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a b s t r a c t

The increasing availability of pen-based tablets, and pen-based interfaces opened the avenue for
computer graphics applications that can utilize sketch recognition technologies for natural interaction.
This has led to an increasing interest in sketch recognition algorithms within the computer graphics
community. However, a key problem getting in the way of building accurate sketch recognizers has been
the necessity of creating large amounts of annotated training data. Several authors have attempted to
address this issue by creating synthetic data, or by building easy-to-use annotation tools. In this paper,
we take a different approach, and demonstrate that the active learning technology can be used to reduce
the amount of manual annotation required to achieve a target recognition accuracy. In particular, we
show that by annotating few, but carefully selected examples, we can surpass accuracies achievable with
equal number of arbitrarily selected examples. This work is the first comprehensive study on the use of
active learning for sketch recognition. We present results of extensive analyses and show that the utility
of active learning depends on a number of practical factors that require careful consideration. These
factors include the choices of informativeness measures, batch selection strategies, seed size, and
domain-specific factors such as feature representation and the choice of database. Our results imply that
the Margin based informativeness measure consistently outperforms other measures. We also show that
active learning brings definitive advantages in challenging databases when accompanied with powerful
feature representations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sketch recognition is an enabling technology that lies at the
foundation of many computer graphics applications, including
educational applications [1,2], graphics applications for design
[3–5], shape retrieval [6], and animation [7]. A widely acknowl-
edged problem in building accurate sketch recognition systems is
the labor-intensive nature of obtaining large amounts of labeled
data [8]. In this paper, we demonstrate the utility of the active
learning technology in reducing the amount of manual annotation
required to achieve a target recognition accuracy. The results and
the approach presented in this paper provide valuable insights to
the practitioners of sketch recognition as well as the broader
community of computer graphics practitioners who rely on
machine learning in their applications.

The sketch recognition community has attempted to address
the data labeling problem by synthesizing artificial training

examples from few labeled examples [8], by building custom
interfaces for labeling data [9–12] or by applying automated
labeling supported with a partially trained recognizer [13]. Each
case requires human annotators to label data without being
particularly selective about which samples are labeled. We show
that, using active learning, it is possible to prioritize the labeling
process in a way that allows one to build more accurate classifiers
with fewer labeled instances, hence reduce the annotation effort.

Active learning is a machine learning strategy that aims to
reduce the labeling effort by selecting the most informative
samples from a pool of unlabeled data. The basic premise of active
learning is that some training examples carry more information
than others. Hence, if we can identify them among the unlabeled
examples, and have them labeled by a human annotator, we can
potentially converge to higher accuracies with substantially less
human annotation effort.

Active learning process is initialized by training a classifier with
a few labeled samples, the so-called “seed set”. The learning
process continues in rounds until a target validation accuracy is
achieved or until we run out of resources (e.g. time or computa-
tional resources). In each round, we train a classifier with the
available labeled data, and use it to classify the unlabeled exam-
ples. We then use the scores assigned to the unlabeled samples to
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select the subset of most useful samples for subsequent labeling.
The round ends by adding the newly labeled data to the training
set and re-training the model.

Despite its theoretical appeal, recent empirical results show
that active learning does not always yield the expected benefits in
practical real world problem settings [14]. For example, Schein and
Ungar report inconsistent and negative results for active learning
[15]. Likewise, Gasperin reports that none of the experimented
active learning methods reached a remarkable performance
although they converge on different sets of training examples
from each other [16]. Guo and Schuurmans also point out that
active learning methods perform poorly with respect to random
learning, which is the strategy of selecting samples randomly from
a pool of unlabeled examples [17]. Therefore, there is a practical
and real need for analyzing the empirical performance of active
learning in various settings in order to understand if active
learning is effective at all, and if so under which conditions. In
this paper, we present such an analysis for the sketch recognition
domain to identify the set of practical issues one should be aware
of when using active learning, and investigate how these issues
affect active learning performance.

Specifically, we investigate the performance of active learning
under combinations of a large variety of informativeness measures
and batch selection strategies, as well as factors such as feature
representation, database and seed set size for sketch recognition. Our
analysis results constitute a detailed and practical guide for active
learning users for sketch recognition and provide valuable insights for
machine learning practitioners in the computer graphics community.
Our main contributions can be summarized as follows:

� We present a set of carefully designed experiments and a
battery of accompanying statistical tests, which will serve as
a roadmap to follow for practitioners of active learning who
wish to perform factor analysis.

� We present the first extensive empirical analysis on active
learning for sketch recognition, and provide a detailed discus-
sion of the analysis results.

� We determine the best performing and reliable informative-
ness measure for sketch recognition.

� We show that starting with a large seed set yields better active
learning performance for the single classifier approach.

� We show that the use of active learning brings definitive
advantages in challenging databases when accompanied with
powerful feature representations.

This paper is organized as follows: First, we introduce informa-
tiveness measures and batch selection strategies that are included
in our analysis. In Section 3, we first describe the databases and

the feature representations used in our experiments, then describe
the details of our experimental design. In Section 4, we describe
the deficiency measure employed in our analysis and then present
the analysis methodology. We present the analysis results with a
discussion in Section 5. Finally, we conclude with related work and
a summary of future research directions.

2. Active learning methods

There are two essential steps in active learning: measuring
informativeness of unlabeled samples and selecting batches of
collectively informative samples which are mutually non-
redundant. In this section, we describe informativeness measures
and batch selection strategies that are used in our experiments.

