavrac. Planning to learn
with a knowledge discovery ontology. In Pavel Brazdil, Abraham Bernstein, and
Larry Hunter, editors, Proceedings of the Second Planning to Learn Workshop
(PlanLearn) at the ICML/COLT/UAI 2008, pages 29–34, 2008.

118

