
International Journal of Computer Applications (0975 – 8887)  

Volume 73– No.7, July 2013 

36 

A High Speed 32-bit FPGA based CORDIC Architecture 

for Sine and Cosine Function Evaluation 

 
Burhan Khurshid 

Department of Computer Science 
Engineering, 

NIT Srinagar, India 

Roohie Naz Mir 
Department of Computer 

Science Engineering, 
NIT Srinagar, India 

Hakim Najeeb-ud-din Shah 
Department of Electronics and 
Communication Engineering, 

NIT Srinagar India 

 

 

1. ABSTRACT 
Digital Signal Processing (DSP) algorithms always have a 

need for calculating certain linear, trigonometric, hyperbolic, 

logarithmic and other transcendental functions. CORDIC 

based algorithms have long been used in evaluating these 

functions. Traditional approaches have, however, been limited 

to software domain only. The simplicity of operation of 

CORDIC algorithm encourages its implementation in 

hardware. In this paper a novel CORDIC architecture for sine 

and cosine function evaluation has been proposed. The 

hardware integration is carried out using Field Programmable 

Gate Arrays (FPGAs).The proposed algorithm is based on 

modified carry save addition and incorporates bit-truncation. 

The structure offers extremely low latency and high operating 

frequencies, when pipelined. The novelty of the proposed 

architecture is that it offers a flat timing response for varying 

input word lengths. The structure has an inherent capability of 

supporting an additional internal pipeline within each stage, 

enabling the structure to operate at high frequencies, typically 

four times that of the normal CORDIC. The performance 

analysis is carried out by comparing the proposed architecture 

against existing non-redundant (basic) and redundant 

(modified) architectures. 
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2. INTRODUCTION 
CORDIC (COordinate Rotation DIgital Computer) [1,2] is a 

shift-and-add algorithm that is widely used in Very Large 

Scale Integration (VLSI) DSP systems [3] due to its simple 

hardware and versatility. The algorithm is the best 

compromise between the look up table method (requires an 

enormous memory) and the polynomial approximation 

method, (slow to converge). Traditionally the hardware 

implementation has foccussed on sequential structures. 

However, these structures do not map well on FPGAs [4]. The 

major drawback of the conventional CORDIC algorithm was 

its relatively high latency and low throughput [5]. This was 

due to the sequential nature of the iteration process with carry 

propagate addition and variable shifting in every iteration [6]. 

Unfolded parallel implementations were proposed to 

overcome the above drawbacks. However, the carry propagate 

addition still remained a bottleneck for further latency 

improvements [7, 8]. To improve the latency of CORDIC 

architectures, high radix CORDIC and redundant signed 

arithmetic have been proposed and implemented. The use of 

redundant signed arithmetic prevents the propagation of carry 

thereby making it possible to create parallel adders with 

constant delay irrespective of the operand word-length [9]. 

Thus low latency results are produced in a redundant 

architecture resulting in high-performance designs.  

Carry save arithmetic also leads to a form of redundant 

number representation resulting in low latency 

operations.This paper proposes a novel architecture that, 

besides reducing the latency of CORDIC algorithm stabilizes 

its timing response by providing a constant operating 

frequency for varying input word lengths. 

The use of FPGAs as an implementing platform for various 

custom DSPs has increased since the beginning of this decade 

[10, 11]. However, earlier FPGAs were not able to implement 

the parallel CORDIC architecture due to the limited chip size 

and difficulty in routing the hard-wired shifters [4, 12, 13]. 

Consequently FPGAs were used to implement only the 

iterative CORDIC architectures [14, 15]. The implementation 

of parallel CORDIC architectures was, therefore restricted 

only to the programmable platforms. 

However, the advancement in VLSI technology has resulted 

in high density FPGAs which provide an attractive platform 

for parallel CORDIC architectures [16, 17, 18, 19]. This paper 

emphasizes the implementation of parallel CORDIC 

architectures in FPGAs. 

3. CORDIC ALGORITHM  
The CORDIC algorithm provides an iterative method of 

performing vector rotations by arbitrary angles using only 

shift and add operations. The algorithm, credited to Volder, is 

derived by rotating a vector (x, y) in a Cartesian plane by 

some angle, say.  

