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Economic dispatch (ED) plays an important role in power system operation. ED problem is a non-smooth
and non-convex problem when valve-point effects of generation units are taken into account. This paper
presents an efficient hybrid evolutionary approach for solving the ED problem considering the valve-
point effect. The proposed algorithm combines a fuzzy adaptive particle swarm optimization (FAPSO)
algorithm with Nelder–Mead (NM) simplex search called FAPSO-NM. In the resulting hybrid algorithm,
the NM algorithm is used as a local search algorithm around the global solution found by FAPSO at each
iteration. Therefore, the proposed approach improves the performance of the FAPSO algorithm signifi-
cantly. The algorithm is tested on two typical systems consisting of 13 and 40 thermal units whose incre-
mental fuel cost functions take into account the valve-point loading effects.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The ED problem is an important optimization problem in power
system operation. The problem is used to determine the optimal
power outputs of all generating units by minimizing the total fuel
cost while the total generation should be equal to the total system
demand plus the transmission network loss, the generation output
of each unit should be between its minimum and maximum limits
[1]. In the previous studies, various mathematical programming
methods and optimization techniques have been utilized to solve
the ED problem, including the lambda-iteration method, the base
point and participation factors method, the gradient method, and
Newton method [2–6]. These methods are based on the assump-
tion that the incremental costs of the generators are monotonically
increasing. Unfortunately, in practical situations this assumption
may lead to infeasibility because of the non-linear characteristics
of real generators. The non-linear characteristics of generators con-
sist of prohibited zones, ramp rate limits, and non-smooth or non-
convex cost functions. Dynamic programming, non-linear
programming, and mix integer programming have been proposed
in the literature to address this issue [2–10]. However, these meth-
ods suffer from the curse of dimensionality especially in dealing
with modern power systems with large number of generators.
Moreover, some assumptions may be needed in order to decrease
the search space and avoid getting stuck in a local optimum. Re-
cently, artificial intelligent-based techniques, including the genetic
algorithms (GA) [11,13], the simulated annealing (SA) [14], evolu-
ll rights reserved.

yahoo.com
tionary programming (EP) [15], tabu search (TS) [16], particle
swarm optimization (PSO) [17–19], hybrid PSO and sequential
quadratic programming (PSO-SQP) [20], differential evolution
(DE) [3], hybrid DE and sequential quadratic programming (DE-
SQP) [21], hybrid EP-SQP [3], variable scaling hybrid differential
evolution (VSHDE) [4], hybrid GA (HGA) [2], evolutionary strategy
optimization (ESO) [22–23], self organizing hierarchical PSO (SOH-
PSO) [24] and new PSO(NPSO) [25] were applied to this problem.

The PSO algorithm is one of the modern evolutionary algo-
rithms. This algorithm was first proposed by Kennedy and Eber-
hart. PSO was developed through simulation of a simplified social
system, and has been found to be robust in solving continuous
non-linear optimization problems [27–29]. The PSO algorithm
can produce high-quality solutions within shorter calculation time
and more stable convergence characteristics than other stochastic
methods [27–29]. Recently, PSO has been successfully used to
solve the ED problem while considering generator constraints
and non-smooth cost constraints [17–19]. However, the perfor-
mance of the traditional PSO significantly depends on its parame-
ters, and it often suffers from the problem of being trapped in local
optima. Also the final outputs have some stochastic characteristics.
In order to avoid these problems, this paper presents a new hybrid
evolutionary optimization algorithm based on combining the fuzzy
adaptive particle swarm optimization (FAPSO) and Nelder–Mead
(NM) algorithms, called FAPSO-NM. The proposed algorithm is em-
ployed to solve the ED problem with considering the valve-point
effect. In the algorithm, the inertia weight and learning factors of
PSO are dynamically adjusted using fuzzy IF/THEN rules. The
proposed hybrid algorithm uses the FAPSO algorithm as the main
optimizer and the NM algorithm as a local search technique around

mailto:niknam@sutech.ac.ir
mailto:taher_nik@yahoo.com
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


328 T. Niknam / Applied Energy 87 (2010) 327–339
the best solution found by FAPSO at each iteration to reach the glo-
bal minimum solutions. To evaluate the proposed hybrid algo-
rithm, it is tested on two case studies with non-convex solution
spaces. The results of the proposed FAPSO-NM are compared with
those of the previous approaches, which show the effectiveness of
the proposed algorithm in terms of solution quality. The proposed
algorithm can be utilized in all non-linear, non-differentiable and
discrete optimization problems.

The rest of the paper is as follows. In Section 2, the ED problem
formulation is presented. Sections 3 and 4 briefly describe the ba-
sics of the FAPSO and NM algorithms, respectively. The proposed
hybrid algorithm and its implementation to solve the ED problem
are presented in Sections 5 and 6, respectively. In Section 7, the
effectiveness of the proposed approach is demonstrated by com-
paring its results with those of the other algorithms. The paper
concludes in References.

