
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

36

A High Speed 32-bit FPGA based CORDIC Architecture

for Sine and Cosine Function Evaluation

Burhan Khurshid

Department of Computer Science
Engineering,

NIT Srinagar, India

Roohie Naz Mir
Department of Computer

Science Engineering,
NIT Srinagar, India

Hakim Najeeb-ud-din Shah
Department of Electronics and
Communication Engineering,

NIT Srinagar India

1. ABSTRACT
Digital Signal Processing (DSP) algorithms always have a

need for calculating certain linear, trigonometric, hyperbolic,

logarithmic and other transcendental functions. CORDIC

based algorithms have long been used in evaluating these

functions. Traditional approaches have, however, been limited

to software domain only. The simplicity of operation of

CORDIC algorithm encourages its implementation in

hardware. In this paper a novel CORDIC architecture for sine

and cosine function evaluation has been proposed. The

hardware integration is carried out using Field Programmable

Gate Arrays (FPGAs).The proposed algorithm is based on

modified carry save addition and incorporates bit-truncation.

The structure offers extremely low latency and high operating

frequencies, when pipelined. The novelty of the proposed

architecture is that it offers a flat timing response for varying

input word lengths. The structure has an inherent capability of

supporting an additional internal pipeline within each stage,

enabling the structure to operate at high frequencies, typically

four times that of the normal CORDIC. The performance

analysis is carried out by comparing the proposed architecture

against existing non-redundant (basic) and redundant

(modified) architectures.

General Terms

DSP algorithm, Reconfigurable computing

Keywords

Carry save Addition; CORDIC Algorithm; Digital Signal
Processing; FPGA; Pipelining; Rotation Mode

2. INTRODUCTION
CORDIC (COordinate Rotation DIgital Computer) [1,2] is a

shift-and-add algorithm that is widely used in Very Large

Scale Integration (VLSI) DSP systems [3] due to its simple

hardware and versatility. The algorithm is the best

compromise between the look up table method (requires an

enormous memory) and the polynomial approximation

method, (slow to converge). Traditionally the hardware

implementation has foccussed on sequential structures.

However, these structures do not map well on FPGAs [4]. The

major drawback of the conventional CORDIC algorithm was

its relatively high latency and low throughput [5]. This was

due to the sequential nature of the iteration process with carry

propagate addition and variable shifting in every iteration [6].

Unfolded parallel implementations were proposed to

overcome the above drawbacks. However, the carry propagate

addition still remained a bottleneck for further latency

improvements [7, 8]. To improve the latency of CORDIC

architectures, high radix CORDIC and redundant signed

arithmetic have been proposed and implemented. The use of

redundant signed arithmetic prevents the propagation of carry

thereby making it possible to create parallel adders with

constant delay irrespective of the operand word-length [9].

Thus low latency results are produced in a redundant

architecture resulting in high-performance designs.

Carry save arithmetic also leads to a form of redundant

number representation resulting in low latency

operations.This paper proposes a novel architecture that,

besides reducing the latency of CORDIC algorithm stabilizes

its timing response by providing a constant operating

frequency for varying input word lengths.

The use of FPGAs as an implementing platform for various

custom DSPs has increased since the beginning of this decade

[10, 11]. However, earlier FPGAs were not able to implement

the parallel CORDIC architecture due to the limited chip size

and difficulty in routing the hard-wired shifters [4, 12, 13].

Consequently FPGAs were used to implement only the

iterative CORDIC architectures [14, 15]. The implementation

of parallel CORDIC architectures was, therefore restricted

only to the programmable platforms.

However, the advancement in VLSI technology has resulted

in high density FPGAs which provide an attractive platform

for parallel CORDIC architectures [16, 17, 18, 19]. This paper

emphasizes the implementation of parallel CORDIC

architectures in FPGAs.

3. CORDIC ALGORITHM
The CORDIC algorithm provides an iterative method of

performing vector rotations by arbitrary angles using only

shift and add operations. The algorithm, credited to Volder, is

derived by rotating a vector (x, y) in a Cartesian plane by

some angle, say.

