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Abstract
This paper deals with the stabilization problem of Smith predictor structures using a PI controller. Stability regions that include all stabilizing parameters

of a PI controller for the case of perfect matching between the plant and model and for mismatched case are obtained. The models of the plant are

assumed to be FOPDT (first-order plus dead time) and SOPDT (second-order plus dead time) transfer functions. Thus, the aim of this study is to

determine all stabilizing PI controllers for the Smith predictor scheme and to compare the stability regions obtained for perfectly matched and mis-

matched models. It is observed that the stability regions obtained for both cases are quite different and the stability regions for FOPDT and SOPDT

models are broader than the stability region of the actual model. Furthermore, an approach is presented to find different models of an actual system

using the stability region and it is shown that the stability region of these models can fit the stability region of actual system. A simulation example is

provided to illustrate the results.
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Introduction

PI/PID controllers have an important role in industrial con-

trol. They are preferred in control practice due to their ease of

use and robust performance (Astrom and Hagglund, 1995).

PI/PID controllers are used to deal with variety of control
problems in different fields such as process control, automo-

tive systems, instrumentation, etc. Although these controllers

have widespread use, the conventional tuning rules are insuffi-

cient to achieve good results for processes with time delay
(Astrom and Hagglund, 2001; Kaya, 2003). It is known that

dynamic systems encountered in real control applications

exhibit noteworthy dead time. The dead time is mainly caused

by processing time or time lags of systems elements connected
in series. Closed-loop systems could become unstable due to

an increase in phase lag caused by dead time. In addition,

dead times in the closed-loop control systems complicate the

design and analysis of time-delayed systems. Therefore, dead

time compensators can be used in order to improve the
closed-loop performance of classical controllers such as PI/

PID controllers for time-delay systems. The Smith predictor

structure presented by Smith (1959) was the first and is a well

known dead time compensator. The classical Smith predictor,
shown in Figure 1, is composed of a plant with time delay, a

model of the plant with time delay and a controller. The con-

troller used in the structure is typically defined as a PI or PID

controller whose parameters are determined with respect to
the plant model.

Performance of the Smith predictor control dramatically

depends on matching between the model and the plant trans-

fer functions (Zhang and Xu, 2001). There are various meth-

ods for the estimation of the model or tuning the appropriate

controller parameters. In this sense, Kaya and Atherton pre-

sented a method using a single relay feedback test with asym-

metric limit cycle data (Kaya and Atherton, 2001).

Benouarets and Atherton (1994) discussed obtaining appro-

priate parameters for a Smith predictor controller. Hang

et al. (1995) presented self-tuning Smith predictors for pro-

cesses with long dead time. Palmor and Blan (1994) proposed

an automatic tuning algorithm for a Smith dead time com-

pensator. An effective model reduction technique for finding

reduced-order models that have similar closed-loop character-

istics to those of the original system was given in Thompson

(1985, 1989) for closed-loop performance. The reduction

method was based on frequency data, which are fitted using
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Levy’s complex curve-fitting technique and a time delay can

also be introduced into the reduction.
This paper deals with the stability region computation for

a Smith predictor scheme. A method is presented for compu-

tation of all PI controllers that stabilize classical Smith predic-

tor structures with perfect matching and mismatching

between plant and model transfer functions. As mentioned

above, the processes with large dead time are difficult to con-

trol, as the dead time will reduce gain and phase margins,

which may lead to instability (Vodencarevic, 2010). The

Smith predictor control structure can be used to overcome

this problem and allow larger gain. However, the error

between the assumed model and the actual system is very

important for the stability. Therefore, the stability analysis in

the Smith predictor scheme is an important subject. Many

results have been developed on computation of all stabilizing

controllers, especially P, PI and PID controllers after the pub-

lication of work by Ho et al. (1996, 1997), which are based on

the generalized version of the Hermite–Biehler theorem.

There are many papers contributing to the field of computing

all stabilizing controllers and therefore it is not possible to cite

all of these studies here. However, the following works and

references therein can provide further details on the subject.