2. ED problem formulation

2.1. Formulation of objective function

The unit commitment (UC) problem is one of the critical prob-
lems in the economic operation of power systems. The UC problem
determines the unit generation schedule by minimizing the operat-
ing cost and satisfying constraints such as load balance, system
spinning reserve, ramp rate limits, fuel constraints, multiple emis-
sion requirements, and minimum up and down time limits for the
predefined period [26]. The ED problem is a sub-problem of the
UC problem. The ED problem must carry out the optimal generation
dispatch among the operating units to meet the system load de-
mand and operation constraints of generators while the scheduled
combination units at each specific period of operation are deter-
mined. Generally, the objective function of the ED problem is
non-differentiable at some points due to the valve-point effects.
Therefore, the objective function should include a set of non-
smooth cost functions. The valve-point effects include ripples in
the heat rate curves, which increases the number of local optima.
This paper considers non-smooth cost functions of generation units
with valve-point effects. The objective function is usually defined as
the superposition of sinusoidal functions and quadratic functions.
Fig. 1 shows the cost function curve of a thermal generator.

The bold line shows the approximation of the cost function
curve by a quadratic function:

FiðPgiÞ ¼ aiP
2
gi þ biPgi þ ci ð1Þ

Since the thin line in Fig. 1 gives a more realistic approximation
for the cost function of generators, it will be used instead of the
quadratic function. The ripples in the thin-line input–output curve
indicate the effects of the valves. As shown in Fig. 1, the curve con-
Fig. 1. Cost function of a generator with valve-points.
tains higher order non-linearity and discontinuity compared with
the smooth cost function due to the valve-point effects. In order
to obtain a more accurate model, which takes into account of the
valve-point effects, the cost function is modified to include the rip-
ple curve. This can be done by adding sinusoidal functions to the
quadratic function. Then the modified cost function of a generator
will be [2–6]:

min JðXÞ ¼
XNg

i¼1

ðFiðPgiÞ þ jei sinðfiðPgi;min � PgiÞÞjÞ

FiðPgiÞ ¼ aiP
2
gi þ biPgi þ ci

X ¼ ½Pg1; Pg2; :::; Pg;Ng �

ð2Þ

where ai, bi, and ci are the cost coefficients of the ith generator. ei

and fi are two coefficients required for introducing valve-point dis-
continuities. FiðPgiÞ is the total cost generation of the ith generator.
Pgi is the output of the ith generator. Ng is the number of generators.
Pgi;min is the minimum generation limit (MW) of the ith generator. X
is the control variable vector.

2.2. Constraints

The ED problem is subject to the following constraints.

� Power balance constraint:
The power balance constraint is based on the principle of equi-
librium between the total system generation and total system
loads (Pload) and losses (Ploss).
XNg

i¼1

Pgi ¼ Pload þ Ploss ð3Þ

Ploss is calculated using B-coefficients and it is described by
Ploss ¼
XNg

i¼1

XNg

j¼1

Pgi � Bij � Pgj þ
XNg

i¼1

Bi0 � Pgi þ B00 ð4Þ

where Bij is the i, jth element of the loss coefficient square
matrix. Bi0 is the ith element of the loss coefficient vector. B00

is the loss coefficient constant.
� Output generator constraints:

The output power of each generating unit has a lower and upper
limit. The output generator constraint is defined by a pair of
inequality constraints as follows:
Pgi;min 6 Pgi 6 Pgi;max ð5Þ

where Pgi;max is the maximum power output of the ith generat-
ing unit.

3. Fuzzy adaptive PSO

3.1. Original PSO

PSO is a stochastic optimization algorithm [27–29]. The main
idea of the PSO is the mathematical modeling and simulation of
the food searching activities of a flock of birds. In the multidimen-
sional space, each particle is moved toward the optimal point by
changing its position according to a velocity. The velocity of a
particle is calculated by three components; inertia, cognitive, and
social. The inertial component simulates the inertial performance
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of the bird to fly in the previous direction. The cognitive compo-
nent models the memory of the bird about its previous best posi-
tion. The social component models the memory of the bird about
the best position among the particles. The particles move around
the multidimensional search space until they find the optimal
solution. Based on the above discussion, the mathematical model
for PSO is as follows.

V ðtþ1Þ
i ¼ x � V ðtÞi þ c1 � rand1ð�Þ � ðPbesti � XðtÞi Þ

þ c2 � rand2ð�Þ � ðGbest � XðtÞi Þ
Xðtþ1Þ

i ¼ XðtÞi þ V ðtþ1Þ
i

i ¼ 1;2;3; :::;NSwarm

ð6Þ

where, i is the index of each particle, t is the current iteration num-
ber, rand1ð�Þ and rand2ð�Þ are random numbers between 0 and 1.
Pbesti is the best previous experience of the ith particle that is re-
corded. Gbest is the best particle among the entire population.
NSwarm is the number of the swarms. Constants c1 and c2 are the
weighting factors of the stochastic acceleration terms, which pull
each particle towards the Pbesti and Gbest. x is the inertia weight.