2.1. Informativeness measures

There are two main approaches for measuring informativeness:
the single classifier approach and the query by committee (QBC)
approach. Measures of informativeness are based on the rationale
that samples that a classifier cannot confidently classify, or a group
of classifiers disagree on can potentially supply more information
when labeled. We list the informativeness measures included in
our experiments in Table 1. Four of the measures follow the single
classifier approach, in which decisions are based on a single
classifier's prediction on a sample. The other four measures follow
the query by committee (QBC) approach, in which the disagree-
ment of the committee members on the label of a sample is used
to derive informativeness.

2.2. Batch selection strategies

Active learning requires classifiers to be retrained as more
labeled data gets added to the training set. Since training is costly,
newly labeled examples are usually added in batches, rather than
one by one. Although adding samples in batches reduces compu-
tational requirements, it bears the risk of adding samples which
carry mutually redundant information. In particular, two samples
which are extremely informative when taken individually may
actually contain similar and redundant information, so including
them both in the training data may not yield extra advantage over
having just one or the other. Hence, we should avoid sets contain-
ing mutually redundant samples. Several batch selection strategies
have been proposed in the literature to avoid this problem, and we
included four of them in our experiments.

Our empirical analysis includes the following batch selection
strategies: Default selection, Global-FV strategy, Global-PE strategy

Table 1
Brief description of the informativeness measures used in our analysis.

Informativeness measures A sample is considered informative when:

Single classifer
approach

Entropy based Selectiona [18,19] The entropy is high on class probabilities of a sample.
Least Confident based Selection
[18,20]

The most likely class probability of a sample has a low value.

Margin based Selectiona [18] The difference of the most and the second most likely class probabilities of a sample has a low value.
Körner–Wrobel Selectiona [21] The Körner–Wrobel value computed for the sample is low. It is a combination of Least Confident and

Margin based selection strategies.

Query by committee
approach

Kullback Leibler Divergence based
Selection [21,22]

KL-Divergence among the committee on a sample is high.

Jensen Shannon Divergence based
Selection [21,23]

JS-Divergence among the committee on a sample is high.

Vote Entropy based Selection [21,24] The entropy of the class label votes of the committee is high.
Weighted Vote Entropy based
Selection [21]

The weighted entropy of the class label votes of the committee is high.

a The method has implementation also for the query by committee approach, in the literature, but we only include the single classifier version.

E. Yanık, T.M. Sezgin / Computers & Graphics 52 (2015) 93–10594



and Combined strategy. N samples with top informativeness
scores are selected in the Default batch selection strategy, where
N is the batch size. Global-FV and Global-PE are based on
clustering, similar to the method described by Shen et al. [25].
We select N samples with top informativeness scores, divide them
into K clusters, and add the cluster centers to the batch, where K is
the batch size. We set N to R*NumberOfClasses, where R is fixed to
a small number such as 3 in order to avoid samples with very low
informativeness score. Global-FV uses feature vectors for cluster-
ing whereas Global-PE uses probability estimates. Combined
strategy is implemented as described in Brinker's paper [26] such
that equally weighted informativeness and diversity (dissimilarity
from samples currently in batch) scores are added to compute a
final score for an unlabeled sample.

3. Experimental design

We describe databases and feature representations used in our
experiments, and explain the structure of our experimental design
in this section.

3.1. Databases and feature representations

We conducted our experiments on two databases containing
hand drawn sketches of domain symbols. The first database is the
Course of Action Diagrams (COAD) database [27], and the other
database is the publicly available NicIcon database [28]. The COAD
database contains a total of 620 samples from 20 different symbol
classes, whereas the NicIcon database contains a total of 22,958
samples from 14 different classes. We present example sketches
from each database for each class in Figs. 1 and 2.

The NicIcon database consists of sketches which were collected
in 3 different sizes (small, medium, large) from 32 participants
whereas the COAD database is collected from 8 participants with-
out any specific size requirements. Therefore the NicIcon database
contains more variation in style compared to the COAD database.
In addition, the NicIcon database contains more noise compared to
the COAD database probably due to fatigue of the participants in
the data collection process. Moreover, the empirical results in the
literature suggest that much higher accuracies can be achieved on
the COAD database compared to the NicIcon database for various
choices of features [27,29]. Hence, the NicIcon database is con-
sidered to be a more challenging database. Including these two
datasets in our experiments allows us to investigate the perfor-
mance of active learning on a harder database in comparison to an
easier one in terms of style variation and noise.

For feature extraction, we used two image-based methods:
Zernike Moments [30] and IDM [31]. Note that IDM features are
considered to be more effective compared to Zernike Moments as
empirical results in the literature suggests [29,31].

In active learning, seed size refers to the number of labeled
examples used to bootstrap the learning process. In order to
measure the effect of seed size on the active learning performance,

we experimented with two seed size values: 1 labeled sample per
class (small seed size), 4 labeled samples per class (large seed size).
For each of the seed size choices, and each database (NicIcon/
COAD), we created 10 randomized starting sets. This results in a
total of 40 randomized starting sets as shown in Fig. 3. The
randomized starting sets serve as unique initial starting condi-
tions, which we try to improve upon using active learners
equipped with various learning strategies.

