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Summary. In the fields of medicine and public health, a common application of areal data models is the
study of geographical patterns of disease. When we have several measurements recorded at each spatial
location (for example, information on p ≥ 2 diseases from the same population groups or regions), we
need to consider multivariate areal data models in order to handle the dependence among the multivariate
components as well as the spatial dependence between sites. In this article, we propose a flexible new class
of generalized multivariate conditionally autoregressive (GMCAR) models for areal data, and show how
it enriches the MCAR class. Our approach differs from earlier ones in that it directly specifies the joint
distribution for a multivariate Markov random field (MRF) through the specification of simpler conditional
and marginal models. This in turn leads to a significant reduction in the computational burden in hierarchical
spatial random effect modeling, where posterior summaries are computed using Markov chain Monte Carlo
(MCMC). We compare our approach with existing MCAR models in the literature via simulation, using
average mean square error (AMSE) and a convenient hierarchical model selection criterion, the deviance
information criterion (DIC; Spiegelhalter et al., 2002, Journal of the Royal Statistical Society, Series B 64,
583–639). Finally, we offer a real-data application of our proposed GMCAR approach that models lung and
esophagus cancer death rates during 1991–1998 in Minnesota counties.

Key words: Areal data; Conditionally autoregressive (CAR) model; Hierarchical Bayesian model; Markov
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1. Introduction
The analysis of spatially referenced data has been an increas-
ingly active area of both methodological and applied statis-
tical research. Sophisticated computer programs known as
geographic information systems (GISs) have allowed health
science databases to incorporate geographical information
about the units being studied. Such databases have in turn
generated interest among statisticians to develop and ana-
lyze models that can account for spatial clustering and vari-
ation. For data collected over geographic regions (areal data)
such as counties, census tracts, zip codes, and so on, the most
commonly used are conditionally autoregressive (CAR) spec-
ifications, pioneered by Besag (1974). CAR distributions are
sometimes used as the likelihood for the observations them-
selves in one-stage models, or as the distribution of the ran-
dom effects in the mean structure in hierarchical models. In
the fields of medicine and public health, a common application
of such models is the study of regional patterns of disease. In
the United States, publicly available data on precise locations
of disease cases are fairly uncommon due to strict confiden-
tiality regulations. Summaries of disease at a regional level,
however, are often relatively easy to obtain.

CAR models are most appropriate in the univariate case,
as when mapping a single disease. When we have multivariate
areal data (say, information on p ≥ 2 diseases over the same
regions), an obvious first choice would be to use p separate

univariate CAR models. But because a number of diseases
may share the same set of (spatially distributed) risk factors,
or the presence of one disease might encourage or inhibit the
presence of another over a region, we may need a multivariate
areal model to properly analyze this kind of data. This will
permit modeling of dependence among the multivariate com-
ponents while maintaining spatial dependence between sites.

Several multivariate areal models have been proposed to
date. Mardia (1988) described the theoretical background
for multivariate normal Markov random field (MRF) spec-
ifications. Billheimer et al. (1997) developed a hierarchical
statistical model for compositional monitoring data utiliz-
ing a multivariate MRF in a state-space setting. Kim, Sun,
and Tsutakawa (2001) presented a “twofold CAR” model for
counts of two different diseases over each areal unit. Sain
and Cressie (2002) discussed a multiobjective version of the
CAR model that allows for flexible modeling of the spa-
tial dependence structure, the cross-correlations in particu-
lar. Most recently, Carlin and Banerjee (2003) and Gelfand
and Vounatsou (2003) developed multivariate CAR (MCAR)
models for hierarchical modeling based on the family of
Mardia (1988).

In this article, we introduce a new flexible class of general-
ized multivariate CAR (GMCAR) models for areal data, and
show how it enriches the existing MCAR class. Reminiscent
of the approach of Royle and Berliner (1999) in the case of
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geostatistical (point-referenced spatial) data, our method di-
rectly specifies the joint distribution for a multivariate MRF
through the specification of simpler conditional and marginal
models. We then employ these GMCAR distributions as spec-
ifications for second-stage random effects in hierarchical areal
data models. In particular, we consider modeling the death
rates from lung and esophagus cancers in the years from 1991
to 1998 in Minnesota counties, a setting in which association
would be expected both within and across the areal units.

The format of our article is as follows. In Section 2, we
briefly review the various existing CAR and MCAR mod-
els, and point out the advantages and disadvantages of each.
Section 3 introduces the GMCAR class, while Section 4 com-
pares it with the existing MCAR models in terms of average
mean square error (AMSE) and deviance information crite-
rion (DIC; Spiegelhalter et al., 2002) score via simulation.
Section 5 then applies the GMCAR to our illustrative data
set. Finally, Section 6 summarizes our findings and suggests
avenues for future research in this burgeoning area.

2. Overview of Univariate and Multivariate
CAR Modeling

2.1 Univariate CAR Modeling
A fundamental result in the understanding of CAR models
is due to Besag (1974). Consider a univariate spatially ran-
dom variable φi observed at n areal locations, and define φ =
(φ1, . . . ,φn)′. Under the MRF assumption, we specify the n
full conditional distributions as

p
(
φi

∣∣φj , j �= i, τ−1
i

)
= N

(
α

∑
i∼j

bijφj , τ
−1
i

)
, i, j = 1, . . . , n, (1)

where i ∼ j denotes that region j is a neighbor (typically de-
fined in terms of spatial adjacency) of region i. Now from
the Hammersley–Clifford Theorem and Brook’s Lemma (see,
e.g., Banerjee, Carlin, and Gelfand, 2004, Section 3.2), the full
conditional distributions in (1) uniquely determine the joint
distribution,

φ ∼ N
(
0, [Dτ (I − αB)]−1

)
, (2)

where B is an n × n matrix with bii = 0, and Dτ = Diag(τ i);
usually we assume that Dτ = τD, where D is an n × n diago-
nal matrix. Finally, α is a smoothing parameter, and is often
interpreted as measuring spatial association. Notice α = 0
corresponds to an independent model, but it is important not
to view α as a correlation parameter. That is, α controls spa-
tial dependence, and its value lies between 0 and 1, but it
cannot be interpreted as a correlation coefficient in the usual
sense (see, e.g., Wall, 2004 and Section 5).

From the CAR formulation (2), we can choose α, D, and
B to obtain various CAR model structures. The most pop-
ular CAR implementation (Besag, York, and Mollié, 1991)
is the pairwise difference formulation, also known as the in-
trinsic autoregressive (IAR) model. In this structure, we set
the smoothing parameter α = 1. We also typically take D =
Diag(mi ), where mi is the number of neighbors of region i,
and B = D−1W , where W denotes the adjacency matrix of
the map (i.e., wii = 0, and wii′ = 1 if i ∼ i′, and 0 otherwise). B

is called the scaled adjacency matrix in this case. Formulation
(2) then becomes

φ ∼ N(0, [τ(D −W )]−1). (3)

Model (3) is simple and easy to fit, but has two major draw-
backs. First, τ(D − W ) is singular, and thus (3) is improper.
Second, the IAR model (3) contains no parameter to control
the strength of spatial dependence among regions.

