
Virtualization

32	 Published by the IEEE Computer Society ■ 1540-7993/08/$25.00 © 2008 IEEE ■ IEEE Security & Privacy

Virtual Machine
Introspection
Observation or Interference?

Kara Nance
and
Brian Hay

University
of Alaska,
Fairbanks

Matt Bishop

University of
California,
Davis

As virtualization becomes increasingly mainstream,

virtual machine introspection techniques and tools

are evolving to monitor VM behavior. A survey of

existing approaches highlights key requirements,

which are addressed by a new tool suite for the Xen

VM monitoring system.

A t one time, desktop computers were “one
machine, one operating system, one appli-
cation,” forcing users to close one applica-
tion to open another—and often to spend

more time waiting than doing as a result. The advent
of “one machine, one operating system, many ap-
plications” let users run multiple programs simul-
taneously and introduced a major step forward in
computational evolution.

Today, virtualization lets users have “one machine,
multiple operating systems, multiple applications” and
switch between them at will. This not only lets de-
velopers easily test their programs on multiple OSs
and enterprise users more effectively utilize hardware
through server consolidation, it’s also useful to com-
puter users in general. When virtual machines are
distributed with a set of preconfigured applications,
users can easily utilize complex applications. Further,
the isolation offered by VMs provides some security
benefit, such as allowing general Web browsing while
reducing the risk of compromise to the underlying
physical system.

Although virtualization isn’t new, the recent devel-
opment of x86 virtualization products has revived in-
terest in the virtualization market. This has led to the
evolution of virtual machine introspection (VMI) tech-
niques and tools to monitor VM behavior. VMI tools
inspect a VM from the outside to assess what’s happen-
ing on the inside.1 This makes it possible for security
tools—such as virus scanners and intrusion detection
systems—to observe and respond to VM events from a
“safe” location outside the monitored machine. Here,
we survey and categorize the current crop of VMI tech-

nologies, then
offer a detailed
description of the Virtual Introspection for Xen (VIX)
tool suite, which addresses key VMI requirements.

Virtualization overview
As Figure 1 shows, in a virtualized environment, a
VM monitor provides the interface between each VM
and the underlying physical hardware. The OS layer
between a VMM and the physical hardware is option-
al, depending on which of the two major types of VM
managers you choose.

In a type 1 system,2 the VMM runs directly on the
physical hardware, eliminating an abstraction layer
and often improving efficiency as a result. Examples
of type 1 systems include VMware ESX,3 Xen (www.
xensource.com/xen/xen/nfamily/virtualpc/default.
mspx), and Microsoft Hyper-V (http://technet2.
microsof t.com/windowsserver2008/en/server
manager/virtualization.mspx). In a type 2 system, the
VMM uses an OS as an interface to the physical hard-
ware. Type 2 systems include VMware Workstation,
the QEMU open source process emulator (http://
bellard.org/qemu/), KVM (http://kvm.qumranet.
com/kvmwiki), Parallels (www.parallels.com), and
Virtual PC/Server (www.microsoft.com/windows/
products/wi). Type 2 systems rely on the underly-
ing OS to provide hardware interaction and device
drivers, and thus often have a wider range of physical
hardware components to interact with.

To illustrate how virtualization works, we’ll ex-
amine a simplified event sequence that occurs when
a process attempts to access a memory address in its

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 30, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 33

virtual address space. From a process perspective, the
request results in direct access to the memory address
(see Figure 2a). However, as Figure 2b shows, while
the OS layer has an active role in providing mem-
ory location access, it’s actually abstracted from the
process because it accesses the page table to map the
logical memory address to a physical memory address.
When the same request comes from a VM, it adds an
additional level of complexity (see Figure 2c). To iso-
late the many VMs that might run on a single system,
the VMM provides an abstraction layer between each
VM OS’s memory management and the underly-
ing physical hardware. The VMM thus translates the
VM-requested page frame number into a page frame
number for the physical hardware, and thereby gives
the VM access to that page.

