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ABSTRACT
WiFi networks have enjoyed an unprecedent penetration
rate in recent years. However, due to the limited cover-
age, existing WiFi infrastructure only provides intermittent
connectivity for mobile users. Once leaving the current net-
work coverage, WiFi clients must actively discover new WiFi
access points (APs), which wastes the precious energy of
mobile devices. Although several solutions have been pro-
posed to address this issue, they either require significant
modifications to existing network infrastructures or rely on
context information that is not available in unknown envi-
ronments. In this work, we develop a system called ZiFi
that utilizes ZigBee radios to identify the existence of WiFi
networks through unique interference signatures generated
by WiFi beacons. We develop a new digital signal process-
ing algorithm called Common Multiple Folding (CMF) that
accurately amplifies periodic beacons in WiFi interference
signals. ZiFi also adopts a constant false alarm rate (CFAR)
detector that can minimize the false negative (FN) rate of
WiFi beacon detection while satisfying the user-specified up-
per bound on false positive (FP) rate. We have implemented
ZiFi on two platforms, a Linux netbook integrating a TelosB
mote through the USB interface, and a Nokia N73 smart-
phone integrating a ZigBee card through the miniSD inter-
face. Our experiments show that, under typical settings,
ZiFi can detect WiFi APs with high accuracy (< 5% total
FP and FN rate), short delay (∼ 780 ms), and little compu-
tation overhead.
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1. INTRODUCTION
In recent years, 802.11-based wireless LANs, also known

as WiFi networks, have enjoyed an unprecedent penetration
rate. In particular, they are increasing deployed to provide
Internet access in mobile environments. However, due to the
limited coverage, existing WiFi infrastructure is only capa-
ble of providing intermittent connectivity for the users with
high mobility. WiFi-enabled devices (e.g., laptops, PDAs,
and smartphones) must actively discover new WiFi access
points (APs) once they leave the coverage of current net-
work. However, this approach wastes the precious energy
of mobile devices due to excessive listening and scanning
operations of WiFi network interface cards (NICs).

Several solutions have been proposed to address the afore-
mentioned issue. The first approach utilizes a secondary low-
power radio that communicates with peer radios on WiFi
APs to find connectivity opportunities or reduce the energy
consumption of data transfers [24] [25] [12] [11] [20] [17] [15].
However, this approach requires significant modifications to
existing network infrastructures. The second approach pre-
dicts the availability of WiFi based on context information.
Cellular cell-tower information [13] or together with Blue-
tooth contact-patterns [22] have been used to improve WiFi
prediction accuracy. However, such a context-aware ap-
proach requires extensive training based on historical infor-
mation and hence is not feasible in unknown environments.

In this work, we develop a system called ZiFi for discover-
ing the availability of WiFi coverage for mobile users. The
design of ZiFi is motivated by the fact that low-power radios
such as ZigBee and Bluetooth often not only physically col-
locate with WiFi NICs but also share the same open radio
frequency band with them. Leveraging the inter-platform
interference caused by such coexistence, ZiFi enables ZigBee
radios to identify the unique interference signatures gener-
ated by WiFi signals. As a result, a mobile device can use
a ZigBee radio to detect the existence of WiFi APs in a
purely passive manner, and only wakes up the WiFi NIC
when WiFi connectivity is available. To capture WiFi inter-
ference signatures, ZiFi utilizes the received signal strength
(RSS) indicator available on ZigBee-compliant radios. How-
ever, we observed that the statistics of WiFi RSS samples,
such as power magnitude, time duration, and inter-arrival
gap, exhibit surprising resemblance with those of other RF
sources, and hence provide little hint about the existence of



WiFi. Motivated by this observation, ZiFi is designed to
search for 802.11 beacon frames in RSS samples. Periodic
beacon broadcasting is mandatory in WiFi infrastructure
networks and hence provides a reliable means to indicate
WiFi coverage. However, beacons are extremely scarce in
normal WiFi traffic as hundreds of data frames are likely
transmitted between two beacon instances. Without being
able to decode incoming signals, finding beacon frames in
RSS samples is like finding a needle in a haystack. To ad-
dress this challenge, ZiFi adopts novel digital signal pro-
cessing (DSP) and stochastic signal detection techniques to
reliably identify the periodic interference patterns caused by
WiFi beacon frames.

We envision the approach of ZiFi to be increasingly feasi-
ble as more mobile devices are equipped with both low-power
and high-power NICs that work in the same open radio spec-
trum. For instance, numerous ZigBee modules [10] have
USB interface and hence can be easily connected to WiFi-
enabled laptops. Several cell phone vendors (e.g., Nokia
and Pantech & Curitel) also provide smartphones [7] with
built-in ZigBee interface or ZigBee modules [29] that can be
connected to smartphones (e.g., through miniSD interface).
ZiFi can also be easily implemented on other platforms (e.g.,
some Bluetooth radios [1] [8]) that offer the RSS sampling
interface. We make the following key contributions in this
paper.

1. We develop a novel DSP algorithm called Common
Multiple Folding (CMF) that amplifies unknown pe-
riodic signals in RSS samples. A key advantage of
CMF is that it can minimize the computational cost
of processing unknown signals whose possible periods
lie in a wide range. We then develop a constant false
alarm rate (CFAR) detector that can minimize the
false negative (FN) rate of classifying periodic signals
as 802.11 beacons while satisfying the user-specified
upper bound on false positive (FP) rate.

2. We present an analytical framework that characterizes
the detection performance of ZiFi by the FN and FP
rates. Our results not only guide the selection of opti-
mal detection thresholds for beacon detector but also
allow to predict the opportunities of WiFi coverage
based on empirically measured channel parameters.

3. We have implemented ZiFi on two platforms, a Linux
netbook integrating a TelosB mote through the USB
interface, and a Nokia N73 smartphone [29] integrat-
ing a ZigBee card through the miniSD interface. Our
extensive experiments on a testbed consisting of wire-
less routers, netbooks, smartphones, and TelosB motes
show that, under typical settings, ZiFi can detect WiFi
APs with high accuracy (< 5% total FP and FN rate),
short delay (∼ 780 ms), and little computation over-
head.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the system archi-
tecture of ZiFi. Section 4 and Section 5 present the design
of ZiFi and the framework for detection performance analy-
sis. Section 6 presents the experimental results and Section
7 concludes the paper.

2. RELATED WORK
The idea of waking up high-power radio using a secondary

low-power radio was first proposed in Wake-on-Wireless [24].

Several recent systems including On-Demand-Paging [12],
Cell2notify [11], and CoolSpots [20], also propose to use a
secondary radio to either help detect WiFi signal or reduce
the energy consumption of WiFi data transfers. Wake-on-
WLAN [17], S-WOW [18], and Esense [15] allow ZigBee and
WiFi radios to communicate through sensing specially de-
signed codes. However, the above solutions suffer from at
least one of the following issues. (1) They assume a “co-
operative” setting where substantial software and/or hard-
ware modifications to existing network infrastructures can
be made, which hinders their wide deployment. Esense [15]
requires WiFi APs to transmit special codes not defined in
802.11 standard to communicate with the ZigBee radio on
WiFi clients. In Cell2notify [11], VoIP servers are modified
to notify clients of incoming VoIP calls on cellular inter-
face and carry out the calls on WiFi interface. Wake-on-
Wireless [24] uses a proxy server to receive incoming In-
ternet traffic on WiFi interface and wake up WiFi client
on the low-power interface. CoolSpots [20] selects most
power-efficient interface for communication when both APs
and clients are equipped with dual Bluetooth/WiFi inter-
faces. (2) As the secondary low-power radio has significantly
shorter communication range, the existing solutions often
rely on additional proxy servers to achieve satisfactory net-
work discovery range. In contrast to these solutions, ZiFi
completely relies on the ZigBee interface on WiFi clients to
detect the existence of WiFi APs and requires no modifica-
tion to WLAN infrastructure. Moreover, ZiFi detects WiFi
signal by passively sensing its energy, which ensures a similar
detection range as WiFi interface.