One of these studies based on the use of a Nyquist plot was

given by Soylemez et al. (2003) for calculating all stabilizing

PID controllers. A parameter space approach using the singu-

lar frequency approach has been given in Ackermann and

Kaesbauer (2003). Computation of the stability region using

the stability boundary locus has been given in Tan (2005) and

Tan et al. (2006). It is shown in the present paper that if the

identified model in the Smith predictor structure is not equal

to the actual system, then the characteristic equation includes

two time delays terms and the stability region analysis of such

systems turns out to be similar to the systems that are called

the neutral and retarded systems (Hamamci, 2012). A new

identification procedure based on the stability region is pro-

posed using the identification formulas given in Kaya (2004).

Using this new identification procedure, it is possible to

obtain different first-order plus dead time (FOPDT) models

of the exact system. The stability regions of the identified

FOPDT models obtained from the presented method are

computed and it is shown that there is a good match between

the stability region of actual system and the identified

FOPDT models. The results presented in this paper will be

helpful for the stability analysis of Smith predictor systems.

Preliminary versions of some of the results given in this study

were presented in Deniz et al. (2013). An illustrative example

is given to demonstrate the benefits of the method presented.
The paper is organized as follows: the classical Smith pre-

dictor structure is summarized in the next section. Then, the

stability boundary locus method and its application to Smith

predictor scheme is given. Also, a model identification proce-

dure using the stability region is proposed. Finally, a simula-

tion example and concluding remarks are provided.

Smith predictor structure

The conventional Smith predictor structure is shown in

Figure 1, where C(s), G(s) and Gm(s) are the transfer function

of controller, plant and model, respectively. The parameters L

and Lm are the time delay of the plant and model.
The closed-loop transfer function can be found for the

Smith predictor shown in Figure 1 as

T (s)=
G(s)C(s)e�Ls

1+ ½G(s)e�Ls � Gm(s)e�Lms +Gm(s)�C(s)
ð1Þ

Assuming that the model transfer function perfectly matches

the plant transfer function, i.e. G(s)e�Ls = Gm(s)e
�Lms, the

closed-loop transfer function reduces to

T (s)=
C(s)Gm(s)e

�Lms

1+C(s)Gm(s)
ð2Þ

Different approaches can be used to identify tuning para-

meters of the controller, C(s). Here, tuning parameters of the

controller are found by representing the Smith predictor as its

equivalent Internal Model Control (IMC) (Abe and

Yamanaka, 2003; Morari and Zafiriou, 1989; Rivera et al.,

1986), which provides the parameters of the PI or PID con-

troller to be defined in terms of the desired closed-loop time

constant, which can be adjusted by the operator, and the

parameters of the process model. One of the properties of the

IMC system is the perfect controller where the IMC control-

ler is designed to be given by the model inverse. However, this

property cannot be realized. Therefore, a low-pass filter with

steady-state gain of one must be introduced for physical rea-

lizability of the IMC controller (Kaya, 2004). The low-pass

filter is usually chosen to have the form 1=(ls+ 1).
When the Smith predictor is designed using the IMC prin-

ciples based the assumption that the model transfer function

perfectly matches the plant transfer function, the parameters

of the controller in the Smith predictor scheme, C(s), which is

frequently chosen as a PI/PID, can be adjusted by filter

dynamics and the parameters of the model. The most fre-

quently used model is an FOPDT transfer function. For this

case, the controller in the Smith predictor scheme is found to

be a PI controller such as

C(s)=
Tms+ 1

Kmls
= kp +

ki

s
= kp(1+

1

Tis
) ð3Þ

This equation can be rearranged as an ideal PI controller,

which has the following controller parameters

kp =
Tm

aKml
ð4Þ

G(s)

Gm(s)

e-Ls

e-Lms

C(s)+-+-

-+

r(t) y(t)

Figure 1. Smith predictor structure.
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and

Ti =Tm ð5Þ

In Equation (4), a, which is a constant and selected to be in

the range of 0:2\a\1, is introduced to adjust the speed of

closed-loop response (Kaya, 2004). The integral squared error

(ISE) criteria can be used to find the filter parameter l= Lm.
Similarly, for the second-order plus dead time (SOPDT)

model transfer function, the controller in the Smith predictor

structure can be found for a PID controller, which has the

following tuning parameters

kp =
T1m +T2m

aKmLm

ð6Þ

Ti =T1m +T2m ð7Þ

Td =
T1mT2m

T1m +T2m

ð8Þ

Again a is introduced to adjust the speed of closed-loop

response. The details of this approach can be found in Kaya

(2004).