Because of the VMM’s active involvement in this
process and its elevated privileges, it can also access
memory pages assigned to each VM directly—with-
out the VM actually requesting the page. The VMM
can also make those pages accessible to other VMs on
the system, which facilitates the VMI process.

Virtual machine introspection
Many systems have implemented VMI. We classify
these systems according to whether they interfere
with a threat or simply monitor it; how much they
know about the guest OS; and their ability to re-
play events.

Threat monitoring versus interfering
VMI systems fall into one of two categories: those that
only monitor subject behavior and those that interfere
with subject behavior.

For example, Livewire, an early host-based intru-
sion detection system, monitors VMs to gather infor-
mation and detect attacks.1 When it finds an attack,
it merely reports it rather than interfering with it.
In contrast, LycosID uses crossview validation tech-
niques to compare running processes visible from
high and low abstraction layers. The system then
patches running code to enable reliable identification
of hidden processes.4 Manitou, a VMI designed to
detect malware, compares known instruction-page
hashes with memory-page hashes at runtime.5 If no
match is found, the instruction page is considered
corrupted and marked as nonexecutable. Similarly,
µDenali, a VMM, acts as a switch for network re-
quests to a set of VMs; after a given time period, it
can force a VM reboot.6 Both LycosID and µDenali
thus alter or interfere with the VM on the basis of an
externally defined factor (the presence of a hidden
process and time, respectively).

Our distinction between monitoring and in-
terfering mirrors the security distinction between
detection and response. A security mechanism us-

ing VMI to monitor a system can only detect and
report problems, whereas one that can interfere can
actually respond to a detected threat. It might, for
example, terminate the relevant processes or VM, or

Solaris x86
virtual machine

Virtual machine monitor

Linux
virtual machine

Windows XP
virtual machine

Operating system (physical host)

Physical hardware

Figure 1. A generic system configuration for virtualization. The virtual

machine monitor provides an interface between the underlying hardware

and each VM. The operating system layer is optional, depending on the VM.

Process
accesses
memory
address

RAM

Process
accesses
memory
address

Process
accesses
memory
address

RAM

Operating system

Page tables

Virtual machine
operating system

Page tables

RAM

Translates
page-frame

number from
virtual to
physical

Virtual
machine
monitor

(a)

(b)

(c)

Figure 2. Memory mapping. The logical view from the perspective of (a) a

process, (b) an operating system, and (c) a virtual machine monitor.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 30, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Virtualization

34	IEEE Security & Privacy ■ September/October 2008

reduce the resources available to the VM to starve
the attacker.

Semantic awareness
Our second axis of classification involves a VM’s
knowledge of its guest OS—that is, its semantic aware-
ness. For example, Lares gives each VM an internal
“hook” that activates an external monitoring control
upon execution.7 The monitor can then interrupt ex-
ecution and pass control to a security mechanism. To
achieve this, the hook is injected into the VM OS and
the hypervisor write-protects both the hook and the
code segment (or “trampoline”) that transfers control
to the security mechanism. Placing the hook so that
it triggers at a meaningful system execution point re-
quires an understanding of the OS’s semantics. Thus,
Lares must be semantically aware.

In contrast, AntFarm is specifically designed to
monitor the VM’s (virtual) memory management unit
(MMU).8 From that, it can construct the virtual-to-
physical memory mapping and infer information about
the machine’s processes and OS. Hence, AntFarm is
semantically unaware of the monitored system (al-
though it builds up such an awareness over time). Some
approaches, including IntroVirt,9 attempt to bridge the
“semantic gap” between the VMI application and the
target VM by using functionality on the target VM it-
self to lend context to the acquired data. While this can
be a useful approach in some cases, any such reliance
runs the risk of deception by malware present in the
target VM, just as would be possible if the VM were
running as a process on the target itself.