To overcome these difficulties, several authors prefer α < 1.
For example, Cressie (1993) assumes D = In×n and B = W
in the CAR formulation (2), and points out that if α ∈ (λ−1

min,
λ−1

max), where λmin and λmax are the minimum and maximum
eigenvalue of the adjacency matrix, respectively, a proper
joint distribution results. Carlin and Banerjee (2003) avoid
the calculation of eigenvalues by using the scaled adjacency
matrix B, and show that taking |α| < 1 ensures this model’s
propriety.

2.2 Multivariate CAR Modeling
Most multivariate CAR models are members of the family de-
veloped by Mardia (1988). Analogous to the univariate case,
the joint distribution is derived from the full conditional dis-
tributions. Under the MRF assumption, we can specify these
conditional distributions as

p
(
υi

∣∣υj �=i,Γ−1
i

)
= N

(
Ri

∑
i∼j

Bijυj ,Γ−1
i

)
, i, j = 1, . . . , n, (4)

where υi = (φi1, φi2, . . . ,φip)
′ is a p-dimensional vector, and

Γi, Ri , and Bij are p × p matrices. For example, this model
might be appropriate for a data set on p types of cancer over
n counties. Mardia (1988) proved that the full conditional
distributions in (4) uniquely determine the joint distribution

υ ∼ N
(
0, [Γ(I −BR)]−1

)
, (5)

where υ′ = (υ′
1, υ′

2, . . . ,υ
′
n), BR is np × np with (BR)ij =

RiBij , (BR)ii = 0, and Γ is an np × np block diagonal matrix
with p × p diagonal entries Γi .

From the MCAR formulation (5), we can choose different
Γ and BR matrices to obtain different MCAR model struc-
tures. But to obtain a proper joint distribution (5), we need
to make sure that Γ(I − BR) is a positive definite and sym-
metric matrix. Unfortunately, establishing these conditions
can be difficult in general cases. To simplify the formulation,
we may first assume that Ri = αIp×p for i = 1, . . . ,n (where
α is again called a smoothing parameter), and Γ = D ⊗ Λ.
Under these assumptions, (5) becomes

υ ∼ N(0, [(D(I − αB)) ⊗ Λ]−1), (6)

where Λ is a p × p positive definite and symmetric matrix,
and the matrices D and B are defined as in Section 2.1. The
precision matrix in (6) is the Kronecker product of the uni-
variate CAR form and Λ, and thus the covariance matrix in
(6) is positive definite as long as Λ is positive definite and
the univariate CAR distribution is valid. Now we can ap-
ply all of the univariate CAR structures described in Sec-
tion 2.1 to obtain different MCAR models. For example, we
can generalize the IAR model (3) to the multivariate case
simply by setting α = 1 above. Alternatively, in (6) we can
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assume that D = Diag(mi ), use the scaled adjacency matrix
B = D−1W , and take α ∈ (−1, 1). This model is denoted as
MCAR(α, Λ) in Carlin and Banerjee (2003) and Gelfand and
Vounatsou (2003). The MCAR(α, Λ) formulation is thus

υ ∼ N(0, [(D − αW ) ⊗ Λ]−1). (7)

All of the above MCAR models are generalized from uni-
variate CAR models under the assumption that Ri = αIp×p,
i = 1, . . . ,n, and can be used for any dimension p. The posi-
tive definiteness condition for Γ(I − BR) in (5) is then easy to
verify, and its Kronecker product form simplifies the calcula-
tions, especially matrix inversion and determinant evaluation.
But the assumption of a common Ri for all i = 1, . . . ,n may
well be too strong in some cases.

To explore this idea, suppose p = 2 (e.g., two cancers
in each county), and define φ′

1 = (φ11, . . . ,φn1) and φ′
2 =

(φ12, . . . ,φn2). Then, the MCAR formulation (7) can be writ-
ten as(

φ1

φ2

)
∼ N

((
0

0

)
,

(
(D − αW )Λ11 (D − αW )Λ12

(D − αW )Λ12 (D − αW )Λ22

)−1
)

,

(8)

where Λij , i = 1, 2, j = 1, 2 are the elements of Λ. More
generally, we may need three different αi parameters in (8)
to explain the correlation between the two types of cancer
and across the counties that neighbor each other (Kim et al.,
2001). The covariance matrix Σ would then be revised to

Σ =

(
(D − α1W )Λ11 (D − α3W )Λ12

(D − α3W )Λ12 (D − α2W )Λ22

)−1

, (9)

where α1 and α2 are the smoothing parameters for the two
cancer types, and α3 is the “bridging” or “linking” parameter
associating φi1 with φj2, i �= j. Unfortunately, with this gen-
eral covariance matrix, it is difficult to check the conditions
guaranteeing positive definiteness, since they depend on the
unknown Λ matrix. This makes model fitting hard to imple-
ment via Markov chain Monte Carlo (MCMC).

Carlin and Banerjee (2003) and Gelfand and Vounatsou
(2003) generalize the basic MCAR model by allowing two dif-
ferent α parameters (say, α1 and α2), and denote this model
as MCAR(α1, α2, Λ). They write the precision matrix Σ−1 as(
R′

1R1Λ11 R′
1R2Λ12

R′
2R1Λ12 R′

2R2Λ22

)
=

(
R′

1 0

0 R′
2

)
(Λ ⊗ In×n)

(
R1 0

0 R2

)
,

(10)

where R′
kRk = D − αkW , k = 1, 2. Carlin and Banerjee (2003)

take Rk as the Cholesky decomposition of D − αkW so that Rk

is an upper-triangular matrix. Gelfand and Vounatsou (2003)
instead recommend a spectral decomposition, that is, Rk =
Diag(1 − αkλi)

1/2P ′D1/2P , where the λi are the eigenvalues
of D−1/2WD−1/2 and P is an orthogonal matrix with the cor-
responding eigenvectors as its columns. Either way, this gen-
eralization of the MCAR model permits different smoothing
parameters αk for each k (e.g., different strengths of spatial
correlation for each type of cancer). As before, Λ controls the
nonspatial correlation among cancers at any given location.

