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A review is presented of the design and application
of genetic algorithms for the geometry optimisation of
clusters and nanoparticles, where the interactions between
atoms, ions or molecules are described by a variety of
potential energy functions. A general introduction to
genetic algorithms is followed by a detailed description of
the genetic algorithm program that we have developed to
identify the lowest energy isomers for a variety of atomic
and molecular clusters. Examples are presented of its
application to model Morse clusters, ionic MgO clusters
and bimetallic “nanoalloy” clusters. Finally, a number of
recent innovations and possible future developments are
discussed.

1 Introduction
Clusters are aggregates of between a few and many millions of
atoms or molecules. They may consist of identical atoms, or
molecules, or two or more different species and can be studied
in a number of media, such as molecular beams, the vapour
phase, in colloidal suspensions and isolated in inert matrices or
on surfaces.1,2 Interest in clusters arises, in part, because they
constitute a new type of material which may have properties
which are distinct from those of discrete molecules or bulk
matter: for example, some metals (e.g. palladium) which are
non-magnetic in the solid state can give rise to non-zero mag-
netic moments in discrete clusters.3,4 Another reason for the
interest in clusters is the size-dependent evolution of cluster
properties.1,5,6 Examples of some different types of clusters
(fullerenes, metal clusters, molecular clusters and ionic clusters)
are shown in Fig. 1.

Theory plays an important role in cluster science because
many cluster properties are difficult to measure directly and
spectroscopic and mass spectrometric data often need to be
interpreted in terms of theoretical models.1,7 Since, for large
clusters (of hundreds or thousands of atoms) ab initio electro-
nic structure calculations are still, at present, computationally
expensive, there has been much interest in developing empirical
atomistic potentials for the simulation of such species.8

1.1 Geometry optimisation of clusters

Whether one is using empirical atomistic potentials, ab initio
Molecular Orbital (MO) theory or Density Functional Theory
(DFT) to describe the bonding in clusters, one of the prime
objectives is to find, for a given cluster size, the arrangement
of atoms (or ions or molecules) corresponding to the lowest
potential energy—i.e. the global minimum (GM) on the poten-
tial energy hypersurface.9,10 As it is possible that a number of
different states (isomers or local minima) will be thermally
populated at a given finite temperature, one may pose the
question “Why is it important to locate the global minimum?”
Clusters corresponding to global minima (or low-lying local

Fig. 1 Examples of some cluster types.
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minima) are the most likely candidates for the most probable
structure formed in a cluster experiment,11 though, depending
on experimental conditions, the structures observed experi-
mentally may be kinetic (metastable), rather than thermo-
dynamic products.12 It is also important, however, to locate the
global minimum from the point of view of testing the accuracy
and how physically reasonable a particular potential energy
function (or other theoretical model) is—for example, it is no
use trying to model carbon clusters with a potential that pre-
dicts close packed structures!

As the number of minima rises exponentially with increasing
cluster size, finding the global minimum can be very difficult.
It has been found that “traditional” Monte Carlo (MC)
and Molecular Dynamics (MD) Simulated Annealing (SA)
approaches often encounter difficulties finding global minima
for particular types of interatomic interactions (such as the
short ranged Morse potential discussed below).13 For this
reason, genetic algorithms have found increasing use in the area
of finding global minima for clusters—i.e. cluster geometry
optimisation.

1.2 Genetic algorithms

The genetic algorithm (GA) 14–16 is a search technique based on
the principles of natural evolution. It uses operators that are
analogues of the evolutionary processes of mating (or “cross-
over” at the gene level), mutation and natural selection to
explore multi-dimensional parameter spaces. The GA belongs
to the class of evolutionary algorithms, which also includes
evolution strategies, differential evolution and genetic
programming.17

1.2.1 Terminology and definitions of GA operators. In
principal, a GA can be applied to any problem where the vari-
ables to be optimised (“genes”) can be encoded to form a string
(“chromosome”). Each string represents a trial solution of the
problem. By analogy with biology, the values of the individual
variables are known as “alleles”. The relationship between GA
chromosomes, genes and alleles is shown schematically in Fig. 2.
In a typical GA, a population of individuals evolves for a certain
number of generations—which is either fixed in advance or
may depend on some convergence criterion. Further details on
generic GAs and some specific implementations can be found in
the standard texts.14–16

The initial population corresponds to the starting set of indi-
viduals which are to be evolved by the GA. These individuals
are usually generated randomly, though it may sometimes be
beneficial to use any available prior knowledge or chemical
intuition in the generation of the initial population (taking care
not to bias the search too much).

Fitness is an important concept for the operation of the GA.
The fitness of a string is a measure of the quality of the trial
solution represented by the string with respect to the function
being optimised. Thus, high fitness corresponds to a high value
(in a maximisation problem) or a low value (in a minimisation

Fig. 2 Schematic representation of an individual in a generic
optimisation GA. The “genes” (yellow circles) represent the variables in
terms of which the optimization problem is defined and the “alleles”
(symbols) are the values of these variables. The individual is represented
by a “chromosome” or string of variables.

problem) of the function. If the upper and lower limits of
the function being optimised are known, then absolute fitness
may be used—where fitness values may be compared from
generation to generation. Otherwise (as in most GA appli-
cations), dynamic fitness scaling can be adopted, where, in each
generation the fitnesses of all the individuals are scaled relative
to the best and worst members of the current population. Fit-
ness is important in determining the likelihood of an individual
taking part in crossover and also in deciding which individuals
will survive into the next generation.

Selection refers to the way in which individual members of
the population are chosen for subsequent crossover. There are
a number of selection methods, the two most common being
“roulette wheel” and “tournament” selection. In roulette wheel
selection, a string is chosen at random and selected for crossover
if its fitness value (fi) is greater than a randomly generated
number between 0 and 1 (i.e. if fi > R[0, 1]), otherwise another
string is chosen and tested. The analogy with a roulette wheel
is apparent if one envisages a roulette wheel (see Fig. 3) with a
slot for each member of the population, where each slot has
a width (and therefore a probability of the “ball” dropping into
it) which is proportional to the fitness of the corresponding
member of the population. The tournament selection method
picks a number of strings at random from the population to
form a “tournament” pool. The two strings of highest fitness
are then selected as parents from this tournament pool.

Crossover is the way in which “genetic” information from two
(or sometimes more than two) “parent” strings is combined to
generate “offspring”. Fig. 4 shows two examples of commonly
used crossover operators for a generic GA. In one-point cross-
over (Fig. 4a), two parent strings are cut at the same point and
offspring are formed by combining complementary genes from
the parents (i.e. the first part of parent 1 with the second part
of parent 2 and vice versa). In two-point crossover (Fig. 4b), the
two parents are cut at two points and offspring are formed by
inserting the central sequence from parent 1 into parent 2 and
vice versa. Other types of crossover are possible, such as uniform
crossover, where offspring are generated by taking a certain
number of genes from each parent, with no restriction on where
these genes occur in the string.

Mutation—While the crossover operation leads to a mixing
of genetic material in the offspring, no new genetic material
is introduced, which can lead to lack of population diversity
and eventually “stagnation”—where the population converges
on the same, non-optimal solution. The GA mutation operator
helps to increase population diversity by introducing new

Fig. 3 Schematic representation of roulette wheel selection. The
probability of selecting an individual (i) for crossover is proportional to
its fitness (fi)—i.e. proportional to the width of the corresponding slot
on the roulette wheel.
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genetic material. As shown in Fig. 5, this can be accomplished
by making a random change to one or more randomly chosen
genes in an individual. In static mutation, the mutated gene is
assigned a completely random value, while in dynamic mutation
its value is changed by a small, random amount about its
original value.

“Natural” selection—In biological evolution the concept of
the “survival of the fittest” (or best adapted to the environment)
is a strong evolutionary driving force. In the case of a GA,
although the selection is clearly not “natural”, individuals (be
they parents, offspring or mutants) are likewise selected to
survive into the next generation on the basis of their fitness
(their quality with regards to the quantity being optimised).
There are many modifications of the selection step, however:
for example all mutants may be accepted, none of the parents
may be accepted, or only the best parents may survive (the
so-called “elitist” strategy—adopted so that the best member
of the population cannot get worse from one generation to the
next).

Schemata—The GA operators essentially exchange inform-
ation between individual strings to evolve new and better
solutions to the problem being optimised. A critical feature

Fig. 4 Schematic representation of the crossover operation in a
generic GA. (a) One-point crossover—two parents are cut at the same
point and offspring are formed by combining complementary genes
from the parents. (b) Two-point crossover—two parents are cut at the
same two points.

Fig. 5 Schematic representation of the mutation operation in a
generic GA. In this example a single variable (gene) has its value
changed (represented here by its colour being changed.

of the GA approach is that it operates effectively in a parallel
manner, such that many different regions of parameter space
are investigated simultaneously. Furthermore, information con-
cerning different regions of parameter space is passed actively
between the individual strings by the crossover procedure,
thereby disseminating genetic information throughout the
population. The GA is an intelligent search mechanism that is
able to learn which regions of the search space represent good
solutions, via the recognition of schemata. Fig. 6, shows three
strings of seven variables (genes). The values of the variables
(alleles—represented by blue symbols) are such that the three
strings have identical values for genes 2 and 4. These three
strings, therefore, contain a common “schema” (or building
block, shown in red at the bottom of the figure) corresponding
(in this example) to a star at position 2 and a snow flake at
position 4. In a real application of a GA, a good schema (corre-
sponding to a set of optimal or near-optimal variables) may be
implicitly recognised and propagated within the population, if
it leads to individuals of relatively high fitness.