This axis tells us whether the VMI can account
for different guest OS characteristics and thus provide
information that is more detailed. For example, a se-
mantically aware VMI can parse kernel memory to
build a process table map and hence process informa-
tion. Semantically unaware VMI applications simply
see memory as bits; most accumulate some knowl-
edge of the guest OS and its processes over time, but
they can’t achieve the same familiarity as semantically
aware VMI applications.

Event replay
The ability to replay, or log, events on a VM is useful
not only for debugging OSs (which is why researchers
introduced VMs in the late 1960s) but also for replay-
ing compromises. ReVirt10 is an example of a logging
VMI; it serves as the basis for time-traveling VMs that
allow replay from any previous VM state.11 In con-
trast, Livewire and µDenali are logless, and instead
analyze the current system state as it executes.

To allow replay, a VM must record enough infor-
mation to reconstruct interesting portions of the sys-
tem state. A logging VMI can replay events preceding
unusual behavior until the cause is found, allowing

deep analysis of security compromises. The penalty is
that the VM or VMI must record extra information.
The information’s nature and amount varies depend-
ing on the replay’s goals.

Security monitoring
and VMI classifications
Our three categories capture the most important VMI
properties for security monitoring.

Threat monitoring versus interference captures the •	
distinction between reading and writing.
Semantic awareness captures the knowledge (or lack •	
of knowledge) of context and environment that’s
critical to proper event interpretation.
Event replay determines whether analysis must be per-•	
formed in real time—as the target system executes—
or at some later time under the analyst’s control.

Using these three factors as a guide, you can select
a VMI system that matches your security analysis re-
quirements. All three classifications also take advan-
tage of the VM’s inability to interfere with the VMM’s
actions. Consider, for example, a terminate-and-stay-
resident computer virus. If it loads before the antivi-
rus program, the TSR can alter the intercept vectors
so that they ignore it and other viruses. But a VM’s
malware can’t alter VMM routines that check the VM
pages containing the intercept vectors, and thus can’t
prevent the VMM antivirus mechanisms from detect-
ing VM infection.

Digital forensic applications that use VMI differ
from traditional digital forensic applications because
they are covert; the data is thus untainted by the ob-
server effect. Assume, for example, that your system
has potentially been compromised and you want to
apply digital forensics techniques to analyze the sce-
nario. Traditionally, you’d shut down the machine,
take an image of the disk, and forensically analyze it.
In so doing, you would lose important RAM infor-
mation, which likely contained forensically relevant
information about the dynamic system state, such
as which processes were running or which network
connections were active

But, if you acquire evidence by reading the VM
memory from a process external to the VM itself,
the contents of memory and disk are available, and
you avoid the need to attempt to reconstruct the sys-
tem state solely from a static snapshot of the disk.
Figure 2 shows the interaction between a process
and its associated memory. For a VMI application to
get to this step—and subsequently access memory
associated with a particular process—it must identi-
fy the VM’s individual processes. A VMI application
might accomplish this by reconstructing the process
list, then processing the data it contains to compute

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 30, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 35

the page table location for each process. From that,
it can derive the individual page table entries. At
this point, the VMI application can reconstruct the
memory associated with each process. Given that
and the process table’s information on each process,
it can determine exactly what each process was do-
ing. This reconstruction can—indeed, should—be
done with the VM paused, so that the VM’s state
can’t change during reconstruction. This eliminates
the observer effect because the VMI application
doesn’t execute in the VM’s memory space and thus
doesn’t affect its contents.

Implementation
You can implement VMI applications in at least two
system locations. One option is to embed the VMI
application in the VMM itself. This requires you to
modify the VMM code, and tends to make the VMI
application highly dependent on the VMM version.

The second option is to place the VMI application
outside the VMM. This is the option we chose using
Xen, placing the VMI application in the privileged
Dom0 VM. This makes the tools less likely to change
as the VMM changes because they interact through a
stable API. However, it might reduce the application’s
ability to perform inline processing (that is, to react to
target VM requests in real time).