For a single CORDIC micro-rotation the resulting equations

are:

1 2 i

i i i ix x y d 

   (1)

1 2 i

i i i iy y x d 

   (2)

 1

1 tan 2 i

i i iz z d  

   (3)

Where,

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

37

1 0

 =+1

i id if z

Otherwise

  

Equations 1 and 2 are the coordinate equations, giving the

coordinates for the next micro-rotation. Equation 3 is the

angle equation, giving the amount of rotation for the next

micro-rotation.

The CORDIC rotator is normally operated in one of two

modes. In rotation mode, the angle accumulator is initialized

with the desired rotation angle. The rotation decision at each

iteration is made to diminish the magnitude of the residual

angle in the angle accumulator. The decision at each iteration

is therefore based on the sign of the residual angle after each

step.

After n iterations we get the following results:

 0 0 0 0cos sinn nx A x z y z 
 (4)

 0 0 0 0cos sinn ny A y z x z 
 (5)

0nz 
 (6)

 Setting the y component of the input vector to zero reduces

the rotation mode result as under:

0 0. cosn nx A x z
 (7)

0 0. cosn ny A x z
 (8)

By setting x0 equal to 1/An, the rotation produces the unscaled

sine and cosine of the angle argument z0.

4. CARRY SAVE ADDITION
Carry-save arithmetic leads to a form of redundant number

representation. Due to its similarity with redundant

arithmetic, most redundant architectures can be adapted to

carry-save case. In carry save addition, we refrain from

directly passing on the carry information until the very last

step. This is done by taking three numbers, x, y, z and

converting them into two numbers c and s such that:

 x y z c s    (9)

Where, s represents the sum and c represents the carry.

The important consideration is that c and s can be computed

independently, and furthermore, each ci (and si) can also be

computed independently from all of the other c’s (and s’).

In order to add m different n-bit numbers together, the simple

approach would be to repeat the procedure approximately m

times over. This would require (m−2) carry save adder (CSA)

blocks and a final ripple carry adder (RCA) block. Note that

every time we pass through a CSA block, our number

increases in size by one bit. Therefore, the number that goes

to the RCA will be at most (n + m – 2) bits long. So the final

RCA will have a gate delay of O(log (n + m)). Therefore the

total gate delay is O(m + log (n + m)). Two points worth

noting here are; firstly the major part of the delay in the

structure is due to the final RCA stage; and, secondly after

every CSA stage an additional bit gets added to the sum

vector. The proposed architecture takes care of both these

issues.

5. PROPOSED ARCHITECTURE
The proposed architecture is based on carry save addition. A

carry save adder consists of a carry save stage and a final

ripple carry stage that adds (or subtracts) the sum (or

difference) and the carry (or borrow) bits [20]. The

performance of the adder is limited by the ripple carry stage

that accounts for the major portion of the delay in the circuit.

Unfolded implementation of CORDIC structures is carried out

by decomposing the entire core into several subsequent

stages, with the output of one stage serving as input to the

subsequent one. At each stage a sum (or difference) vector is

obtained that is propagated to the next stage. The proposed

architecture eliminates the ripple carry stage from the

structure, such that instead of propagating only the final sum

(or difference) vector we are actually propagating both the

sum (or difference) and carry (or borrow) vectors. This takes

care of the large delay introduced by the RCA block at each

stage. However, this results in certain modifications in the

overall algorithm which is depicted in the flow chart of figure

1. The block diagram of the proposed CORDIC follows and is

shown in figure 3.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

38

Fig 1: Flow chart for proposed CORDIC.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

39

Fig 2: Proposed CORDIC logic diagram

As can be seen in figure 2 above, an additional redundant bit

is added after every CSA stage, such that, if the initial word

length is N bits, then after n stages the word length will be

N+2n -1.This causes a high fan-in for the subsequent stages

requiring several layers of logic, thus slowing the process.

This has been overcome by truncating the most significant bit

after every carry save addition/subtraction. The truncation of

the most significant bit does not affect the precision of the

result as the bit is redundant. The bit truncated CORDIC is

shown in figure 3

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

40

Fig 3: Bit truncated proposed CORDIC logic diagram

As seen in the above figure in each stage a redundant bit is

generated. This MSB is eliminated in each stage, so that if the

initial wordlength is N-bits the wordlength after n stages will

remain N-bits.