The conditions for the covariance matrix to be positive def-
inite are easy to find as long as the Cholesky or spectral de-

compositions exist and Λ is positive definite. For the p = 2
case, these reduce to |α1| < 1 and |α2| < 1. The spectral ap-
proach may be better in terms of Bayesian computing, since it
does not require the calculation of a Cholesky decomposition
at each MCMC iteration, a substantial burden particularly for
a data set with many spatial regions. Neither of these MCAR
structures allows a smoothing parameter α on the off-diagonal
of the precision matrix as in (9); we cannot model the off-
diagonal, since it is determined by the diagonal. Finally, be-
cause the decomposition of D − αkW is not unique, we can
have different MCAR models with the covariance structure
(10).

Kim et al. (2001) proposed a multivariate CAR model
in the bivariate (p = 2) case, which they dub the “twofold
conditionally autoregressive” model, and which we notate as
2fCAR(α0, α1, α2, α3, τ 1, τ 2). They specify the moments of
the full conditional distributions as

E(φik |φil, φjk, φjl)

=
1

2mi + 1

(
αk

∑
j∼i

φjk + α3

√
τl
τk

∑
j∼i

φjl + α0

√
τl
τk

φil

)

and

Var(φik |φil, φjk, φjl) =
τ−1
k

2mi + 1
,

i, j = 1, . . . , n, l, k = 1, 2, l �= k,

where j ∼ i again means that region j is a neighbor of region
i. Adding the Gaussian MRF structure, they derive the joint
distribution arising from these full conditional distributions
as(

φ1
φ2

)
∼ N

((
0
0

)
,(

(2D + I − α1W )τ1 −(α0I + α3W )
√
τ1τ2

−(α0I + α3W )
√
τ1τ2 (2D + I − α2W )τ2

)−1)
,

(11)

where again φ′
1 = (φ11, . . . ,φn1), φ′

2 = (φ12, . . . ,φn2), D =
Diag(mi ), and W is the adjacency matrix. This model has the
same number of parameters in the covariance structure (six)
as the general formulation (9) in the bivariate case, so they
are related to each other. In (11), α1 and α2 are the smoothing
parameters, while α0 and α3 are the bridging parameters asso-
ciating φi1 with φi2 and φj2, j �= i, respectively. Unfortunately,
this MCAR model is only designed for the bivariate case (p =
2), and seems difficult to generalize to higher dimensions.
Also, under this approach it is hard to find conditions that
guarantee a positive definite covariance matrix in (11). The
conditions |αl| < 1, l = 0, 1, 2, 3 given by Kim et al. (2001)
are sufficient but not necessary, and may be overly restrictive
for some data sets since they restrict the correlation of φi1

with φi2 and φj2, j �= i. Finally, this generalization comes at a
significant price in terms of computing, since it requires many
matrix multiplications, determinant evaluations, and inverses
at each MCMC iteration, so can be very time-consuming even
when working on a relatively small spatial domain.
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3. A Generalized MCAR Model
As mentioned in the previous section, it is often difficult
to specify a valid joint covariance matrix for multivariate
areal data models. Most of the MCAR models described in
Section 2.2 work with the precision matrix instead of with the
covariance matrix directly, which makes for generally faster
computing but also obfuscates interpretation of the results.
To avoid this difficulty, we introduce a new approach for mul-
tivariate areal data in which we directly specify the joint

distribution for a multivariate spatial process through the
specification of simpler conditional and marginal forms.

To illustrate our approach, we again start with the case
of bivariate areal data (p = 2). We now assume the joint
distribution of φ1 and φ2 is(

φ1

φ2

)
∼ N

((
0

0

)
,

(
Σ11 Σ12

Σ′
12 Σ22

))
,

where the Σkl, k, l = 1, 2 are n × n covariance matrices. From
standard multivariate normal theory, we have E(φ1 |φ2) =
Σ12Σ

−1
22 φ2 and Var(φ1 |φ2) = Σ11·2 = Σ11 − Σ12Σ

−1
22 Σ′

12. Now
writing A = Σ12Σ

−1
22 , we can rewrite the joint distribution of

φ1 and φ2 as(
φ1

φ2

)
∼ N

((
0
0

)
,

(
Σ11·2 + AΣ22A

′ AΣ22

(AΣ22)
′ Σ22

))
. (12)

According to Harville (1997, Corollary 14.8.5), the conditions
that ensure the propriety of (12) are that Σ22 and Σ11·2 are
positive definite. Because φ1 |φ2 ∼ N(Aφ2, Σ11·2) and φ2 ∼
N(0, Σ22), we can construct p(φ) = p(φ1 |φ2)p(φ2), where
φ′ = (φ′

1, φ
′
2). To write the joint distribution of φ, thus, we

need to specify the matrices Σ11·2, Σ22, and A.
Following the univariate CAR structure described in Sec-

tion 2.1, suppose we assume that the conditional distribution
for φ1 |φ2 is φ1 |φ2 ∼ N(Aφ2,[(D − α1W ) τ 1]

−1), and the
marginal distribution of φ2 is φ2 ∼ N(0,[(D − α2W ) τ 2]

−1),
where α1 is the smoothing parameter associated with the con-
ditional distribution of φ1 |φ2, α2 is similar for the marginal
distribution of φ2, and τ 1 and τ 2 scale the precision of φ1 |φ2

and φ2, respectively. The induced joint distribution will al-
ways be proper as long as these two CAR distributions are
valid, so the positive definiteness of the covariance matrix in
(12) is easily verified. Let D = Diag(mi ) and W again be the
adjacency matrix. The positive definiteness conditions then
require only that |α1| < 1 and |α2| < 1. We typically further
restrict to 0 < α1 < 1 and 0 < α2 < 1 to avoid negative spatial
autocorrelation.

Regarding the A matrix, since E(φ1 |φ2) = Aφ2, we assume
its elements are of the form:

aij =


η0 if j = i,

η1 if j ∈ Ni (i.e., if region j is a neighbor of region i),

0 otherwise.

Thus, A = η0I + η1W and E(φ1 |φ2) = (η0I + η1 W ) φ2.
Here, η0 and η1 are the bridging parameters associating φi1

with φi2 and φj2, j �= i, respectively, similar to α0 and α3

in the twofold CAR model (11). (We could easily generalize
our model by augmenting A with another bridging parameter
η2 associated with the second-order neighbors [neighbors of
neighbors] in each region, but we do not pursue this general-
ization here.) Under these assumptions, the covariance matrix
in the joint distribution (12) becomes

(
[τ1(D − α1W )]−1 + (η0I + η1W )[τ2(D − α2W )]−1(η0I + η1W ) (η0I + η1W )[τ2(D − α2W )]−1

[τ2(D − α2W )]−1(η0I + η1W ) [τ2(D − α2W )]−1

)
. (13)

We denote this new model by GMCAR(α1, α2, η0, η1, τ 1,
τ 2). This bivariate GMCAR model has the same number of
parameters as the twofold CAR model (11), and one more
parameter than the MCAR(α1, α2, Λ) model (10).