As indicated in (6), there are three tuning parameters; x, c1, and
c2 that each of them has a great impact on the algorithm perfor-
mance. The inertia weight x controls the exploration properties
of the algorithm.

The learning factors c1 and c2 determine the impact of the per-
sonal best Pbesti and the global best Gbest, respectively. If c1 > c2,
the particle has the tendency to converge to the best position
found by itself Pbesti rather than the best position found by the
population Gbest, and vice versa. Most implementations use a set-
ting with c1 = c2 = 2 [27–31].

To implement the PSO algorithm to solve the ED problem, the
following steps should be taken:

Step 1 The initial population and initial velocity for each particle
should be generated randomly.

Step 2 The objective function is to be evaluated for each
individual.

Step 3 The individual that has the minimum objective function
should be selected as the global position.

Step 4 The ith individual is selected.
Step 5 The best local position (Pbest) is selected for the ith

individual.
Step 6 The modified velocity for the ith individual needs to be cal-

culated based on the local and global positions and Eq. (6).
Step 7 The modified position for the ith individual should be cal-

culated based on Eq. (6) and then checked with its limit.
Step 8 If all individuals are selected, go to the next step, other-

wise i = i + 1 and go to step 4.
Step 9 If the current iteration number reaches the predetermined

maximum iteration number, the search procedure is
stopped, otherwise go to step 2.

The last Gbest is the solution of the problem.
The Fig. 2 illustrates the flowchart of the original PSO to solve

the ED problem.
It is probably impossible to define a unique set of parameters

that work well in all cases. However, the following fuzzy adaptive
PSO (FAPSO) algorithm has been useful to work in practice.

3.2. FAPSO

From experience, it is known that [29–31]:

(i) when the best fitness is found at the end of the run, low iner-
tia weight and high learning factors are often preferred;
(ii) when the best fitness is stayed at one value for a long time,
the number of generations for unchanged best fitness is
large. The inertia weight should be increased and learning
factors should be decreased.

According to this knowledge, a fuzzy system is utilized to tune
the inertia weight and learning factors with the best fitness (BF)
and the number of generations for the best unchanged fitness
(NU) as the input variables, and the inertia weight (x) and learning
factors (c1 and c2) as the output variables.

The BF value determines the performance of the best candidate
solution found so far. The optimization problems have different
ranges of the BF values. To use a FAPSO, which is applicable to a
various range of problems, the ranges of the BF and NU values
are normalized into [0, 1.0]. The BF values can be normalized using
the following formula:

NBF ¼ BF � BFmin

BFmax � BFmin
ð7Þ

where, BFmax and BFmin are the maximum and minimum values of
BF value.

NU values are normalized in a similar way. Other converting
methods are possible as well. The bound values for x, c1, and c2

are: 0:2 6 x 6 1:2, 1 6 c1 and c2 6 2.
For fuzzification of every input and output, the membership

functions shown in Fig. 3 are used.
In Fig. 1 PS (positive small), PM (positive medium), PB (positive

big) and PR (positive bigger) are the linguistic values for the inputs
and outputs.

The Mamdani-type fuzzy rule is used to formulate the condi-
tional statements that comprise fuzzy logic. For example

Ri: IF (NBF is PB) and (NU is PM),
THEN (x is PB), (c1 is PM) and (c2 is PM).

The fuzzy rules in Tables 1–3 [32] are used to adjust the inertia
weight (x) and learning factors (c1 and c2), respectively. Each rule
represents a mapping from the input space to the output space.

To obtain a deterministic control action, a defuzzification strat-
egy is required. In this paper, the centroid method has been used.

To apply the FAPSO algorithm to solve the ED problem, the fol-
lowing steps should be taken:

Step 1 The initial population and initial velocity for each particle
should be generated randomly.

Step 2 The objective function is to be evaluated for each
individual.

Step 3 The individual that has the minimum objective function
should be selected as the global position.

Step 4 The ith individual is selected.
Step 5 The best local position (Pbest) is selected for the ith

individual.
Step 6 Update the FAPSO parameters.
Step 7 Calculate the next position for each individual based on

the FAPSO parameters and Eq. (6) and then checked with
its limit.

Step 8 If all individuals are selected, go to the next step, other-
wise i = i + 1 and go to step 4.

Step 9 If the current iteration number reaches the predetermined
maximum iteration number, the search procedure is
stopped, otherwise go to step 2.