6. SYNTHESIS AND SIMULATION

6.1 Methodology
The proposed CORDIC is implemented in seven stages for a

word length of 32 bits. The initial design entry is done using

VHDL. The design translation is carried out and the simulator

database is then analyzed for different performance

parameters and logical conclusions are drawn on the basis of

different parameter values.

6.2 Implementation
The core is implemented with the following synthesis

description:

Platform: FPGA

Family: Virtex5

Target device: XC5VLX30

Package: FF324

Speed grade: -3

Figure 4 shows the block view of the proposed CORDIC

structure and figure 5 shows the RTL view of a single stage.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

41

Fig 4: Block view of proposed CORDIC

Fig 5: Single stage RTL view

The generated core has been simulated for sine and cosine

functions by operating it in the rotation mode and results were

calculated for different angles. The proposed CORDIC is

pipelined by inserting registers in between the individual

stages. This increases the maximum operating frequency

resulting in higher throughputs. The structure provides an

inherent capability of introducing an additional pipeline

register within each stage. This further increases the

throughput of the system. Figure 6 shows the proposed

CORDIC with conventional and internal pipeline.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

42

Fig 6: Proposed CORDIC with conventional aon internal pipelining

7. EXPERIMENTAL AND SIMULATION

RESULTS
The proposed structure is analysed for different performance

parameters. Table 1 provides latency and throughput

comparisons of the non-redundant (basic), redundant signed

(modified) and proposed CORDIC structures. All the

structures are implemented with the same synthesis

description.

Further analysis of the proposed CORDIC is carried out by

varying the input word length from 16 bits to 128 bits. It has

 been observed that the proposed CORDIC offers a flat

latency and throughput response. As mentioned earlier the

proposed structure has an inherent capability of being

pipelined within each stage. This increases the overall

throughput as depicted in figure 7 and figure 8. Finally the

latency and throughput variations of the proposed architecture

are compared against the non-redundant (basic) and redundant

signed (modified) CORDIC. The comparison results are

graphically shown in figures 9 and 10.

Table 1. Latency and Throughput comparison for different 32-bit CORDIC structures

Parameter
CORDIC architectures

Basic Modifed Proposed

Logic delay (ns) 9.18 13.589 5.034

Route delay (ns) 25.002 6.448 9.237

Max. Combinational delay (ns) 34.182 20.037 14.271

Throughput. (MHz) 31.667 60.85 70.07

Throughput (pipelined). (MHz) 120.841 423.276 905.469

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

43

Fig 7: Delay variations in proposed CORDIC

Fig 9: Worst case delay comparison for basic, modified

and proposed CORDIC

Fig 8: Throughput variations in proposed CORDIC

Fig 10: Throughput comparison for basic, modified and

proposed CORDIC

Further analysis of proposed CORDIC is carried out by

comparing the power consumption for 32 bit word length.

Table 2 gives the power consumption of the three structures.

Table 2. Power dissipation for redundant, non-redundant and proposed CORDIC

Parameter
Power Dissipated (mW)

Basic Modified Proposed

Clock 15.53 10.36 32.17

Logic 9.23 6.55 22.00

Signals 10.59 5.79 18.55

IOs 196.69 110.73 200.76

Leakage 380.12 379.75 380.53

Dynamic 232.03 133.44 273.49

Total 612.15 512.58 654.02

From table 2 it is observed that the proposed structure

dissipates more power than the non-redundant and redundant

signed structures. This is due to the high operating frequency

of the proposed CORDIC which demands high clocking rates

and thus greater power dissipation. Apart from it, the

 proposed CORDIC requires more hardware resources

resulting in larger on chip power dissipation. The device

utilization for the three structures is summarized in table 3 for

32 bit word length.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

44

Table 3. Device utilization for redundant. non-redundant and proposed CORDIC

Parameter
CORDIC Architectures

Basic Modified Proposed

No. of Registers 678 678 2079

No. of Look-Up-Table (LUTs) 1006 685 2091

No. used as logic 1006 685 2089

No. of occupied Slices 336 181 593

No. of LUT Flip Flop pairs used 1013 685 2143

No. of bonded Input-Output-Buffers (IOBs) 194 194 226

7.1 Discussions

It is observed that when timing response of the CORDIC

structures is concerned, the proposed CORDIC is suitable for

practical implementation. The critical path delays in case of

the proposed CORDIC is much lesser and is almost constant

for input word lengths varying from 16 to 128 bits. Critical

path delays determine the clock period and thus the operating

frequency of the core [21]. Owing to a constant critical path

delay the operating frequency of the core remains constant

irrespective of the input word length. When the core is

pipelined it results in an increased operating frequency that

remains constant for the entire range of input word lengths. In

effect the core offers a flat timing response for the entire range

of input word lengths, which is much higher than the basic

CORDIC.