The preceding section was an introduction to genetic
operators for a generic GA. For a real application, however,
both the crossover and mutation operators will generally have
some problem-specific characteristics, to facilitate global opti-
misation in the particular problem being studied. Similarly,
the extent to which schemata can be identified depends on how
separable or correlated the variables are, which, in turn depends
on the specific application. These considerations should
become evident in the discussion (below) of the GA that we
have developed for cluster geometry optimisation.

1.2.2 Applications of GAs in chemistry. Since the early
1990s, genetic algorithms have been increasingly used in a
variety of global optimisation problems in chemistry, physics,
materials science and biology.18–22 Notable applications of GAs
in the chemistry/biochemistry field include: the prediction of
protein secondary and tertiary structure, the simulation of pro-
tein folding, and structural studies of RNA and DNA;23,24 the
design and docking of drug molecules, quantitative structure–
activity relationships (QSAR), pharmacophore mapping and
receptor modelling and combinatorial library design;19,25 the
prediction of crystal structures and the solution of crystal
structures from single crystal, powder and thin film diffraction
data;21,26–30 the determination of molecular (including bio-
molecular) structure from NMR spectroscopy;31 and the con-
trol and optimisation of chemical processes.18 A database of
the application of genetic algorithms (and other evolutionary
algorithms) in chemistry and biochemistry is maintained by
Clark.32

Fig. 6 Illustration of the concept of schemata (building blocks) in
GA. The three strings depicted share the same values (alleles—blue
symbols) of two of their variables (genes 2 and 4)—this constitutes a
common schema (shown in red) for the three individuals.
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In this Perspective, there will be a brief discussion of
critical stages in the development of GAs for studying the
problem of cluster geometry optimisation, followed by a
detailed treatment of our own cluster geometry optimisation
program and its application to a number of cluster types.
Finally, new and possible future directions for the application
of GAs and related techniques in cluster science will be
introduced.

2 A brief history of GAs for cluster geometry
optimisation
The use of GAs for optimising cluster geometries was pio-
neered in the early 1990s by Hartke (for small silicon clusters) 33

and Xiao and Williams (for molecular clusters).34 In both cases
the cluster geometries were binary encoded, with the genetic
operators acting in a bitwise fashion on the binary strings.
Hartke has subsequently published the results of GA geometry
optimisations for a number of different types of cluster, includ-
ing silicon clusters,35 water clusters 36 and mercury clusters.37

An important stage in the evolution of GAs for cluster opti-
misation occurred when Zeiri 38 introduced a GA that operated
on the real-valued cartesian coordinates of the clusters. This
approach allowed for a representation of the cluster in terms
of continuous variables and removed the requirement for
encoding and decoding binary genes. The next signifficant step
in the development of GAs for cluster optimisation was due
to Deaven and Ho 39 who performed a gradient driven local
minimisation of the cluster energy after each new cluster was
generated. As Doye and Wales have pointed out,40 the introduc-
tion of local minimisation effectively transforms the cluster
potential energy hypersurface into a stepped surface, where
each step corresponds to a basin of attraction of a local mini-
mum on the potential energy surface, as shown in Fig. 7. This
simplification of the surface greatly facilitates the search for the
global minimum by reducing the space that the GA has to
search. This principle also underpins the “Basin Hopping MC”
method developed by Doye and Wales 40 and the “MC � energy
minimisation” approach of Li and Scheraga.41 These related
methods have proved very efficient for the structural opti-
misation of clusters, crystals and biomolecules.42 In the GA
context, such local minimisation corresponds to Lamarckian,
rather than Darwinian evolution, as individuals pass on a pro-
portion of the characteristics that they have acquired to their
offspring. In the case of clusters, these acquired characteristics
are the geometries after local minimisation, rather than the
characteristics they themselves inherited. Such hybrid
(“Lamarckian”) GAs, which couple local minimisation with
GA searching, have been found to improve GA efficiency for
a number of different applications of GAs in global
optimisation.43

Fig. 7 Simplification of the potential energy surface in the
Lamarckian GA. Initially generated clusters which are in the same
basin of attraction (e.g. A and A�) are minimized to the same structure
(A0) while cluster B minimizes to B0.

Another significant development in cluster optimisation
GAs, also due to Deaven and Ho, was the introduction of the 3-
dimensional cut and splice crossover operator.39 This operator,
which has been employed in most subsequent cluster GA work,
gives a more physical meaning to the crossover process. In this
crossover mechanism, good schemata correspond to regions of
the parent clusters which have low energy local structure.
Deaven and Ho applied their GA to the optimisation of carbon
clusters bound by a tight binding potential 39 and Lennard-
Jones clusters with 2–100 atoms.44 Their work on Lennard-
Jones clusters yielded many more low energy minima than had
previously been found by alternative geometry optimisation
methods.

Since the mid 1990s there have been a significant number of
genetic algorithm programs which have been developed to
study a wide range of cluster types. These GAs have introduced
a number of new pseudo-genetic operators and ways of
handling populations, carrying out crossover and mutation etc.
A systematic discussion of this work (which is beyond the scope
of the present Perspective) and further references can be found
in a number of recent reviews 45–48 and a list of applications
of GAs in the cluster field is included in Clark’s bibliography of
chemical applications of evolutionary algorithms.32

3 The Birmingham cluster genetic algorithm
program
A flow chart representing the operation of our cluster geometry
optimisation GA program 49 is shown in Fig. 8. (Note: the term
“mating”, used in this figure, can be regarded as synonymous
with “crossover”.) Specific features of the GA are described
below.

3.1 Generation of the initial population

For a given cluster size (nuclearity N),a number of clusters,
(population size Npop, typically ranging from 10 to 30) are
generated at random to form the initial population (the “zeroth

Fig. 8 Flow chart for the Birmingham cluster genetic algorithm
program.
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generation”). We have followed the approach of Zeiri 38 in using
the real-valued cartesian coordinates of the cluster atoms as
the genes. The x, y and z coordinates are chosen randomly
in the range [0,N 1/3]. This ensures that the cluster volume
scales correctly with cluster size (i.e. linearly with N). All of
the clusters in the initial population are then relaxed into the
nearest local minima, by minimising the cluster potential
energy as a function of the cluster coordinates, using the quasi-
Newton L-BFGS routine.50 This routine utilises analytical first
derivatives of the potential.

The GA operators of crossover, mutation and selection (on
the basis of fitness) are performed to evolve one generation into
the next.

3.2 Fitness

As the cluster GA is being used to minimise the cluster poten-
tial energy (Vclus, a negative quantity), the lowest energy (most
negative Vclus) clusters have the highest fitness and the highest
energy (least negative Vclus) clusters have the lowest fitness. The
cluster GA uses dynamic fitness scaling: the fitness of the lowest
energy cluster in the current population is equal to (or close to)
one and the highest energy cluster has a fitness equal to (or
close to) zero. Dynamic scaling is achieved by using a normal-
ised value of the energy, ρ, in the fitness calculations: 

 where Vmin and Vmax are the lowest and highest energy clusters
in the current population, respectively.

The most common fitness functions that we have used are:

Exponential: 

 where α is typically set to 3.

Linear: 

Hyperbolic tangent: 

The choice of fitness function controls how rapidly fitness
falls off with increasing cluster energy—i.e. the relative weight-
ing given to good vs. mediocre and bad structures.

3.3 Selection of parents for crossover

The selection of parents is accomplished using either roulette
wheel or tournament selection. In both of these selection
schemes, low energy clusters (with high fitness values) are more
likely to be selected for crossover and therefore to pass their
structural characteristics on to the next generation. Once a
pair of parents have been selected, they are subjected to the
crossover operation.

3.4 Crossover

Crossover is carried out using a variant of the cut and splice
crossover operator of Deaven and Ho,39 as shown schematically
in Fig. 9. In our implementation, random rotations (about
two perpendicular axes) are performed on both parent clusters
and then both clusters are cut horizontally about one or two
positions (corresponding to one-point and two-point crossover,
respectively) parallel to the xy plane, and complementary
fragments are spliced together. For the single cut method, the
cutting plane can be chosen at random, it can be defined to pass
through the middle of the cluster, or weighted according to the
relative fitnesses of the two parents (with more atoms taken
from the fittest parent). For the double cut method, the cutting

ρi = (Vi � Vmin)/(Vmax � Vmin) (1)

fi = exp(�αρi) (2)

fi = 1 � 0.7ρi (3)

fi = ½[1 � tanh(2ρi � 1)] (4)

planes are chosen at random. (Note that in our GA only one
offspring is produced from each crossover event, though, in
principle two offspring can be produced.)

Crossover continues until a predetermined number of off-
spring (Noff) have been generated. The number of offspring
is generally set to approximately 80% of the population size.
Each offspring cluster is subsequently relaxed into the nearest
local minimum, as described above. The local minimisation
step obviously changes the structure of the offspring cluster,
and this structural rearrangement will be greatest in the region
of the join between the two fragments donated by its parents.
As the clusters get larger, however, the perturbation due to the
local minimisation should become relatively smaller and con-
fined to the join region. In this way, the principle of schemata
should apply, as parents with high fitness are more likely to have
fit offspring by passing on fragments with low energy arrange-
ments of atoms.

3.5 Mutation

In an attempt to avoid stagnation and to maintain population
diversity, a mutation operator is introduced, whereby each indi-
vidual has a probability (Pmut) of undergoing mutation. The
mutation perturbs some or all of the atoms (or molecules)
within the cluster.