Computation of all stabilizing PI controllers

In this section, the stability boundary locus method is used to

obtain the stability region of the closed-loop systems with

time delay for computing all stabilizing PI controller (Tan

et al., 2006). Then, all stabilizing values of the parameters kp

and ki are determined from the stability region.

Consider the closed-loop control system shown in Figure 2

where Gp(s) is the plant with time delay such as

Gp(s)=G(s)e�Ls =
N (s)

D(s)
e�Ls ð9Þ

and C(s) is a PI controller of the form

C(s)= kp +
ki

s
=

kps+ ki

s
ð10Þ

The characteristic equation of closed-loop system in Figure 2

can be written as

D(s)= sD(s)+ (kps+ ki)N (s)e�Ls ð11Þ

Substituting s= jv and decomposing the numerator and

denominator polynomials of G(s) in Equation (9) into their

even and odd parts, then Equation (12) is obtained as

G(jv)=
Ne(� v2)+ jvNo(� v2)

De(� v2)+ jvDo(� v2)
ð12Þ

Using Equation (12), the characteristic equation can be

rewritten as

D(jv)= ½(kiNe � kpv2No) cos (vL)+v(kiNo + kpNe)

sin (vL)� v2Do�+ j½v(kiNo + kpNe) cos (vL)

�(kiNe � v2kpNo) sin (vL)+vDe� ð13Þ

If D(jv) is resolved by equating real and imaginary parts of

Equation (13) to zero, the following equations are obtained

kpQ(v)+ kiR(v)=X (v)

kpS(v)+ kiU (v)=Y (v)
ð14Þ

From this equation, the parameters kp and ki are determined

as

kp(v)=
X (v)U (v)� Y (v)R(v)

Q(v)U (v)� R(v)S(v)
ð15Þ

ki(v)=
Y (v)Q(v)� X (v)S(v)

Q(v)U (v)� R(v)S(v)
ð16Þ

Solving Equation (14), the stability boundary locus,

l(kp, ki,v), in the (kp, ki) plane can be obtained. The following

expressions are used in Equations (15) and (16) to calculate

kp(v) and ki(v).

Q(v)=vNe sin (vL)� v2No cos (vL) ð17Þ

R(v)=Ne cos (vL)+vNo sin (vL) ð18Þ

X (v)=v2Do ð19Þ

S(v)=vNe cos (vL)+v2No sin (vL) ð20Þ

U (v)=vNo cos (vL)� Ne sin (vL) ð21Þ

Y (v)= � vDe ð22Þ

The (kp, ki) plane is divided into stable and unstable regions

by the stability boundary locus, l(kp, ki,v), and the line ki = 0.

Thus, the region that includes all stabilizing PI controllers can

be estimated using the stability boundary locus (Tan, 2005).

Example 1. Consider the transfer function of the closed-loop
system with time delay shown in Figure 2 as

G(s)=
s+ 1

s2 + 2s+ 5
e�s ð23Þ

The stability boundary locus, l(kp, ki,v), is shown in Figure 3

for v 2 ½0, 6:8�. It can be computed that the stability region

for all stabilizing PI controllers is obtained using the stability

boundary locus for the interval of v 2 ½0, 2:51� and the line

ki = 0. All the stabilizing PI controllers are shown in Figure 3

in the coloured region.

+-
Gp(s)r(t) y(t)C(s)

Figure 2. A control scheme for stability analysis.
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Computation of all stabilizing PI controllers for Smith
predictor structures

Stability boundary locus analysis is used to obtain the

stability region of the Smith predictor configuration. All

stabilizing PI controllers are computed for both exactly

matched and mismatched models. Let assume that the

model of the actual system is Gm(s)=
Nm(s)
Dm(s)

e�Lms, which can

be written as

Gm(jv)=
Nme(� v2)+ jvNmo(� v2)

Dme(� v2)+ jvDmo(� v2)
e�jvLm ð24Þ

The characteristic equation of mismatched Smith predictor

with PI controller is obtained as

D(s)= sD(s)Dm(s)+ (Dm(s)N (s)e�Ls � D(s)Nm(s)e
�Lms

+D(s)Nm(s))(kps+ ki) ð25Þ

The characteristic equation is rewritten by using Equation

(24)

