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Abstract—In this paper we are going to explore low-level 
implementation issues for fault-tolerant adders based on 
multiplexing using majority gates (MAJ). 

We shall analyze the particular case of a 32-bit ripple 
carry adder (RCA), as well as different redundant designs 
using MAJ-3 (MAJ of fan-in 3) multiplexed RCAs: (i) with 
classical MAJ-3 gates in the restorative stages; (ii) with 
inverters driven by short-circuited outputs at each restorative 
stage; and finally, (iii) only with short-circuited outputs at 
each restorative stage. From one solution to the next, the 
restorative MAJ-3 gates get simpler and simpler. These 
simplifications translate into different speeds and power 
consumptions; challenging aspects of future nanoelectronics. 
All these circuits have been designed and simulated in 
subthreshold. The speed and power will be reported and 
compared for designs in 0.18 µm as well as in 70 nm (using 
the Berkeley Predictive Technology Model). The results 
reveal interesting power-speed-reliability tradeoffs. 

In two of these designs, depending on the way the MAJ-3 
function is implemented, defects translate into increased 
power, and suggest a (simple) way of detecting them. A 
detection circuit can trigger reconfiguration at a higher level, 
leading to a seamless transition from a fault/defect-tolerant 
circuit to a defect-tolerant system. The main advantage of 
such an approach would be that the reconfiguration could be 
done on-line, i.e., while the circuit is still operating correctly.  

Index Terms—Architecture, defect- and fault-tolerance, 
majority logic, multiplexing, power. 

I. INTRODUCTION 

Scaling of CMOS into the nanometer range raises many 
challenges [1], [2]. The development of novel nanodevices 
brings promise for improvements in performance, yet it 
also leads to new challenges, including both the increasing 
power consumption, and the need for architectures that 
reduce the uncertainty inherent to (nano)computations [3]–
[5]. That is why, fault- and defect-tolerant architectures 
have recently received revived attention in the 
nanotechnology community [6]–[10]. One well-known 
approach for developing fault-tolerant architectures in the 
face of uncertainties (both defects and transient faults) is to 
incorporate spatial and/or temporal redundancy. Among 
the redundant design schemes, we should mention here: 
modular redundancy, cascaded modular redundancy, 

multiplexing (MUX, including von Neumann multiplexing 
[11] and parallel restitution PAR-REST [10]), as well as 
reconfigurability [6], [9], [12]. 

Reliable operation of a circuit can be achieved using 
redundancy at many different levels: at the device level 
[13], [14]; at the gate level [15], [16]; at the block level 
[17]; in time; and in communication (through encoding, 
e.g., [18]) (see also [2] and [4]–[10]). We note here that all 
of these have in common that improved reliability is traded 
off for increased chip area and higher connectivity. These 
lead to higher power consumptions, and can also slow 
down the computations. 

The most common way of quantify redundancy is to use 
a redundancy factor R, which indicates the multiplicative 
increase in circuit size (i.e., number of gates) required to 
attain fault-free operation, or equivalently, the ratio of the 
size of the fault/defect-tolerant circuit to the size required 
in case of no faults. Cost-effectiveness constraints dictate 
that redundancy factors must be small, or better very 
small. Still, the increase in circuit area rather than increase 
in size is a more significant measure of redundancy, as 
suggested in [19], [20] (where the authors also show how 
encoding in combination with replication can be used to 
minimize circuit area). 

In this paper the focus will be on the gate and block 
levels. Section II provides a review of multiplexing 
(MUX) schemes starting from the early work of von 
Neumann and detailing recent variations and 
enhancements. A comparison of MUX with other 
techniques using redundancy shows significant advantages 
for MUX. The use of MAJ gates in MUX improves over 
MUX schemes based on NAND gates. That is why, in 
Section III we analyze different implementations for MAJ 
functions. Beside reliability, power is becoming an 
important issue, hence we are going to discuss MAJ-3 
gates targeted for subthreshold operation. Section IV will 
put all of these together, and present different 
configurations of a MAJ-3 MUX 32-bit adder. Only serial 
addition will be considered, as it outperforms parallel 
addition when operated in subthreshold. Simulation results 
will be presented and discussed before concluding. 