We have adopted a number of mutation schemes, with the
choice as to which scheme(s) to use depending on the type of
cluster being studied:

Atom displacement—The cluster is mutated by replacing
the atomic coordinates of a certain number of the atoms with
randomly generated values.

Twisting—The cluster is mutated by rotating the upper half
of the cluster about the z axis by a random angle relative to the
bottom half.

Cluster replacement—An entire cluster is removed and
replaced by a new, randomly generated cluster. The cluster is
generated in an identical way to that used for the generation of
the initial population.

Atom permutation—The cluster is mutated by swapping the
atom types of one or more pairs of atoms without perturbing
the structure of the cluster. This type of mutation is used for
hetero-elemental clusters, such as ionic clusters and bimetallic
clusters.

After mutation, each “mutant” cluster is subsequently
relaxed into the nearest local minimum, using the L-BFGS
minimisation routine, as described above.

3.6 Diversity checking

The program contains an option of removing clusters from the
population that have a difference in energy less than a value δE

Fig. 9 Schematic representation of the Deaven–Ho cut and splice
crossover operation, as implemented in our GA program. (Single cut
crossover is shown.)
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(typically 10�6 eV). If two or more clusters have energies less
than δE apart, then the lowest energy cluster is retained and the
other clusters are discarded. Use of this operator ensures that
population diversity is maintained.

3.7 Selection of the new population

The new population (the next generation) is selected from the
Npop lowest energy (highest fitness) clusters selected from the
set containing the old population the new offspring clusters
and the mutated clusters. The inclusion of clusters from
the previous generation makes the GA elitist, ensuring that
the best member of the population cannot get worse from one
generation to the next.

3.8 Subsequent generations

Once the new generation has been formed, the potential energies
of the best (Vmin,) and worst (Vmax) members of the population
are recorded and the fitness values calculated for the entire
population. The whole process of crossover, mutation and
selection is then repeated for a specified number (Ngen) of
generations or until the population is deemed to have con-
verged. The population is considered to be converged if the
range of cluster energies in the population has not changed for
a prescribed number of generations.

3.9 Optimisation of the genetic algorithm

A considerable amount of effort has been expended in optimis-
ing the GA operations and parameters described above.51

It should be noted that, because of the stochastic nature of
the GA, the GA program is run several times for each cluster
nuclearity and for each set of operations/parameters. It is
generally found that there is not a great dependence of the
success rate (of finding the global minimum structure) on the
type of fitness function used, though even small improvements
are useful, especially for larger cluster sizes. The best types
of crossover and mutation operators to use can be system
dependent (e.g. using atom permutation mutation in hetero-
nuclear clusters) and the absolute and relative rates of crossover
and mutation can be critical in determining the frequency with
which the GM is found and the average number of generations
required. Similarly, for larger clusters, a larger population size
and maximum number of generations is generally required.
While a detailed study of the effect of the GA operators and
the values of the GA parameters is beyond the scope of this
Perspective, the interested reader can find such information in
our previous publications (referenced below).

In the next section, details of the application of our GA to a
number of cluster types will be presented. Values of the GA
parameters, and any other options adopted are listed where
appropriate.

4 Applications of the Birmingham cluster genetic
algorithm program
Our GA (or modifications of it) has been applied to the study
of a wide variety of clusters, ranging from model Morse
clusters 52 to fullerenes,53,54 ionic clusters,55 water clusters,56

metal clusters 57,58 and bimetallic “nanoalloy” clusters 59–63

Further details are given in these papers and in a recent
review.45 Many of the structures of the global minima found by
our GA, for a number of cluster types, can be found on the
Birmingham Cluster Web site.64

4.1 Morse clusters

The first type of potential that was studied with our cluster GA
was the Morse potential,52 because, although Morse clusters
had not previously been studied with GAs, Doye and Wales had

described the structural consequences of varying the range of
the Morse potential.13 Furthermore, using the Basin Hopping
Monte Carlo approach,40 they had found global minima for
Morse clusters with different range parameters and noted that
the short range Morse potential (which has many local minima
and a very “noisy” potential energy surface) presents a par-
ticular challenge for global optimisation techniques.13 We,
therefore, decided to apply our GA to find global minima for
Morse clusters and to compare our results with Doye and
Wales’ tabulated coordinates and energies, which are available
on the Cambridge Cluster Database website.65

The Morse potential is a pair-wise additive potential which
depends only on the separations rij between pairs of atoms: 

where De is the bond dissociation energy (assumed constant for
all interactions in a homonuclear cluster), re is the equilbrium
bond length and α is the range exponent of the potential. Short
range Morse potentials correspond to high values of α.

As in the work of Doye and Wales,13 we have adopted a
simplified, scaled version of the Morse potential with De and re

both set to one: 

This provides a non-atom-specific potential which depends on a
single parameter: the range exponent α.

The total potential energy of a cluster of N atoms is then
obtained by summing over all atom pairs: 

We have compared short range (α = 14) and medium range
(α = 6) Morse potentials. Firstly, the efficiency of the GA was
compared with that of a simple random search algorithm
(RSA) for Morse clusters with N = 20, 30, 40 and 50 atoms. The
RSA generates a number of structures using an identical
method to that used to generate the initial population of the
GA and then minimises the energy of these clusters using the
L-BFGS local minimisation routine. Table 1 lists the success
or failure of the RSA in finding the global minimum energy
structures of Morse clusters bound with a Morse potential with
α = 6. It can be seen that the RSA is only successful in locating
the GM for clusters of 20 atoms, even when 30,000 random
geometries are minimised, as for the 50-atom clusters.

The GA was used to search for the GM of Morse clusters of
the same nuclearities, with the GA being run from 40 different
initial populations for each nuclearity. The GM was found
during each run of the GA for all 4 cluster nuclearities, which
is a considerable improvement over the RSA where the GM
was found only for the smallest cluster. The average number of
energy minimisations 〈Nmin〉 required to locate the GM for these
clusters, measured over the 40 runs for each nuclearity, are
listed in Table 1. The GA requires an average of 472 energy

V M
ij  = De[e

α(l � rij/re)(eα(l � rij/re) � 2)] (5)

V M
ij  = De[e

α(l � rij)(eα(l � rij) � 2)] (6)

(7)

Table 1 Comparison of the success of the random search algorithm
and the genetic algorithm in locating the global minima of Morse
(α = 6) clusters with N = 20, 30, 40 and 50 atoms. (Nsearch is the number
of minimisations carried out by the RSA and <Nmin> is the average
number of minimisations required by the GA to find the global
minimum)

N Nsearch GM found? 〈Nmin〉

20 5000 Yes 31
30 10000 No 301
40 20000 No 323
50 30000 No 472
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minimisations to locate the GM for the 50-atom Morse cluster,
which is significantly less than the 30,000 energy minimisations
performed by the unsuccessful RSA algorithm, so the success
of the GA, as compared with the random search algorithm,
is obvious. Table 1 also reveals that it is particularly challenging
to find the GM for N = 30, which takes nearly as many
minimisations (on average) as for N = 40.

The cluster geometry optimisation GA program was sub-
sequently used to study Morse clusters (for α = 6 and 14) with
N = 19–50 atoms. Preliminary calculations were performed on a
number of trial clusters and the following optimal values were
obtained for the GA program parameters: Npop = 10; Noff = 8;
Pmut = 0.1; and Ngen = 10–300 (increasing with cluster size). The
exponential fitness function was adopted, with roulette wheel
selection, random single cut crossover and atom replacement
mutation.

The GA located all of the previously published GM 13 for
Morse clusters with 19 to 50 atoms, both for medium (α = 6)
and short range (α = 14) Morse potentials. The GA found a
lower energy structure for the N = 30 (α = 14) Morse cluster
than was initially reported by Doye and Wales,13 though this
structure has indeed been found by their Basin Hopping
algorithm.65

The structures of some of the GM for α = 6 and α = 14 are
shown in Fig. 10. These structures have been discussed in detail
by Doye and Wales,13 the most obvious difference between the
two potentials being that the longer range (α = 6) potential
tends to favour poly-tetrahedral, icosahedral geometries,
while the short range (α = 14) potential favours decahedral
and fcc-like packing (such as the truncated octahedral cluster
which is the global minimum for N = 38).

One way of monitoring the progress of the cluster GA is to
construct an Evolutionary Progress Plot (EPP),66 of the lowest
energy (Vmin,), highest energy (Vmax) and the average energy
(Vave), as a function of generation number. (As well as EPPs, a
number of other methods for analyzing the progress of GAs
have been developed, such as the use of “family trees”, where
the ancestry of a particular individual can be mapped out.67)
Such EPPs are shown in Fig. 11 for N = 38, with α = 6 and α = 14.
The EPPs show that there is a rapid improvement in the
population (a sharp drop in Vmin, Vmax and Vave) in the early
generations, relative to the randomly generated initial popu-
lation (“generation 0”). This early improvement is mainly due

Fig. 10 GM for Morse clusters (MN) with 19, 38 and 50 atoms for α = 6
and α = 14.

to the crossover process. Subsequent, less dramatic improve-
ment occurs in a stepwise fashion and may be due to crossover
or mutation.

Fig. 11 shows that, in both cases, the population converges
on a single structure—as evidenced by Vmin, Vmax and Vave

becoming equal (diversity checking was not used in this case).
The converged structure was found to be the global minimum in
each case. The fcc-like truncated octahedral geometry of the
38-atom (α = 14) Morse cluster is difficult to find with most
global optimisation techniques,13 but is here found before the
100th generation—even for a small population size of 10.
Comparison with EPPs for larger clusters confirms that the
GA must, in general, be run for a greater number of generations
for larger cluster sizes. Similarly, comparison of the EPPs for
α = 14 with those for α = 6 confirms that the short range Morse
potential is more difficult to search,13 typically taking 2–3 times
as many generations to find the GM.