D(jv)l= jv(De + jvDo)(Dme + jvDmo)+ ((Dme + jvDmo)

(Ne + jvNo)( cos (vL)� j sin (vL))

�(De + jvDo)(Nme + jvNmo)( cos (vLm)� j sin (vLm))

+ (De + jvDo)(Nme + jvNmo))(jvkp + ki)

ð26Þ

Equating the real and imaginary parts of D(jv) to zero, the

parameters kp and ki can be found from Equations (15) and

(16). The following expressions are used in Equations (15) and

(16) to calculate the stability boundary locus, l(kp, ki,v), for

the Smith predictor scheme

QðvÞ ¼ � v2DmeNo cosðLvÞ � v2DmoNe cosðLvÞ
þ v2DeNmo cosðLmvÞ þ v2DoNme cosðLmvÞ
þ vDmeNe sinðLvÞ � v3DmoNo sinðLvÞ
� vDeNme sinðLmvÞ þ v3DoNmo sinðLmvÞ
� v2DeNmo � v2DoNme

ð27Þ

RðvÞ ¼ DmeNe cosðLvÞ � v2DmoNo cosðLvÞ
� DeNme cosðLmvÞ þ v2DoNmo cosðLmvÞ
þ vDmeNo sinðLvÞ þ vDmoNe sinðLvÞ
� vDeNmo sinðLmvÞ � vDoNme sinðLmvÞ
þ DeNme � v2DoNmo

ð28Þ

X (v)=v2DeDmo +v2DoDme ð29Þ

SðvÞ ¼ vDmeNe cosðLvÞ � v3DmoNo cosðLvÞ
� vDeNme cosðLmvÞ þ v3DoNmo cosðLmvÞ
þ v2DmeNo sinðLvÞ þ v2 DmoNe sinðLvÞ
� v2DeNmo sinðLmvÞ � v2DoNme sinðLmvÞ
þ vDeNme � v3DoNmo

ð30Þ

UðvÞ ¼ vDmeNo cosðLvÞ þ vDmoNe cosðLvÞ
� vDeNmo cosðLmvÞ � vDoNme cosðLmvÞ
� DmeNe sinðLvÞ þ v2DmoNo sinðLvÞ
þ DeNme sinðLmvÞ � v2DoNmo sinðLmvÞ
þ vDeNmo þ vDoNme

ð31Þ

Y (v)= � vDeDme +v3DoDmo ð32Þ

Then, all stabilizing PI controllers are computed by using the

expressions given in Equations (15) and (16).
The characteristic equation of this structure with PI con-

troller under the assumptions of perfect model matching is

given by

D(s)= sD(s)+N (s)(kps+ ki) ð33Þ

As seen from Equation (33), the characteristic equation is

independent of time-delay parameters. The characteristic

equation is written by making the substitution s = jv as

D(jv)= ½(kiNe � kpv2No)� v2Do�+ j½v(kiNo + kpNe)+vDe�
ð34Þ

The parameters kp and ki can be calculated by using

Equations (15) and (16) for the following expressions

Q(v)= � v2No ð35Þ

R(v)=Ne ð36Þ

X (v)=v2Do ð37Þ

S(v)=vNe ð38Þ

U (v)=vNo ð39Þ

Y (v)= � vDe ð40Þ

Figure 3. Stability boundary locus.
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In this way, all stabilizing PI controllers can be computed

for the Smith predictor with a perfect matching model.

Model identification using stability region

In this section, a model identification method is proposed
based on the stability region. The model identification proce-
dure to find model parameters can be performed as follows:
first, a stability region is obtained for the perfect matching
case. Then, assuming that the equivalent process model is

FOPDT, Gm(s)=
Kme�Lms

(Tms+ 1) , the parameters of the model can
be estimated by choosing kp and ki values from the stability
region. Considering the Smith predictor based on IMC, the
following equations can be used to determine the parameters:

Tm =
kp

ki

ð41Þ

Lm =l ð42Þ

Km =
1

akil
ð43Þ

The filter parameter, l, is calculated for
l 2 ½L�%10,L+%10�. Let the gain of the actual plant be K

then the constant, a, is selected to make Km =K, from
0:2\a\1 (Kaya, 2004). Since there is a set of stabilizing con-
trollers for actual systems, one can obtain a set of FOPDT
approximate models of the system. This provides flexibility to

choose an approximate model of the system. Moreover, an
FOPDT model from the identified set can be found, which
has a stability region that matches the stability region of the
actual system. This finding is important, as robust stability
results can be achieved in this way. An illustration of the
method is given in the following example.