Many MCAR models we have already encountered emerge
as special cases of our GMCAR(α1, α2, η0, η1, τ 1, τ 2) model by
making various assumptions about its six parameters. When
we have more than one α parameter, there is no direct rela-
tionship between the two models when η1 = 0, though they
both have the same number of parameters (a result that also
holds in p > 2 dimensions). However, assuming α1 = α2 =
α and using a standard result from matrix theory (Harville,
1997, Corollary 8.5.12), it is easily shown that the result-
ing GMCAR(α, η0, η1 = 0, τ 1, τ 2) model is exactly the
same as the MCAR(α, Λ) model (8). In this case, the func-
tional relationships between the parameters are that τ 1 = Λ11,
τ2 = Λ22 − Λ2

12/Λ11, and η0 = −Λ12/Λ11. Next, assuming α =
1, the GMCAR(1, η0, τ 1, τ 2) is equivalent to the MCAR(1,
Λ) model (the multivariate IAR model). If we assume α1 �=
α2 and η0 = η1 = 0, then we ignore dependence between
the multivariate components, and the model turns out to be
equivalent fitting two separate univariate CAR models. Fi-
nally, if we instead assume α1 = α2 = 0, η0 �= 0, and η1 = 0,
the model becomes an i.i.d. bivariate normal model.

The usual MCAR model (8) has E(φ1|φ2) = −Λ12/Λ11 φ2;
the conditional mean is merely a scale multiple of φ2. Be-
cause Var(φ1 |φ2) = [Λ11(D − α1W )]−1, which is free of φ2,
the distribution of the random variable at a particular site in
one field is independent of neighbor variables in another field
given the value of the related variable at the same area. The
extended MCAR model (10) has E(φ1 |φ2) = −Λ12/Λ11(D −
α1W )−1/2(D − α2W )1/2φ2, and Var(φ1 |φ2) identical to that
of model (8). Hence, the distribution of the random variable
at a particular site in one field is no longer conditionally
independent of neighbor variables in another field, but one
cannot really “model” this dependence because it is deter-
mined implicitly by α1 and α2. By contrast, our GMCAR
model has E(φ1 |φ2) = (η0I + η1W ) φ2 and Var(φ1 |φ2) =
[τ 1(D − α1W )]−1. Thus, while the conditional variance re-
mains free of φ2, the GMCAR allows spatial information (via
the W matrix) to enter the conditional mean in an intuitive
way, with a free parameter (η1) to model the weights. That is,
the GMCAR models the conditional mean of φ1 for a given
region as a sensible weighted average of the values of φ2 for
that region and a neighborhood of that region.
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As a specific example of a practical modeling benefit ob-
tainable with our GMCAR approach, suppose we wished
to include different weighted adjacency matrices in the
MCAR(α, Λ) distribution, for example, extending the pre-
cision matrix in model (8) to

Σ−1 =

((
D1 − αW (1)

)
Λ11

(
D3 − αW (3)

)
Λ12(

D3 − αW (3)
)
Λ12

(
D2 − αW (2)

)
Λ22

)
, (14)

where Dk = Diag(
∑n

j=1 W
(k)
1j , . . . ,

∑n

j=1 W
(k)
nj ) and W (k) is the

weighted adjacency matrix with ij-element W
(k)
ij , k = 1, 2,

3, and i, j = 1, . . . ,n. The conditions for this new precision
matrix being positive definite precision matrix are not at all
clear. But in our GMCAR case, we obtain

φ1 |φ2 ∼ N
((

η0I + η1W
(3)

)
φ2,

[
τ1

(
D1 − α1W

(1)
)]−1)

,

and

φ2 ∼ N
(
0,

[
τ2

(
D2 − α2W

(2)
)]−1)

.

The conditions for positive definiteness are easily shown to be
|α1| < 1 and |α2| < 1 using a diagonal dominance argument.

Because we specify the joint distribution for a multivari-
ate MRF directly through the specification of simpler condi-
tional and marginal distributions, a practical consideration is
the order of our hierarchical modeling (i.e., whether to model
p(φ1 |φ2) and then p(φ2), or p(φ2 |φ1) and then p(φ1)). In
some cases, the conditional modeling order can be determined
by a chronology or perhaps causality in events. For example,
in an analysis of multivariate pollutant data, Schmidt and
Gelfand (2003) model particulate matter as a function of me-
teorological variables (temperature and humidity), since this
is more scientifically plausible than the other way around.
Similarly, Gelfand et al. (2004) discuss the analysis of com-
mercial real estate data for which the selling price P for a
block of apartments is intuitively thought of as a function of
the income I generated by that block. A natural modeling
order is thus I, followed by P given I. In other cases, one’s
ability to understand and interpret model parameters might
depend on the order in which they are modeled. An example
of this case is the work of Royle and Berliner (1999), where
the concentration of ozone at a particular location is scien-
tifically explainable given the maximum temperature at that
location, but not the other way around. The modeling by
Zhu, Carlin, and Gelfand (2003) of areal average ozone lev-
els followed by pediatric asthma rates given these levels offers
another example.

In the absence of any natural ordering, one can always treat
the choice of order as a model selection issue, and choose
the conditioning order that produces the best fit to the data.
This is equivalent to comparing two joint model specifications.
Other authors (e.g., Berkhout and Plug, 2004) have used this
approach with success; along similar lines, Held et al. (2005)
use a latent variable approach to order cancers based on their
causal connection to the use of alcohol, tobacco, or both. In
our setting, use of the DIC for choosing among complex hi-
erarchical models seems promising; we explore this idea in
Sections 4 and 5.

One might think we could symmetrically specify the condi-
tional distributions p(φ1 |φ2) and p(φ2 |φ1) and use Brook’s

Lemma to find the joint distribution, thus avoiding the order
issue entirely. But this leads to another problem, namely how
to specify these two conditional distributions so that they are
compatible and determine a valid joint distribution. Because
positive definiteness conditions turn out to be difficult to find
from this perspective, we do not consider it further in this
article, although some thoughts for future investigation are
given in our closing Section 6.

Finally, our approach can be easily generalized to dimen-
sions p greater than 2. For example, in the trivariate case p =
3, defining φ′

1 = (φ11, . . . ,φn1), φ
′
2 = (φ12, . . . ,φn2), and φ′

3 =
(φ13, . . . ,φn3), we can specify valid conditional distributions
p(φ1 |φ2, φ3) and p(φ2 |φ3), and a valid marginal distribu-
tion p(φ3). The joint distribution of φ′ = (φ′

1, φ
′
2, φ

′
3) is writ-

ten as p(φ) = p(φ1 |φ2, φ3)p(φ2 |φ3)p(φ3), which of course
is always proper. Also, the computational burden does not
increase much with the dimension p, since it involves only
n-dimensional matrix calculations.