3.2. Trials

A trial refers to the end-to-end process of active learning (or
random learning) on a randomized starting set, throughout which
we measure the classification accuracy of the model for each
round. We initialize each trial by training the classifier or the
committee members with the seed set. Then, the process con-
tinues by selecting and adding 10 samples to the training set and
re-training the model at each round. Each trial continues until all
the unlabeled data in the training pool is labeled. Since the NicIcon
database has a fairly large training pool, we limited the number of
rounds for this database to 120. This limit is sufficient for the test
accuracy of the classifier to saturate.

We conducted trials for all combinations of 2 feature repre-
sentations, 4 batch selection strategies and 8 informativeness
measures for each randomized starting set. In addition, we carried
out trials for random selection strategy for each choice of feature
representations for each randomized starting set. Therefore, we
conducted a total of 66 trials for each randomized starting set as
demonstrated in Fig. 4. In total, we conducted 2640 trials.

3.3. Classifier design

We employed probabilistic SVMs with RBF kernels both for the
single classifier and the query by committee (QBC) approaches. We
used 4 classifiers in the committee for QBC approach. We per-
formed grid search and 5-fold cross validation to tune the para-
meters of the SVM during re-training the model.

4. Analysis

4.1. Deficiency measure

In order to assess the relative performance of various active
learning methods, we used the deficiency measure described by
Baram et al. [32]. The deficiency of method A with respect to B,
deficiency(A,B), is a standard measure of the relative performance
of algorithms throughout the active learning process. Fig. 5 demon-
strates computation of the deficiency value given the maximum
accuracy line, and the accuracy curves of two learning methods.

The maximum accuracy line represents the accuracy of the
classifier when it is trained with all the training data in the pool.
An accuracy curve represents the list of accuracies (over the test
set) achieved in each round of the active learning process after the

Fig. 1. Example sketches from each class of COAD database. Fig. 2. Example sketches from each class of NicIcon database.
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classifier is trained with the available labeled data. Let
D¼ deficiencyðA;BÞ be the deficiency of algorithm A computed
with respect to algorithm B. D¼ 1 implies that the methods have a
similar performance. Values less than one imply that method A is
superior, while values greater than one imply that method B has
superior performance.

4.2. Analysis methodology

In order to assess the statistical significance of the differences
observed in the deficiencies obtained from different active learning

setups, we conducted multiway ANOVA tests. Throughout our
analysis, we performed Mauchy's sphericity test to check whether
the variances of the differences between all possible group pairs
subject to ANOVA are equal. In cases where sphericity is violated,
the degrees of freedom have been corrected by the Greenhouse-
Geisser correction. We also performed Levene's test to check the
homogeneity of variances between groups and used transformed
values where appropriate. Bonferroni corrected paired t-tests were
performed as post hoc tests, in order to explore the mean
differences across the levels of the concerned factors.

We conducted 5-way Mixed ANOVA with between group
variables of database and seed size; and within group variables
of feature representation, batch selection strategy and

Select Database
2 choices:
- Nicicon
- COAD

A Randomized Starting Set

80 %

20 %

Randomly Select Seeds
2 choices:
- 1 seed per class
- 4 seeds per class

Shuffle and Split
Data

Training
Data

Training
Pool SeedsTest

Data

Fig. 3. The flow chart describing the process of creating a randomized starting set for a set of parameters (i.e. the choices of database and seed set size). 2 choices of database,
2 choices of seed set size and 10 shuffles of the selected dataset yield 40 randomized starting sets.

Random 
Selection

Zernike 
Moments

IDM

Feature 
Representations

Default 
Selection

Global-FV

Global-PE

Combined 
Strategy

Batch Selection 
Strategies

Informativeness 
Measures

Entropy

Least Confident

Margin

Körner-Wrobel

KL-Divergence

JS-Divergence

Vote Entropy

Weighted
Vote Entropy

2       x  (      4        x        8         +    1     ) = 66
Fig. 4. For each randomized starting set, we train active learners with different feature representation, batch selection, and informativeness settings. In addition, we also
train a random learner for each randomized starting set using each feature representation.

Training Set Size

Maximum
 Accuracy Line 

Accuracy Curve
for method B

deficiency(A,B) =
α

α+β

Accuracy Curve
for method A

α
β

Fig. 5. The deficiency is defined as the ratio of the area between the accuracy curve
of method A and the maximum accuracy line; and the area between the accuracy
curve of method B and the maximum accuracy line.

Table 2
The results of 5-way Mixed ANOVA analysis are presented for each factor and the
referred interactions.

Factors (or Interactions) F-Score Sig.

Informativeness measure (I) F(7,252)¼515.287 p¼0.000
Batch selection strategy (BS) F(2.290,105.131)¼31.565 p¼0.000
Feature representation (FR) F(1,36)¼38.964 p¼0.000
Seed set size (SS) F(1,36)¼8.103 p¼0.088
Database (DB) F(1,36)¼150.876 p¼0.000
BS n I F(21,756)¼12.087 p¼0.000
SS n I F(7,252)¼13.060 p¼0.000
DB n I F(7,252)¼180.931 p¼0.000
DB n FR n I F(7,252)¼69.861 p¼0.000
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informativeness measure. The deficiency value was taken as
dependent variable, which was computed for each active learner
with respect to the random learner (values less than 1 indicate the
active learning outperforming the random baseline).