For a single CORDIC micro-rotation the resulting equations 

are: 

1 2 i

i i i ix x y d 

      (1) 
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Where, 
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Equations 1 and 2 are the coordinate equations, giving the 

coordinates for the next micro-rotation. Equation 3 is the 

angle equation, giving the amount of rotation for the next 

micro-rotation. 

The CORDIC rotator is normally operated in one of two 

modes.  In rotation mode, the angle accumulator is initialized 

with the desired rotation angle. The rotation decision at each 

iteration is made to diminish the magnitude of the residual 

angle in the angle accumulator.  The decision at each iteration 

is therefore based on the sign of the residual angle after each 

step. 

After n iterations we get the following results: 

 0 0 0 0cos sinn nx A x z y z 
  (4) 

 0 0 0 0cos sinn ny A y z x z 
  (5) 

0nz 
     (6) 

 Setting the y component of the input vector to zero reduces 

the rotation mode result as under: 

0 0. cosn nx A x z
   (7) 

0 0. cosn ny A x z
   (8) 

By setting x0 equal to 1/An, the rotation produces the unscaled 

sine and cosine of the angle argument z0. 

4. CARRY SAVE ADDITION 
Carry-save arithmetic leads to a form of redundant number 

representation. Due to its similarity with redundant 

arithmetic, most redundant architectures can be adapted to 

carry-save case.  In carry save addition, we refrain from 

directly passing on the carry information until the very last 

step. This is done by taking three numbers, x, y, z and 

converting them into two numbers c and s such that: 

        x y z c s      (9) 

Where, s represents the sum and c represents the carry. 

The important consideration is that c and s can be computed 

independently, and furthermore, each ci (and si) can also be 

computed independently from all of the other c’s (and s’).  

In order to add m different n-bit numbers together, the simple 

approach would be to repeat the procedure approximately m 

times over. This would require (m−2) carry save adder (CSA) 

blocks and a final ripple carry adder (RCA) block. Note that 

every time we pass through a CSA block, our number 

increases in size by one bit. Therefore, the number that goes 

to the RCA will be at most (n + m – 2) bits long. So the final 

RCA will have a gate delay of O(log (n + m)). Therefore the 

total gate delay is O(m + log (n + m)). Two points worth 

noting here are; firstly the major part of the delay in the 

structure is due to the final RCA stage; and, secondly after 

every CSA stage an additional bit gets added to the sum 

vector. The proposed architecture takes care of both these 

issues.  

5. PROPOSED ARCHITECTURE 
The proposed architecture is based on carry save addition. A 

carry save adder consists of a carry save stage and a final 

ripple carry stage that adds (or subtracts) the sum (or 

difference) and the carry (or borrow) bits [20]. The 

performance of the adder is limited by the ripple carry stage 

that accounts for the major portion of the delay in the circuit. 

Unfolded implementation of CORDIC structures is carried out 

by decomposing the entire core into several subsequent 

stages, with the output of one stage serving as input to the 

subsequent one. At each stage a sum (or difference) vector is 

obtained that is propagated to the next stage. The proposed 

architecture eliminates the ripple carry stage from the 

structure, such that instead of propagating only the final sum 

(or difference) vector we are actually propagating both the 

sum (or difference) and carry (or borrow) vectors. This takes 

care of the large delay introduced by the RCA block at each 

stage. However, this results in certain modifications in the 

overall algorithm which is depicted in the flow chart of figure 

1. The block diagram of the proposed CORDIC follows and is 

shown in figure 3.
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Fig 1: Flow chart for proposed CORDIC. 



International Journal of Computer Applications (0975 – 8887)  

Volume 73– No.7, July 2013 

39 

 

Fig 2: Proposed CORDIC logic diagram 

As can be seen in figure 2 above, an additional redundant bit 

is added after every CSA stage, such that, if the initial word 

length is N bits, then after n stages the word length will be 

N+2n -1.This causes a high fan-in for the subsequent stages 

requiring several layers of logic, thus slowing the process. 