Virtual introspection for Xen
We developed and tested the Virtual Introspection for
Xen (VIX) tool suite as a proof-of-concept VMI ap-
plication.12 We selected Xen for our project because it
was open source, and thus let us modify or augment
the VMM’s functionality if necessary. Xen is also un-
der active development; it’s supported in several lead-
ing Linux distributions and has several mailing lists
dedicated to its development and operation. However,
the techniques we used in our project are also appli-
cable to other virtualization platforms.

Xen overview
Xen is a type 1 VMM, so there’s no underlying OS
on the physical host. However, to provide a man-
agement interface for Xen—which the VMM itself
doesn’t provide—a special VM runs on the system at
all times. In Xen, VMs are referred to as domains, and
this special management domain is called Dom0 (see
Figure 3). The VMM gives Dom0 system access to
a control library, which lets the system administrator
create, destroy, start, pause, stop, and allocate resourc-
es to VMs from Dom0. Dom0 also typically provides
drivers for the host’s physical hardware components,
letting the other resident VMs—known collectively
as DomU systems—utilize the hardware devices.

In addition to these common administrative func-
tions, the Dom0 system can also request that memory

pages allocated to unprivileged VMs be available to the
Dom0 system. This allows a VMI application running
within Dom0 to view the memory of any other VM
on the system. Such functionality should be available
only to the privileged Dom0 system, which should
be reserved exclusively for management functionality.
All other VMs should be restricted to accessing only
the memory that the VMM has specifically allocated
for their use.

How VIX works
Basically, VIX pauses operation of the target VM,
maps some of its memory into the Dom0 system, ac-
quires and decodes the memory pages’ relevant data,
and then resumes operation of the target VM. As an
example, all current Linux system processes have an
associated task_struct data structure that stores
or links to information such as the process ID, pro-

Xen virtual machine monitor

Dom 0
(privileged)

Dom 1
(unprivileged)

Dom 2
(unprivileged)

Dom n
(unprivileged)

Physical hardware

Figure 3. Xen system configuration. This configuration has n unprivileged

virtual machines (domains) and a single privileged Dom0 VM, which

provides a management interface.

init_task

PID: 1613
Name: sshd

PID: 5110
Name: bash

PID: 1541
Name: auditd

PID: 0
Name: swapper

PID: 1528
Name: dhclient

PID: 1
Name: init

Figure 4. An example process list. A circular, double-linked list of task_

structs in the Linux 2.6.x kernel.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 30, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Virtualization

36	IEEE Security & Privacy ■ September/October 2008

cess name, memory map, and execution time. VIX
can reference such data structures in many ways.
Typically, it traverses the process list—a list of task_
structs that the OS maintains. As Figure 4 shows,

Linux stores this list as a circular double-linked list.
Each task_struct contains the memory address of
the previous and next task_structs in the list, and
the end of the list links back to the start, forming
a task_structs circle. Each kernel version has an
associated memory address for the first process in the
list, and from that address, VIX can easily traverse
the entire list.

Accessing memory (such as a data structure) in a
typical x86 application is a fairly trivial and fully auto-
mated task: the application requests a memory address
within the process’s address space, and the OS transpar-
ently translates the address into a page frame. For pro-
grammers writing virtual introspection applications,
however, the process is more complex. Rather than
having the OS map logical to physical addresses, the
introspection program must manually traverse the page
tables to convert the logical address to what the VM
believes is a physical address but which is, in fact, simply
another logical address to the underlying OS. Further,
this provides a page frame only in the context of the
VM, which believes it has contiguous physical RAM.
To access the required data’s actual physical memory
page, the introspection program must perform a fur-
ther manual translation between the VM page frame
and the underlying physical host’s page frames.

At this point, the VMI application has only ob-
tained access to a memory page holding the requested
data. The VMI application must still transform the
raw data into useful information for the user. And,
although Dom0 is observing the data structure, the
structure is defined in the declaring DomU’s system
context. For example, the Dom0 and DomU system
kernels might both define a task_struct, but might
format it differently due to differences in kernel ver-
sions and configurations.