Illustrative example

The high-order plant transfer function given in Kaya (2004)
has performed in the Smith predictor control scheme to find
a stability region that includes all stabilizing PI controller
parameters. The identification method given in Kaya and
Atherton (1999, 2001) has been used for FOPDT and
SOPDT models in a mismatched Smith predictor structure.

The high-order plant transfer function is given by

G(s)=
e�20s

(3s+ 1)(2s+ 1)(s+ 1)(0:5s+ 1)
ð44Þ

Assuming that Smith predictor structure perfectly matches

the model, i.e. G(s)e�Ls =Gm(s)e
�Lms, the stability region

shown in Figure 4 is plotted.
To find all stabilizing PI controllers for the mismatched

Smith predictor, the FOPDT model given in Kaya (2004) is
used, which is

Gm(s)=
e�23:28s

(3:67s+ 1)
ð45Þ

If Equations (15) and (16) are solved considering Equations
(27)–(32), Figure 5 shows the stability regions obtained for a

mismatched Smith predictor structure with an FOPDT model

using a Pade approximation and the exact value of time delay

is plotted.
If the model of actual system is an SOPDT transfer func-

tion (Kaya, 2004) such as

Gm(s)=
e�21:01s

(2:77s+ 1)2
ð46Þ

then the stability region shown in Figure 6 is obtained.
In this example, a first-order Pade approximation has been

used to obtain a stability region for a mismatched Smith pre-

dictor structure in addition to exact analysis for closed-loop

systems with time delay. It can be seen that the stability region

Figure 4. Stability region for G(s)e�Ls =Gm(s)e
�Lms (perfect model).

Figure 5. Stability region for the mismatched Smith predictor

structure with a first-order plus dead time (FOPDT) model.
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obtained by using the first-order Pade approximation are

inaccurate considering a calculation based on exact analysis.

When the system response for different values of kp and ki is

evaluated, the area on the right side of the curve, the hatched

area, obtained by using a Pade approximation is the stability

region in Figures 5 and 6. Similarly, the area on the right side

of the helix, the coloured area, becomes the stability region of

the mismatched Smith predictor structure except for the inter-

nal helix.
Figure 7 shows the stability regions for the actual system

when there is perfect matching, FOPDT and SOPDT models.

This figure clearly shows that the stability regions of the

FOPDT and SOPDT models are bigger than the stability

region of the actual systems. In terms of the stability region,

one can conclude that the FOPDT and SOPDT models given

in Equations (45) and (46) are not good models for the sys-

tem. Moreover, if one selects kp and ki values out of the stabi-

lity region of the exact model, which means the system is

unstable, a wrong conclusion can be made about the stability

of the Smith predictor system, as these selected values for the

FOPDT and SOPDT models will be stable.
Beyond stabilization, it is important to design controllers

that give the desired performance measures and a good dis-

turbance rejection capability. Stability region includes many

controllers that stabilize the system and it will be possible to

search over these to find the desired controller. For this

example, step responses with a step disturbance at t = 150 s

obtained by using the values of kp = 0:4 and ki = 0:1, which
are selected from the stability regions for all models, are illu-

strated in Figure 8. From Figure 8, it can be seen that the step

response of the SOPDT system for selected controller para-

meters is close to the step response of the perfect model.

However, it is possible that a controller can destabilize the

actual system while stabilizing the FOPDT and SOPDT mod-

els, as shown in Figure 7. This problem can be eliminated

with the identification method based on the stability region

explained above. Using this method, the stability region of

the actual system and the FOPDT model can be similar by

arranging the model parameters. Considering the values of

the stabilizing PI controller kp = 0:4 and ki = 0:1, and using

the identification formulas given Equations (41)–(43), differ-

ent FOPDT models can be obtained for l 2 ½18, 22�. The

parameters of FOPDT models are presented in Table 1. The

FOPDT model described in Equation (47) is selected from

Table 1 to obtain the stability region of the Smith predictor

configuration.