The last Gbest is the solution of the problem.
The Fig. 4 illustrates the flowchart of the original PSO to solve

the ED problem.
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Generate initial population and initial velocity

Is convergence condition satisfied?

Stop and print the results.
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Calculate the next position for each individual based on eq. (6)
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Are all individuals selected?
No

Yes

Fig. 2. Flowchart of the original PSO algorithm.
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4. Nelder-Mead method

The Nelder-Mead method is a generally used non-linear optimi-
zation algorithm. It is a numerical method for minimizing an objec-
tive function in a multidimensional space [33–35].

The operations of the method are to rescale the simplex based
on the local behavior of the function by using four basic proce-
dures: reflection, expansion, contraction, and shrinkage [33–35].
Through these procedures, the simplex can successfully improve
itself and get closer to the optimum solution. The original NM sim-
plex procedure is outlined by the following steps:

Step 1 Initialization

Generate N + 1 vertex points randomly to form an initial N-
dimensional simplex. Evaluate the functional value at each
vertex point of the simplex. N + 1 vertex points have been
sorted ascendingly based on the objective function values
as below:
Xlow Jlow

: :

: :

Xhighs Jhighs

Xhigh Jhigh

2
6666664

3
7777775
ðNþ1Þ�ðnþ1Þ

ð8Þ
where Xlow, Xhigh, and Xhighs are the vertices with the lowest,
the highest and, the second highest function values,
respectively. Jlow, Jhigh, and Jhighs represent the corresponding



Fig. 3. Membership functions of inputs and outputs (a) NBF or NU, (b) x, and (c) c1

and c2.

Table 1
Fuzzy rules for the inertia weight.

x NU

PS PM PB PR

NBF PS PS PM PB PB
PM PM PM PB PR
PB PB PB PB PR
PR PB PB PR PR

Table 2
Fuzzy rules for learning factor c1.

c1 NU

PS PM PB PR

NBF PS PR PB PB PB
PM PB PM PM PS
PB PB PM PS PS
PR PM PM PS PS

Table 3
Fuzzy rules for learning factor c2.

c2 NU

PS PM PB PR

NBF PS PR PB PM PM
PM PB PM PS PS
PB PM PM PS PS
PR PM PS PS PS

Yes

Yes

No

No

Generate an initial population and an initial velocity 

Calculate the objective function for each individual

Select the global position based on the objective function 
values 

Select the ith individual 

Select the local position for the ith individual 

Update the FAPSO parameters

Calculate the next position for each individual the 
FAPSO parameters and eq(6)

Check the new position with its limits

Are all individuals 
selected?

Is convergence 
condition satisfied?

i=i+1

Read input data

Stop and print the results.

Fig. 4. Flowchart of the FAPSO algorithm.
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observed function values, respectively. n is the number of
state variables.
Step 2 Reflection

Find Xcent , the center of the simplex without Xhigh in the min-
imization case. Generate a new vertex Xrefl by reflecting the
worst point according to the following equation:
Xcent ¼
1
N

XNþ1

j¼1
Xj –Xhigh

Xj

Xrefl ¼ ð1þ aÞ � Xcent � a� Xhigh

ð9Þ
where a is the reflection coefficient (a > 0). Nelder and Mead
suggested that a = 1. If Jlow < Jrefl < Jhighs, accept the reflection
by replacing Xhigh with Xrefl, and step 2 is repeated again for a
new iteration. If Jrefl < Jlow, go to step 3. If Jhigh > Jrefl> Jhighs,
replace Xhigh with Xrefl and go to step 4. If Jhigh <Jrefl, go to step
4 without the replacement of Xhigh by Xrefl:
Step 3 Expansion

Should reflection produce a function value smaller than Jlow

(i.e., Jrefl < Jlow), the reflection is expanded in order to extend
the search space in the same direction and the expansion
point is calculated by the following equation:
Xexp ¼ c� Xrefl þ ð1� cÞ � Xcent ð10Þ
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i=i+
where c is the expansion coefficient (c > 1). Nelder and
Mead suggested c = 2. If Jexp < Jlow, the expansion is
accepted by replacing Xhigh with Xexp; otherwise, Xexp
Yes

Yes

Yes No

No

No

Generate an initial population and an initial velocity 

Calculate the objective function for each individual 

Select the global position based on the objective function 
values 

Search around the global solution by NM

Select the i th individual 

Select the local position for the  ith individual 

Update the FAPSO parameters

Calculate the next position for each individual the 
FAPSO parameters and eq(6)

Check the new position with its limits

Are all individuals 
selected?

Is convergence 
condition satisfied?

1

Read input data

Is the new solution 
better than the glob al 

best solution?

Replace the new solution with Gbest

Stop and print the results.

Fig. 5. Flowchart of FAPSO-NM.