There exist several portable USB-based spectrum analyz-
ers [6] that are designed to be used with mobile devices for
scanning spectrum usage in 2.4 GHz band. As they all pro-
vide RSS sampling interface, ZiFi can be easily implemented
without requiring a secondary ZigBee radio. Moreover, they
often provide desirable features such as high-resolution and
enhanced amplitude range which would potentially improve
the accuracy of ZiFi. There also exist portable spectrum
scanners [5], often referred to as WiFi detectors, which are
specially designed to find WiFi signal. They usually work in
standalone mode but may also be modified to wake up WiFi
NICs on mobile devices [25]. Unlike ZiFi that only detects
the existence of APs, WiFi detectors often provide more in-
formation about of APs, e.g., SSIDs and security settings.
However, these features require the use of 802.11 radios and
hence come with high power consumption. Moreover, as spe-
cialized hardware, they have not gained popularity in WiFi
community.

In [19], BreadCrumbs is proposed to build the mobility
model of a mobile device by tracking its movement from GPS
and use the model to predict the connectivity opportunities.
Cellular cell-tower information or together with Bluetooth
contact-patterns have been used in [13] [22] to predict the
existence of WiFi. A key drawback of these context-aware
approaches is that they rely on historical information and
hence cannot be applied to unknown environments. More-
over, they often require extensive offline training in order
to achieve satisfactory runtime prediction accuracy. In con-
trast, ZiFi detects WiFi coverage by in-situ processing of sig-
nals transmitted by APs, which does not need offline train-
ing or collection of context information.



3. SYSTEM ARCHITECTURE
ZiFi is designed for two different types of platforms to

discover WiFi APs: the platforms (e.g., smartphones) that
have both built-in ZigBee and WiFi interfaces, and the plat-
forms that can connect a WiFi node with an external Zig-
Bee node. Fig. 1 shows two platforms of the second type on
which ZiFi has been implemented. Fig. 1 (a) is a Nokia N73
mobile phone that integrates a ZigBee module through the
miniSD interface. Fig. 1 (b) is an ASUS Linux netbook that
connects a TelosB mote (equipped with a ZigBee-compliant
CC2420 radio [21]) through the USB interface.

Figure 1: Two different platforms on which ZiFi has

been implemented. (a) is a Nokia N73 mobile phone and

a ZigBee card integrated via the miniSD interface. The

top of figure shows front and back views of the ZigBee

module and its main components. (b) is an ASUS net-

book and TelosB mote integrated via the USB interface.

Fig. 2 shows the system architecture of ZiFi. The RSS
sampler reads the built-in received signal strength indicator
(RSSI) register of ZigBee radio at a designated frequency.
The RSS samples are then processed by a RSS shaper that
adjusts the RSS values to mitigate noise (e.g., the data
frames) in the beacon detection. The shaped RSS sam-
ples are then processed by the Common Multiple Folding
(CMF) algorithm. CMF is a digital signal processing al-
gorithm that amplifies the periodic signals in RSS samples.
A key advantage of CMF is that it can minimize the cost
of amplifying unknown signals whose possible periods lie in
a wide range. The amplified RSS samples are fed into a
constant false alarm rate (CFAR) [27] beacon detector that
classifies a periodic signal as genuine WiFi beacons if its am-
plitude exceeds a threshold. By adopting a theoretically de-
rived threshold, the beacon detector can minimize the false
negative (FN) rate while satisfying the user-specified upper
bound on false positive (FP) rate. Finally, if WiFi beacons
are detected, the radio controller turns on the WiFi NIC.
In this paper, we also present an analytical framework that
models the FN and FP rates of beacon detection based on
the utilization ratio of wireless channel. The utilization ratio
is measured from RSS samples by the channel profiler. The
analytical FN and FP models guide the selection of optimal
detection thresholds for ZiFi’s beacon detector.

As discussed above, ZiFi utilizes energy sensing through
the RSSI of ZigBee radio to detect the existence of WiFi
APs. ZiFi can be easily implemented on other radio plat-
forms that provide the RSSI interface. For instance, a few
existing Bluetooth radios [1] [8] provide RSSI although it is
not a mandatory feature in Bluetooth standard.

RSS sampler

RSSI register

RSS shaper Common Multiple Folding (CMF)

WiFi beacon 
detector

radio 
controller

ZigBee transceiver WiFi transceiver

channel 
profiler

Figure 2: System architecture of ZiFi.

4. DESIGN OF ZI-FI

4.1 Background on 802.11 and 802.15.4
ZiFi is designed for unlicensed 2.4 GHz ISM band that has

been adopted by most 802.15.4 and 802.11 networks. When
operating in the same or adjacent frequencies, 802.11 and
802.15.4 radios can interfere with each other. In particular,
only 4 among total 16 channels of 802.15.4 are orthogonal
with the channels of 802.11. Moreover, several commodity
802.15.4 radios (e.g., CC2420 [2]) have programmable chan-
nel center frequencies within the 2.4 GHz band. Thus, there
is abundant opportunities for 802.15.4 radios to sense the ex-
istence of 802.11 transmissions. A received signal strength
indication (RSSI) register is typically provided by commod-
ity 802.15.4 radios, which samples the channel every 32 us
and the value (dBm) is averaged for 8 symbols (128 us).
The minimum sensitivity of RSSI is above -85 dBm. ZiFi
senses 802.11 transmissions by sampling the RSSI register of
802.15.4 radio, and searches for periodic beacon signals in
the RSSI samples. Periodic beacon broadcasting is manda-
tory in 802.11 infrastructure networks. The typical length of
beacon frame ranges from 80 to 200 bytes depending on the
amount of management information (e.g., supported rates
and security settings) it carries.
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Figure 3: The RSS samples collected by a CC2420 radio

when a nearby 802.11 AP actively transmits. The RSS

samples of 802.11 beacons are labeled.

4.2 Exploring the Design Space
ZiFi is designed to discover WiFi APs in a variety of sce-

narios including mobile and delay tolerant networks. The
design objectives of ZiFi include the following: 1) High ac-
curacy. We characterize the accuracy of AP detection using
false positive (FP) and false negative (FN) rates. In par-
ticular, FPs falsely trigger the wake-up of NICs leading to
energy waste while FNs mean the misses of opportunities of
WiFi connectivity. 2) Low delay. This is of particular im-
portance for mobile environments. For instance, recent war
driving experiments in Boston metropolitan area [14] showed
that the median duration of WiFi connectivity at vehicular
speeds is only 13 seconds. Fast WiFi discovery is thus re-
quired to utilize such short connectivity windows. 3) Low
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Figure 4: The CDFs of frame sizes and inter-arrival gaps

of WiFi and ZigBee traffic. The WiFi trace is collected

from an 802.11b WLAN consisting of 3 APs and 8 mobile

clients while the ZigBee trace is collected from a 10-node

sensor network testbed in our lab.

overhead. Due to the resource constraints of mobile devices,
the computation and memory overhead in WiFi discovery
must be small.