4. Simulation Studies
To see the advantage of our GMCAR models, we begin with
some simulation studies. They are based on the spatial layout
of the 87 counties in the state of Minnesota, a fairly typical
layout and the one used by our Section 5 data set. We assume
the data Yij arise from a Gaussian model

Yij
ind∼ N

(
βj + φij , σ

2
)
, i = 1, . . . , n, j = 1, 2, (15)

where the βj ’s are fixed constants. In Studies 1 and 2, we gen-
erate φ1 = (φ11, . . . ,φ1n)′ and φ2 = (φ21, . . . ,φ2n)′ from our
proposed GMCAR(α1, α2, η0, η1, τ 1, τ 2) model (13); specif-
ically, φ1 |φ2 ∼ N ((η0I + η1W )φ2,[τ 1(D − α1W )]−1), and
φ2 ∼ N(0,[τ 2(D − α2W )]−1), where D = Diag(mi ) and the
adjacency matrix W are based on the Minnesota county map.
The designs of Studies 1 and 2 differ only in that we set the
bridging parameter η1 = 0 in Study 2.

To compare our proposed GMCAR models with the exist-
ing MCAR models, we consider two more simulation designs.
In Study 3, we generate φ1 and φ2 from model (10), the
MCAR(α1, α2, Λ) distribution (using the Cholesky method
to obtain the Rk matrices), and in Study 4 we generate φ1

and φ2 from model (11), the 2fCAR(α0, α1, α2, α3, τ 1, τ 2).
The true values of the parameters assumed by each study are
shown in Table 1.

4.1 Bayesian Computation
Our proposed GMCAR(α1, α2, η0, η1, τ 1, τ 2) models are
straightforwardly implemented in a Bayesian framework using
MCMC methods. To improve MCMC convergence, we used
hierarchical centering (Gelfand, Sahu, and Carlin, 1995) to
reparameterize model (15) to

Yij
ind∼ N

(
Zij , σ

2
)
, i = 1, . . . , n, j = 1, 2. (16)

Because Zij = βj + φij , we still can model Zij with the
GMCAR model (13), but the mean of Zij becomes βj rather
than 0. In this case, we have the conditional distribution for
Z1 |Z2,

Z1 |Z2 ∼ N
(
β11 + (η0I + η1W )

× (Z2 − β21), [τ1(D − α1W )]−1
)
,
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Table 1
The true values of parameters in Studies 1–4

Study True model β1 β2 σ2 τ 1(Λ11) τ 2(Λ22) α1 α2 η0(α0) η1(α3) Λ12

1 GMCAR −2.0 −5.0 0.01 10 10 0.20 0.90 0.90 0.50 —
2 GMCAR −2.0 −5.0 0.01 10 10 0.20 0.90 0.90 0 —
3 MCAR −2.0 −5.0 0.01 10 15 0.20 0.90 — — 6.1
4 2fCAR −2.0 −5.0 0.01 10 10 0.20 0.90 0.90 0.50 —

and the marginal distribution Z2 ∼ N(β21,[τ 2(D −
α2W )]−1), where Z1 = (Z11, . . . ,Zn1)

′ and Z2 =
(Z12, . . . ,Zn2)

′. Thus, the joint distribution of Z′ = (Z′
1, Z′

2)
is

p(Z |β, τ ,α,η) ∝ τ
n/2
1 |D − α1W |1/2

× exp

{
−τ1

2
[Z1 − β11 − (η0I + η1W )(Z2 − β21)]′

× (D − α1W )[Z1 − β11 − (η0I + η1W )(Z2 − β21)]

}
× τ

n/2
2 |D − α2W |1/2

× exp
[
−τ2

2
(Z2 − β21)′(D − α2W )(Z2 − β21)

]
, (17)

where β = (β1, β2), τ = (τ 1, τ 2), η = (η0, η1), and α =
(α1, α2). The joint posterior distribution is

p
(
β, σ2,Z, τ ,α,η |Y1,Y2

)
∝ L

(
Y1,Y2 |Z, σ2

)
× p(Z |β, τ ,α,η)p(β)p(τ )p(α)p(η)p(σ2), (18)

where Y1 = (Y 11, . . . ,Yn1)
′ and Y2 = (Y 12, . . . ,Yn2)

′. The
first term on the right-hand side of (18) is the likeli-
hood, L(Y1,Y2 |Z, σ2) ∝ σ−2n exp{−(1/2σ2)[(Y1 − Z1)

′(Y1 −
Z1) + (Y2 − Z2)

′(Y2 − Z2)]}. The second term on the right-
hand side of (18) is (17), and the remaining terms are the prior
distributions on (β, τ , α, η, σ2). For the remaining terms, flat
priors are chosen for β1 and β2, while σ2 is assigned a vague
inverse gamma prior, that is, an IG(1, 0.1) where we param-
eterize the IG(a, b) so that E(σ2) = b/(a − 1). Next, τ 1 and
τ 2 are assigned vague gamma priors, specifically a G(1, 0.1),
which has mean 10 and variance 100. Finally, α1, α2 are given
Unif(0, 1) priors while η0 and η1 are given N(0, σ2

1) and N(0,
σ2

2) priors, respectively. For convenience we set σ1 = σ2 =
10, since in our experience there appears to be little change
in our results from using larger values.

The Gibbs sampler (Gelfand and Smith, 1990; Carlin and
Louis, 2000, Section 5.4.2) is natural for updating the pa-
rameters in this setting, since it can take advantage of the
conditional specification of the GMCAR model. Each of the
full conditional distributions required by the Gibbs sampler
must be proportional to (18). In finding and updating the full
conditionals, it is easily shown that no matrix inversion is re-
quired, and that calculations on rather special (e.g., diagonal)
n-dimensional matrices are all that are required regardless of

the dimension p (recall p = 2 in our case). To calculate the
determinant in (17), we have the fact that

|D − αkW | =
∣∣D1/2

(
1 − αkD

−1/2WD−1/2
)
D1/2

∣∣
= |D|

n∏
i=1

(1 − αkλi) ∝
n∏
i=1

(1 − αkλi), k = 1, 2,

where λi, i = 1, . . . ,n are the eigenvalues of the matrix
D−1/2WD−1/2. The λi may be calculated prior to any MCMC
iteration. Hence, posterior computation for the GMCAR
model is simpler and faster than that for existing MCAR
models, especially for large areal data sets.

All of the parameters in (18) except η and α have closed-
form full conditionals, and so may be directly updated. For
these two remaining parameters, Metropolis–Hastings steps
with bivariate Gaussian proposals are convenient (though
for α, a preliminary logit transformation, having Jacobian∏

2
k=1αk(1 − αk), is required). In practice, the αk must be

bounded away from 1 (say, by insisting 0 < αk < 0.999,
k = 1, 2) to maintain identifiability and hence computational
stability.