To further observe the effect of seed size on the performance of
active learners, we conducted a 4-way Mixed ANOVA. For this
design, the between group variable is database; and within group
variables are feature representation, batch selection strategy and
informativeness measure. As the dependent variable, we com-
puted deficiency values comparing active learners initialized with
small and large seed sets. Hence, we directly compare these two

cases rather than taking the performance with respect to random
selection as a reference point. Note that the deficiency values were
computed for accuracies obtained past the large seed set size limit.
In other words, accuracies obtained with fewer samples than the
large seed set size limit are not considered in order to have a fair
comparison among two cases.

5. Results

In this section, we present the results of our factor analysis
along with detailed discussion addressing issues such as the
choice of informativeness measure, the choice of batch selection
strategy, the effect of seed size and strategies for utilizing prior
knowledge in active learning.

Throughout this section, we frequently resort to estimated
marginal mean graphs for reporting test results. In an effort to
assist the reader, we would like to present a practical guideline for
interpreting these graphs:

� If confidence intervals of two marginal means do not intersect,
this implies a statistically significant difference. Also, note that all
confidence intervals in our analysis are 95% confidence intervals.

� If the performance difference between two methods is statis-
tically significant, then the superior method is the one with
smaller deficiency. Note that all performances (in 5-way
ANOVA) are measured with respect to the performance of
random selection since deficiency values are computed against
the performance of random selection.

� A method performs confidently better than random selection if
upper bound of its confidence interval is less than 1.

F-scores and p-values for 5-way Mixed ANOVA analysis are
presented in Table 2. We will refer to this table throughout Section 5.

5.1. Choice of the informativeness measure

For a particular learning task in a given domain, selecting an
informativeness measure is the first step of building an active
learner. Although this is the most crucial step, there are no
guidelines and general rules for selecting the “right” informative-
ness measure. Hence, when it comes to selecting an informative-
ness measure, empirical results obtained for a variety of feature
extraction methods on representative databases serve as

0.5 1 1.5 2 2.5 3 3.5

  I=WVE
  I=VE
  I=JS−Div 
  I=KL−Div 
  I=K−W
  I=Margin 
  I=LC
  I=Entropy

Deficiency

Fig. 6. The estimated marginal means for the informativeness measure factor.
Margin-based selection is the only informativeness measure performing signifi-
cantly better than random selection.

1 2 3 4
  DB=NicIcon I=WVE  DB=COAD    I=WVE  DB=NicIcon I=VE  DB=COAD    I=VE  DB=NicIcon I=JS−Div   DB=COAD    I=JS−Div   DB=NicIcon I=KL−Div   DB=COAD    I=KL−Div   DB=NicIcon I=K−W  DB=COAD    I=K−W  DB=NicIcon I=Margin   DB=COAD    I=Margin   DB=NicIcon I=LC  DB=COAD    I=LC  DB=NicIcon I=Entropy  DB=COAD    I=Entropy

Deficiency

Fig. 7. The estimated marginal means for the 2-way interaction of informativeness
measure and database factors. The significant advantage of Margin-based selection
over random selection is consistent on two databases.

Table 3
Bonferroni corrected paired t-test results for batch selection strategies. A mean difference less than zero indicates that the method performs significantly better (has a
confidently smaller deficiency value) than the reference method. All batch selection strategies perform significantly better than Default selection whereas Global-FV strategy
performs the best among all.
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indispensable sources of information. In this subsection, we will
present our analysis results on the informativeness measure. Our
analysis shows that, for our domain of interest, Margin-based
informativeness measure consistently outperforms other mea-
sures by a large margin, irrespective of factors such as the choice
of database and the feature extraction method.

Informativeness factor has a significant effect on active learning
performance against random learning as shown in Table 2. Esti-
mated marginal means for informativeness measures are pre-
sented in Fig. 6. Note that only Margin-based informativeness
measure has an upper bound (on its confidence interval) less than
one. Therefore, only Margin-based informativeness measure can
perform confidently better than random selection. Also note that
divergence based methods perform significantly worse than all the
other informativeness measures.

As shown in Fig. 7, the superior performance of Margin-based
informativeness measure is consistent across databases as well. In
particular, it outperforms random selection in both databases.
Moreover, observe that there is no significant difference in the
performance of Margin-based informativeness across databases.
Also observe that Körner–Wrobel informativeness measure per-
forms as well as Margin-based informativeness measure on the
COAD database, but it performs significantly worse than random
selection in the NicIcon database. Hence, Margin-based selection
stands out due to its consistency across databases as well as its
superior performance.

5.2. Choice of the batch selection strategy

Due to the re-training penalty inflicted at each round of the
active learning process, users tend to label and add samples to the
training set in batches rather than adding one sample at a time.
However, the naíve approach of grouping the individually most
informative samples may yield batches containing mutually
redundant instances. Therefore, an elaborate batch selection

strategy is crucial for obtaining the desired benefit from active
learning. In this section, we will present a comparison of the basic
batch selection strategies paired with the best performing infor-
mativeness measure (Margin-based selection), along with an
overall comparison of these strategies.

It was shown in Table 2 that the batch selection strategy (BS)
factor significantly affects active learning performance. We further
investigated performances of the batch selection strategies via post
hoc tests as presented in Table 3. As shown in the table, all batch
selection strategies perform significantly better than the Default
batch selection strategy. Also observe that Global-FV performs
significantly better than all other methods. Therefore, we can
conclude that for informativeness measures we considered in our
experiments, Global-FV is the most appropriate batch selection
strategy, whereas Default batch selection is the least desirable.