The design of ZiFi leverages on the fact that, when 802.15.4
radio operates on the same or adjacent channels as 802.11
APs, the signals from 802.11 APs can be sensed through
RSSI. Fig. 3 shows the time series of RSS samples gath-
ered from a TelosB mote equipped with ZigBee-compliant
CC2420 radio when a nearby 802.11 AP actively transmits.
However, as ZigBee radios cannot directly decode 802.11
frames, RSS statistics provide little information about the
nature and source of incoming signals. ZiFi addresses this
challenge by searching for unique interference signatures in
RSS samples.

We now discuss several possible approaches to detecting
WiFi signals from RSS samples. First, one can explore the
statistics of RSS samples, such as power magnitude, time
duration, and inter-arrival gap, to find distinctive features
of WiFi traffic. However, these features vary significantly
with environments, version of 802.11, and application traf-
fic. Moreover, they may well resemble the interference from
other RF sources such as ZigBee nodes or Bluetooth nodes
transmitting on overlapping channels. Fig. 4 shows the cu-
mulative distribution of frame sizes and inter-arrival gaps
of two WiFi and ZigBee traffic traces. The surprising re-
semblance between these two traces make it challenging to
reliably detect the existence of WiFi networks.

Instead of relying on statistical traffic analysis, ZiFi searches
for 802.11 beacon signals from RSS samples. Several proper-
ties of 802.11 beacons make them ideal for detection. First,
they are broadcast periodically by APs and hence lead to pe-
riodic traces in RSS samples. Second, beacons are typically
broadcast at the lowest modulation rate, which makes it eas-
ier to capture by the RSSI register of low-rate ZigBee radios.
However, a key challenge is that, hundreds of data frames
are typically transmitted between two beacon frames, caus-
ing heavy noise in RSS samples. Moreover, the RSS time du-
ration provides little hint as there is a large overlap between
the in-air times of data and beacon frames. As RSS sam-
ples are time domain digital signals, several signal process-
ing techniques such as Fast Fourier Transformation (FFT)
and Autocorrelation, can be used to detect periodic patterns
from noisy measurement. However, our experimental results
in Section 6 show that their performance are highly sensitive
to the intensity of noise, making them ill-suited for identify-
ing beacons in moderate to high traffic workload. Moreover,
both of them impose high computation overhead for mobile
devices like smartphones. ZiFi adopts a novel digital sig-
nal processing algorithm called Common Multiple Folding

(CMF) that can reliably identify periodic WiFi beacons at
small delay and overhead. In the following, we discuss the
details of the design of ZiFi.

4.3 RSS Sampling and Shaping
The RSS sampler of ZiFi reads the RSSI register of Zig-

Bee radio every T us for total D us. T and D are referred
to as RSS sampling period and sampling window size, re-
spectively. The sampling period should be short enough to
capture the transmission of 802.11 beacon frames. However,
a short sampling period leads to high overhead for resource-
constrained ZigBee nodes. We have carefully analyzed the
formats and transmission rates of beacons defined by differ-
ent 802.11 versions, and determined that a sampling period
of 122 us allows to capture at least two RSS samples for each
beacon frame transmission. The details of our analysis are
omitted due to space limitation and can be found in [30]. In
our implementation on TelosB motes, 122 us take 4 ticks of
the on-board clock.

After enough RSS samples are collected, the RSS shaper
adjusts the power magnitude of them to mitigate the noise
in the following beacon detection stage. The shaper ap-
plies the following two criteria to RSS samples in order: 1)
The magnitude of an RSS sample is set to zero if it is be-
low -90 dBm because, even if the sample contains beacon,
a low RSS indicates poor signal quality from the AP and
low probability of successful client association. 2) The mag-
nitude of all remaining RSS samples are set to 1 dBm. 3)
The magnitude of S consecutive non-zero samples will be
set to zero if S /∈ [s1, s2]. A cluster of such samples is typi-
cally generated by WiFi data traffic. We now discuss how to
determine s1 and s2 based on beacon size and 802.11 trans-
mission rates. The 802.11 beacon frame has a size between
80 and 200 bytes. When possible 802.11 transmission rates
are considered, the in-air time of a beacon frame is from
256 to 1720 us [30], which corresponds to an RSS sample
count in [ 256

T
, 1720

T
], where T is the RSS sampling period.

Therefore, a number of consecutive samples can be removed
if the count lies outside this range. After the above three
steps, the magnitude of RSS samples is either 0 or 1 and
the number of consecutive non-zero RSS samples is within
[ 256

T
, 1720

T
].

4.4 Common Multiple Folding Algorithm
We have developed a novel digital signal processing al-

gorithm called Common Multiple Folding (CMF) that can
identify periodic signals from an RSS series. CMF has sev-
eral key advantages including high accuracy and low com-
putation/memory overhead. CMF is based on a technique
called folding that was first used to search pulsar in the ra-
dio noise received by a large radio telescope [23,26]. We first
briefly describe the basic idea of folding and then discuss the
details of CMF.

4.4.1 Basic Idea of Folding
Suppose R represents the time series of N RSS samples

and R[i] (i ∈ [1, N ]) is the RSS magnitude in the ith sam-
pling instance. The objective of folding is to search for a
periodic signal with period of P . The series is first divided
into smaller sequences with length of P at different start-
ing points (e.g., phases). For each folding operation, the
sequences are added together in an element-wise fashion. If
the phase of folding happens to align with that of the peri-



odic signal, the magnitude of the sum will be amplified at
a period of P while the sum of noise in the series is likely
smaller due to their non-periodicity. The sum of folding
consists of P elements of R:

FP [i] =

�N/P�−1∑
j=0

R[i + j · P ] (1)

FP [i] is referred to as the ith folding result and the maxi-
mum is referred to as the folding peak of period P . It can
be seen that the folding operation requires N − P number
of additions. When P is unknown, folding can be performed
for each possible period and the maximum folding and P
can then be found as the period that yields the maximum
folding result. In [26], the fast folding algorithm (FFA) was
developed to implement the above approach while reduc-
ing the redundant additions in the folding of different pe-
riods. However, FFA is mainly designed for searching for
non-integer periods between P0 and P0 + 1 and it requires
the ratio N/P0 to be power of 2. The number of additions
required by FFA is Nlog2(N/P0).