4.2 Ionic clusters

The bonding in ionic clusters (clusters of NaCl, MgO etc.) is
dominated by electrostatic interactions and the simplicity of
modelling ionic clusters makes them ideal systems in which to
study size-dependent properties. Ionic clusters have a number
of practical applications, such as: silver halides in the photo-
graphic process; ZnS clusters as gas sensors; CdS and CdSe
clusters as photodetectors; and polar semiconductors made
from GaAs and InP clusters. The study of NaCl and NaBr
clusters is also important in determining the mechanisms of
ozone depletion and pollution in marine environments. This
section concerns the simplest ionic oxide species, magnesium
oxide, which crystallises in the rock salt structure. The suit-
ability of the GA for investigating the structure of ionic
clusters was investigated using a rigid ion potential to describe
the electrostatic bonding. The study of finite MgO clusters may

Fig. 11 Evolutionary Progress Plots for 38-atom Morse clusters with
α = 6 and α = 14.
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lead to an improved understanding of (for example) epitaxial
growth of MgO surfaces. MgO clusters are also of interest in
their own right: for example they have been invoked as possible
nucleation sites for the formation of particulate matter in
oxygen-rich regions of space.68

The rigid ion potential is a simple model of the bonding
in ionic solids and their clusters, in which the ions are of fixed
size and carry fixed charges. The interaction between a pair
of ions is given by the sum of the long range electrostatic
Coulomb energy and a repulsive Born–Mayer potential (which
reflflects the short range repulsive energy due to the overlap of
the electron density of the ions): 

where, qj and qj are the charges on ions i and j, rij is the inter-ion
distance and Bij and ρij are Born–Mayer energy and distance
scaling parameters, respectively. Bij and ρij are zero when ions i
and j are both Mg2�.

Although the potential parameters (listed in Table 2) were
derived by Lewis and Catlow for formal charges of Mg2� and
O2�,69 we have used the cluster GA to optimise the geometries
of stoichiometric (MgO)N clusters (N = 10–35), with formal
ionic charges of Mg�O�, as well as Mg2�O2�.55 The following
GA parameters were used: Npop = 20; roulette wheel selection;
tanh fitness function; weighted single cut crossover, Noff = 16;
twist mutation, Pmut = 0.05; Ngen = 200.

Using the GA and the rigid ion potential, the lowest energy
Mg�O� clusters are found to be compact cubic structures based
on the NaCl structure (the structure of bulk MgO), whereas the
Mg2�O2� clusters are more spherical, cage like structures with
square, hexagonal and octagonal faces. The cation–cation and
anion–anion repulsions are much larger in the Mgq�Oq� clusters
with q = 2, as compared with those with q = 1. This causes
the structures to open out from highly coordinated lattice
structures (q = 1) to cage like structures (q = 2). Ziemann and
Castleman have studied (MgO)�

N and (MgO)NMg� clusters
experimentally, using laser-ionisation time of flight mass
spectrometry.70 The mass spectra showed magic number
clusters (corresponding to relatively intense peaks) for compact
cuboidal (rock salt) structures, as predicted by the rigid ion
potential with ionic charges of �1 and �1. Similar structures
are known to be preferred for alkali halide clusters.71

The rigid ion potential does not contain any terms to
describe ionic polarisation. As the O2� ions are highly polaris-
able and the Mg2� ions are strongly polarising, the rigid ion
potential, therefore, provides a poor description of Mg2�O2�

clusters. The effect of polarisation in the clusters will be to
reduce the effective charges of both ions, thereby reducing the
repulsion felt between like ions. This will lead to the more
highly coordinated (bulk-like) cuboidal structures being pre-
ferred over the cage like structures, due to the higher degree
of bonding present. The rigid ion potential calculations used
singly charged ions in order to mimic, partially the effect of
polarisability. It should be noted that ab initio calculations 72–74

and calculations using model potentials including explicit ion
polarisabilities 75 confirm that MgO clusters should adopt rock
salt-like structures.

As noted above, MgO clusters with formal ionic charges
of ±1 and ±2 have different structures. To investigate the
dependence of structure on charge further, we have studied the

Vij = (qiqje
2/4πε0rij) � Bijexp(�rij/ρij) (8)

Table 2 Rigid ion potential parameters for MgO

Parameter Value

Bij (Mg–O) 821.6 eV
Bij (O–O) 22764 eV
ρij (Mg–O) 0.3242 Å
ρij (O–O) 0.1490 Å

effect, on the lowest energy structures of small (Mgq�Oq�)N

clusters, of varying the magnitude of the charge (q) in incre-
ments of 0.1 from 1.0 to 2.0. The results for N = 8 and 9 are
summarised below.

Fig. 12a shows that the (MgO)8 cluster has three possible
structures, a 4 × 2 × 2 lattice for q = 1.0–1.3, a cage structure for
q = 1.4–1.6 and a structure consisting of two stacked octagonal
rings for q = 1.7–2.0. The two more open structures can both
be generated by lengthening different Mg–O contacts in the
4 × 2 × 2 cuboid. The stacked ring structure is the ground state
structure predicted by the Hartree–Fock (HF) calculations of
de la Puente and Malliavian, while their correlated HF (CHF)
calculations (which include intra-ion correlation) predict a
structure of two hexagonal MgO rings with an Mg2O2 square
capping one of the square faces.73 In contrast to the N = 8
cluster, a single geometry was found for (MgO)9 in the range q =
1.0–2.0: corresponding to three stacked hexagonal Mg303 rings.
This geometry, which is shown in Fig. 12b, is the ground state
structure found by de la Puente and Malliavian using both the
HF and CHF methods.73

Examples of the cage structures predicted for q = 2 include
the pair of 60 ion enantiomers, shown in Fig. 13, which are
predicted as the GM for (MgO)30, for q = 2.

Although these “pseudo-fullerene” hollow structures, com-
prised of 4-, 6- and 8 membered rings are inconsistent with
experimental and ab initio theoretical studies of (MgO)N

clusters, it is possible that such structures will be stabilised for
polar III–V semiconductor nanoparticles, where the formal
ionic charges are likely to be higher, even taking polarisation
into account. DFT calculations by Sedlmayr and co-workers
for (A1N)N, (GaAs)N and (InSb)N clusters (N = 12, 24, 60) con-
firm that such structures should have high energetic stabilities.76

Fig. 12 (a) The structures of (Mgq�Oq�)8 clusters with q in the range
1.0–2.0. (b) The structure of (Mgq�Oq�)9 clusters with q in the range
1.0–2.0. (Mg cations are shown in red and O anions in yellow.)

Fig. 13 Enantiomers of (Mg2�O2�)30.
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EPPs showing the convergence of the GA on the lowest
energy (MgO)30 clusters, with formal charges of ±1 and ±2 are
shown in Fig. 14. The GA required 74 generations to find the
lowest energy structure of (Mg2�O2�)30 but only 7 generations
to find the GM for (Mg�O�)30. In both cases the minimum,
maximumum and average energies converge, indicating that the
GA has converged on a single solution. The GA converges in
27 generations for q = 1 and in 100 generations for q = 2. These
results are typical of the other cluster nuclearities studied. The
rigid ion potential with formal charges of ±2 is shorter ranged
and the potential energy surface is therefore likely to have more
local minima for the GA to search, leading to greater difficulty
in finding the global minimum.

4.3 Nanoalloy clusters

There is continuing interest in metal clusters because of poten-
tial applications in fields such as catalysis and nano-electronics
(e.g. in single electron tunnelling devices).1 It is known that
alkali metal clusters, with sizes of up to thousands of atoms,
conform to the jellium model, in that certain nuclearities
are relatively stable (the so-called magic numbers) due to their
having filled electronic shells.77 By contrast, clusters of transi-
tion metals and some main group metals (e.g. Al, Ca and Sr)
exhibit magic numbers which correspond to clusters consisting
of concentric polyhedral shells (geometric shells) of atoms,
where the relative stability of a given cluster is determined by
the competition between packing and surface energy effects.78

The range of properties of metallic systems can be greatly
extended by taking mixtures of elements to generate inter-
metallic compounds and alloys. In many cases, there is an
enhancement in specific properties upon alloying, due to
synergistic effects and the rich diversity of compositions,
structures and properties of metallic alloys has led to wide-
spread applications in electronics, engineering and catalysis.

Fig. 14 EPPs for (Mg�O�)30 and (Mg2�O2�)30 clusters.