Table 4
Compa

Method

FAPSO-
FAPSO
PSO
CEF [2]
EP [15]
EP-PSO
PSO-SQ
DE [3]
HGA [2
FEP [2,
MFEP [
IFEP [2
replaces Xhigh. The algorithm continues with a new iteration
in step 2.
Step 4 Contraction.

The contraction vertex is calculated by the following
equation:
Xcont ¼ c� Xhigh þ ð1� bÞ � Xcent ð11Þ
where b is the contraction coefficient (0 < b < 1).
Nelder and Mead suggested b = 0.5. If Jcont < Jlow, the contrac-
tion is accepted by replacing Xhigh with Xcont and then a new
iteration begins with step 2. If Jcont > Jhighthen go to step 5.
Step 5 Shrinkage

In this step, shrink the entire simplex except Xlow by
Xi ¼ c� Xlow þ ð1� dÞ � Xlow

0 < d < 1
ð12Þ
Nelder and Mead suggested d = 0.5. Exit the algorithm if the
stopping criteria are satisfied; otherwise return to step 2.

5. Application of the hybrid FAPSO-NM algorithm on the ED
problem

As mentioned in the previous sections, previous studies show
that PSO has strong global search ability but, as a stochastic search
algorithm, cannot guarantee convergence to the global optimal
solution at the end. Also, the results are highly sensitive to the cho-
sen values of parameters. On the other hand, the NM algorithm is a
powerful local search algorithm. The FAPSO algorithm can be used
to tune of PSO’s parameters. This section presents and implements
a new hybrid evolutionary algorithm which makes full use of the
strong global search ability of the FAPSO algorithm and the strong
local search ability of the NM algorithm. Therefore, they compen-
sate the weaknesses of each other. In the proposed algorithm the
FAPSO is considered as a main optimization algorithm and the
NM algorithm is considered as a local search technique.

To implement the algorithm, the following steps should be
taken:

Step 1 The input data including cost coefficients of the generators,
output generator constraints, transmission loss matrix
coefficients, and loads should be read.

Step 2 The proposed ED problem needs to be transformed into an
unconstrained one by constructing an augmented objec-
tive function incorporating penalty factors for any value
violating the constraints:
rison of fuel costs for power demand of 1800 MW.

Minimum cost ($/h) Maximum cost ($/h) Average cost ($/h)

NM 17963.84 17964.21 17963.9577
17963.84 17976.35 17969.9187
18030.72 18401.35 18205.9247
18048.21 18404.04 18190.23
17994.07 – 18127.06

[2–3] 17991.03 – 18106.93
R [20] 17969.93 – 18029.99

17963.83 17975.36 17965.48
] 17963.83 – 17988.04
15] 18018 18453.82 18200.79
2,15] 18028.09 18416.89 18192
,15] 17994.07 18267.42 18127.06
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 !  !

HðXÞ ¼ JðXÞ þ k1

XNeq

j¼1

ðhjðXÞÞ2 þ k2

XNueq

j¼1

ðMax½0;�gjðXÞ�Þ
2

ð13Þ
JðXÞ is the objective function value of the ED problem. Neq

and Nueq are the number of equality and inequality con-
straints, respectively. hiðXÞ and giðXÞ are the equality and
inequality constraints, respectively. k1 and k2 are the penalty
factors,. Since the constraints should be met, the value of the
k1 and k2 parameters should be high. The chosen values for
them are 10,000.
In the ED problem, the augmented objective function is cal-
culated as follows:
At first, the distribution load flow is run based on the control
variables. According to the results of the distribution load
17963.83

17963.88

17963.93

17963.98

17964.03

17964.08

17964.13

17964.18

1 11 21 31 41 51

Objective function Value($/h)

Trial

17963.00

17966.00

17969.00

17972.00

17975.00

1 11 21 31 41 51

Objective function Value($/h)

Trial

18030.00

18080.00

18130.00

18180.00

18230.00

18280.00

18330.00

18380.00

1 11 21 31 41 51

Objective function Value($/h)

Trial

Fig. 6. Distribution of total costs of the FAPSO-NM, FAPSO and PSO algorithm
flow, the objective function value (JðXÞ) is calculated and
the constraints are checked. Then the augmented objective
function is calculated using the values of objective function
and constraints.
Step 3 Generate an initial population and an initial velocity

An initial population, Xi, and an initial velocity, Vi, which
must meet constraints, are generated randomly.
Population ¼

X1

X2

. . .

XNSwarm

2
6664

3
7775

Xi ¼ ½x1
i ; x

2
i ; :::; x

Ng
i �;

xj
i ¼ randð�Þ � ðPgj;max � Pgj;minÞ þ Pgj;min

j ¼ 1;2;3; :::;Ng

i ¼ 1;2;3; :::;N

ð14Þ
Swarm

61 71 81 91

FAPSO_NM

61 71 81 91

FAPSO

61 71 81 91

PSO

s for a load demand of 1800 MW for 100 different trials.