4.4.2 Common Multiple Folding
A key challenge of searching for WiFi beacons from an

RSS series is that the period(s) of beacons is not only un-
known but also has a wide range. For instance, the LinkSys
WRT54G2 wireless router allows to set any beacon period
between 20.48 and 5120 ms at a step of 1.024 ms although
the default setting is 102.4 ms. In practical scenarios, the
beacon period is typically around 100 ∼ 200 ms, which
still lends to tens of possible beacon settings. As a re-
sult, applying folding iteratively for this range incurs high
complexity. In particular, the complexity of FFA would be
O(|P| · N · lg(N)), where P is the set of possible beacon pe-
riods. As discussed in Section 4.3, N could be large due to
the high RSS sampling rate required to capture a beacon
transmission.
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Figure 5: The folding operations for period 12 and 6.
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We now present a novel algorithm called Common Multi-
ple Folding (CMF) that can minimize the total number of
additions required to fold on multiple periods. The com-
plexity of CMF is O(lg |P| · lcm(P) + N) where lcm(P) is
the least common multiple (LCM) of the numbers in P. The
design of CMF is based on the observation that the folding
result of period P can be efficiently computed from that of

period Q if Q is an integer multiple of P , i.e., Q mod P = 0.
Formally, given folding result FQ, only Q− P additions are
needed to obtain FP . In comparison, total N −P additions
are needed to compute FP directly from original N RSS
samples. For example, Fig. 5 illustrates that the folding
result of period 6 can be calculated by an additional folding
operation on the result of period 12. For instance, the first
element in the folding result of period 6 can be computed
by a single addition of the the first and seventh elements in
the folding result of period 12, i.e., F6[1] = F12[1] + F12[7].
In total, 12− 6 = 6 additions are required to fold on period
6 if the folding results of period 12 are already available. In
comparison, total N − 6 additions would be needed if the
folding is directly applied to the original RSS samples.

Based on the above example, a promising approach to re-
ducing the computational cost is to first fold on the LCM of
all periods in P, and then reuse the results to fold on each of
the periods. In order to maximize the utility of intermediate
folding results, this idea can be applied recursively by parti-
tioning P into subsets and folding on the LCM of all periods
in each subset. This process can be naturally encoded by a
tree where a node represents a period set and its LCM and
all children of the node constitute the partition of the set.
We refer to such a tree as CMF tree. Fig. 6 shows two CMF
trees that differ in how to partition the period set at each
node.

Once a CMF tree is constructed from a given period set,
folding on all periods in the set can be performed by travers-
ing the tree in the breadth-first order and folding on the
LCM of each node. For instance, in the left tree in Fig. 6,
one can first fold on 2520 (by N -2520 additions for total N
RSSI samples), and then on 72 (by 2520-72=2448 additions)
and 70 (by 2520-70=2450 additions) etc., which results in
total N + 2654 additions. It can be seen that a similar pro-
cedure for the right tree in Fig. 6 requires total N + 2832
additions. This example shows that the computation cost
of a CMF tree depends on how it partitions the period set
at each node. An interesting question is how to find the
optimal CMF tree that yields the least number of additions.
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Figure 6: Two CMF Trees for folding on periods from 2

to 10. Each node represents a set of periods and the LCM

of the periods. The tree in (a) is optimal and requires

N + 2654 additions while the tree in (b) requires N + 2832

additions where N is the total number of RSSI samples.

Suppose node n is on the CMF tree constructed for pe-
riod set P and n is associated with period set Pn. We have
proved the following properties of the optimal CMF tree: 1)
if lcm(Pn) ∈ P, node n has at most one child; otherwise,
it has exactly two children; 2) suppose lcm(Pn) /∈ P and



the two children of n are associated with period sets Pn1

and Pn2, respectively, then Pn1 and Pn2 are a 2-partition
of P and lcm(Pn1) + lcm(Pn2) is the minimum among all
2-partitions of P. According to property 1), a node has at
most one or two children depending on whether its LCM
belongs to period set P. Intuitively, this property leads to
a deep tree and reduces the number of additions because
the folding on a node can reuse the results of its parent.
According to property 2), the optimal partition of a pe-
riod set is the one whose LCMs have the minimum sum.
We now briefly discuss why this property leads to the min-
imum number of additions. Suppose we count the total
number of additions while a CMF tree is being traversed
from node n. The number of additions for folding on Pn1

and Pn2 is (lcm(Pn) − lcm(Pn1)) + (lcm(Pn) − lcm(Pn2)),
which reduces to 2 · lcm(Pn) − (lcm(Pn1) + lcm(Pn2)). Af-
ter accounting for the folding cost of n1 and n2’s children,
the total number of additions becomes:

2 · lcm(Pn) − (lcm(Pn1) + lcm(Pn2)) + \

2 · lcm(Pn1) −
∑

lcm(c(n1)) + 2 · lcm(Pn2) −
∑

lcm(c(n2))

= 2 · lcm(Pn) + lcm(Pn1) + lcm(Pn2) −
∑

(lcm(cn1) + lcm(cn2))

where cni represents the child set of ni and
∑

lcm(cni) rep-
resents the sum of LCMs of period sets associated with cni .
The above derivation shows that the contribution of nodes
n1 and n2 in the total folding cost is lcm(Pn1) + lcm(Pn2).
Therefore, this result is consistent with property 2) of the
optimal CMF tree that minimizes the total LCMs of a period
set partition.

Based on properties 1) and 2), we have developed an al-
gorithm to find the optimal CMF tree, which is shown in
Algorithm 1. The algorithm recursively builds a CMF tree
from the root node (step 1-3). For each node newly added
to the tree, function CreateTree finds its children and the
associated period sets and the LCMs. At step 4 and 5, all
possible partitions of the current node’s period set and their
LCMs are found. At step 6, according to property 2) of
the optimal CMF tree, the partition that has the minimum
sum of LCMs is chosen for generating new child node(s). In
step 4-6, a straightforward exhaustive search is used to enu-
merate possible partitions. We have developed a dynamic
programming procedure to reduce the computation cost. We
note that the CMF tree algorithm is only executed offline
and hence the computation cost is not a major issue. Once a
tree is found, it can be stored on mobile devices (at a space
cost of O(|P| · lg |P|)) to guide the search of true beacon
periods.

4.5 CFAR Beacon Detector
The output of CMF contains the folding results of all pe-

riods in P. The next task of ZiFi is to identify which results
correspond to true WiFi beacons. However, this is not trivial
due to the following reasons. 1) Non-beacon signals such as
WiFi data frames or interference from other RF sources may
also exhibit periodicity. The resulted strong folding peaks
may be falsely detected as beacons. 2) A beacon frame must
compete for the channel with other pending frames and de-
fer its transmissions when the channel is busy. As a result,
the transmission times of beacons may become aperiodic
leading to detection misses. 3) An RSS sample may partic-
ipate in the folding of multiple periods. Therefore, the RSS

Algorithm 1 Optimal CMF Tree Construction.

Input: R - RSS samples; P - set of possible beacon periods.
Output: T - the constructed CMF tree.

1: T .root = CreateNode(LCM(P),P)
2: CreateTree(T .root)
3: return T

function CreateTree(root)
4: W = {W |W is an [1,2]-partition of root.periodSet}
5: Y = {Y |Y is the LCM set of W ∈ W}

/*find the partition with the minimum sum of LCMs*/

6: < Ŷ , Ŵ >= arg minY ∈Y,W∈W sum(W )

7: for all tuple < L, S >∈< Ŷ , Ŵ > do
8: child=CreateNode(L, S)
9: root.addchild(child)
10: CreateTree(child)
11: end for

function Node CreateNode(L, S)
12: node = new Node()
13: node.lcm = L; node.periodSet = S
14: return node

samples of a real beacon signal are essentially noise to the
detection of beacons of other periods. We refer to such noise
as cross-period noise. Fig. 7 illustrates cases 1) and 2) in
the folding result of a TelosB mote trace. We also used the
trace collected by a WiFi sniffer to label each RSS sample
of the TelosB mote and identify three types of peaks due
to beacons, data frames, and deferred beacons. It can be
seen that the deferred beacons often cause a cluster of small
folding peaks because of their random backoff delays.
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Figure 7: The folding peaks of beacons, data frames,

and deferred beacons.