In the previous section, we reported that Margin-based selec-
tion is the only informativeness measure that can perform sig-
nificantly better than random selection and its performance is
consistent across databases. Hence, we investigated the perfor-
mance of batch selection strategies specifically on Margin-based
informativeness in addition to investigating the overall perfor-
mance of the batch selection strategies. This allows us to observe
how the batch selection strategies behave when coupled with an
effective informativeness measure.

Results presented in Fig. 8 show that although coupling
Margin-based informativeness with Global-FV and Global-PE stra-
tegies tends to yield a better mean performance, this superiority is
not statistically significant compared to coupling with the Default
batch selection strategy. Therefore, using Default batch selection
with Margin-based informativeness yields satisfactory perfor-
mance and also saves computation power, time, and implementa-
tion effort required by sophisticated batch selection strategies.
Thus, we can couple Margin-based informativeness with Default
batch selection strategy (rather than Global-FV or Global-PE) if we
have scarce resources (time and computation power).

Another observation from Fig. 8 is that, the Combined strategy
performs significantly worse than the other batch selection
strategies when coupled with Margin-based selection. Note that
Combined strategy uses a linear combination of the informative-
ness and diversity scores to score an unlabeled sample. In addition,
the Combined strategy weights the informativeness and diversity
scores equally. In this respect, the combined strategy can be
regarded as an extension of the Default batch selection strategy
that takes diversity into account in addition to informativeness.
Hence, incorporating a measure of diversity into the batch selec-
tion measure appears to result in a performance deterioration.
However, it is not clear if this is due to a genuine deficiency on the
part of the diversity metric, or due to the inappropriateness of the
arbitrary equal weighting scheme.

0.7 0.8 0.9 1 1.1

  BS=Global−PE I=Margin
  BS=Combined  I=Margin
  BS=Global−FV I=Margin
  BS=Default   I=Margin

Deficiency

Fig. 8. The estimated marginal means for Margin-based selection over batch
selection strategies. Margin-based selection can have a promising performance
even without a sophisticated batch selection strategy.
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                   I=WVE     SS=LargeSet
                   I=WVE     SS=SmallSet
                   I=VE      SS=LargeSet
                   I=VE      SS=SmallSet
                   I=JS−Div  SS=LargeSet
                   I=JS−Div  SS=SmallSet
                   I=KL−Div  SS=LargeSet
                   I=KL−Div  SS=SmallSet
                   I=K−W     SS=LargeSet
                   I=K−W     SS=SmallSet
                   I=Margin  SS=LargeSet
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                   I=Entropy SS=LargeSet
                   I=Entropy SS=SmallSet

Deficiency

QBC
Approach

Single
Classifier
Approach

Fig. 9. The estimated marginal means for the 2-way interaction of informativeness measure and seed set size factors. All single classifier based methods perform
significantly better when a larger seed set is utilized.
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5.3. Effect of the seed size

There is no feasible way of determining a globally optimal seed
size, and seed size selection is considered to be an open problem
in active learning. In an effort to come up with a seed size
selection guideline, we carried out a detailed analysis investigating
the effect of seed size on the performance of active learning.

It was shown in Table 2 that 2-way interaction of seed size and
informativeness measure factors has a significant effect on the
performance of active learning although the seed size (SS) factor
does not. Further investigation shows that initializing active lear-
ners with larger seed sets yields significantly better results when
coupled with single classifier based informativeness measures (see
Fig. 9). This can be explained by further analysis of mean accuracy
curves, which illustrate that using a large seed size yields a strong
classifier early on, which in turn results in more accurate active
learning decisions earlier in the process. Figs. 10 and 11 demon-
strate that the single classifier based informativeness measures1

make better decisions in earlier iterations and beat random

selection much earlier when initialized with large seed set in
comparison to small seed set. Hence, it is better to have as large
of a seed set as resources allow.

To further investigate the effect of seed size, we conducted 4-
way Mixed ANOVA as described in Section 4.2. Here, our goal is to
check the relationship between the performance of informative-
ness measures and the choice of seed size. Hence, we compared
deficiency values obtained with large and small seed set. This gives
a direct comparison of performance for large seed sets and small
seed sets rather than taking their relative performance with
respect to random selection as a reference point. Therefore, we
check whether improved decisions in sample selection due to
large seed set can amortize the cost of additional labeling required
to have a large seed set. Since the deficiency values in Table 4
represent the direct comparison between the cases utilizing large
and small seed set, we can deduct that active learning yields
higher accuracies with the same amounts of data when initialized
with large seed set in comparison to small seed set.

Table 4 also points out that Margin-based informativeness is
the least sensitive measure to the choice of seed size. In other
words, it is the least affected measure by the choice of seed size.
The upper bound of its confidence interval intersects with the
deficiency value of one. Hence, for Margin-based selection there is
no statistically significant difference across large and small seed
sets although it tends to perform better with large seed set as its
mean value suggests.
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Fig. 10. Mean accuracy curves for single classifier based informativeness measures and random selection for each combination of databases and feature representations
when small seed set is used. Dotted lines indicate when informativeness measure becomes beneficial with respect to random selection. (The numbers in red highlight the
corresponding round numbers for the dotted lines.) (a) COAD-Zernike. (b) COAD-IDM. (c) NicIcon-Zernike. (d) NicIcon-IDM. (e) COAD-Zernike. (f) COAD-IDM. (g) NicIcon-
Zernike. (h) NicIcon-IDM. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

1 We provide plots for each combination of database, seed set size, feature
representation and single classifier based informativeness measures, combined
with the Default batch selection strategy. Since plots are similar for other batch
selection strategies, we omit these plots to save space and avoid clutter. Also, we do
not include all informativeness measures in the same plot in order to have better
visuality.