Furthermore, any of the observed data structure’s
memory references—such as pointers—are valid only
in the context of the defined structure’s address space
on the VM being monitored. To dereference such
pointers, the introspection program must (once again)
manually traverse the entire page table of the VM-to-
physical page frame translation.

In VIX, programs often have to carefully and re-
peatedly perform these operations during traversal of
a linked list of Linux kernel data structures, such as the
task list’s task_structs. We define the init_task
value for the VM’s OS version; from this, we know
the first task_struct data structure’s memory loca-
tion. From there, the VIX application vix-ps can
traverse the entire task list. This approach lets VIX
produce the same output as the ps command. It also
allows the graphical system monitor to run within the
VM itself, so that processes hidden to the VM user
appear in the vix-ps listing. We can do this because
VIX doesn’t rely on any potentially compromised VM
functionality in creating the process list. However,
because VIX doesn’t depend on any VM OS func-
tionality for information, VMI applications can add
other functionality.

Examples include running a sanity check for pro-
cesses that aren’t in the process list, but that appear in
other kernel structures, such as the run queues. Such
inconsistencies might indicate attempts to hide pro-
cesses from the user, while still making them eligible
for scheduling—a technique that rootkits use to ensure
continued access to a compromised machine after the
initial attack. We successfully implemented and dem-
onstrated VIX’s capability to detect such process in-
consistencies that indicate malware presence.12 We’ve
since added several other tools to the VIX suite—in-
cluding vix-netstat, vix-lsof, vix-pstrings,
vix-lsmod, vix-pmap, and vix-top—that mimic
the functionality of common non-VMI system tools.

Future investigations
 An important outstanding question with respect to
VMI is whether we can detect monitoring of the
target VM—and if so, under what conditions and
to what extent. It might seem that if the VMI ap-
plication monitors the VM during the brief periods
when the VM is not scheduled for execution and
only reads data from the VM memory space, that it
wouldn’t modify the VM state, and thus, monitor-
ing would go undetected from the perspective of a
user (that is, an attacker) on the target VM. How-
ever, the attacker might be able to detect VMI using
ancillary information. The VM could potentially
detect unusual patterns in its scheduled execution
frequency, or possibly question the page fault rate
(where memory that was expected to be in RAM
was paged out to disk, or vice versa). Detecting VM
monitoring remains an open question, and one that
deserves serious consideration if the results of VMI
operations are to be used for security purposes. This
is particularly important if organizations use VMI
for digital forensics, for example, where the moni-
toring process results or effects can have real and
serious legal consequences.

An important outstanding question with

respect to VMI is whether we can detect

monitoring of the target VM—and if so,

under what conditions and to what extent.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 30, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 37

A second issue is whether it’s possible for unprivi-
leged VMs to compromise the VMM and thereby gain
elevated access levels to the underlying physical host.
Today, developers generally implement VMM as soft-
ware, which means there might be bugs in the code
that could leave the VMM vulnerable to compromise.
This might result from an attacker carefully crafting
input from the managed VMs, similar to the compro-
mises possible in OSs today. As virtualization technol-
ogy continues to develop, our hope is that developers
will carefully craft VMMs with a view to simplicity,
reliability, and sound security engineering practices.
In contrast to many OS projects, where integrating
new functionality often eclipses security and process-
isolation needs, such high-assurance VMM develop-
ment will let us apply VMI as reliable and unbiased
reporters of VM activity.

W hile VMI is a relatively new research and de-
velopment area, the Virtualization in Digital

Forensics Research Agenda13 recently identified it as
one of the three target research areas within virtual
environments analysis. Specifically, VDFRA identi-
fied the need for research on methods or mechanisms
to monitor, filter, and analyze

the interaction between the virtualized host and •	
the underlying virtual or physical hardware it runs
on; and
the VM’s internal state, including OS and process •	
data structures.

Our own research team is continuing to address the
technology’s challenges, and our VIX tools suite of-
fers a positive step forward in the advancement of
VMI research.