4.2 Simulation Results
To check the performance of our proposed GMCAR mod-
els, we simulated N = 100 data sets, and fit several differ-
ent models to each in every study. For each data set and
each model, we first ran a few initially overdispersed parallel
MCMC chains, and monitored them using measurements of
sample autocorrelations within the chains, cross-correlations
between parameters, and plots of sample traces. From these,
we decided to use 5000 iterations for the preconvergence
“burn-in” period, and then a further 15,000 iterations as
our “production” run for posterior summarization. While
our GMCAR models can be in the WinBUGS package (see
www.biostat.umn.edu/∼brad/software.html), for the pur-
pose of our simulation we prefer to rely on our own programs
written in C and executed in R (www.r-project.org) using
the .C function. Random number generation and posterior
summarization were also accomplished in R.

To choose among competing models, we turned to a simple
and intuitively appealing hierarchical modeling extension of
AIC called the deviance information criterion, or DIC. This
criterion is based on the posterior distribution of the deviance
statistic, D(θ) = −2 log f(y |θ) + 2 logh(y), where f(y |θ)
is the likelihood function for the observed data vector y given
the parameter vector θ on which we focus, and h(y) is some
standardizing function of the data alone (and which thus has
no impact on model selection). The DIC is defined analo-
gously to the AIC as the posterior expected deviance plus
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the “effective” number of parameters, i.e., DIC = D + pD.
Spiegelhalter et al. (2002) show that pD is reasonably defined
as Eθ|y[D] −D(Eθ|y[θ]) = D −D(θ̄). Because small values of

D indicate good fit while small values of pD indicate a parsi-
monious model, small values of the sum (DIC) indicate pre-
ferred models. Note DIC is scale-free (because D is), and so no
particular score has any intrinsic meaning; only the ordering
of DIC scores across models is meaningful.

To calculate DIC for our simulated data, we need to calcu-
late D(θ); note this is the same for all the models we wish to
compare since they differ only in their random effect distribu-
tions, which we do not consider to be part of the likelihood.
Setting 2 logh(y) = 0 in D(θ), we have D(θ) ≡ D(Z, σ2) =
−2 logL(Y1, Y2 |Z, σ2).

In addition to comparing the models, we also check the
AMSE performance of each. Because the true Zij values are
known in the simulation, this is estimated as

̂AMSE =
1

Nnp

N∑
t=1

p∑
j=1

n∑
i=1

(
Ẑ

(t)
ij − Zij

)2

with associated Monte Carlo standard error estimate

ŝe( ̂AMSE)

=

√√√√ 1

(Nnp)(Nnp− 1)

N∑
t=1

p∑
j=1

n∑
i=1

[(
Ẑ

(t)
ij − Zij

)2 − ̂AMSE
]2
,

where in our case we have N = 100, p = 2, and n = 87.
In Tables 2 and 3, Models 1–3 are members of the class of

proposed GMCAR(α1, α2, η0, η1, τ 1, τ 2) models under various
assumptions described in Section 3. Model 1 is a full model
with all six parameters. Model 2 is a reduced model that sets
η1 = 0 (i.e., no effect of Zj2 on E(Zi1 |Z2) for counties j �= i).
Model 3 returns to the full model, but after reversing the
conditioning order to [Z2 |Z1]. Models 4 and 5 are existing
MCAR models, namely an MCAR(α1, α2, Λ) (again using
the Cholesky method for the Rk ) and a 2fCAR(α0, α1, α2, α3,
τ 1, τ 2), respectively.

Table 2 summarizes the difference in DIC score between
each model and that study’s true model (so negative val-
ues correspond to a model “beating” the true model). In
each case, we provide 2.5, 50, and 97.5 percentiles for this
difference. In addition, Table 3 gives the estimated AMSEs
and their associated Monte Carlo standard errors for each

Table 2
Percentiles of estimated DIC difference between the true model and the other models at each simulation study.
Model 1 = GMCAR (full); Model 2 = GMCAR (reduced; η1 = 0); Model 3 = GMCAR (full, reverse order);

Model 4 = MCAR; Model 5 = 2fCAR.

Study 1 Study 2 Study 3 Study 4

Model 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

1 — — — −6.24 2.74 5.64 −15.3 −0.59 8.57 −12.1 −2.24 2.37
2 11.8 38.7 76.0 — — — −8.68 −1.89 10.5 −15.6 −3.49 1.50
3 −4.80 19.6 56.7 −11.3 −0.06 8.38 −11.9 2.32 13.0 −14.3 −2.15 3.16
4 3.56 34.9 68.8 −3.62 1.48 8.47 — — — −10.0 0.83 4.89
5 3.03 23.7 65.1 0.50 30.4 63.7 2.76 20.9 53.3 — — —

The symbol “—” indicates the model is the true model for this study.

model in each simulation study. Here, we also calcu-
late the percentage change in estimated AMSE for each
model compared to the true model in each study, that is,

�� = ( ̂AMSE� − ̂AMSEtrue)/ ̂AMSEtrue × 100 for models � =
1, . . . , 5; again negative values indicate superiority over the
true model.

Tables 2 and 3 are reasonably consistent, in that large DIC
differences generally correspond to large AMSEs. In Study 1,
the true GMCAR(α1, α2, η0, η1, τ 1, τ 2) full model easily beats
the other models, and DIC and AMSE also reveal the correct
conditioning order, since Model 3 finishes well behind Model 1
in this study using either metric. In other studies, however,
the conditioning order seems not to matter (i.e., Models 1 and
3 are quite close). This makes sense, since the true linking pa-
rameter η1 is not significantly different from 0 in these studies
(α3 = 0.5 �= 0 in Study 4, but this corresponds to an η1 value
only around 0.1–0.2).

In Studies 3 and 4, GMCAR Models 1 and 2 actually per-
form as well as the true models in terms of both median DIC
difference and AMSE. This suggests the GMCAR is able to
pick up small departures of our data from existing MCAR
models, and do so efficiently. Note also that the twofold CAR
model seems to do poorly throughout, finishing in no bet-
ter than a statistical “tie” with the three GMCAR models in
both tables even when it is the true model (Study 4). The full
GMCAR Model 1 is competitive in all four studies, suggesting
good performance with little risk of overfitting.