E. Yanık, T.M. Sezgin / Computers & Graphics 52 (2015) 93–105 99



5.4. Utilizing prior knowledge

The NicIcon database is a more challenging database compared
to the COAD database [27,29] and, the IDM features are considered
to be more effective than Zernike moments [29,31], especially in
more challenging databases. We ran a series of tests to understand
if such prior knowledge on databases, or feature extraction
methods can be used to guide the construction of the active
learning setup. Our tests explored performance changes of active
learners under two way interactions of the database and feature
representation factors. Since only Margin-based informativeness
can outperform random selection, we focus our discussion on
Margin-based selection.

The most important result inferred from our experiments is
that active learning brings definitive advantages in challenging
databases when accompanied with powerful feature representa-
tions. This is depicted in Fig. 12 where the active learning
performance is not significantly affected by the feature represen-
tation on the COAD database, while the performance on the
NicIcon database is significantly higher with the IDM features
compared to Zernike features, again as depicted in Fig. 12. Also, we
observe that active learning proves to be ineffective when Zernike
features are used with the NicIcon database. Hence, we recom-
mend avoiding active learning if the feature representation is
weak or unknown (e.g. a new feature representation scheme with
no prior knowledge on its performance).

Another interpretation of these results suggests that samples
under a strong feature representation are representative and
informative by themselves on simpler databases. Therefore,

random selection may work just as well. Since the COAD database
is less noisy and has smaller style variations compared to the
NicIcon database, its samples are more representative of the whole
database compared to the NicIcon database. Hence, the active
learning performance is almost significantly lower on the COAD
database than the NicIcon database when IDM features are used
(as shown in Fig. 12). In other words, it is harder to beat random
selection on simpler databases when a strong feature representa-
tion is in use.

In conclusion, when the database is too simple and the
feature representation is very strong; or when the database is
too hard to learn and the feature representation is too weak,
active learning may not yield the desired benefits. Thus, relying
on active learning on such cases might be more costly than using
random selection.

6. Discussion

6.1. Actual savings in the annotation effort

We based our statistical analysis on deficiency measure
which is an established measure in the literature. To better
demonstrate the labeling gains made by active learning, we also
provide results demonstrating the number of samples to be
labeled (including the seed set) in order to achieve the highest
possible accuracy that both active learning and random selec-
tion can achieve. Table 5 demonstrates that active learning can
make great savings in the number of samples to be labeled
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Fig. 10. (continued)
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compared to random selection. In addition, active learning can
achieve % 99 accuracy on both databases by only labeling 0.26 of
the training set of the COAD database and 0.012 of the training
set of the NicIcon database.

6.2. Factors effecting active learning performance

Now, we turn our discussion on the factors and the possible
reasons why they might have the effects reported in Section 5. We
will present our reasoning on the effect of seed set size and
utilizing prior knowledge, and then make additional comments on
the other factors.

6.2.1. Effect of the seed size
We showed (in Section 5.3) that initializing active learning with

as large of a seed set as resources allow yields better performance
for single classifier based informativeness measures. Remember
that informativeness values are computed over class probabilities
of the samples which are assigned by the classifier at that moment
(round). If active learning starts with an overly naïve classifier
with an arbitrary decision boundary, the error on the class
probabilities will be high. Therefore, informativeness values will
be unreliable. By contrast, if the initial decision boundary is
representative of the ultimate decision boundary, informativeness

values will be more reliable. Therefore, we recommend to initialize
active learning with large seed set as much as resources allow.

6.2.2. Effect of the database and the feature representation
For our empirical analysis, rather than testing on many arbi-

trarily picked databases, we carefully selected two databases. It is
well known from the empirical results reported in the literature
that the NicIcon database is more challenging database compared
to the COAD database [27,29]. Moreover, the NicIcon database has
more style variation and noise than the COAD database as we
discussed in Section 3.1. We deliberately selected these two
databases in order to examine both ends in terms of database
difficulty. Also, empirical results on various databases suggest that
IDM is a relatively powerful feature representation compared to
Zernike Moments [29,31]. Hence, our analysis covers both ends for
databases as well as feature representations by including these
carefully and deliberately selected databases and feature repre-
sentations. This allows us to investigate whether we can utilize
prior knowledge about the complexity of the database and/or the
strength of the feature representation for active learning.

The results in Section 5.4 demonstrate that when the feature
representation is strong, fewer labeled data is sufficient to achieve
high accuracies. Since each sample will carry more information due
to better representation, any random subset of data tends to contain
more information (see the random selection curves in Figs. 10 and
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Fig. 11. Mean accuracy curves for single classifier based informativeness measures and random selection for each combination of databases and feature representations
when large seed set is used. Dotted lines indicate when informativeness measure becomes beneficial with respect to random selection. (The numbers in red highlight the
corresponding round numbers for the dotted lines.) (a) COAD-Zernike. (b) COAD-IDM. (c) NicIcon-Zernike. (d) NicIcon-IDM. (e) COAD-Zernike. (f) COAD-IDM. (g) NicIcon-
Zernike. (h) NicIcon-IDM. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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11 and compare them for IDM and Zernike Moments). At this point,
random selection might perform as well as active learning if the
discrimination across classes is trivial with strong features. Hence,
as the database gets more challenging, active learning will yield
higher gains. This is demonstrated by smaller deficiency values
(better performance) obtained on the NicIcon database compared to
the COAD database when the IDM features are utilized.