The desire to fabricate materials with well defined, controllable
properties and structures, on the nanometre scale, coupled with
the flexibility afforded by intermetallic materials, has generated
interest in bimetallic alloy clusters—or “nanoalloys”.79–81 One
of the major reasons for interest in nanoalloy particles is the
fact that their chemical and physical properties may be tuned
by varying the composition and atomic ordering, as well as the
size of the clusters. Their surface structures, compositions and
segregation properties 82,83 are of interest as they are important
in determining chemical reactivity, and especially catalytic
activity.84,85 Nanoalloy clusters are also of interest as they may
display structures and properties which are distinct from those
of the pure elemental clusters. There are also examples of pairs
of elements (such as iron and silver) which are immiscible in the
bulk phase but which readily mix in finite clusters.86

There have been a number of MD and MC studies of alloy
clusters using empirical many-body potentials.12,79,87 To date,
however, there have been few studies of nanoalloys using
electronic structure methods. Some notable applications of
electronic structure calculations to small nanoalloy clusters
include the work of Fortunelli and Velasco (Extended Hückel:
Pt–Fe clusters 88), Calleja et al. (DFT: Ni–Al clusters 89) and
Bromley et al. (DFT: Ru–Cu clusters 90). Where comparisons
are possible between DFT calculations and empirical poten-
tials, it is often found that the empirical potentials cannot
reproduce specific electronic effects such as Jahn–Teller dis-
tortions, which are observed for small clusters. For larger
clusters, DFT studies on homonuclear clusters (for example
Pd clusters 91) show that the lowest energy structures found
using empirical potentials, while not always corresponding to
DFT global minima, may lie close in conformation space to the
DFT global minima, or may correspond to low-lying meta-
stable isomers. In future, it should prove possible to combine
empirical potentials with electronic structure calculations in
order to explore conformation space more fully—i.e. to select
regions for study at the higher level of theory (see Section 5.4).
Such an approach has indeed been applied by Bromley et al. to
propose a structure for a Ru12Cu4 cluster formed by thermal
decomposition of an organometallic precursor cluster in
mesoporous silicon.90 Alternatively, the results of DFT calcu-
lations on selected benchmark clusters can be used to test the
parameters of an empirical potential (as in a recent Gupta
potential-DFT study of Co–Cu nanoalloy clusters by Wang
et al.92) or to facilitate reparameterisation.

A brief review is presented here of the application of our
cluster GA to study Cu–Au,59 Ni–Al 61 and Pd–Pt clusters.62 In
these studies, metal–metal bonding is modelled by the many-
body Gupta potential,93 which can be expressed as the sum of
repulsive pair (V r) and attractive many-body (V m) terms: 

 where 

 and 

In the above equations, rij is the distance between atoms i and
j in the cluster and the parameters A, r0, ζ, p and q are fitted to
experimental values of the cohesive energy, lattice parameters
and independent elastic constants for the bulk metals and alloys

(9)

(10)

(11)
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at 0 K.93 For A–B alloy clusters, the parameters take different
values for each of the different types (A–A, B–B and A–B) of
interaction. (Note: in the above equations, a and b are the atom
types of atoms i and j, respectively.)

Jellinek has introduced the term “homotops” to describe
AaBb nanoalloy isomers, for fixed number of atoms (N = a � b)
and composition (a/b ratio), which have the same geometrical
arrangement of atoms, but differ in the way in which the A
and B-type atoms are arranged 79 (i.e. they are related by atom
label permutation). As the number of homotops rises com-
binatorially with cluster size, global optimisation (in terms of
both geometrical isomers and homotops) is a difficult task.

In the calculations reported below for Cu–Au and Pd–Pt
clusters, the GA operators included atom permutation muta-
tion for the alloy clusters—which was found to greatly improve
the reproducibility of the results and the likelihood of finding
the GM. The following GA input parameters were used: Npop =
30; Ngen = 400; Noff = 24; Pmut = 0.1.

4.3.1 Cu–Au nanoalloys. We have made a study of stoichio-
metric clusters with the compositions of the common bulk
Cu–Au alloy phases: (CuAu3)N; (CuAu)N; and (Cu3Au)N and
have compared them with the pure copper and gold clusters.59

The Gupta parameters used to study these clusters are listed in
Table 3.93

Using our GA, pure copper clusters were found to adopt
regular, symmetric structures based on icosahedral packing,
while gold clusters showed a greater tendency towards amorph-
ous structures, as found previously by Garzón et al.94 In many
cases (e.g. for 14, 16 and 55 atoms), the replacement of a single
Au atom by Cu was found to change the GM structure to that
of the pure Cu cluster, which has also been observed by López
et al.87

As an example of the results obtained for Cu–Au nanoalloys,
the global minima found by the GA for 40-atom clusters
of varying composition—Cu40; Cu30Au10; Cu20Au20; Cu10Au30;
and Au40—are shown in Fig. 15. From the figure, it is apparent
that the clusters Cu40, Cu30Au10 and Cu20Au20 have the same
decahedral geometry. In the alloy clusters the Au atoms
generally lie on the surface, while the Cu atoms are encapsu-
lated. Although the Au40 cluster has a low symmetry, amorphous
structure, the gold-rich Cu10Au30 cluster has a structure which

Fig. 15 GM structures of selected 40-atom Cu (red), Au (yellow) and
Cu–Au clusters.

Table 3 Gupta potential parameters for Cu–Au nanoalloys

Parameter Cu–Cu Cu–Au Au–Au

A/eV 0.0855 0.1539 0.2061
ζ/eV 1.2240 1.5605 1.7900
p 10.960 11.050 10.229
q 2.2780 3.0475 4.0360
r0/Å 2.556 2.556 2.884

is more symmetrical than the Au40 GM, but it is not deca-
hedral. The Cu10Au30 GM has a flattened (oblate) topology, in
which all of the Au atoms, except one, lie on the surface of the
cluster and 7 of the Cu atoms occupy interior sites. The
observed atomic segregation in the alloy clusters is favoured
because of the lower surface energy of Au and the shorter
Cu–Cu bonds which can allieviate the internal strain of the
cluster. Similar tendencies have been found in a study of larger
Cu–Au clusters.95

4.3.2 Ni–Al nanoalloys. The cluster optimisation GA has
been used to find the GM for Ni–Al nanoalloys with the
approximate composition of the bulk alloy Ni3A1.61 The
Gupta potential parameters for the Ni–Al system are listed in
Table 4.93

An important aspect of a reliable search method is that it
enables one to have confidence when comparing stuctures and
considering trends in structures and homotop stability as a
function of size and composition. Fig. 16 shows, for example,
that the GM structure type changes from truncated octahedral
(fcc packing) to pseudo-icosahedral on adding a single Ni
atom, going from 38-atom Ni28A110 to 39-atom Ni29A110. This
icosahedral growth continues until the complete 2-shell
icosahedral 55-atom cluster Ni41A114 (also shown in Fig. 16) is
reached.

For Ni–Al clusters in general, we have found that the Al
atoms lie preferentially on the surface of the cluster. In the
Ni-rich clusters the Al atoms tend to be separated (i.e. there are
few Al–Al bonds), as can be seen in Fig. 16. These observations,
which are consistent with the empirical potential calculations
of Rey et al.96 and Rexer et al.,97 can be rationalised by the
lower surface energy of Al, the smaller size of Ni and the
greater strength of Ni–Al bonding, as compared with Ni–Ni
and Al–Al interactions.61

4.3.3 Pd–Pt nanoalloys. A detailed study has been made
of Pd, Pt and Pd–Pt bimetallic clusters, (PdPt)M, with up to
56 atoms, modelled by the many-body Gupta potential.62 The
Gupta parameters used to study these clusters are listed in
Table 5.93

Pure clusters of Pd and Pt are predicted to adopt a variety of
structures, depending on the cluster size. Many of the structures
are regular (ordered), though there is a tendency (which is
greater for Pt than for Pd) towards forming disordered struc-
tures. Another difference between the two metals is the
increased tendency for Pd to form clusters based on icosahedral
packing.

Fig. 16 GM for Ni28A110, Ni29A110 and Ni41A114. (Ni atoms are shown
in red and Al in green.)

Table 4 Gupta potential parameters for Ni–Al nanoalloys

Parameter Ni–Ni Ni–Al Al–Al

A/eV 0.0376 0.0563 0.1221
ζ/eV 1.070 1.2349 1.316
p 16.999 14.997 8.612
q 1.189 1.2823 2.516
r0/Å 2.4911 2.5222 2.8637
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Heteronuclear Pd–Pt interaction parameters have not
previously been derived for the Gupta potential. As the
stoichiometric 1 : 1 Pt–Pd alloy is a solid solution (Pd0.5Pt0.5),
with a small exothermic enthalpy of formation (�4 kJ mol�1),98

rather than an ordered intermetallic, the Pd–Pt parameters
were generated by taking averages of the Pd–Pd and Pt–Pt
parameters. These parameters are listed in Table 5 as Pd–Pt(I)
and were used for most of the calculations on Pd–Pt clusters.

Using parameter set I, it was found that the lowest energy
structures for stoichiometric (PtPd)M nanoalloy clusters
generally have different geometric structures than the corre-
sponding pure Pd or Pt clusters: with a reduced tendency to
display icosahedral packing and a larger number of capped
decahedral structures. Compared with Pd, there is also an
increase in the number of disordered structures for the Pd–Pt
clusters. Shell-like atomic segregation is favoured for these
Pt–Pd clusters, with the surface becoming richer in Pd and the
core becoming richer in Pt. This segregation is consistent
with experimental studies on Pd–Pt particles 99,100 and can be
explained in terms of the lower surface energy of Pd and the
greater cohesive energy of Pt.62

An example of a nuclearity for which pure Pd and Pt clusters
have different geometries is found for 14 atoms. Pd14 has a
capped icosahedral structure, while Pt14 is a bicapped hexagonal
antiprism. Fig. 17 shows that doping a single Pd atom into Pt14,
changes the structure to a capped icosahedron (where the Pd
atom adopts the low-coordinate capping site), whereas doping
a Pt atom into Pd14 leaves the structure unchanged (though the
Pt atom adopts the highly-coordinated interstitial site). These
findings are consistent with our results for Cu–Au clusters.59

For intermediate compositions the GM is usually the capped
icosahedron, with the exception of Pd10Pt4–Pd6Pt8, where
alternative nonicosahedral structures are found—as shown in
Fig. 17 for Pd7Pt7.