The flat timing response of the proposed CORDIC can be

explained as under: the decomposition of a given function into

sub functions and the routing of the interconnections between

them yield a considerable uncertainty in the propagation delay

from the input to the output of an implemented circuit. Since

most combinational circuits are placed in a sequential

environment, there is usually an interest in the worst case

delay which is determined by adding up the maximum

expected delays of the sub functions into which a given

function is decomposed. CORDIC represents a typical

example of such a structure wherein the entire core is

implemented by decomposing it into subsequent stages (sub

functions). There is, however, always an uncertainty in

determining the worst case delay and thus the critical path of a

given function from its sub functions. These uncertainties are

due to the decomposition of a function into sub functions,

implementation of these sub functions and the

interconnections within an FPGA. The exact worst case delay

can thus be known only after the implementation process has

been completed including the decomposition into sub

functions and interconnect routing.

The adder/subtractor used in case of the non-redundant

CORDIC is based on ripple carry logic, wherein the carry has

to propagate from the LSB to MSB. Thus, as the word length

increases the uncertainties in the decomposition process and

the implementation of the sub functions becomes large. This

results in different critical paths for different stages and thus

varying clock periods. The overall operating frequency of the

core is thus determined by the slowest stage within a structure

and is thus variable. In contrast to this, the adder logic in case

of the proposed CORDIC is much simpler, requiring only bit-

by-bit XOR, AND, and OR operations (which are carried out

in parallel) so that the uncertainty in the decomposition and

implementation process is almost negligible resulting in a flat

timing response. Also the adder logic is simplified by

eliminating the ripple carry stage in each carry save adder.

Another way of looking at it is that the conventional non-

redundant and signed structures depend on the input word as a

whole. As the word length increases the corresponding

combinations also increase and the randomness or

uncertainties associated with these combinations tend to get

complex. This results in complex critical paths after

implementation and thus random delays. In contrast to this,

the addition operation in case of proposed CORDIC depends

on individual bits and not on the word as a whole. Since a bit

can have only two logic values (0 and 1) the corresponding

combinations and the associated uncertainties are very simple

and predictable. This results in simpler critical paths and thus

faster structures.

8. CONCLUSION
This paper presented a novel approach for implementing

parallel CORDIC algorithm. The implementation was

focussed for FPGA platforms. The proposed architecture is

based on carry save addition and has been shown to offer

minimum latency and high operating frequency. More

importantly the proposed structure offers a flat throughput

response for varying word lengths, which is an improvement

over the previous designs. This is, however achieved at the

cost of more power dissipation and area usage. However,

since the implementation is targeted for FPGA devices, area is

not a major concern. The proposed architecture thus presents a

high throughput solution that is demanded by present day high

speed large word length DSP applications.

9. ACKNOWLEDGMENTS

This work has been carried out in smdp-ii vlsi laboratory of

the electronics and communication engineering department, of

national institute of technology srinagar, india. This smdp – ii

vlsi project is funded by ministry of communication and

information technology, government of india. Authors are

grateful to the ministry for the facilities provided under the

said project

10. REFERENCES
[1] Volder, J. E. The CORDIC trigonometric computing

technique, in IRE Transactions Electronic Computing,

Vol EC-8, pp 330 – 334, 1959.

[2] Walther, J. S. A unified algorithm for elementary

functions, in Proceedings Spring Joint Computer

Conference, Vol. 38, pp. 379-385, 1971.

[3] Hu, Y. H. CORDIC-based VLSI architectures for digital

signal processing, in IEEE Signal Proceedings Magazine,

pp. 16-35, 1992.