  

II. ON  MULTIPLEXING 

In [11], von Neumann introduced the multiplexing 
redundancy algorithm MUX as a plausible representation 
for reliable (neural-inspired) computation. The MUX 
algorithm aims to improve the reliability of a sequence of 
computations. This ‘multiplexing’ of each computation 
serves to contain error propagation, by selecting the more-
likely result at each stage. MUX was developed for 
arbitrary gates, including MAJ and NAND gates (see Fig. 
1 showing the executive stage followed by two restorative 
stages of a NAND-2 MUX). However, a detailed 
reliability analysis was performed for two-input NAND 
(NAND-2) gates only, assuming independent gate failures 
and very large redundancy factors. The performance of 
NAND-2 MUX was compared with the performance of 
other fault tolerance techniques in [4]–[8]. In [8], NAND-
2 MUX was analyzed at small to moderate redundancy 
factors of 30, 300, and 3000. NAND-2 MUX has been 
analyzed using a CAD tool in [21]. The results reported in 
[21] show that for small redundancy factors the theoretical 
results from [8] are inaccurate. 

The PAR-REST scheme [10] is of particular interest. 
The authors distinguish PAR-REST from NAND-2 MUX 
based on the fact that the computations are not collapsed 
after each layer of the circuit (see [10] for details) and that 
restorative stages are only used periodically. They show 
that PAR-REST can significantly improve upon NAND-2 
MUX for small to moderate R. A similar approach was 
taken in [22], [23], where MAJ-3 gates were used instead 
on NAND-2. 

The issue of which gate to use is debatable. MUX can 
be applied to any logic gate, but for each new gate and 
even for another fan-in value, the analysis must be redone. 
Following is a list of pros and cons. 

• NAND MUX requires two restoration stages, while 
MAJ requires only one. This leads to less area, shorter 
delay, less power, and less energy. Still, this is not as 
clear as it seems, by proper design one NAND 
restoration could be eliminated. 

• MAJ has an error threshold higher NAND (see Fig. 

2). In this figure, the error threshold for MAJ-k gates 
(for k odd) is the one determined in [24], [25], while 
the error threshold for NAND-k gates was recently 
proven in [26]. The figure also suggests that MAJ 
gates of large fan-ins are (theoretically) better for 
improving reliability (see also [27]). 

• Finally, MAJ-3 MUX can achieve accurate 
computations for gate failure probabilities qMAJ-3  
< 0.0197 (see [23]). This outperforms the NAND-2 
gate failure probabilities qNAND-2 < 0.0107 (see [10] 
for a relevant discussion). 

The idea of using MAJ was presented in the original 
article of von Neumann [11]. Still, exact evaluation of the 
probability of failure at very small redundancy factors was 
analyzed and proven only recently [22], [23]. 

A single MAJ-3 MUX logic computation is presented in 
Fig. 3(a). The MUX computation comprises an executive 
stage and a restorative stage. The executive stage repeats 
the desired logic computation a total of N times, operating 
on N different sets of inputs obtained from the previous 
computation. The restorative stage triplicates and 
randomly orders (see randomizer in Fig. 3(b)) the outputs 
from the executive stage, and then chooses the majority of 
each randomly-chosen set of three signals using a set of N 
MAJ-3 gates, to generate the N final outputs. This 
restoration is central to the global performance of the 
MUX scheme. The purpose of the restorative stage in 
MUX is to reduce error propagation from a logic 
computation’s input to its output, by selecting the more 
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Fig. 1.  NAND-2 von Neumann multiplexing. 
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Fig. 2.  The error thresholds for NAND and MAJ gates with 
respect to their fan-in. 
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Fig. 3.  (a) Generic MAJ-3 MUX stage, and (b) the N = 5 case. 

 



  

common outputs from the computation. The restorative 
stage is only effective when the probabilities of error in the 
inputs are sufficiently large. In fact, for small input error 
probabilities, the chance of error introduced by the gates in 
the restorative stage might outweigh the advantage of 
having the restorative stage. Thus, if the input error 
probabilities for a particular logic computation are small 
enough, we can simultaneously improve the output error 
probability and economize (reduce the redundancy factor 
R) of any MUX design by eliminating the restorative stage. 