While the averaged Pd–Pt parameters (set I) give a good
qualitative description of Pd–Pt clusters, we have also investi-
gated the effect of varying the Pd–Pt parameters on the
structures of a limited set of Pd–Pt clusters, with the Pd : Pt
ratio fixed at 1 : 1. The modified parameter sets were obtained

Fig. 17 GM structures for selected 14-atom Pd (blue), Pt (green) and
Pd–Pt clusters, using Pd–Pt parameter set I.

Table 5 Gupta potential parameters for Pd–Pt nanoalloys. (See text
for discussion of Pd–Pt parameter sets I, II and III)

Parameter Pd–Pd Pt–Pt Pd–Pt(I) Pd–Pt(II)
Pd–
Pt(III)

A/eV 0.1746 0.2975 0.23 0.35 0.23
ζ/eV 1.718 2.695 2.2 2.2 3.0
p 10.867 10.612 10.74 10.74 10.74
q 3.742 4.004 3.87 3.87 3.87
r0/Å 2.7485 2.7747 2.76 2.76 2.76

from the averaged set I: by increasing the 2-body energy scaling
parameter (A), such that A(Pd–Pt) > A(Pt–Pt) > A(Pd–Pd)
(denoted Pd–Pt(II) in Table 5); and by increasing the many-
body energy scaling parameter (ζ), such that ζ(Pd–Pt) >
ζ(Pt–Pt) > ζ(Pd–Pd) (denoted Pd–Pt(III) in Table 5). In both
cases, all other parameters were left unchanged.

Fig. 18 compares the lowest energy isomers obtained for
(PdPt)14 clusters for parameter sets I, II and III. Cluster I has a
capped decahedral structure, based on a central 15-atom stack
of two pentagonal prisms, with 2 interstitial atoms, 2 caps on
the 5-fold axis and 9 of the 10 square faces capped (giving a
star-shaped cross section). In agreement with our general
findings for Pd–Pt clusters, using parameter set I, all 7 Pd atoms
lie on the surface of the cluster, showing a preference for the
low-coordinate capping sites. For parameter set II, Pd–Pt inter-
actions are destabilised relative to Pt–Pt and Pd–Pd, so that
the Pd–Pt clusters segregate into Pd and Pt sub-units held
together by a small number of Pd–Pt bonds. In cluster II,
both the Pd14 and Pt14 sub-units have the bicapped hexagonal
antiprismatic structure previously observed for Pt14, even
though the preferred structure for Pd14 is the capped icosa-
hedron (see Fig. 17). Presumably this alternative structure is
adopted because it enables stronger inter-fragment bonding.
For parameter set III, ordered mixing of the Pd and Pt atoms is
favoured, so as to maximise the number of strong Pd–Pt bonds.
The clusters adopt body centred cubic (bcc) packing (the
β-brass structure), with each Pt atom surrounded by a cube of
Pd atoms and vice versa, as shown for cluster III. Of the three
parameter sets tested here, set I clearly yields structures and
segregation patterns which are in closest agreement with
experiment.99,100

4.3.4 Atomic mixing in nanoalloy clusters. Studies of
nanoalloy clusters 7,59,61,62,95–97,101,102 have shown that homotop
stability—i.e. whether there is segregation or mixing (note:
mixing may be ordered or random) of the unlike atoms—is
determined by a number of factors, which (depending on the
geometry, size and composition of the cluster and the nature of
atoms A and B) may oppose or reinforce each other:

• Maximisation of the number of the strongest interatomic
interactions—this may favour mixing or segregation, depending
on the system.

• Minimisation of the cluster surface energy—this favours
segregation, with the cluster surface becoming richer in the
element which has the lower surface energy.

• Minimisation of bulk strain—this favours the location of the
smaller atom at the centre of icosahedral clusters, for example.

Three main types of mixing patterns of nanoalloy clusters
can be identified, which are shown in Fig. 19, with the observed
atomic arrangement for a particular A–B system depending
critically on the balance of the above factors. Firstly, there
are structures (Fig. 19a) which can be described ideally as shell-
segregated, with a shell of one type of atoms (A) surrounding
a core of another (B)—though there may be some mixing
between the shells. Secondly, there are segregated structures
(Fig. 19b) consisting of A and B sub-clusters, which may share
a mixed interface (top) or which may only have a small number
of A–B bonds (bottom). Finally, there are mixed A–B clusters

Fig. 18 Comparison of the GM for (PdPt)14 clusters, for Pd–Pt
parameter sets I, II and III.
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(Fig. 19c), which may either be random (i.e. a solid solution—
top) or ordered (bottom). Other intermediate mixing arrange-
ments are possible (for example layered structures). Cluster
generation under kinetic growth conditions, for example,
can lead to metastable mixing patterns, such as onion-like
alternating –A–B–A– shells.103

As far as I am aware, to date there have been no electronic
structure calculations on nanoalloy clusters for the systems we
have studied in the size ranges reported here. It is to be hoped
that our results (more details and references to lists of cluster
coordinates can be found in our previous publications) will
provide a useful starting point for DFT (or other electronic
structure) calculations of Ni–Al, Cu–Au and Pd–Pt nanoalloys.

5 New techniques and future directions
There have been a number of important recent developments
and advances in the GA methodology, which have already been
applied to the problem of cluster geometry optimisation—for
example the introduction of predators, parallel GAs, hybrid
GAs and GAs combining ab initio and empirical calcu-
lations.45,36 Some of these approaches are briefly discussed
below.

5.1 The predator operator

GAs have been very successful in determining global minima,
but in a number of physical applications, structures corre-
sponding to higher local minima may be more important
than the GM. For example, carbon cluster ions formed in laser-
ablation experiments 104 are observed in several different
geometries, distinguished by their relative mobilities. In some
experiments, kinetically favoured, higher energy isomers may be
formed, and the distribution of and interconversion between
isomers is also of great interest.13 Finally, it is worth noting
that the biologically active forms of proteins may not always
correspond to global minima.105

In recent work, we have extended the analogy with natural
evolution by considering the use of “predators” to remove
unwanted individuals or traits from the population.53

Sometimes unwanted members of a population can be
removed by imposing a constraint on the fitness function,
however, in seeking minima other than the GM, a suitable
modification of the fitness function is not always possible. In
principle, predation can be carried out using any property of
the cluster, for example a shape selective predator could be
used to remove individuals from the population (with a certain
probability) if they show (or fail to show) certain topological
features, such as sphericity, ring size or adjacent/non-adjacent
pentagons (in the case of fullerene clusters).

Fig. 19 Schematic representation of idealised atomic mixing/
segregation found for nanoalloy clusters. (a) Shell segregation. (b) Sub-
cluster segregation (top = with some mixing, bottom = complete
segregation). (c) Mixed (top = random mixing, bottom = ordered
mixing). (The two elemental components of the nanoalloy are denoted
by blue and yellow colouring.)

The simplest predator is the energy predator, in which clus-
ters with energies at or below a certain value are removed
(“predated”) from the population. The energy predator can
thus be used to search for low energy minima other than the
GM, or to enhance the efficiency of the GA by removing
specific low energy non-global minima that the GA may be
incorrectly converging towards. When searching for low energy
isomers, the GA is first run without the predator to find the
GM cluster and its energy. Then the predator is invoked to
remove the GM, so that the GA converges on the first meta-
stable isomer. This is then repeated, to remove both the GM
and the first metastable isomer, and the cycle is continued until
the required number of low-lying isomers have been found.
So far, we have applied this energy predator to find low-
lying metastable isomers of aluminium clusters 53 and carbon
fullerenes 45,54 and to explore the stability of the evolutionary
trajectory when removing certain intermediate structures,
which may either be key ancestors or evolutionary dead ends on
the path to finding the global minimum.63

5.2 Parallel genetic algorithms

The genetic algorithm has an intrinsically parallel nature:
the production of each new cluster during a generation is
independent of the production of any other new cluster. In this
way the GA can study different regions of the potential energy
surface in parallel. This parallel nature makes it easy to create
a parallel version of the GA code that will utilise many pro-
cessors simultaneously, thereby spreading the computational
effort and reducing the time taken for the run of the algo-
rithm.43 The availability of bigger, faster and cheaper multi-
processor computers, Beowulf clusters etc. means that parallel
programming is an important and growing area in modern
computational science.

There are a number of parallel GA paradigms which may
be applied—for example master-slave, distributed and sub-
population models.45,51 The master-slave and distributed parallel
algorithms work analogously to the normal, serial GA but
they spread the work (carrying out the genetic operations) over
a number of processors. They differ in whether each processor
holds a copy of the entire population (distributed) or a part of
the population (master-slave). The sub-population algorithm,
however, differs from the other two parallel algorithms in that it
does not have a single population. Each processor runs what
is effectively the serial GA on a population of reduced size.

Because of the small size of the sub-populations, sub-
population stagnation can be a problem, so it is essential that
a mechansim exists to exchange individuals between the sub-
populations, thereby helping to maintain genetic diversity
within each sub-population. The nature or topology of this
exchange can be treated in a number of ways. In the “island”
model, for example, exchange is allowed between any pair
of sub-populations, while in the “ring” or “stepping-stone”
model, exchange may only take place between neighbouring
populations.