We have developed a constant false alarm rate (CFAR)
detector [27] to identify WiFi beacons from folding results
of CMF. A CFAR detector minimizes the FN rate while
satisfying the FP rate upper bound specified by user [27].
We choose a CFAR detector for our problem because it can
explore the fundamental trade-offs between the FN and FP
rates of beacon detection. For instance, although using a
high threshold to detect folding peaks reduces FPs, it may
cause excessive FNs when the folding peaks of real beacons
are not strong. A user using ZiFi may specify the FP upper
bound based on the energy budget of its mobile devices while
allowing ZiFi to automatically minimize the FN rate, i.e.,
the probability of missing WiFi connectivity.

A challenge of designing a CFAR detector for our problem
is to model the detection FPs and FNs caused by non-beacon
signals and 802.11 backoff. Our analysis in Section 5 showed
that the inaccuracy of beacon detection is closely dependent
on channel utilization. Intuitively, a busier channel likely
reduces the signal to noise ratio in beacon detection due to



more interference from periodic noise. At the same time,
the likelihood that a beacon frame suffers from backoffs is
also higher. Based on our analytical results in Section 5, the
beacon detector can use the optimal detection threshold to
achieve desired upper bound on FP rates while minimizing
the FN rate. We further optimize the beacon detector by
adopting a cross-period noise reduction mechanism. Specif-
ically, when a beacon signal is identified, all the RSS values
of it are removed before the folding is performed on another
period.

The pseudo code of beacon detector is shown in Algorithm
2. It takes as input the RSS samples R, user-specified upper
bound on FP rate (denoted by FP ), and outputs the peri-
ods and beacons that are detected. Initially, the channel
utilization U is estimated based on R as follows:

U =
|{R[i] | (R[i] ∈ R) ∧ (R[i] �= 0)}|

|R|
(2)

In Eq. (2), the channel is deemed as busy if the RSS sample
has a non-zero magnitude. At step 2, the detector computes
the detection threshold α based on U and FP according to
our analytical result in Section 5. At step 3, the detector
runs CMF to perform folding on RSS samples R for all the
periods in P. The folding results are stored in {FP } where
FP is the set of folding results of period P . At step 4, the
maximum folding result is first normalized by factor P and
then compared against the threshold α. We note that the
normalization is needed because the number of additions in
a folding result is inversely proportional to the period. A
folding peak greater than the threshold indicates a success-
ful detection. The period and phase of the maximum folding
peak are then used to find the RSS samples of detected bea-
con. The magnitude of these RSS samples are set to zero at
step 9 to reduce the cross-period noise. The above process
is then repeated for finding beacons of other periods un-
til the maximum folding peak is smaller than the detection
threshold.

Algorithm 2 Beacon Detector.

Input: R - RSS samples; FP - user-specified FP rate upper
bound; P - set of possible beacon periods.
Output: P∗ - set of periods of detected beacons, initially empty.

1: Compute channel utilization U using R by Eq. (2).
2: Compute threshold α using U and FP by Eq. (4).

/*perform folding for all possible periods*/
3: {FP |P ∈ P} = Common Multi Folding(R,P).

/*find the max normalized folding result of each period*/
4: {Fmax

P |P ∈ P;Fmax
P = P · maxi FP [i]}.

5: Sort {Fmax
P } in the descending order.

6: for all {Fmax
P | P ∈ P} do

7: if Fmax
P ≥ α then

8: î = arg maxi ·FP [i]
/*remove RSS values of detected beacons.*/

9: ∀j ∈ [0, �N/P � − 1], R[̂i + j · P ] = 0
10: P∗ = P∗ ∪ {P}
11: goto 1
12: else
13: return
14: end if
15: end for

4.6 Controlling WiFi Interface
A challenge in the design of ZiFi is that WiFi APs oper-

ate on unknown channels. A straightforward solution is to

run ZiFi on each of the 11 802.11 channels in 2.4 GHz band.
However, it leads to significant detection delay. We em-
ployed several mechanisms to address this issue. First, due
to the overlap between 802.11 and 802.15.4 channels [28], we
found that running ZiFi on four 802.15.4 channels (1,5,8,11)
can reliably detect the APs running on all 11 802.11 chan-
nels. Moreover, ZiFi can turn on WiFi NIC once the first
AP is discovered. The rationale is that the delay for a WiFi
NIC to scan all 802.11 channels is short (typically shorter
than 800 ms in our measurement). ZiFi is able to find mul-
tiple beacons with different periods, which are likely from
different APs. Thus an interesting issue is how to aid WiFi
NIC to choose the best AP without incurring the scanning
delay. A possible solution is to estimate the signal quality
of each AP based on the RSS samples of detected beacons
(before they are changed in RSS shaper) and then notify
the WiFi NIC driver of the best channel for association. We
have implemented a preliminary version of this approach.
However, the full evaluation is left for future work.

5. PERFORMANCE ANALYSIS
As discussed in Section 4.5, the detection performance of

ZiFi is inherently probabilistic due to several error sources:
the periodicity of non-beacon WiFi signals, beacon back-
off delays, and cross-period noise. We focus on modeling
the first two factors as ZiFi effectively mitigates the cross-
period noise by iteratively removing RSS samples of detected
beacons. Our analysis on FN and FP rates can guide the
selection of optimal detection thresholds for ZiFi beacon de-
tector.

Our analysis is based on the following channel model.
We assume that the channel utilization ratio U is a time-
invariant constant during the RSS sampling window. That
is, the traffic is uniformly distributed at random on the chan-
nel. Our experiments show that this assumption is reason-
able because ZiFi only requires a very short RSS sampling
window (typically shorter than a second, see Section 6).

5.1 Analysis of FP Rate
According to the beacon detector (Algorithm 2), a bea-

con signal is detected when the folding peak is no lower
than the threshold α. Therefore, FPs occur if noise leads
to such a folding peak while beacon signals are absent. In
the following, we derive FP rate when the channel utiliza-
tion ratio of non-beacon signals is U which is estimated from
RSS samples according to Eq. (2). However, RSS samples
may contain real beacons, which leads to an overestimation
of U that is defined for non-beacon signals only. However,
this does not introduce substantial errors because the num-
ber of beacons is extremely small. As the sampling period
of ZiFi is 122 us (see Section 4.3), there are about 839 RSS
samples between two occurrences of beacon signals when the
beacon period is set to the default length of 102.4 ms. We
assume that N mod P = 0. This condition can be enforced
by removing the extra RSS samples. Our analysis can also
be easily extended to the case where N mod P �= 0. Let
f(P, α) denote the probability of detecting a (false) beacon
signal of period P . It can be seen that f(P, α) is equal to the
probability that the maximum of normalized folding results
is no lower than α. Formally, f(P, α) is given by:



f(P, α) = Prob
{
maxi∈[1,P ]P · FP [i] ≥ α

}

= 1 −
∏

i∈[1,P ]