Table 5
Dispatch result of the proposed algorithm for power demand of 1800 MW.

Generator Output power (MW)

Pg1 628.32
Pg2 222.75
Pg3 149.6
Pg4 109.87
Pg5 109.87
Pg6 109.87
Pg7 109.87
Pg8 60
Pg9 109.87
Pg10 40
Pg11 40
Pg12 55
Pg13 55

Table 6
CPU time of PSO, FAPSO and FAPSO-NM algorithms for power demand of 1800 MW.

Algorithm CPU time (s)

FAPSO-NM �6.8
FAPSO �9
PSO �11.89
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Velocity ¼

V1

V2

. . .

VNSwarm

2
6664

3
7775

Vi ¼ ½v1
i ;v

2
i ; :::;v

n
i �;

v j
i ¼ 0:1 � ðrandð�Þ � ðPgj;max � Pgj;minÞ þ Pgj;minÞ

j ¼ 1;2;3; :::;Ng

i ¼ 1;2;3; :::;NSwarm

ð15Þ
17300
19300
21300
23300
25300
27300
29300
31300
33300

1 21 41 61 81 101

Objective function value ($/h)

Iteration

17300
19300
21300
23300
25300
27300
29300
31300

1 21 41 61 81 101

Objective function value ($/h)

Iteration

17300

22300

27300

32300

37300

1 21 41 61 81 101

Objective function value ($/h)

Iteration

Fig. 7. Comparative convergence behaviors of the FAPSO-NM, FAPSO and
where, randð�Þ is a random function generator between 0
and 1.
Step 4 The augmented objective function (Eq. (13)) has to be
evaluated for each individual using the result of distribu-
tion load flow.

Step 5 The individual, which has the minimum objective func-
tion, should be selected as the global position.

Step 6 Apply NM to search around the global solution.
Step 7 i = 1.
Step 8 The best local position (Pbesti) is selected for the ith

individual.
Step 9 Update the FAPSO parameters as described in the previ-

ous section.
Step 10 The modified velocity for the ith individual needs to be

calculated based on the local and global positions, the
FAPSO parameters, and Eq. (6).
121 141 161 181

FAPSO

121 141 161 181

FAPSO-NM

121 141 161 181

PSO

PSO algorithms for a load demand of 1800 MW.



Table 7
Comparison of fuel costs for power demand of 2520 MW.

Method Minimum cost ($/h) Maximum cost ($/h) Average cost ($/h)

FAPSO-NM 24169.92 24170.5 24170.0017
FAPSO 24170.93 24176.4 24173.0069
PSO 24262.73 24277.81 24271.9231
GA-SA [2,14] 24275.71 – –
HGA [2] 24169.92 – –
ESO [22] 24179.59 – –
EP-PSO [2,23] 24266.44 – –
PSO-SQR [20] 24261.05 – –
DE [3] 24169.9177 – –
GA [2,12] 24398.23 – –
SA [2,14] 24970.91 – –

Table 8
Dispatch result of the proposed algorithm for power demand of 2520 MW.

Generator Output power (MW)

Pg1 628.32
Pg2 299.2
Pg3 299.98
Pg4 159.73
Pg5 159.73
Pg6 159.73
Pg7 159.73
Pg8 159.73
Pg9 159.73
Pg10 77.4
Pg11 77.4
Pg12 87.69
Pg13 92.4
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Step 11 The modified position for ith individual should be
calculated based on Eq. (6) and then checked with its
limit.
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Fig. 8. Distribution of total costs of the FAPSO-NM, FAPSO and PSO al
Step 12 If all individuals are selected, go to the next step, other-
wise i = i + 1 and go to step 7.
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Step 13 If the current iteration number reaches the predeter-
mined maximum iteration number, the search procedure
is stopped, otherwise go to step 4.

The flowchart of the algorithm is shown in Fig. 5.

6. Simulation results

In order to evaluate the performance of proposed hybrid ap-
proach in solving the ED problem, two case studies (13 and 40
thermal units or generators) are considered in this section. MAT-
LAB 7.0 was used to implement the algorithm.
6.1. Case 1: 13 thermal generators

The first case study includes 13 thermal generation units with
the effects of valve-point loading. The expected power demands
to be satisfied by the 13 generating units are 1800 MW [15] and
2520 MW [21]. The system data is given in [15]. The problem has
a number of local optimum solutions and any method may be
trapped in one of them. The problem is solved for two different
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Fig. 9. Comparative convergence behaviors of the FAPSO-NM, F
power demands in order to illustrate the efficiency of the proposed
method in obtaining high-quality solutions.