5. Data Example
We now turn from the Gaussian simulation studies of
Section 4 to an example that features non-Gaussian data.
The data consist of the numbers of deaths due to cancers
of the lung and esophagus in the years from 1991 to 1998
at the county level in Minnesota. These diseases are rare
enough relative to the population in each county that a Pois-
son spatial regression model (see, e.g., Banerjee et al., 2004,
Section 5.4) is appropriate. We write the model as

Yij
ind∼ Poisson

(
Eije

Zij
)
, i = 1, . . . , 87, j = 1, 2, (19)

where Yij is the observed number of deaths due to cancer

j in county i, and Eij is the corresponding expected num-
ber of deaths (assumed known). To calculate Eij , we have to
take each county’s age distribution into account. To do so, we
calculate the expected age-adjusted number of deaths due to
cancer j in county i as
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Table 3
Average mean squared error (AMSE, ×10−3), associated Monte Carlo standard errors (SE, ×10−5),

and percentage change in AMSE (�, %) relative to the true model in each simulation study

Study 1 Study 2 Study 3 Study 4

Model AMSE (SE) � AMSE (SE) � AMSE (SE) � AMSE (SE) �
1 7.51 (8.26) — 7.91 (8.57) 1.54 8.49 (9.20) −3.08 5.46 (5.92) −7.92
2 10.2 (11.3) 35.8 7.79 (8.45) — 8.46 (9.17) −3.42 5.41 (5.86) −8.77
3 8.17 (8.91) 8.79 7.70 (8.44) −1.16 8.81 (9.67) 0.571 5.44 (5.87) −8.26
4 9.22 (10.1) 22.8 7.82 (8.50) 0.385 8.76 (9.55) — 5.85 (6.34) −1.35
5 8.22 (8.80) 9.45 9.86 (10.9) 26.6 11.2 (12.3) 27.8 5.93 (6.44) —

The symbol “—” indicates the model is the true model for this study.

Eij =

m∑
k=1

ωk
jN

k
i , i = 1, . . . , 87, j = 1, 2,

where ωk
j = (

∑87
i=1 D

k
ij)/(

∑87
i=1 N

k
i ) is the age-specific death

rate due to cancer j for age group k over all Minnesota coun-
ties, D k

ij is the number of deaths in age group k of county i due
to cancer j, and Nk

i is the total population at risk in county
i, age group k.

The county-level maps of the age-adjusted standardized
mortality ratios (SMRs) (i.e., SMRij = Yij/Eij ) shown in
Figure 1 exhibit the evidence of correlation both across space
and between cancers, motivating use of our proposed GMCAR
models. Regarding the selection of the proper order in which
to model the two cancers, Figure 2 gives a helpful data-
based exploratory plot. We first obtain crude data-based esti-
mates of the spatial random effects as φ̂i1 = log(SMRi1) and
φ̂i2 = log(SMRi2). Next, recall the linearity of the conditional
GMCAR mean for a given ordering (say, lung given esopha-
gus), that is,

E(φ1 |φ2) = Aφ2 = A(η0, η1)φ2 = (η0I + η1W )φ2.

This motivates obtaining least-squares estimates η̂0 and η̂1

by minimizing (φ̂1 −A(η0, η1)φ̂2)
′(φ̂1 −A(η0, η1)φ̂2) as a func-

tion of η0 and η1. Finally, we plot A(η̂0, η̂1)φ̂2 versus φ̂1, and
investigate how well the linearity assumption is supported by

Figure 1. Maps of age-adjusted SMR for lung and esophagus cancer in Minnesota.

the data. Repeating this entire process for the reverse order
(here, esophagus given lung) produces a second plot, which
may be compared in quality to the first. In our case, Figure 2a
(lung given esophagus) indicates more support for linearity,
both in its appearance and in its higher sample correlation
and regression t-statistic.

Using likelihood (19), we model the random effects Zij in
the same way as in Section 4 using the GMCAR(α1, α2, η0,
η1, τ 1, τ 2) with mean β. In what follows we compare the
GMCAR with other existing MCAR models using DIC. In
Table 4, Models 1–3 are members of our proposed GMCAR
class paralleling those in Section 4. Specifically, in Model 1, we
have the full model with all six parameters, and the condition-
ing order of the cancers is [lung | esophagus]. Model 2 assumes
η1 = 0 and uses the same conditioning order as Model 1. In
Model 3, we switch the conditioning order to [esophagus |
lung] and return to a full model. To compare the GMCAR to
existing MCAR models, we take the MCAR(α1, α2, Λ) using
the Cholesky method for the Rk as Model 4, the same model
but using the spectral method for the Rk as Model 5, and
the 2fCAR(α0, α1, α2, α3, τ 1, τ 2) as Model 6. We choose the
same prior distributions for each parameter as in Section 4,
and use Metropolis–Hastings and Gibbs sampling to update
all parameters. We use 5000 iterations as the preconvergence
burn-in period, and then a further 20,000 iterations as our
production run for posterior summarization.
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Figure 2. Exploratory plot to help select modeling order: (a) [lung | esophagus], sample correlation 0.394, regression t =
3.956; (b) [esophagus | lung], sample correlation 0.193, regression t = 1.813.

Fit measures D, effective numbers of parameters pD , and
DIC scores for each model are seen in Table 4. Model 1 has the
smallest pD and DIC values, so our GMCAR(α1, α2, η0, η1,
τ 1, τ 2) full model with the conditioning order [lung | esopha-
gus] emerges as best for this data set. The reduced GMCAR
Model 2 does less well, suggesting the need to account for
bivariate spatial structure in these data. The two MCAR
methods perform similarly to each other and to the reduced
GMCAR model, while the 2fCAR model does less well, largely
because it does not seem to allow sufficient smoothing of the
random effects (larger pD score). Note that effective degrees of
freedom may actually be smaller for apparently more complex
models that allow more complicated forms of shrinkage, such
as Model 1 in this case. We note that our “focus” parameter is
the same for each model (both fixed and random effects are in
focus), and the Poisson likelihood is also not changing across
models. Also, our priors are all noninformative or quite vague
(e.g., uniform priors for all α parameters). All of this suggests
the DIC comparison in Table 4 is fair across models. More-
over, the resulting DIC scores were robust to the moderate
changes in the prior distributions.

Regarding estimation of the fixed effects, under Model 1 we
obtained point and 95% equal-tail interval estimates of 0.602
and (0.0267, 0.979) for α1, and 0.699 and (0.0802, 0.973) for
α2. Recall these are spatial association parameters, but while

Table 4
Model comparison using DIC statistics,

Minnesota cancer data analysis

Model D pD DIC

1 GMCAR (full) 483.4 58.2 541.6
2 GMCAR (reduced; η1 = 0) 483.0 63.8 546.8
3 GMCAR (full, reverse order) 480.6 63.3 543.9
4 MCAR (Cholesky decomposition) 483.6 61.3 544.9
5 MCAR (spectral decomposition) 483.8 60.6 544.4
6 2fCAR 482.6 65.1 547.7

their values are between 0 and 1 they are not “correlations” in
the usual sense; the moderate point estimates and wide con-
fidence intervals suggest a relatively modest degree of spatial
association in the random effects. It is also important to re-
member that in this setup, α2 measures spatial association in
the esophagus random effects φ2, while α1 measures spatial
association in the lung random effects φ1 given the esophagus
random effects φ2. Thus, the interpretation of the αk would
be different for Model 3 (due to the different conditioning
order), and much different for Models 4 or 5. Note that for
the MCAR model, E(φ1 |φ2) and E(φ2 |φ1) both depend on
both α1 and α2. But for the GMCAR, E(φ1 |φ2) is free of both
α1 and α2, while of course E(φ2) = 0. Thus, for this model,
α1 and α2 unambiguously control only their corresponding
variance matrices, and can be set without altering the mean
structure.