Prob
{
FP [i] <

α

P

}

= 1 −
(
Prob

{
FP [i] <

α

P

})P

According to Eq. (1), the ith folding result of period P ,
FP [i], is the sum of N/P RSS samples. Note that the RSS
shaper sets the value of each sample as either 1 or 0 (see
Section 4.3). According to our channel utilization model,
the probability that an RSS sample is 1 (e.g., the channel is
busy) is equal to U . Therefore, the probability that FP [i] is
smaller than α

P
can be computed as follows:

f(P, α) = 1 −

⎛
⎝1 −

N/P∑
k=� α

P
�

( N
P

k

)
Uk(1 − U)

N
P

−k

⎞
⎠

P

(3)

The overall FP rate (denoted by FP) is equal to the proba-
bility that a FP occurs for any period P ∈ P where P is the
period set searched by ZiFi:

FP = 1 −
∏

P∈P
(1 − f(P, α)) (4)

For a given FP upper bound, detection threshold α can be
easily computed by Eq. (4). To reduce computation over-
head, we discretize the possible FP range, compute corre-
sponding α values offline, and store them in a table for online
lookups. We note that a small FP bound is often desired in
order to reduce unnecessary WiFi NIC wake-ups. Therefore,
the storage cost of α table is small.

5.2 Analysis of FN Rate
Although WiFi beacons are scheduled to transmit at fixed

times, they must follow CSMA and defer their transmissions
when the channel is busy. Such a scenario is depicted in
Fig. 8(a). Backoff delays due to channel contention hurt
the periodicity of beacons, which leads to low folding peaks
and FNs in the detection. In this section, we derive the FN
rate of beacon detection based on an 802.11 CSMA backoff
model.

According to 802.11, an AP with a pending beacon must
sense the channel before transmission. If the channel is idle
for a period of time equal to a distributed interframe space
(DIFS), it broadcasts the beacon immediately. Otherwise,
if the channel is sensed busy (either immediately or during
the DIFS), the AP waits for the channel to be idle for the
DIFS and then starts the exponential backoff procedure. It
generates a random backoff interval uniformly chosen in the
range (0, CW − 1), where CW is called the minimum con-
tention window. We now derive the distribution of backoff
time of beacons. In 802.11, the backoff procedure is per-
formed in slotted time with a slot duration of 20 us. As
shown in Fig. 8(a), the backoff time X (slots) is the sum of
waiting time for the idle channel (X1 slots) and the extra
waiting time due to the busy channel within the backoff in-
terval (X2 slots). Thus, X = X1 + X2. We first derive the
distribution of delay X and then derive the FN rate based
on the impact of delay X on folding.

X1 follows the geometric distribution because the proba-
bility of busy channel is equal to channel utilization ratio U .
The CDF of X1 is given by:

scheduled 
beacon TX time

actual beacon
TX time

busy channel idle channel

X1 X2

Backoff time Xb

Folded Time

∆t Tb

beacons 
not  folded

(a) (b)

Figure 8: Beacon backoff and impact on folding result.

(a) shows the different parts in the backoff delay. (b)

shows the temporal distribution of beacons when RSS

samples are folded from the transmission time of the top

beacon. The beacons that fall outside the Tb window do

not contribute to the folding peak.

Prob(X1 ≤ x) =

x∑
i=0

U i(1 − U) (5)

According to 802.11 standard, when the channel becomes
busy during the backoff interval, the backoff timer will be
frozen and resumed once the channel is idle again. There-
fore, the waiting time due to the busy channel within the
backoff interval is equal to the time window within which
the number of idle slots is exactly the chosen backoff inter-
val and the last slot is idle. Moreover, the random backoff
interval follows the uniform distribution. That is, the proba-
bility that a backoff interval is chosen is 1/CW . In summary,
the PDF and CDF of X2 can be derived as follows:

Prob(X2 = x) =
1

CW

min{CW−1,x}∑
i=0

(x − 1

i

)
(1 − U)i+1Ux−1−i

Prob(X2 ≤ x) =
x∑

j=1

Prob(X2 = j) (6)

The backoff delay has a complex impact on folding peaks.
In particular, when beacons have different backoff delays,
the value of folding peak depends on how these delays are
aligned with each other in the folding window. Suppose
the beacon in-air time is Tb (slots) and the beacon that is
transmitted at time instant t has a backoff delay δ. We
assume that the start of folding window is aligned with t.
Fig. 8(b) shows the temporal distribution of all beacons in
such a case. If a beacon has a backoff delay larger than
δ + Tb, it is not included in the folding. For other beacons,
they contribute to the folding peak equally as their RSS
samples are set to be the same value after passing the ZiFi
RSS shaper (see Section 4.3). We now derive the resulted
FN rate (denoted by PFN (δ)) due to the exclusion of some
beacons with large backoff delays. We note that PFN (δ)
is an upper bound on the real FN rate because the highest
folding peak (which is examined by the beacon detector)
may not be generated by the folding from time instant t.
A FN occurs when no more than � α

P
� RSS samples among

all N/P samples added in the folding have a non-zero value,
where P is the real beacon period. As discussed above, these
RSS samples correspond to the beacons whose backoff delays
must fall in the time window [δ, δ + Tb]. Therefore, PFN (δ)
can be derived as follows:
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Figure 9: Performance of Autocorrelation, FFT, and ZiFi at different WiFi data traffic rates.

fFN (δ) =

� α
P

�∑
k=1

( N
P

k

)
Prob(δ ≤ X ≤ δ + Tb)

k · (7)

(1 − Prob(δ ≤ X ≤ δ + Tb))
N
P

−k (8)

where X = X1 + X2 and the CDF of X can be derived
from the CDFs of X1 and X2 given in Eq. (5) and (6),
respectively. The beacon backoff time ranges from 0 to a
constant Δ. Thus the expected FN rate is given by:

FN =

Δ∑
δ=0

Prob(X = δ) · fFN (δ) (9)

We note that the constants Eq. (9) (Δ and CW ) are PHY-
specific parameters defined in 802.11 standard.

6. EXPERIMENTATION

6.1 Experimental Setup and Methodology
We implemented ZiFi on two platforms: ASUS Linux

netbook integrating a TelosB mote through the USB inter-
face, and Nokia N73 smartphone integrating a ZigBee card
through the miniSD interface. The CMF algorithm is imple-
mented in Mablab on netbook and in C++ on Nokia N73.
The RSS sampler of ZiFi is implemented in ZigBee module
on both platforms and all other components run on net-
book or Nokia N73. The RSS sampling interface on Nokia
N73 only allows one RSS sample to be transferred from the
miniSD card at a time. Our measurement showed that the
resulted RSS sampling rate cannot meet the requirement
of ZiFi. However, the ZigBee module developers at Nokia
confirmed that this problem is not due to the limitation of
ZigBee chip and can be resolved by providing a batch RSS
sampling interface in a future release of Software Develop-
ment Kit (SDK). Our experiments on Nokia N73 are carried
out using preloaded RSS samples.