Due to the randomness of the evolutionary algorithms, their
performances cannot be judged by the result of a single run. Many
trials with different initializations should be made to reach a valid
conclusion about the performance of the algorithms. An algorithm
is robust, if it can guarantee an acceptable performance level under
different conditions. In this paper, 100 different runs have been
carried out. The population size of the proposed algorithm (Nswarm)
and the number of iterations are 26 and 300, respectively. The sim-
ulation results of the proposed hybrid algorithm and others for dif-
ferent trials in terms of minimum cost, maximum cost, and average
cost for power demand of 1800 MW have been shown in Table 4.
The bold prints in the table illustrate the best solutions among
all solutions found by the algorithms.

Fig. 6 illustrates the distribution of the results obtained by the
proposed algorithm, FAPSO and the original PSO for 100 different
runs.

From the computational results of Table 4, the minimum cost,
maximum cost and the mean cost values obtained by the proposed
algorithm are 17963.84 $/h, 17964.21 $/h, and 17964.01 $/h,
respectively, which are slightly lower than those obtained by the
101 121 141 161 181

FAPSO-NM

ion

101 121 141 161 181

FAPSO

n

101 121 141 161 181

PSO

ion

APSO and PSO algorithms for a load demand of 2520 MW.



Table 9
CPU time of PSO, FAPSO and FAPSO-NM algorithms for power demand of 2520 MW.

Algorithm CPU time (s)

FAPSO-NM �6.8
FAPSO �9
PSO �11.89

Table 10
Comparison of fuel costs for 40 generators.

Method Minimum cost ($/h) Maximum cost ($/h) Average cost ($/h)

FAPSO-NM 121418.3 121419.8 121418.803
FAPSO 121712.4 121873.17 121778.246
EP 122624.35 – 123,382
EP-SQP 122323.97 – 122379.63
MPSO 122252.27 – –
PSO 123930.45 124312.63 124,155
PSO-SQP 122094.67 – 122295.13
DEC-SQP 121074.98 – 122295.13
HGA 121418.27 – 121784.04
IFEP 122624.35 125740.63 123,382
ESO 122122.16 123143.07 122524.07
NPSO 121704.74 122995.09 122221.37
SOHPSO 121501.14 122446.3 121853.57
CEF 123488.29 126902.89 124793.48
FEP 122679.71 127245.59 124119.37
MFEP 122647.57 124356.47 123484.74
HDE 121698.51 – 122304.30
DE 121416.29 121431.47 121422.72
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other methods. The results of Fig. 4 show that variations of the to-
tal cost obtained by the FAPSO-NM are in small range for different
runs. Also the results of the figure show that FAPSO-NM and FAPSO
converge to the global solution of 17963.84 in 70 and 46 times,
respectively, while the original PSO algorithm does not converge
to this solution and converges to the global solution of 18030.72.

It is obvious from Table 4 and Fig. 6 that the results of the FPSO-
NM algorithm are very close to minimum value. In other words,
FAPSO-NM has the small standard deviation for different runs. That
means that FAPSO-NM is robust.
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Fig. 10. Distribution of total costs of the FAPSO-NM, FAPSO and PSO algorithms for 40 generators for 100 different trials.



Table 11
Dispatch result of the proposed algorithm for 40 generators.

Generator Output power (MW) Generator Output power (MW)

Pg1 111.38 Pg21 523.33
Pg2 110.93 Pg22 523.48
Pg3 97.41 Pg23 523.33
Pg4 179.33 Pg24 523.33
Pg5 89.22 Pg25 523.33
Pg6 140 Pg26 523.33
Pg7 259.62 Pg27 10
Pg8 284.66 Pg28 10
Pg9 284.66 Pg29 10
Pg10 130 Pg30 88.7
Pg11 168.82 Pg31 190
Pg12 168.82 Pg32 190
Pg13 214.75 Pg33 190
Pg14 394.28 Pg34 165
Pg15 304.54 Pg35 166
Pg16 394.3 Pg36 165
Pg17 489.29 Pg37 110
Pg18 489.29 Pg38 110
Pg19 511.28 Pg39 110
Pg20 511.29 Pg40 511.3

Table 12
CPU time of PSO, FAPSO and FAPSO-NM algorithms for 40 generators.

Algorithm CPU time (s)

FAPSO-NM �40
FAPSO �87
PSO �152
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Table 5 shows the simulation results of FPSO-NM for the best
solution.

The speed of convergence of the proposed algorithm was also
tested. Fig. 7 shows the required number of iterations for the pro-
posed hybrid algorithm, the FAPSO, and the original PSO in order to
converge to the best solution found by respective algorithms.

The results of the convergence test suggest that the FAPSO-NM
algorithm is the best compared to the others in terms of the re-
quired number of iterations.

Table 6 reveals the CPU time of the FAPSO-NM, FAPSO and PSO
algorithms.