If one is seeking the best-performing architecture for a 
particular redundancy factor R, it has been shown that the 
standard MUX algorithm can be improved on by applying 
the restorative stage on only some computations, while 
simultaneously increasing the bundle size N. This idea was 
used in [23] to improve MAJ-3 MUX, but the same 
principle can be applied when using any other type of gate 
or combinatorial logic block. Let us consider architectures 
in which the logical depths of all inputs to a given 
computation are the same (but in general this need not be 
the case). The enhanced MAJ-3 MUX(N, k) architecture is 
one in which an executive stage with bundle size N is used 
for all computations, and a restorative stage is applied only 
on every kth stage (i.e., for computations with logical depth 
k, 2k, … — while in general the restorative stages could be 
distributed unevenly). The redundancy factor introduced 
by a MAJ-3 MUX(N, k) architecture is R = N + N / k. By 
placing the restorative stage only every kth stage, the 
bundle size N can be increased to N+ = [2k/(k+1)]×N for 
the same redundancy factor R. Obviously, this not only 
maximizes reliability, but also reduces delay, area, and 
power. A comparison of R-modular redundancy (RMR), 
NAND-2 MUX, reconfiguration, and the enhanced MAJ-3 
MUX can be seen in Fig. 4. 

Finally, we return to the comparison between MAJ-3 
MUX and PAR-REST. As in enhanced MAJ-3 MUX(N,k), 
PAR-REST takes advantage of periodic restoration to 
improve performance. Hence, a comparison between 
MAJ-3 MUX and PAR-REST is the most fair comparison 
of the reliability of MAJ-3 and NAND-2 architectures. We 
have compared the performance of MAJ-3 MUX and 
PAR-REST at the smallest analyzed redundancy for PAR-
REST (R = 48) and also at R = 100 (which is the largest 
redundancy we have considered for MAJ-3 MUX). At 
R = 48, MAJ-3 MUX improves on PAR-REST by a factor 
of 1.5 (2.3×10–4 versus about 1.5×10–4), while achieving a 
factor of 4.25 at R = 100 (1.7×10–3 versus about 4×10–4). 

These fresh results and enhancements on MUX show 
that the technique is able to start competing with 
reconfiguration (which is not able to deal with faults) for 
quite small redundancy factors, if the reconfiguration is 
performed on large blocks (N > 103). 

Novel redundancy techniques that combine device-level 
([13], [14]) and gate-level design ideas have also been 
presented [15]. In [16], the authors propose a redundant 
design approach that creates a rescaled weighted average 
of the redundant blocks’ outputs. This results in a 
multiple-valued logic representation (of the function to be 
implemented), and provides an effective means of 
absorbing faults. The authors show that the new design 
technique improves the immunity to permanent and 
transient faults occurring at the transistor level, and works 
even for a redundancy factor R = 2. The paper suggests 
that dynamically adjustable threshold levels may further 
enhance this method. This solution presented in [15] 
precedes [16], and also has the advantage of lower power 
consumption for the case of fault-free operation. Other 
low-level approaches which we should mention here 
belong to the larger class of rad-hard by design [28], and 
high matching techniques used in analog circuits [29], [30] 
(recently used for enhancing the reliability of CMOS 
TLGs [13], and capacitive SET [14]). 

Very recently [18], examples of hardware architectures 
that incorporate one or multiple redundancy schemes 
(triple modular redundancy together with encoding) were 
tested using VHDL/Spice/Monte Carlo simulations. 

III. MAJORITY  GATES 

Based on the discussion of the previous section, MAJ 
MUX schemes seem to have an edge over NAND MUX 
ones. It then becomes a question of how we implement the 
MAJ function. Before going further, we mention that MAJ 
functions can always be replaced by minority functions if 
the inputs are inverted and vice versa. That is why we are 
going to refer to these implementations as MAJ gates, 
even if sometimes the function they implement is the 
minority function. 

NC=106

 
Fig. 4.  Comparison of RMR, NAND-2 vN-MUX, 
reconfiguration, and the enhanced MAJ-3 MUX(N, k). 

 



  

MAJ gates can be implemented in many different ways. 
A standard CMOS implementation is the well-known 
“mirrored adder” [31] (see Fig. 5). Domino logic gates 
could be used to improve the speed, but raise problems 
with distributing the clock, higher power consumption, and 
reduced noise margins (sensitivity to variations and clock 
skew). Differential logic could be another alternative, but 
with scaling the leakage currents are going to be higher (as 
compared with the other logic styles) [32]. Using pass 
transistors/gates as a multiplexor followed by an inverter 
(as buffer) is a very simple solution. This type of gates has 
been recently shown to work reliably even in subthreshold 
[33]. They are low power, but also kind of slow. Pseudo-
nMOS (or its variations) have long been known and used 
for implementing threshold logic gates [34]. These can be 
very fast, but power hungry, and the noise margins are 
small. These gates are also sensitive to variations. 