References
T. Garfinkel and M. Rosenblum, “A Virtual Machine In-1.	
trospection-Based Architecture for Intrusion Detection,”
Proc. 10th Symp. Network and Distributed System Security
(NDSS 03), Internet Society, 2003, pp. 191–206.
IBM Systems Virtualization Version 2 Release 12.	 , IBM
Corp., 2005; publib.boulder.ibm.com/infocenter/
eserver/v1r2/topic/eicay/eicay.pdf.
Understanding Full Virtualization, Paravirtualization, and 3.	
Hardware Assist, white paper, VMware, 2007; www.
vmware.com/files/pdf/VMware_paravirtualization.pdf.
S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, 4.	
“VMM-based Hidden Process Detection and Identi-
fication Using Lycosid,” Proc. ACM Int’l Conf. Virtual
Execution Environments (VEE 08), ACM Press, 2008, pp.
91–100.
L. Litty and D. Lie, “Manitou: A Layer-Below Approach 5.	
to Fighting Malware,” Proc. Workshop Architectural and

System Support for Improving Software Dependability (ASID
06), ACM Press, 2006, pp. 6–11.
A. Whitaker et al., “Constructing Services with Inter-6.	
posable Virtual Hardware,” Proc. 1st Symp. Networked
Systems Design and Implementation (NSDI 04), Mar.
2004.
B. Payne et al., “Lares: An Architecture for Secure 7.	
Active Monitoring Using Virtualization,” Proc. IEEE
Symp. Security and Privacy, IEEE CS Press, 2008, pp.
233–247.
S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, 8.	
“AntFarm: Tracking Processes in a Virtual Machine
Environment,” Proc. Annual Usenix Tech. Conf., Usenix
Assoc., 2008, pp. 1–14.
A. Joshi et al., “Detecting Past and Present Intrusions 9.	
through Vulnerability-Specific Predicates,” Proc. Symp.
Operating System Principles (SOSP), 2005, pp. 91–104.
G.W. Dunlap et al., “ReVirt: Enabling Intrusion Anal-10.	
ysis through Virtual-Machine Logging and Replay,”
Proc. 2002 Symp. OS Design and Implementation (OSDI
02), ACM Press, 2002, pp. 211–224.
S. King, G. Dunlap, and P. Chen, “Debugging Operat-11.	
ing Systems with Time-Traveling Virtual Machines,”
Proc. Annual Usenix Tech. Conf., Usenix Assoc., 2005;
www.usenix.org/events/usenix05/tech/general/king/
king.pdf.
B. Hay and K. Nance, “Forensics Examination of Vola-12.	
tile System Data Using Virtual Introspection,” ACM
Sigops OS Review, vol. 42, no. 3, 2008, pp. 74–82.
M. Pollitt et al., “Virtualization and Digital Forensics: 13.	
A Research and Education Agenda,” J. Digital Forensic
Practice, vol. 2, no. 2, 2008, pp. 62–73.

Kara Nance is a professor and chair of the Department of

Computer Science at the University of Alaska, Fairbanks,

where she also directs the Advanced Systems Security Educa-

tion, Research, and Training (ASSERT) Center. Her research

interests include data systems and computer security. Nance

has a PhD in computer science from the University of Okla-

homa. Contact her at ffkln@uaf.edu.

Matt Bishop is a professor in the Department of Computer

Science at the University of California, Davis. His research

interests include vulnerabilities analysis and security policy

modeling. Bishop has a PhD in computer science from Purdue

University. His textbook, Computer Security: Art and Sci-

ence (Addison-Wesley, 2002), is widely used in graduate and

advanced undergraduate classes on computer security. Con-

tact him at bishop@cs.ucdavis.edu.

Brian Hay is an assistant professor in the Department of Com-

puter Science at the University of Alaska, Fairbanks, where he

directs the Advanced System Security Education, Research,

and Training (ASSERT) Lab. Hay has a PhD in computer sci-

ence from Montana State University. Contact him at brian.

hay@uaf.edu.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 30, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