Our experimental testbed consists of four 802.11g APs,
four Linux-based 802.11 netbooks, two TelosB motes equipped
with CC2420 radios, and a Nokia N73 smartphone. To eval-
uate the performance of detecting APs from different ven-
dors, we intentionally used four wireless routers (Linksys,
Belkin, TP-LINK, and D-Link) from different vendors as
APs. ASUS Eee netbooks equipped with Intel Athero 928x
NICs are used as clients. Our evaluation focuses on the
following performance metrics: 1) AP detection accuracy
characterized by FP and FN rates. FPs in AP detection can

falsely turn on WiFi interfaces leading to energy waste while
FNs cause WiFi clients to miss the network connectivity op-
portunities that are available. We evaluate FP and FN rates
under different settings of WiFi (e.g., channel rates), traffic
workload, and parameters of ZiFi. 2) Computation and en-
ergy overhead. Mobile devices have tight budgets on energy
and CPU resources. Our evaluation shows that ZiFi incurs
little overhead while significantly reducing the idle time of
NICs and hence leads to overall system energy conservation.

The performance of ZiFi depends on both the character-
istics WiFi APs (e.g., modulation rate and transmit power)
and user traffic (e.g., workload). In our experiments, the
user traffic is generated from a high-fidelity Internet traffic
generator called D-ITG [4] that runs on our APs. D-ITG
has several advantages over the existing traffic generators
such as the capability of generating multiple simultaneous
flows from different protocols. Empirical results showed that
D-ITG can reproduce realistic traffic patterns under a wide
range of network settings [4]. The use of D-ITG allows us
to evaluate ZiFi in comprehensive WiFi and traffic settings,
which would be impossible for using particular operational
WiFi deployment. We note that several large-scale WiFi
WiFi traces (e.g., the SIGCOMM [9] and OSDI [3] traces)
are publicly available. However, they are collected under
particular network settings.

6.2 Detection Accuracy
We evaluate the detection accuracy of ZiFi using two WiFi

nodes. A Linksys WRT54G2 router is used as AP and an
ASUS Linux netbook serves as the client. ZiFi is executed
on another netbook and a TelosB mote that are connected
via USB. The traffic generated by client contains one TCP
stream and one UDP stream. The length of frames is uni-
formly distributed, from 5 to 1400 bytes for TCP and 50 to
1400 bytes for UDP. We vary the average modulation rate
to control the channel utilization. The distance between
AP and ZiFi node is 3 meters. In Section 6.3, we evaluate
the detection range of ZiFi by varying the distance between
AP and ZiFi node. The network traffic is logged as ground
truth for micro-scale analysis of ZiFi performance. The ex-
periments were conducted in a residential environment. The
AP uses channel 1 and both AP ad client transmit at the
default power level. The length of AP beacon period is con-
figurable at a step of 1.024 ms. We varied the period length
and observed no obvious performance variation of ZiFi. We
used a fixed period of 96×1.024 = 98.304 ms throughout all
experiments. However, as this setting is unknown to ZiFi,
the CMF algorithm of ZiFi searches for the beacon period
within the range of (60 ∼ 120) × 1.024 ms.
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Comparison with other signal processing approaches. Auto-
correlation and FFT are two signal processing algorithms
widely used to detect periodic signals. We now compare the
performance of them against that of ZiFi. Fig. 9 shows the
results when they are applied to 10000 RSS samples (i.e.,
1.22 second) of the traffic. The AP modulation rate is set to
2 Mbps. When the data rate is only 30 Kbps, Autocorrela-
tion clearly detects a peak in its results due to the beacons.
However, its performance drops sharply when data rate in-
creases. In the result of 180 Kbps, the beacon peak can
hardly be distinguished from the peaks due to data traf-
fic. When the data rate is 100 Kbps, FFT identifies the
10 Hz beacon signal in the first peak and the harmonics of
the signal in the following peaks. However, it fails to iden-
tify the beacon signal when the data rate increases to 260
Kbps. Therefore, these results show that Autocorrelation
and FFT cannot reliably identify the existence of WiFi net-
works. In contrast, ZiFi successfully detects beacons under
all settings. Fig. 9 (c) shows the folding results of ZiFi for
400 Kbps where the beacon peaks can be clearly identified.

Impact of RSS window size. The size of RSS window used
by ZiFi is a critical design parameter as it directly deter-
mines the detection delay and overhead. Fig. 10 shows the
detection error rate of ZiFi when the RSS window contains
different numbers of beacon periods. The AP transmits at
each of four different modulation rates in turn while the
channel utilization ratio is always tuned to 30%. Each data
point is the average of 5 runs. For each run, ZiFi carries out
the detection for 40 times and the error rate is computed
as the probability of failing to detect a beacon or falsely
detecting a non-beacon signal, i.e., the sum of FN and FP
rates. Since the in-air time of data frames transmitted in
11 Mbps is very close to that of beacon frames, most RSSI
samples of data frames are not removed by the RSS shaper,
which causes significant noise in the folding results. How-
ever, even in this worst case, the error rate of ZiFi quickly
decreases to near-zero when the RSS window contains more
than only 7 beacons. For instance, when 8 beacon periods of
RSS samples are used (which corresponds to a total delay of
8 × 96 × 1.024 = 786.4 ms), ZiFi’s average error rate under
four channel rates is only 4.8%.

Impact of ZigBee interference. The RSS samples gathered
by ZiFi may contain the transmissions of other devices op-
erating in the open radio spectrum, which thus introduce
noise in WiFi beacon detection. In particular, the RSS sam-
ples can be easily contaminated by the traffic of peer ZigBee
nodes. Such noise could be eliminated if the ZigBee radio
of ZiFi is able to decode these frames. However, this is

often impossible because the wireless interference range is
typically much larger than the communication range. More-
over, the frames transmitted by radios on overlapping chan-
nels can be sensed by RSSI but cannot be decoded [28].
We now evaluate the impact of such interference from peer
ZigBee nodes. In the experiment, a pair of TelosB motes
transmit on an overlapping channel. The frame sizes are
uniformly distributed between 14 and 74 bytes. The in-air
time of these frames has a significant overlap with that of
WiFi traffic. The data rate of transmission is varied from
1.35 to 27.1 Kbps to obtain different channel utilization ra-
tios. Three ZiFi variants are used as baselines for compari-
son. ‘ZiFi-α=x’ refers to the implementation of ZiFi where
the detection threshold is manually set to be α ·N/P where
α ∈ (0, 1], N and P are the total number of RSS samples and
the real beacon period, respectively. ‘ZiFi-opt’ refers to the
default implementation of ZiFi that computes the threshold
based on an 0.05 FP upper bound. Fig. 11 shows that ZiFi-
opt yields near-zero false positives. In contrast, two ZiFi
variants falsely classify more ZigBee signals as WiFi bea-
cons when the channel workload is higher. The main reason
is that ZigBee traffic contains more periodic signals under
heavier traffic load, which results in many folding peaks.
ZiFi-opt automatically chooses high detection thresholds to
avoid such false positives and yield similarly performance as
‘ZiFi-α=0.9’ which has a manually set high threshold.

Impact of traffic workload. Our objective of evaluation in
this experiment is three-fold. First, we test the FP and FN
rates of ZiFi under various settings of channel utilization
ratio and bit rate. Second, we compare the experimental re-
sults with analytical result presented in Section 5. Third, we
plot the receiver operating characteristic (ROC) [27] curve of
ZiFi. ROC characterizes how true positive (TP) rate varies
with FP rate and is widely adopted for evaluating the capa-
bility of detection systems.