Preliminary work with a parallel version of our GA showed
that the sub-population and distributed parallel algorithms
afford essentially linear speed-up with the number of pro-
cessors.45 Subsequent testing has shown that, as well as being
faster for a fixed total population size and number of
generations, the sub-population algorithm tends to find the
global minimum more quickly and more reliably than the
other algorithms, provided that the sub-populations are not too
small.51

A sequential multi-population approach (sometimes known
as a “micro-GA”) has also been applied to cluster opti-
misation.56,60 In this method, a population is evolved over
a certain number of generations (“epochs”), or until the
population converges on a single structure. At the end of each
epoch, an anihilation (“mass extinction”) operator removes all
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or most of the individuals, though high fitness structures from
previous epochs may later be seeded back into the population
via a memory operator.

5.3 Hybrid genetic algorithms

In future, it is probable that combining GAs with other search
techniques will enable one to combine the best features of
stochastic, deterministic and heuristic search methods,
involving global as well as local searching. The development
of problem-specific, rather than generic search algorithms may
also be desireable. In the cluster field, Zacharias et al. have
developed a combined SA/GA approach for optimising the
structures of silicon clusters (SA = simulated annealing).106

They report that, for this application, the SA/GA method
outperformed individual SA or GA by an order of magnitude
(in terms of the CPU time required for convergence).

5.4 Combining ab initio and empirical potentials

Hartke has introduced the concept of using an empirical
potential to guide an ab initio calculation towards the GM on
the ab initio, rather than the empirical hypersurface, without
having to perform a large number of costly ab inito calcu-
lations.35,107 His method involves on-the-fly reparameterisation
of the empirical potential to a limited number of ab initio
calculations, within a GA framework, and has proved success-
ful in the geometry optimisation of small silicon 107 and water
clusters.108 With the advent of faster computers, this technique
promises to open up the possibility of global optimisation
of moderately sized clusters at high levels of computational
sophistication.

5.5 Related techniques

Future developments may include the application of self-
optimising GAs 15 and Genetic Programming,109 where the
functional form, as well as the parameter values, defining a
cluster potential energy function can be determined in an
evolutionary fashion, in order to fit experimental or ab initio
calculated data. In addition to GAs, recent years have witnessed
the development of a large number of computational algo-
rithms based on natural evolution, as well as methods based on
Artificial Intelligence (such as Artificial Neural Networks,
Expert Systems and Fuzzy or Soft Computing).18,20 Many of
these methods, together with other computational techniques
based on nature,110 have already been applied to a number of
chemical problems and it is likely that, before long, they will
also find application in geometry optimisation or some other
aspect of cluster science.

6 Concluding remarks
The genetic algorithm is a powerful global optimisation
technique, which (together with other, related evolutionary
methods) is currently being applied to many problems in the
physical and biological sciences. In this Perspective, as well
as discussing generic features of GAs and their implemen-
tation, I have shown how GAs have been developed to search
for low energy isomers for a variety of cluster types. There are a
number of search methods which have been applied to global
optimisation problems, including simulated annealing and
basin hopping.9,10 It has not been my intention to present a
critical comparison of these methods, as it is known that some
methods work better than others for specific applications and
much depends on the degree to which any given search method
has been optimised for a particular problem. Instead, I have
aimed to introduce readers to what may be, for them, a new
class of optimisation methods which may be of application in
their own research.

The importance of GAs (and other reliable search methods)
lies not just in their ability to find global minima and low-
lying metastable isomers (note that the use of a GA to find
transition states and to map out reaction pathways has also
been reported 111) but also because they enable us to test the
suitability of a particular potential energy function for simula-
ting a given class of clusters. Of course, the best that a search
method can do is to find the global minimum for the potential
energy function being tested. If this function is unphysical, then
the search method will find a global minimum which is not
realistic. As has been alluded to above, however, reliable global
optimisation methods (such as the GA) can also facilitate the
reparameterisation of potential energy functions by fitting to
electronic structure calculations on benchmark structures. The
GA can also aid in the use of empirical potentials to guide more
sophisticated electronic structure methods towards relevant
regions of conformation space.

The current state of the art concerning global cluster
geometry optimisation using genetic algorithms is that for
most potential energy functions the GM can generally be found
reliably, in a reasonable length of time (minutes or hours,
rather than days), for homonuclear atomic clusters with of the
order of 100–200 atoms. For nanoalloy clusters, because of the
occurrence of permutational (homotops) as well as geometric
isomers, the size range of confidence is reduced somewhat to
around 100. The situation is similar with molecular clusters,
where in addition to the molecular positions, their orientation
and (for flexible molecules) internal degrees of freedom must
be simultaneously optimised.112 It is very likely, however, that
the future will see important developments, both in hardware
and in genetic algorithm design, which will enable the study of
ever-larger clusters, at increasing levels of sophistication.

Acknowledgements

I would like particularly to thank Dr Christopher Roberts,
Thomas Mortimer-Jones, Mark Bailey, Sarah Darby and
Claire Massen who carried out the work reported here. I also
wish to thank Dr Lesley Lloyd, Dr Nicholas Wilson and
Freddy Fernandes-Guimaraes who have also been involved in
our work on GAs for cluster optimisation and to acknowledge
collaborations in this field with Professor Jadson Belchior (Belo
Horizonte, Brazil), Dr Alvaro Posada Amarillas (Hermosillo,
Mexico), Dr Fred Manby (Bristol) and Dr Said Salhi
(Birmingham).

I wish to acknowledge Professor Kenneth Harris and his
group for many useful discussions on GAs and for a long
and fruitful collaboration in their application to solving
structures from powder diffraction data. I thank Professors
Peter Edwards, Bernd Hartke, Julius Jellinek and Richard
Palmer for helpful discussions on GAs and/or clusters and Dr
Hugh Cartwright for introducing me to GAs, through his very
readable Oxford Chemistry Primer “Applications of Artificial
Intelligence in Chemistry”. I am indebted to Professors Mike
Mingos and John Murrell for introducing me to the topics of
cluster chemistry and many-body potential energy functions,
respectively.

Finally, I am grateful to the EPSRC, The Leverhulme Trust,
The Royal Society and The University of Birmingham for
funding this research.

References
1 R. L. Johnston, Atomic and Molecular Clusters, Taylor and Francis,

London, 2002.
2 Clusters of Atoms and Molecules, ed. H. Haberland, Springer-

Verlag, Berlin, 1994.
3 B. V. Reddy, S. N. Khanna and B. I. Dunlap, Phys. Rev. Lett., 1993,

70, 3323.
4 M. Moseler, H. Häkkinen, R. N. Barnett and U. Landman, Phys.

Rev. Lett., 2001, 86, 2545.

4205D a l t o n  T r a n s . , 2 0 0 3 ,  4 1 9 3 – 4 2 0 7



5 J. Jortner, Z. Phys. D, 1992, 24, 247.
6 R. L. Johnston, Philos. Trans. R. Soc. London, Ser. A, 1998, 356,

211.
7 Theory of Atomic and Molecular Clusters, ed. J. Jellinek, Springer,

Berlin, 1999.
8 S. Erkoç, Phys. Rep., 1997, 278, 80.
9 J. P. K. Doye, in Global Optimization Selected Case Studies,

ed. J. D. Pintér, Kluwer, Dordrecht, in press.
10 D. J. Wales, Energy Landscapes, Cambridge University Press,

Cambridge, to be published, 2004.
11 B. Hartke, J. Comput. Chem., 1999, 20, 1752.
12 F. Baletto, C. Mottet and R. Ferrando, Phys. Rev. B, 2001, 63, 155

408.
13 J. P. K. Doye and D. J. Wales, J. Chem. Soc., Faraday Trans., 1997,

93, 4233.
14 J. Holland, Adaptation in Natural and Artificial Systems, University

of Michigan Press, Ann Arbor, MI, 1975.
15 D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, MA, 1989.
16 M. Mitchell, An Introduction to Genetic Algorithms, MIT Press,

Cambridge, MA, 1998.
17 H. M. Cartwright, in Applications of Evolutionary Computing in

Chemistry, ed. R. L. Johnston, Struct. Bonding (Berlin), in press.
18 H. M. Cartwright, Applications of Artificial Intelligence in

Chemistry, Oxford University Press, Oxford, 1993.
19 Evolutionary Algorithms in Molecular Design, ed. D. E. Clark,

Wiley-VCH, Weinheim, 2000.
20 Soft Computing Approaches in Chemistry: Studies in Fuzziness and

Soft Computing, ed. H. M. Cartwright and L. M. Sztandera,
Springer-Verlag, Heidelberg, 2003, vol. 120.

21 K. D. M. Harris and R. L. Johnston, Chem. Soc. Rev., in
preparation.

22 Applications of Evolutionary Computing in Chemistry,
ed. R. L. Johnston, Struct. Bonding (Berlin), in press.

23 J. T. Pedersen, in Evolutionary Algorithms in Molecular Design, ed.
D. E. Clark, Wiley-VCH, Weinheim, 2000, ch. 11, p. 223.

24 R. Unger, in Applications of Evolutionary Computing in Chemistry,
ed. R. L. Johnston, Struct. Bonding (Berlin), in press.

25 V. J. Gillet, in Soft Computing Approaches in Chemistry: Studies
in Fuzziness and Soft Computing, ed. H. M. Cartwright and
L. M. Sztandera, Springer-Verlag, Heidelberg, 2003, vol. 120, p. 1.

26 K. D. M. Harris, R. L. Johnston and B. M. Kariuki, in Evolutionary
Algorithms in Molecular Design, ed. D. E. Clark, Wiley-VCH,
Weinheim, 2000, ch. 9, p. 159.

27 K. D. M. Harris, R. L. Johnston, E. Y. Cheung, G. W. Turner,
S. Habershon, D. Albesa-Jové, E. Tedesco and B. M. Kariuki,
CrystEngComm, 2002, 4, 356.