A classifier requires fewer samples to become capable of
making clever decisions in sample selection when the feature

representation is stronger. This is depicted in Figs. 10 and 11
(compare the number of rounds required for active learning curve
to get over random selection curve for IDM vs. Zernike Moments).
The classifier will assume that the rough shape of the ultimate
decision boundary earlier with stronger features since each
sample carries more information (detail) in this case. In addition,
the classifier will assign more accurate class probabilities for
samples since it will check the samples in more detail (with a
strong feature representation). However, as the feature represen-
tation gets weaker, it will take much more samples for active
learning to beat random selection. Therefore, active learning may
not yield desired performance if the feature representation is not
powerful enough for the database.

We suggest being cautious in applying active learning in an
unknown database and/or with a new feature representation (see
Section 5.4). In particular, we recommend practitioners to take steps
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Fig. 11. (continued)
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  DB=NicIcon FR=IDM     I=Margin
  DB=NicIcon FR=Zernike I=Margin
  DB=COAD    FR=IDM     I=Margin
  DB=COAD    FR=Zernike I=Margin

Deficiency

Fig. 12. The estimated marginal means for Margin-based selection over 2-way
interaction of database and feature representation factors. These imply that active
learning has limited success for hard databases if used with a weak feature
representation.

Table 4
For each informativeness measure, estimated marginal mean of the achieved
deficiencies obtained using large seed set over small seed set presented as a result
of the 4-way Mixed ANOVA analysis. Margin-based selection is the least sensitive
to the choice of seed set size.
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to assess the intrinsic difficulty of the database and the representa-
tive power of their feature representation and proceed accordingly.
The representative power of a new feature representation can be
assessed easily by trying it on major databases where the perfor-
mance of the existing feature representations is well documented.
Similarly, the intrinsic difficulty of a database can be assessed by
training classifiers on a small subset of it (which can then be used as
a seed set) using well known feature representations. Prior knowl-
edge in the form of the intrinsic difficulty of the database and the
representational power of the features can then be used to guide
how active learning should be used, and whether it should be used at
all as described in Section 5.4.

It is worth noting that, although we focused on two specific
types of prior knowledge, we believe further research analyzing
other database characteristics (style variation, noise, database size
etc.) as factors will allow us to better utilize the prior knowledge
on active learning.

6.3. A note on the informativeness measure

We demonstrated (in Section 5.2) that we can couple upMargin-
based informativeness with Default batch selection strategy (rather
than Global-FV or Global-PE) if we have scarce resources (e.g. time
and computation power). However, we warn readers to be cautious
as the batch size increases. Since chances of having samples with
mutual information tends to increase as the number of samples in
the batch increases, switching to Global-FV strategy would be safer
than using Default batch selection strategy.

In conclusion, our factor analysis provides better understanding
on the factors affecting active learning performance. Our results
and discussion of these factors will act as a useful guide for active
learning practitioners in order to make effective choices when
preparing active learning setups. We hope our results will encou-
rage future researchers to apply our methodology of factor analysis
on active learning performance. As we explore more factors and
understand their effects, the utility of active learning will improve.

7. Related work

To our knowledge, our work is the first extensive empirical
analysis of active learning methods for sketch recognition. We
presented detailed analysis on factors such as informativeness

measure, batch selection strategy, feature representation, seed size
and database. We also provided hints on how prior knowledge on
the domain can be utilized for proper use of active learning.

There are several surveys presenting many basic and task
specific active learning methods that have been proposed in the
literature. However, there is a lack of extensive performance
analysis. Olsson presents basic informativeness measures and
approaches to active learning in a literature survey [21]. This
survey also highlights concerns on active learning such as data
access, re-use of annotated data, cost sensitive design and
performance monitoring. In another literature survey, Settles
presents query strategy frameworks and practical considera-
tions including batch selection, noisy oracles and variable
labeling costs [18]. Although both literature surveys provide
detailed knowledge on many active learning methods and point
out main concerns in active learning, there is no empirical study
analyzing these methods extensively. We constructed a set of
carefully designed experiments to investigate the performance
of well established active learning methods and their combina-
tions under different settings of various factors. In this respect,
our study fills in an important niche in the active learning
literature.

Although there is ample work reporting new active learning
methods and their empirical performance [16,17,19,22,25], these
studies simply tend to report accuracy curves, precision-recall
curves or F-measure curves. They omit a rigorous statistical
analysis of the results, and do not discuss how various factors
interact under a variety of conditions, which we do here. In this
sense, our empirical analysis methodology serves as an example to
follow. Our work also creates awareness on the importance of
carrying out multi-factor analysis in order to get a comprehensive
assessment of various methods.