The maximum channel utilization ratio in our evaluation
is set to 30%. We note that real-world WiFi deployments
usually have low channel utilization ratio. Our analysis of
over 104 seconds of traces collected at OSDI 2006 [3] and
SIGCOMM 2008 [9] show that the channel utilization ratios
(computed per second) have a mean of 7.58% and 0.81%,
and median 7.2% and 0.3%, respectively. This result is also
consistent with the recent finding [16] that significant white
space exists in real WiFi traffic. Fig. 13(a) and (b) show the
FP and FN rates under different channel utilization ratios.
It can be seen that ZiFi variants with fixed detection thresh-
olds yield poor FP or FN rate. For instance, although a low
threshold (e.g., 0.6) has a near-zero FN rate, it leads to ex-
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Figure 13: Detection performance of ZiFi.

tremely high FP rates when channel is heavily loaded. This
is because the folding peaks of noise (data frames) become
higher and many of them exceed the low threshold. How-
ever, when the threshold is set to 0.9, although the FP rate
is low, many beacons are missed. In contrast, ZiFi-opt can
achieve both satisfactory FP and FN rates by automatically
adjusting the threshold based on channel workload. Under
all settings, ZiFi-opt has a FP rate lower than the preset up-
per bound 0.05 while achieving low FN rates. It can be seen
from Fig. 13(b) that the theoretical prediction matches the
experimental FN under all settings. However, Fig. 13(a)
shows a considerable gap between theoretical and experi-
mental FP rates when the channel utilization is high. This
is due to two reasons. First, ZiFi implements an RSS shaper
that can remove some noise, e.g., the RSS samples that are
likely data traffic (see Section 4.3). However, the impact of
RSS shaper is not modeled in our FP analysis. Second, our
FP analysis is based on a uniform channel utilization model
where the probability at which any slot is busy is constant.
However, the data traffic under this model yields better pe-
riodicity than reality because the burstiness [16] of real WiFi
traffic is not considered. As a result, the theoretical FP rate
is a pessimistic estimation of real FP rate.

Fig. 13(c) plots the ROC curves of ZiFi. We vary the
FP upper bound from 0.01 to 0.46 at a step of 0.05, and
calculate the true positive (TP) and FP rates for each set-
ting. It can be seen that ZiFi achieves a good TP rate if the
allowable FP rate is above 4%. We can also see that ZiFi
has a desirable configurability and allows a user to achieve
trade-offs between FP rate and TP rate. For instance, one
may set a higher FP bound to maximize the opportunity
of finding WiFi networks while setting a lower FP bound to
reduce the number of NIC wake-ups for energy conservation.

6.3 Detection Range, Energy Consumption, and
Overhead

We now evaluate the performance of ZiFi in a mobile en-
vironment. We deploy three APs, which work on channel 1,
6, and 11, respectively. In all experiments (except the one to
measure detection range), a person carrying a ZiFi or WiFi
node moves between four preselected locations in a room of
20X7 m2. Three of four locations have WiFi coverage from
at least one of the APs while the last location has no cover-
age. After arriving at each location, it stays for 3 minutes
before moving to the next location. This setup is to mimic
the intermittent WiFi coverage experienced by mobile users.
The WiFi node switches its NIC on for 5 seconds once ev-
ery 20 seconds to detect WiFi coverage. On the ZiFi node,
ZigBee radio is first switched on, which decides whether to

0 50 100 150 200
0

50

100

150

200

Time (Sec)E
ne

rg
y 

C
on

su
m

ed
 b

y 
W

iF
i (

J)

 

 

ZiFi
WiFi

(a) Energy consumption

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20  40  60  80  100 120 140 160

C
P
U
 
T
i
m
e
 
(
m
s
)

Max Folding Period (ms)

CMF-Random
CMF-Huffman

CMF-Opt

(b) CPU Overhead

Figure 14: CPU overhead of CMF on N73 smpartphone,

and energy consumption of ZiFi and WiFi nodes.

wake up the WiFi NIC based on the detection results. The
energy consumption of the whole system is measured from
inquiring the current readings from the ACPI interface.

We first evaluate the distance within which ZiFi can reli-
ably detect APs. Typical ZigBee radios such as CC2420 [2]
have a reception sensitivity below -90 dBm, which is simi-
lar to WiFi radios. To verify this, we measured the average
RSS of a WiFi AP on both a ZigBee node and a WiFi node.
Fig. 12 shows that the RSS of ZigBee and WiFi nodes are
very similar. Due to a concrete wall, the RSS drops sharply
around 40 meters from the AP. Moreover, we found that the
WiFi node can successfully associate with the AP until they
are more than 140 meters away. The overall result shows
that ZiFi has a similar detection range as WiFi node.

We then measure the energy consumption of both ZiFi
and WiFi nodes. Due to the constraints of experimental
space, the transmission range of APs is reduced by wrapping
aluminum foil around the antennas. We only measure the
energy consumption when there is no WiFi coverage. Once
an AP is discovered, both WiFi and ZiFi nodes consume
similar power. Fig. 14(a) shows that ZiFi is significantly
more energy-efficient than WiFi node. This is because only
ZigBee radio is active when the network coverage is absent,
while the WiFi node periodically wakes up NIC and scans
for APs leading to significant energy waste.

Finally, we measure the CPU overhead of ZiFi on Nokia
N73 smartphone. Total 80K RSS samples are searched for
the beacon period whose value lies in set {25, · · · , 25 ·k} ms.
We vary k from 1 to 6 to evaluate the CPU time of running
CMF with different sizes of period sets. The result is the
average of 20 runs. For performance comparisons, we imple-
mented two baseline algorithms called CMF-Random and
CMF-Huffman. Both algorithms build the tree in a bottom-
up fashion. Initially, a single-node tree is created for each
period and every two trees from the current tree set are then



merged into one tree by adding a new root. This process con-
tinues iteratively until a single tree remains. CMF-Random
chooses two trees randomly from the current trees to merge
while CMF-Huffman chooses the two trees whose roots have
the minimum periods. Fig. 14(b) shows the CPU time of
folding on the trees found, where X-axis is the maximum
value of the period set. We can see that the CPU usage for
both baseline algorithms increase sharply when the max-
imum period exceeds 100 ms. In contrast, CMF-opt has
significantly lower overhead. The maximum CPU time of
running CMF-opt under all settings is around 200 ms.

7. CONCLUSION
We developed a system called ZiFi that utilizes ZigBee ra-

dio to identify the existence of WiFi networks by detecting
interference signatures generated by WiFi beacons. A new
DSP algorithm called Common Multiple Folding (CMF) is
developed to amplify signals with unknown periods in WiFi
interference samples. ZiFi also adopts a constant false alarm
rate (CFAR) detector that can minimize the false negative
(FN) rate of WiFi AP detection while satisfying the user-
specified upper bound on false positive (FP) rate. Our eval-
uation results on two platforms, Linux netbook connected to
a TelosB mote through the USB interface, and Nokia N73
smartphone that integrates a ZigBee card through the min-
iSD interface, showed that ZiFi can detect WiFi APs with
high accuracy, short delay, and little overhead.
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