MAJ-3 gates operating in subthreshold are the basic 
building blocks to be used in this paper. This is because 
subthreshold operation is considered to consume less 
power than any other known low-power solution, even 
lower than energy recovery logic [35]. Because reduction 
of power consumption is mandatory for future scaled 
CMOS [36], subthreshold operation is very likely to play 
an important role in the design of circuits on the scaling 
path towards the 10 nm node [37]. That is why in this 
paper we suggest using MAJ-3 in subthreshold [38]–[53]. 
Combining such gates with low-level redundancy 
(improved matching and fault-tolerance) was suggested in 
[15], by short-circuiting the outputs of three gates, so no 
voter (MAJ-3) was required. 

In Figure 5 the second gate from left [38] is a floating 
gate structure depending on a somewhat exotic UV-
postprocessing technique (probably not suitable for future 
scaled CMOS). This is due to the dependence on 
nonvolatile analog memory from charges depleted on the 
floating gates, through UV activated conductances [43]. 

The gate from [41], [42], is the third gate in Fig. 5. It 
exploits the transistor as a four terminal device, using the 
wells to control the threshold for changing the 
functionality in real time, and/or some automatic body 
biasing [44]. This is able to also implement NOR-3 and 

NAND-3 [42]. The larger relative transconductance in 
subthreshold, compared to the classical above threshold 
region, makes this possible. This is not the case for other 
circuits based on inverters with short-circuited outputs 
(e.g., [45]), as they are not intended for subthreshold, and 
use the transistors as 3 terminal devices. 

IV. FAULT-TOLERANT ADDERS 

The particular example we are going to use in this paper 
is a 32-bit adder. Many different alternative designs are 
possible, starting from the serial ripple carry adder (RCA) 
and going towards parallel implementations [46]–[50]. It 
is commonly accepted that the slowest one is the RCA, 
while Kogge-Stone [47] (KS) is expected to be the fastest. 
Classical CMOS gates are almost never used when fast 
addition is in the picture, and domino gates are the norm, 
with threshold logic gates advocated for even higher 
speeds [51], or for optimal mixed combinations with 
domino logic [52]. 

An RCA and a KS have very recently been analyzed 
[53] when operating in subthreshold (at 100 nm and 70 
nm). The main conclusions are that: 

• the wires are reducing the speed advantage of the KS 
over RCA from 4.5x to 2.2x; 

• the speed of the KS at a given VDD can be matched by 
RCA at a slightly larger VDD (10% to 20%); 

• at equal speeds, the RCA still maintains a clear power 
and energy advantage [53]. 

The integration of MAJ-3 MUX with an adder was 
discussed in [54]. A KS adder can be seen in Fig 6(a), and 
a MAJ-3 MUX(3,3) enhanced KS adder can be seen in 
Fig. 6(b). The connectivity pattern gets complex, and the 
longer wires will contribute both to increasing the delay 
and the switching power. Based on the above factors, and 
on the simulation results from [53], we decided to focus on 
RCA. It is also much easier to integrate MAJ-3 MUX with 
an RCA (see Fig. 7, and compare with Fig. 6(b)). 

The main block of an RCA is the well-known full adder 
(FA). Many investigations for optimizing the FA at the 
gate level have been reported [55]. The results for the 
many FAs investigated are not directly translatable for 
subthreshold operation. We have investigated an FA based 
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Fig. 5. Different MAJ-3 gates from left to the right: [31], [38], [42], [34]. 

 



  

on MAJ-3 gates implemented as “output-wired inverters” 
[53]. We have also experimented with combinations of 
gates for optimizing the FA. A very low power FA in 
subthreshold uses a “mirrored adder” for the MAJ-3 
(computing the carry-out), and two pass-gates (like the 
ones in [33]) for implementing the XOR-3 (computing the 
sum). This is the FA that we have used in all the RCAs in 
this paper (see Fig. 7). The XOR-3 is very low power and 
kind of slow, but it is not in the critical path of the RCA. A 
standard CMOS implementation of an XOR-3 not only 
dissipates more than the pass-gate solution (in 
subthreshold), but is also more sensitive to variations and 
skewed inputs. 

The top drawing in Fig. 7 presents a block diagram of 
the standard RCA. The MAJ-3 MUX RCA configurations 
have three parallel FAs per stage, and can be summarized 
as follows: 

• use three RCAs in parallel; 
• use three MAJ-3 gates to ‘vote’ on the carry-out 

coming from the three FAs at position i; 
• use the output of each of these three MAJ-3 to drive 

the three carry-in of the three FAs at bit position i+1. 
These are mapped into the next three structures in Fig. 7, 
with each subsequent structure being less complex than the 
previous. 