There are also lines of work that explore the effectiveness of
specific active learning techniques, but they do not investigate
how they interact with other factors. Settles and Craven analyze
various active selection strategies with their adaptations for
sequence labeling task [19]. They have information density,
expected gradient length, and Fisher information in their perfor-
mance analysis, as well as some of the basic strategies. Schein and
Ungar analyze the classifier certainty method, as well as several
methods of the single classifier approach and the QBC approach
for logistic regression [15]. Rather than analyzing various basic
methods in the literature, Markowitz analyzes variations of uncer-
tainty sampling for large corpus labeling with boosted naive
Bayesian style classifier [33]. Unlike these studies that focus on
rather specific methods, we present an analysis of well established
methods, but in combination with batch selection strategies. In
addition, we analyze effects of factors such as feature representa-
tion, database and seed size.

There are several custom interfaces for labeling sketch data in
the literature [9–12] which aim to reduce annotation effort
through user friendly interfaces. Although they reduce the labeling
effort required per sample, they do not consider reducing the
number of samples to be labeled. We show that active learning can
reduce the number of samples required to be labeled for sketch
recognition. Our analysis on factors effecting active learning
performance presents a valuable guide on effective use of active
learning for sketch recognition. Therefore, active learning can be
integrated to the available custom interfaces and further increase
their effectiveness.

In other work, Plimmer et al. present a method for automated
labeling of ink stroke data [13] which pre-labels data by a classifier
trained with some labeled data at the beginning. Since active
learning classifies the unlabeled data at each round of the process,
it inherits all the benefits that automated labeling has. In contrast
to automated labeling, active learning allows the classifier to

Table 5
The required number of samples to reach the top accuracies that both Margin-
based selection and random selection can reach. Active learning requires labeling
very few samples in order to reach the top accuracies compared to random
selection.

Top (mean)
accuracy(%)

Number of samples
required

Margin-
based
selectiona

Random
selection

COAD Small Seed Set Zernike 86 270 410
IDM 99 150 250

Large Seed Set Zernike 86 240 350
IDM 99 130 200

NicIcon Small Seed Set Zernike 75 834 1120
IDM 99 234 1100

Large Seed Set Zernike 75 846 1150
IDM 99 246 1020

a The results are for Margin based selection combined with the Default batch
selection strategy.
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improve at each round. Hence, misclassifications will decrease
over time to further reduce human effort. In this respect, the active
learning framework that we have presented can be used to
complement the automatic labelling interface to reap the benefits
of a custom interface and a powerful mechanism for prioritizing
the labelling effort.

8. Future work

In this paper, we present an empirical analysis of active learning
methods and a detailed investigation that uses factor analysis. The
insights gained through our analysis serve as a useful guide for
users of active learning. Unfortunately, investigating a large number
of factors requires huge amounts of resources in terms of time and
computation power. Hence, we had to limit our analysis to five
factors. Investigation of additional factors such as batch size,
number of committee members, and parameter sensitivity of
algorithms is likely to yield further insights into practical factors
related to the use of active learning.

One unique aspect of our work is the discussion of factor
interactions with respect to characteristic properties of the data-
bases and feature representations (e.g. the NicIcon database is
more challenging database, and IDM is a more powerful feature
representation compared to Zernike Moments). We believe there
is value in investigating factor interactions with respect to other
properties as well. For instance, Sun and Hardoon apply active
learning for databases which contain sparse data for some classes,
but they do not investigate the effect of sparseness on active
learning performance [34]. Sparseness of data, size of database and
the number of classes in database are candidate properties to
consider in factor analysis for future researches.

Our study considers active learning strategies targeting only
effective sample selection. Future researchers might take into account
the cost of labeling through various strategies and/or user interfaces.
It might be interesting to apply factor based analysis in such cost-
sensitive investigations of active learning. This may shed light on the
interplay between sample selection strategies, batch size and labeling
schemes. For example, if it is possible to devise a faster and easier
labeling strategy/interface, then it might be worth considering sample
selection algorithms that work better with large batch sizes.

9. Summary

In this paper, we explored the main effects and deeper inter-
actions of various factors that impact the performance of active
learning in the context of a computer graphics application that
uses machine learning. In the course of doing so, we constructed
an exemplary experimental design and laid out a comprehensive
setup for statistical analysis of our experimental results. We
investigated the performance of active learning for combinations
of (a large variety of) basic informativeness measures, batch
selection strategies, and the effects of factors such as feature
representation, database and seed size.

As reported in the literature, active learning does not always
yield the expected performance gains, and there is a need to
explore the behavior of active learning for various problems. Our
work is the first effort in this direction for the sketch recognition
problem. We showed that for our domain of interest, Margin-
based selection has superior performance. Its performance is
consistent across databases, and does not require an elaborate
batch selection strategy. Among batch selection strategies, we
showed that Global-FV is a desirable strategy to couple with
informativeness measures.

Our investigation of additional factors (i.e. seed size, database
and feature representation) yielded useful insights on the selec-
tion of seed set size and utilization of prior knowledge. We
demonstrated that for sketch recognition, employing larger seed
sets (as resources allow) yields better active learning performance
for the single classifier approach. We also showed that the use of
active learning brings definitive advantages in challenging data-
bases when accompanied with powerful feature representations.

We believe that our experiments, as well as the results that we
have reported, will raise awareness on the importance of factors
that impact the utility of active learning among users of sketch
recognition, as well as designers of other computer graphics
applications that rely on user annotation for machine learning.
In this respect, in addition to the specific results reported in our
experiments, our work will also serve as a valuable practical
guideline that future users of active learning can follow.

Appendix A. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2015.07.023.
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