28 T. S. Bush, C. R. A. Catlow and P. D. Battle, J. Mater. Chem., 1995,
5, 1269.

29 S. M. Woodley, P. D. Battle, J. D. Gale and C. R. A. Catlow, Phys.
Chem. Chem. Phys., 1999, 1, 2535.

30 S. M. Woodley, in Applications of Evolutionary Computing in
Chemistry, ed. R. L. Johnston, Struct. Bonding (Berlin), in press, and
references therein.

31 B. C. Sanctuary, in Evolutionary Algorithms in Molecular Design,
ed. D. E. Clark, Wiley-VCH, Weinheim, 2000, ch. 10, p. 195.

32 D. E. Clark, Evolutionary Algorithms in Computer-aided Molecular
Design, URL http://panizzi.shef.ac.uk/cisrg/links/ea_bib.html.

33 B. Hartke, J. Phys. Chem., 1993, 97, 9973.
34 Y. Xiao and D. E. Williams, Chem. Phys. Lett., 1993, 215, 17.
35 B. Hartke, Chem. Phys. Lett., 1996, 258, 144.
36 B. Hartke, Phys. Chem. Chem. Phys., 2003, 5, 275.
37 B. Hartke, H.-J. Flad and M. Dolg, Phys. Chem. Chem. Phys., 2001,

3, 5121.
38 Y. Zeiri, Phys. Rev. E, 1995, 51, 2769.
39 D. M. Deaven and K. M. Ho, Phys. Rev. Lett., 1995, 75, 288.
40 J. P. K. Doye and D. J. Wales, J. Phys. Chem. A., 1997, 101, 5111.
41 Z. Li and H. A. Scheraga, J. Mol. Struct. (THEOCHEM), 1988,

179, 333.
42 D. J. Wales and H. A. Scheraga, Science, 1999, 285, 1368.
43 A. Tuson and D. E. Clark, in Evolutionary Algorithms in Molecular

Design, ed. D. E. Clark, Wiley-VCH, Weinheim, 2000, p. 241.
44 D. M. Deaven, N. Tit, J. R. Morris and K. M. Ho, Chem. Phys.

Lett., 1996, 256, 195.
45 R. L. Johnston and C. Roberts, in Soft Computing Approaches

in Chemistry: Studies in Fuzziness and Soft Computing,
ed. H. Cartwright and L. Sztandera, Springer-Verlag, Heidelberg,
2003, vol. 120, p. 161.

46 B. Hartke, in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001, ed. L. Spector,
E. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen,

M. Dorigo, S. Pezeshk, M. Garzon and E. Burke, Morgan
Kaufmann, San Francisco, 2001, p. 1284.

47 B. Hartke, in Global Optimization Selected Case Studies,
ed. J. D. Pintér, Kluwer, Dordrecht, in press.

48 B. Hartke, in Applications of Evolutionary Computing in Chemistry,
ed. R. L. Johnston, Struct. Bonding (Berlin), in press.

49 R. L. Johnston and C. Roberts, Cluster Geometry Optimization
Genetic Algorithm Program, University of Birmingham, 1999.

50 R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, SIAM J. Sci. Comput.,
1995, 16, 1190.

51 C. Roberts, Genetic Algorithms for Cluster Optimization, PhD
Thesis, University of Birmingham, 2001.

52 C. Roberts, R. L. Johnston and N. T. Wilson, Theor. Chem. Acc.,
2000, 104, 123.

53 F. R. Manby, R. L. Johnston and C. Roberts, MATCH, 1998, 38,
111.

54 R. L. Johnston, T. V. Mortimer-Jones, C. Roberts, S. Darby
and F. R. Manby, in Applications of Evolutionary Computation,
ed. S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf and
G. R. Raidl, Lect. Notes Comput. Sci., 2002, 2279, 92.

55 C. Roberts and R. L. Johnston, Phys. Chem. Chem. Phys., 2001,
3, 5024.

56 F. F. Guimarães, J. C. Belchior, R. L. Johnston and C. Roberts,
J. Chem. Phys., 2002, 116, 8327.

57 L. D. Lloyd, R. L. Johnston, C. Roberts and T. V. Mortimer-Jones,
Chem. Phys. Chem., 2002, 3, 408.

58 A. Posada Amarillas, M. F. Ortíz, C. Roberts, T. V. Mortimer-Jones
and R. L. Johnston, in preparation.

59 S. Darby, T. V. Mortimer-Jones, R. L. Johnston and C. Roberts,
J. Chem. Phys., 2002, 116, 1536.

60 R. A. Lordeiro, F. F. Guimarães, J. C. Belchior and R. L. Johnston,
Int. J. Quantum Chem., 2003, 25, 41.

61 M. S. Bailey, N. T. Wilson, C. Roberts and R. L. Johnston, Eur.
Phys. J. D, in press.

62 C. Massen, T. V. Mortimer-Jones and R. L. Johnston, J. Chem. Soc.,
Dalton Trans., 2002, 4375.

63 L. D. Lloyd, R. L. Johnston and S. Salhi, in preparation.
64 R. L. Johnston and N. T. Wilson, Birmingham Cluster Web;

URL: http://www.tc.bham.ac.uk/bcweb.
65 D. J. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges,

F. Y. Naumkin and F. Calvo, The Cambridge Cluster Database,
URL: http://www-wales.ch.cam.ac.uk/CCD.html.

66 K. D. M. Harris, R. L. Johnston and B. M. Kariuki, Acta
Crystallogr., Sect. A, 1998, 54, 632.

67 S. Habershon, K. D. M. Harris, R. L. Johnston, G. W. Turner and
J. M. Johnston, Chem. Phys. Lett., 2002, 353, 185.

68 T. M. Köhler, H.-P. Gail and E. Sedlmayr, Astron. Astrophys., 1997,
320, 553.

69 G. V. Lewis and C. R. A. Catlow, J. Phys. C: Solid State Phys., 1985,
18, 1149.

70 P. J. Ziemann and A. W. Castleman Jr., J. Chem. Phys., 1991, 94, 718.
71 R. L. Whetten, Acc. Chem. Res., 1993, 26, 49.
72 E. de la Puente, A. Aguado, A. Ayuela and J. M. López, Phys. Rev.

B, 1997, 56, 7607.
73 M.-J. Malliavin and C. Coudray, J. Chem. Phys., 1997, 106, 2323.
74 J. M. Recio, R. Pander, A. Ayuela and A. B. Kunz, J. Chem. Phys.,

1993, 98, 4783.
75 M. Wilson, J. Phys. Chem. B, 1997, 101, 4917.
76 Ch. Chang, A. B. C. Patzer, E. Sedlmayr, T. Steinke and D. Sülze,

Chem. Phys. Lett., 2001, 350, 399.
77 W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders,

M. Y. Chou and M. L. Cohen, Phys. Rev. Lett., 1984, 52, 2141.
78 T. P. Martin, Phys. Rep., 1996, 273, 199.
79 J. Jellinek and E. B. Krissinel, in Theory of Atomic and Molecular

Clusters, ed. J. Jellinek, Springer, Berlin, 1999, p. 277, and references
therein.

80 S. Giorgio, H. Graoui, C. Chapan and C. R. Henry, in
Metal Clusters in Chemistry, ed. P. Braunstein, L. A. Oro and
P. R. Raithby, Wiley-VCH, Weinheim, 1999, vol. 2, p. 1194.

81 B. Pauwels, G. Van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren,
L. Theil Kuhn, W. Bouwen and P. Lievens, Phys. Rev. B, 2001, 63,
165 406.

82 A. V. Ruban, H. L. Skriver and J. K. Norskov, Phys. Rev. B, 1999, 59,
15 990.

83 G. Bozzolo, J. Ferrante, R. D. Noebe, B. Good, F. S. Honecy and
P. Abel, Comput. Mater. Sci., 1999, 15, 169.

84 A. M. Molenbroek, S. Haukka and B. S. Clausen, J. Phys. Chem. B,
1998, 102, 10680.

85 G. Schmid, in Metal Clusters in Chemistry, ed. P. Braunstein,
L. A. Oro and P. R. Raithby, Wiley-VCH, Weinheim, 1999, vol. 3,
p. 1325.

4206 D a l t o n  T r a n s . , 2 0 0 3 ,  4 1 9 3 – 4 2 0 7



86 M. P. Andrews and S. C. O’Brien, J. Phys. Chem., 1992, 96, 8233.
87 M. J. López, P. A. Marcos and J. A. Alonso, J. Chem. Phys., 1996,

104, 1056.
88 A. Fortunelli and A. M. Velasco, J. Mol. Struct. (THEOCHEM),

1999, 487, 251.
89 M. Calleja, C. Rey, M. M. G. Alemany, L. J. Gallego, P. Ordejón,

D. Sánchez-Portal, E. Artacho and J. M. Soler, Phys. Rev. B, 1999,
60, 2020.

90 S. Bromley, G. Sankar, C. R. A. Catlow, T. Maschmeyer,
B. F. G. Johnson and J. M. Thomas, Chem. Phys. Lett., 2001, 340,
524.

91 P. Nava, M. Sierka and R. Ahlrichs, Phys. Chem. Chem. Phys., 2003,
5, 3372.

92 J. Wang, G. Wang, X. Chen, W. Lu and J. Zhao, Phys. Rev. B, 2002,
66, 14419.

93 F. Cleri and V. Rosato, Phys. Rev. B, 1993, 48, 22.
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