Turning to τ 1 and τ 2, under Model 1 we obtained 32.65,
(16.98, 66.71) and 13.73, (4.73, 38.05) as our point and inter-
val estimates, respectively. Because these parameters measure
spatial precision for each disease, they suggest slightly more
variability in the esophagus random effects, although again
comparison is difficult here since τ 2 is a marginal precision for
φ2 while τ 1 is a conditional precision for φ1 given φ2. Along
these lines, Figure 3 shows estimated posteriors of the condi-
tional variances σ2

1 = 1/τ 1 for several candidate multivariate
spatial models. Figure 3a shows the situation for two separate
CAR models, a model that ignores any possibility of connec-
tion between the cancers. The remaining panels consider the
MCAR(α1, α2, Λ) model, the reduced GMCAR(α1, α2, η0,
τ 1, τ 2) model, and the full GMCAR(α1, α2, η0, η1, τ 1, τ 2)
model. The reduction of uncertainty in φ1 given φ2 in these
more complex models is a measure of the information con-
tent between the cancers, and is readily apparent from the
histograms and their empirical means.

DIC’s slight preference for Model 1 is consistent with the es-
timated posteriors of the linking parameters η0 and η1 shown
in Figure 4. The inclusion of 0 within the 95% credible in-
terval for η1 under the reverse ordering, but not under the
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(a )  two separate CARs; mean=0.0511  
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(b)  MCAR; mean=0.0368
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(c) reduced GMCAR; mean=0.0402  
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(d)  full GMCAR; mean=0.0323

Figure 3. Posterior samples of conditional variances σ2
1 = 1/τ 1 for various models: (a) two separate CAR models; (b) MCAR

model; (c) reduced GMCAR model; and (d) full GMCAR model.
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Figure 4. Posterior samples of η0 and η1 using the full GMCAR model with two conditioning orders: (a) estimated posterior
for η0, [lung | esophagus]; (b) estimated posterior for η1, [lung | esophagus]; (c) estimated posterior for η0, [esophagus | lung];
and (d) estimated posterior for η1, [esophagus | lung].
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Figure 5. Maps of posterior mean SMR for lung and esophagus cancer in Minnesota from the full GMCAR model with
conditioning order [lung | esophagus].

natural ordering, is yet further evidence against the former.
Note also that the linking parameters η0 and η1 have mostly
positive support, meaning that the two cancers have positive
spatial correlation. This is also evident from the maps of the
posterior means of the SMRs for the two cancers under the
full model shown in Figure 5. Clearly, incidence of the two
cancers is strongly correlated, with higher fitted ratios ex-
tending from the Twin Cities metro area (eastern side, about
one third of the way up) to the mining- and tourism-oriented
north and northeast, regions where conventional wisdom sug-
gests cigarette smoking may be more common.

6. Summary and Future Research
In this article, we have introduced a flexible class of general-
ized multivariate CAR (GMCAR) models for complex areal
data. We have shown that our generalized framework includes
most existing multivariate CAR models as special cases, yet
can still be efficiently computed using MCMC algorithms. Our
simulations and data examples demonstrate the GMCAR’s ef-
ficiency as well as its improved performance over the existing
alternatives using average MSE and DIC score.

While our Section 5 example considered only disease rates,
GMCAR models can also be used with time-to-event data
to investigate geographical patterns in the hazard function.
For example, each patient in a study may provide multiple
survival times from the onset of each of several cancers along
with his or her county of residence. Specifically, suppose the
jth patient in the ith region has been diagnosed with a set of
cancers Cij , and let tijk denote the survival time for the (i, j)th
individual from diagnosis of the kth type of cancer (k ∈ Cij ).
Then, an appropriate Cox proportional hazards model might
be

h(tijk ) = h0(tijk ) exp
(
xT

ijkβ + u(i,j) + vk + φik

)
,

where the u(i,j ) and vk are patient- and cancer-specific effects,
while the φik are spatially correlated frailties for the kth can-
cer type occurring in the ith county. These frailties are usu-
ally weakly identified by the data, so that modeling them in
a flexible yet computationally efficient manner is crucial. In

particular, the φik capture space-cancer interactions can be
flexibly and efficiently modeled with our GMCAR class, ex-
tending work by Carlin and Banerjee (2003) in the case of a
single survival time that can be attributable to one of several
diseases.

Finally, we note that most of the multivariate CAR mod-
eling proceeds from conditional specifications. As mentioned
near the end of Section 3, concerns arise over the ordering
of the variables in the hierarchical approach. In particular,
usual techniques of using full conditionals to identify joint
distributions encounter difficult issues with regard to propri-
ety and this is exacerbated when one deals with several vari-
ables p > 2. A joint modeling approach, though perhaps com-
putationally more demanding, can lead to more flexible classes
of models. One such approach builds rich spatial structures
from linear transformations of simpler latent variables. For in-
stance, we can develop alternate GMCAR-type models using
φ = Tψ, where T is a suitably specified square matrix. Note
that by modeling the joint distribution, the incompatibility of
conditional model building (i.e., different joint distributions
for different orderings) is avoided. However, the issue of the
identifiability of T crops up, and further parameterization is
needed.

One such parameterization that leads to order-free speci-
fications can be developed by first considering proper spatial
p-variate Gaussian random variables:

ψ ∼ N
(
0, (Ip×p ⊗D −B ⊗W )−1

)
,

where B is a p × p matrix of parameters that ensures the
invertibility of the dispersion matrix. We can further consider
the linear transformation φ = (A ⊗ In×n)ψ, where A is also
p × p, leading to

φ ∼ N
(
0, (A⊗ In×n)(Ip×p ⊗D −B ⊗W )−1

(
AT ⊗ In×n

))
.

A crucial fact is that, by restricting A to be a triangular ma-
trix, the elements in A and B can be uniquely identified for
dispersion matrices of the form given in (9). Also, the dis-
tribution of φ is invariant over choice of an upper- or lower-
triangular A (up to a reparameterization of B). However, the
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implementation of these models can be prohibitive, particu-
larly involving the elements of B that ensure propriety of φ.
This is currently being investigated.
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