The simulation results in Table 6 illustrate that the execution
time of the FAPSO-NM is significantly short with respect to FAPSO
and PSO and provides a general idea that the FAPSO-NM can be uti-
lized without any restriction in practical networks.

Table 7 illustrates the simulation results of the different meth-
ods and the proposed method for a load demand of 2520 MW. The
best solutions among all solutions have been shown in the bold
prints.

Table 8 shows that among the implemented methods, the FPSO-
NM algorithm has the best performance in terms of the mean cost
value, the minimum cost, and the average cost. To verify the solu-
tion quality obtained by the proposed algorithm, Fig. 8 shows the
distribution of the results obtained by the proposed algorithm,
FAPSO and the original PSO for 100 different runs.

Table 8 illustrates the dispatch results of FPSO-NM for the best
solution for power demand of 2520 MW.

Fig. 9 shows the convergence characteristics of the FPSO-NM,
FPSO, and PSO for power demand of 2520 MW. The figure
demonstrates that the hybrid algorithm converges to the global
optimal solution after 35 iterations while the FPSO and PSO algo-
rithm converge to global solutions after 120 and 164 iterations,
respectively.

Table 9 shows the execution time of FAPSO, FAPSO and PSO.
The execution time of the proposed algorithm is less than the

FAPSO and original PSO algorithms. The reason is that the number
of particle swarms in the FAPSO-NM algorithm is 26 while in the
FAPSO and original PSO is 35.

6.2. Case2. 40 thermal units

The second case study includes 40 generators with valve-point
loading effects and has a total load of 10,500 MW [15]. The system
has several local minima, and the global minimum is very difficult
to find. To utilize the FAPSO algorithm for this case study, 100 dif-
ferent runs have been carried out. The population size of the pro-
posed algorithm and the number of iterations are 60 and 1000,
respectively. In order to compare results with other algorithms, it
is assumed that the test system is lossless.

The final fuel costs obtained using the FPSO-NM, FAPSO, PSO [2–
3], EP [2–3], EP–SQP [2–3], DEC-SQP [2–3], PSO–SQP [2–3], HGA
[2–3], modified PSO, HDE [2–3], GA [2–3], NPSO [24], SOHPSO
[25], HGA [2–3], IFEP [2,3,24,25], MFEP [2,3,24,25], DEC-SQP [2,3]
and DE [2,3] are summarized in Table 10. The best solutions among
all solutions have been illustrated in the bold prints.

From Table 10, it is clear that the results of the proposed algo-
rithm are better than those obtained by the other algorithms. Also,
the maximum cost obtained by the proposed algorithm is even
better than the minimum cost obtained by several algorithms.
The minimum cost obtained by DE is better than others. However,
the average cost and maximum cost obtained by the proposed
algorithm are better than those obtained by DE.

Fig. 10 shows the variations of output results of obtained by
FAPSO-NM, FAPSO and PSO for 100 different runs.

The simulation results indicate that the variation of results of
the FAPSO-NM algorithm is in the small range with respect to
the others. Also, the proposed algorithm converges to global solu-
tion in 70 times.

Table 11 shows the simulation results obtained by FAPSO-NM
for the best solution.

The CPU execution time of proposed algorithm, FAPSO and PSO
is shown in Table 12.

The simulation results for different case studies show the supe-
riority of the FAPSO-NM algorithm over other methods. In other
words, the simulation results show that the FAPSO-NM algorithm
converges to global solution has a short run time and small stan-
dard deviation for different trails.

7. Conclusion

In this paper, a new hybrid optimization algorithm based on the
combination of FAPSO and NM, called FAPSO-NM, was presented
for solving economic dispatch problem in power systems consider-
ing the valve-point effects. In general, the cost function of the gen-
erating units is non-smooth and non-convex. The valve-point
effects have modeled and imposed as rectified sinusoid compo-
nents. PSO is an efficient tool for solving complex optimization
problems. It is utilized to solve different problems in diverse fields.
Also, it has been successfully used to solve complex problems re-
lated to the field of power systems such as the ED problem. The re-
sults of PSO greatly depend on the parameter values and the
method often suffers from the problem of being trapped in local
optima. To overcome these drawbacks, in this paper, the parame-
ters of PSO have been adjusted using fuzzy IF/THEN rules, and in
order to reach the global solution, the algorithm has used the
NM algorithm as a local search technique around the best solution
found by FAPSO. The effectiveness of the hybrid algorithm has been
verified by computer experiments. Two typical ED problems with
valve-point affects were considered and the performances of dif-
ferent algorithms were compared. The numerical results reveal
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the superiority and feasibility of the proposed hybrid approach
compared to other methods.

The simulation results indicate that this optimization method is
very accurate and converges very rapidly so that it can be used in
the practical optimization problems. The objective functions of the
problems can be considered differentiable, non-differentiable, con-
vex and non-convex and the variables can be considered continu-
ous and discrete.
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