[4] Andraka, R. A survey of CORDIC algorithms for FPGA

based computers, FPGA98, ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pp

191-200, 1998.

[5] Hu, Y. H. Pipelined CORDIC architecture for the

implementation of rotational based algorithm, in

Proceedings of the International Symposium on VLSI

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

45

Technology, Systems and Applications, p. 259, May

1985.

[6] Erecegovac, M. D. and LANG, T. Digital Arithmetic,

Elsevier, Amsterdam, the Netherlands, 2004.

[7] Antelo, E., Villalba, J., Bruguera, J. D. and Zapata, E. L.

High performance rotation architectures based on the

Radix-4 CORDIC algorithm, IEEE Transactions on

Computers, Vol. 46, no. 8, pp. 855–870, 1997.

[8] Ercegovac, M. D., and Lang, T. Fast cosine/sine

implementation using on-line CORIC, Proceedings of the

21st Asilomar Conference on Signals, Systems, and

Computers, 1987.

[9] Parhi, K. K. VLSI Digital Signal Processing Systems:

Design and Implementation. Wiley, 1999.

[10] Graumann, P. J., Turner, L. E. Implementing Digital

Signal Processing Algorithms using Pipelined Bit-Serial

Arithmetic and Field Programmable Gate Arrays, First

International ACM/SIGDA Workshop on Field

Programmable Gate Arrays (FPGA’92), 1992.

[11] Isoaho, J., Pasanen, J., Vainio, O., and Tenhunen, H.

DSP System Integration and Prototyping with FPGAs,

Journal of VLSI Signal Processing, Vol. 6, pp. 155 –

172, 1993.

[12] Wahab, M., Puckey, D. FPGA-based DSP Systems, Eds.

W.R. Moore and W. Luk, Abindon EE&CS books, 1994.

[13] Petersen, R. J. and Hutchings, B. An Assessment of the

Suitability of FPGAbased Systems for Use in DSPs, in

Lecture Notes in Computer Science, no. 975, pp.293-

302, Springer-Verlag, Berlin, 1995.

[14] Meyer-Base, U., Meyer-Base, A. and Hilberg, W.

Coordinate Rotation Digital Computer (CORDIC)

Synthesis for FPGA, in 41h International Workshop on

Field Programmable Logic and Applications (FPL’94),

7-9 September 1994, Prag, Czech Republic.

[15] Dick, C. Computing the Discrete Fourier Transform on

FPGA Based Systolic Arrays, ACM/SIGDA Int.

symposium on Field Programmable Gate Array, pp. 129-

135, Feb. 1996.

[16] Meyer-Base, U., Meyer-Base, A., Mellott, J. and Taylor,

F. A fast modified CORDIC- Implementation of radial

basis neural networks, Joumal of VU1 Signal Processing,

Vol. 20, pp. 211-218, 1998.

[17] Mayosky, M. A., Battaiotto, P. E. and Toccaceli, G. M.

A CORDIC Architecture for Vector Control, in

Proceedings. of the Int. Con$ on Signal Processing

Applications & Technology, 1998.

[18] Deprettere, E., Dewilde, P. and Udo, R. Pipelined

CORDIC Architecture for Fast VLSI Filtering and Array

Processing, in Proceedings of ICASSP 84, pp. 41.A.6.1

– 6.4, 1984.

[19] Khurshid, B., Rather, G. M. and Hakim, N. Performance

Comparison of Non-redundant and Redundant FPGA

based Unfolded CORDIC Architectures, in International

Journal of Electronics and Communication Technology,

Vol. 3, issue 1 pp 85-89, Marcch 2012.

[20] Deschamps, J. P., Bioul, G. J. A. and Sutter, G. D.

Synthesis of Arithmetic Circuits, Wiley, 2006.

[21] Bhakthavatchalu, R., Sinith, M. S., Jismi, K. and Nair, P.

A Comparison of Pipelined Parallel and Iterative

CORDIC Design on FPGA, in Proceedings 5th

International Conference on Industrial and Information

Systems, (ICIIS 2010), pp. 239 – 243, July 29 - August

01, 2010, India.

IJCATM : www.ijcaonline.org

IJCATM : www.ijcaonline.org