• The first of the three structures properly uses MAJ-3 
gates for the restorative stages (represented as circles). 
This will double the delay and increase power. 

• The complexity of the second structure is reduced 
with the outputs of the FAs being tied together and fed 
as inputs to the restorative inverters. The MAJ-3 gate 
is now reduced to several wires and an inverter. This 
solution is faster, and will dissipate less than the 
pervious one, as long as there are no faults/defects. If 
there are faults/defects, the fighting on the carry-out 
will increase the power consumption of the inverters 
which will try to restore the logic levels. 

• The simplest structure of all eliminates the restorative 
inverters and uses the next stage of the FAs to provide 
signal restoration. The MAJ-3 has now vanished. Note 
how the outputs of each structure are shorted. This 
solution will be the fastest as long as no faults/defects.  

Shorting the outputs could result in a path from VDD to 
ground, resulting in increased current, while placing the 
gates in parallel and making them drive subsequent stages 
sequentially increases the signal propagation delay. These 
three solutions show very different power-delay tradoffs 
both when working correctly and when faulty. We have 
tested the structures for stuck-at-faults. This corresponds 
to a worst case scenario, as in practice a fault/defect would 
manifest itself as an analog value in between VDD and 
GND (see [16], [56]). If the number of stuck inputs per 

 

 

 
Fig. 6. (a) Kogge-Stone adder; and (b) MAJ-3 MUX(3,3) implementation of the Kogge-Stone adder [54]. 

 

 
Fig. 7. Classical RCA where the square blocks represent FAs. 
The three different MAJ-3 MUX RCAs: (i) using MAJ-3 gates 
(circles) in between FAs; (ii) short-circuiting the outputs of 
three FAs and using three inverters (triangles) to recover the 
voltage; and (iii) short-circuiting the outputs of three FAs (the 
voltage is recovered by the next three FAs). 
 



  

stage exceeds one, the condition constitutes immediate 
failure. 

The behavior of the three different MAJ-3 MUX RCAs 
can be seen in Figs. 8–10, while numerical values are 
reported in Table I. The traces of Fig. 8 show a worst case 
with 32 faults (one in every stage), but the current does not 
increase. The short circuited MAJ-3 MUX RCAs with 
faults show the current increasing linearly in steps as the 
number of fights in different stages increase. These traces 
can be seen in Figs. 9 and 10 for the 180nm node, and in 
Fig. 11 for the 70nm node (Fig. 11 is equivalent to Fig. 9). 
It can be seen that a designer has quite a large number of 
options for trading off power and speed when using MUX. 

The results from Figs. 9–11 show a significant current 
increase when faults occur (see step values in Table I). A 
current-aware circuit can trigger a reconfiguration process 
at a higher level. The current work is however aimed at 
showing that these faults cause significant current changes 
we can depend on for detecting them. The simulation 
results are promising as showing that scaling from the 
180nm node to the 70nm node results in significantly 
shorter delays (40x), with small increase of currents (6x), 
both with and without faults. 

V. CONCLUSIONS 

The paper has analyzed multiplexed adder designs 
working in subthreshold. The subthreshold operation was 
employed to address the power challenge. Still, while 

reducing the voltage supply into the subthreshold region 
might save the day for power consumption, it will 
adversely affect reliability. That is why, we proposed and 
investigated a MAJ-3 MUX architectural approach for 32-
bit adders. Serial solutions seem to have an advantage over 
parallel ones, and also integrate well with MUX. The 
implementation of the MAJ-3 gates can be done in several 
different ways, with three being detailed in this paper, 
namely: classical CMOS gate, short-circuits followed by 
inverters, or only short-circuits. Simulations have shown 
that the two solutions relying on short-circuiting the 
outputs are faster in case of no faults/defects. The delay 
increases when faults/defects start appearing, but the 
circuit is still able to function correctly, showing a gradual 
degradation of its speed performance. The faults/defects 
also significantly increase current (power). This might be 
seen as a disadvantage, but can be used as a way of 
detecting the faults/defects. A current-aware circuit can 
trigger reconfiguration at a higher level if currents get 
above a certain threshold. Once the reconfiguration has 
been achieved, the defective circuit/block can be swapped 
with a non-defective one, and then shut down. 
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