This has been overcome by truncating the most significant bit 

after every carry save addition/subtraction. The truncation of 

the most significant bit does not affect the precision of the 

result as the bit is redundant. The bit truncated CORDIC is 

shown in figure 3 
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Fig 3: Bit truncated proposed CORDIC logic diagram 

As seen in the above figure in each stage a redundant bit is 

generated. This MSB is eliminated in each stage, so that if the 

initial wordlength is N-bits the wordlength after n stages will 

remain N-bits. 

6. SYNTHESIS AND SIMULATION 

6.1 Methodology 
The proposed CORDIC is implemented in seven stages for a 

word length of 32 bits. The initial design entry is done using 

VHDL. The design translation is carried out and the simulator 

database is then analyzed for different performance 

parameters and logical conclusions are drawn on the basis of 

different parameter values. 

6.2 Implementation 
The core is implemented with the following synthesis 

description: 

Platform: FPGA 

Family: Virtex5 

Target device: XC5VLX30 

Package: FF324 

Speed grade: -3 

Figure 4 shows the block view of the proposed CORDIC 

structure and figure 5 shows the RTL view of a single stage.
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Fig 4: Block view of proposed CORDIC 

 
Fig 5: Single stage RTL view 

The generated core has been simulated for sine and cosine 

functions by operating it in the rotation mode and results were 

calculated for different angles. The proposed CORDIC is 

pipelined by inserting registers in between the individual 

stages. This increases the maximum operating frequency 

resulting in higher throughputs. The structure provides an 

inherent capability of introducing an additional pipeline 

register within each stage. This further increases the 

throughput of the system. Figure 6 shows the proposed 

CORDIC with conventional and internal pipeline. 
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Fig 6: Proposed CORDIC with conventional aon internal pipelining 

7. EXPERIMENTAL AND SIMULATION 

RESULTS  
The proposed structure is analysed for different performance 

parameters. Table 1 provides latency and throughput 

comparisons of the non-redundant (basic), redundant signed 

(modified) and proposed CORDIC structures. All the 

structures are implemented with the same synthesis 

description. 

Further analysis of the proposed CORDIC is carried out by 

varying the input word length from 16 bits to 128 bits. It has

 been observed that the proposed CORDIC offers a flat 

latency and throughput response. As mentioned earlier the 

proposed structure has an inherent capability of being 

pipelined within each stage. This increases the overall 

throughput as depicted in figure 7 and figure 8. Finally the 

latency and throughput variations of the proposed architecture 

are compared against the non-redundant (basic) and redundant 

signed (modified) CORDIC. The comparison results are 

graphically shown in figures 9 and 10.

Table 1. Latency and Throughput comparison for different 32-bit CORDIC structures 

Parameter 
CORDIC architectures 

Basic Modifed Proposed 

Logic delay (ns) 9.18 13.589 5.034 

Route delay (ns) 25.002 6.448 9.237 

Max. Combinational delay (ns) 34.182 20.037 14.271 

Throughput. (MHz) 31.667 60.85 70.07 

Throughput (pipelined). (MHz) 120.841 423.276 905.469 
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Fig 7: Delay variations in proposed CORDIC 

 

Fig 9: Worst case delay comparison for basic, modified 

and proposed CORDIC 

 
Fig 8: Throughput variations in proposed CORDIC 

 
Fig 10: Throughput comparison for basic, modified and 

proposed CORDIC

Further analysis of proposed CORDIC is carried out by 

comparing the power consumption for 32 bit word length.

Table 2 gives the power consumption of the three structures. 

Table 2. Power dissipation for redundant, non-redundant and proposed CORDIC 

Parameter 
Power Dissipated (mW) 

Basic Modified Proposed 

Clock 15.53 10.36 32.17 

Logic 9.23 6.55 22.00 

Signals 10.59 5.79 18.55 

IOs 196.69 110.73 200.76 

Leakage 380.12 379.75 380.53 

Dynamic 232.03 133.44 273.49 

Total 612.15 512.58 654.02 

From table 2 it is observed that the proposed structure 

dissipates more power than the non-redundant and redundant 

signed structures. This is due to the high operating frequency 

of the proposed CORDIC which demands high clocking rates 

and thus greater power dissipation. Apart from it, the

 proposed CORDIC requires more hardware resources 

resulting in larger on chip power dissipation. The device 

utilization for the three structures is summarized in table 3 for 

32 bit word length. 
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Table 3. Device utilization for redundant. non-redundant and proposed CORDIC 