Gm(s)=
e�20s

(4s+ 1)
ð47Þ

Figure 9 illustrates that the stability region of the Smith pre-

dictor configuration including the estimated model for

l= 20, Km = 1 and Tm = 4. As seen in Figure 9, the stability

region obtained by using proposed model is quite close to the

Figure 6. Stability region for the mismatched Smith predictor

structure with a second-order plus dead time (SOPDT) model.

-6 -4 -2 0 2 4 6 8
-1

0

1

2

3

4

5

6

7

8

kp

ki

Perfect model
FOPDT model
SOPDT model

Figure 7. Stability region for the Smith predictor structure with all

models.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time(sec)

y(
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FOPDT model
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Perfect model

Figure 8. Step responses of all models for kp = 0:4 and ki = 0:1.
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stability region of the Smith predictor including the perfect

model. Step responses with a step disturbance at t=150 s of

the proposed model, Kaya’s model and the perfect model for

kp = 0:5 and ki = 0:07 selected from the stability region are

illustrated in Figure 10, where it can be seen that the step

responses of Equation (47) fit the step response of the actual

system with small deviations. Therefore, in terms of the time

response, there are no disadvantages to the identified model. A

Nyquist plot of the actual system, Kaya’s model and the pro-

posed model are shown in Figure 11. Although the Nyquist

curve of Kaya’s model closely fits the actual system, the stabi-

lity regions are quite different from the perfect model.
However, it is necessary to point out that not all PI con-

trollers in the stabilizing region can give a good FOPDT

approximate model. To clarify this point, the step responses

for different PI controllers selected from the stability region

are given in Figure 12, which shows that for some PI control-

lers the step responses are not good.
In order to investigate the robustness of the proposed

method in the face of model uncertainties, the model para-

meters in Gm(s) of Equation (47) are deviated as much as

10% of their nominal values. Thus Gm(s) can be represented

by an interval transfer function as

Gm(s)=
½0:9, 1:1�e�½19, 21�s

½3:9, 4:1�s+ 1
ð48Þ

Figure 9. Stability region obtained with the proposed method for a

first-order plus dead time (FOPDT) model.

Table 1. Models parameters estimated by proposed methods for

l 2 ½18, 22�.

kp = 0:4 and ki = 0:1

l Km Tm a

18 1 4 0.55

19 1 4 0.52

20 1 4 0.50

21 1 4 0.47

22 1 4 0.45
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proposed method
Kaya 
perfect model

Figure 10. Step responses for kp = 0:5 and ki = 0:07.
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Figure 11. Nyquist plot for the actual model, Kaya’s model and the

proposed model.
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Figure 12. Step responses for different values of kp and ki.
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Choosing five points within each interval of Km, Tm and Lm, a

total of 5x5x5= 125 transfer functions are obtained and the

step responses of 125 transfer functions are shown in Figure

13. From Figure 13, it can be seen that the results are accep-

table and the proposed method is robust when there are para-

meter uncertainties.

Conclusions

In this study, stabilization of the Smith predictor structure

with perfect matched and mismatched models has been inves-

tigated. The controller used in the Smith predictor structure

has been selected as a PI controller. The stability boundary

locus method is used to find stability regions that include all

stabilizing PI controllers.
The Smith predictor with a mismatched model has two dif-

ferent time delays belonging to the model and the plant. For

this reason, the stability region is similar to a helix, namely

the area has no upper limits. Although several studies have

been performed that are related to the stabilization of the

closed-loop system with two delays known as the neutral and

retarded systems, more studies are needed on this topic.
It can be seen in the illustrative example that the stability

region of the Smith predictor structure with the SOPDT

model is closer to the stability region with the perfect matched

model than the FOPDT model. For the purposes of robust

controller design, it is important that the stability region

obtained using the identified model fits the stability region of

the exact system. Therefore, an identification approach based

on the stability region has been considered to find the

FOPDT models whose stability regions are similar to the sta-

bility region of the system. The proposed method was carried

out in a simulation example. As seen in the example, the simi-

larity of the stability regions of the model and the plant was

increased by using the proposed method.
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Figure 13. Step responses for different models for kp = 0:5 and
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