Parameter 
CORDIC Architectures 

Basic Modified Proposed 

No. of Registers 678 678 2079 

No. of  Look-Up-Table (LUTs) 1006 685 2091 

No. used as logic 1006 685 2089 

No. of occupied Slices 336 181 593 

No. of LUT Flip Flop pairs used 1013 685 2143 

No. of bonded Input-Output-Buffers (IOBs) 194 194 226 

7.1 Discussions 

It is observed that when timing response of the CORDIC 

structures is concerned, the proposed CORDIC is suitable for 

practical implementation. The critical path delays in case of 

the proposed CORDIC is much lesser and is almost constant 

for input word lengths varying from 16 to 128 bits. Critical 

path delays determine the clock period and thus the operating 

frequency of the core [21]. Owing to a constant critical path 

delay the operating frequency of the core remains constant 

irrespective of the input word length. When the core is 

pipelined it results in an increased operating frequency that 

remains constant for the entire range of input word lengths. In 

effect the core offers a flat timing response for the entire range 

of input word lengths, which is much higher than the basic 

CORDIC. 

The flat timing response of the proposed CORDIC can be 

explained as under: the decomposition of a given function into 

sub functions and the routing of the interconnections between 

them yield a considerable uncertainty in the propagation delay 

from the input to the output of an implemented circuit. Since 

most combinational circuits are placed in a sequential 

environment, there is usually an interest in the worst case 

delay which is determined by adding up the maximum 

expected delays of the sub functions into which a given 

function is decomposed. CORDIC represents a typical 

example of such a structure wherein the entire core is 

implemented by decomposing it into subsequent stages (sub 

functions). There is, however, always an uncertainty in 

determining the worst case delay and thus the critical path of a 

given function from its sub functions. These uncertainties are 

due to the decomposition of a function into sub functions, 

implementation of these sub functions and the 

interconnections within an FPGA. The exact worst case delay 

can thus be known only after the implementation process has 

been completed including the decomposition into sub 

functions and interconnect routing. 

The adder/subtractor used in case of the non-redundant 

CORDIC is based on ripple carry logic, wherein the carry has 

to propagate from the LSB to MSB. Thus, as the word length 

increases the uncertainties in the decomposition process and 

the implementation of the sub functions becomes large. This 

results in different critical paths for different stages and thus 

varying clock periods. The overall operating frequency of the 

core is thus determined by the slowest stage within a structure 

and is thus variable. In contrast to this, the adder logic in case 

of the proposed CORDIC is much simpler, requiring only bit-

by-bit XOR, AND, and OR operations (which are carried out 

in parallel) so that the uncertainty in the decomposition and 

implementation process is almost negligible resulting in a flat 

timing response. Also the adder logic is simplified by 

eliminating the ripple carry stage in each carry save adder.  

Another way of looking at it is that the conventional non-

redundant and signed structures depend on the input word as a 

whole. As the word length increases the corresponding 

combinations also increase and the randomness or 

uncertainties associated with these combinations tend to get 

complex. This results in complex critical paths after 

implementation and thus random delays. In contrast to this, 

the addition operation in case of proposed CORDIC depends 

on individual bits and not on the word as a whole. Since a bit 

can have only two logic values (0 and 1) the corresponding 

combinations and the associated uncertainties are very simple 

and predictable. This results in simpler critical paths and thus 

faster structures. 

8. CONCLUSION 
This paper presented a novel approach for implementing 

parallel CORDIC algorithm. The implementation was 

focussed for FPGA platforms. The proposed architecture is 

based on carry save addition and has been shown to offer 

minimum latency and high operating frequency. More 

importantly the proposed structure offers a flat throughput 

response for varying word lengths, which is an improvement 

over the previous designs. This is, however achieved at the 

cost of more power dissipation and area usage. However, 

since the implementation is targeted for FPGA devices, area is 

not a major concern. The proposed architecture thus presents a 

high throughput solution that is demanded by present day high 

speed large word length DSP applications. 
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