

The Vanishing Majority Gate
Trading Power and Speed for Reliability

Valeriu Beiu1, Snorre Aunet2, Ray Robert Rydberg III1, Asbjørn Djupdal3, and Jabulani Nyathi1

1 School of EE&CS, Washington State University, Pullman, Washington, USA
2 Department of Informatics, University of Oslo, Norway

3 Department of CS&IT, Norwegian University of Science and Technology, Norway

Abstract—In this paper we are going to explore low-level
implementation issues for fault-tolerant adders based on
multiplexing using majority gates (MAJ).

We shall analyze the particular case of a 32-bit ripple
carry adder (RCA), as well as different redundant designs
using MAJ-3 (MAJ of fan-in 3) multiplexed RCAs: (i) with
classical MAJ-3 gates in the restorative stages; (ii) with
inverters driven by short-circuited outputs at each restorative
stage; and finally, (iii) only with short-circuited outputs at
each restorative stage. From one solution to the next, the
restorative MAJ-3 gates get simpler and simpler. These
simplifications translate into different speeds and power
consumptions; challenging aspects of future nanoelectronics.
All these circuits have been designed and simulated in
subthreshold. The speed and power will be reported and
compared for designs in 0.18 µm as well as in 70 nm (using
the Berkeley Predictive Technology Model). The results
reveal interesting power-speed-reliability tradeoffs.

In two of these designs, depending on the way the MAJ-3
function is implemented, defects translate into increased
power, and suggest a (simple) way of detecting them. A
detection circuit can trigger reconfiguration at a higher level,
leading to a seamless transition from a fault/defect-tolerant
circuit to a defect-tolerant system. The main advantage of
such an approach would be that the reconfiguration could be
done on-line, i.e., while the circuit is still operating correctly.

Index Terms—Architecture, defect- and fault-tolerance,
majority logic, multiplexing, power.

I. INTRODUCTION

Scaling of CMOS into the nanometer range raises many
challenges [1], [2]. The development of novel nanodevices
brings promise for improvements in performance, yet it
also leads to new challenges, including both the increasing
power consumption, and the need for architectures that
reduce the uncertainty inherent to (nano)computations [3]–
[5]. That is why, fault- and defect-tolerant architectures
have recently received revived attention in the
nanotechnology community [6]–[10]. One well-known
approach for developing fault-tolerant architectures in the
face of uncertainties (both defects and transient faults) is to
incorporate spatial and/or temporal redundancy. Among
the redundant design schemes, we should mention here:
modular redundancy, cascaded modular redundancy,

multiplexing (MUX, including von Neumann multiplexing
[11] and parallel restitution PAR-REST [10]), as well as
reconfigurability [6], [9], [12].

Reliable operation of a circuit can be achieved using
redundancy at many different levels: at the device level
[13], [14]; at the gate level [15], [16]; at the block level
[17]; in time; and in communication (through encoding,
e.g., [18]) (see also [2] and [4]–[10]). We note here that all
of these have in common that improved reliability is traded
off for increased chip area and higher connectivity. These
lead to higher power consumptions, and can also slow
down the computations.

The most common way of quantify redundancy is to use
a redundancy factor R, which indicates the multiplicative
increase in circuit size (i.e., number of gates) required to
attain fault-free operation, or equivalently, the ratio of the
size of the fault/defect-tolerant circuit to the size required
in case of no faults. Cost-effectiveness constraints dictate
that redundancy factors must be small, or better very
small. Still, the increase in circuit area rather than increase
in size is a more significant measure of redundancy, as
suggested in [19], [20] (where the authors also show how
encoding in combination with replication can be used to
minimize circuit area).

In this paper the focus will be on the gate and block
levels. Section II provides a review of multiplexing
(MUX) schemes starting from the early work of von
Neumann and detailing recent variations and
enhancements. A comparison of MUX with other
techniques using redundancy shows significant advantages
for MUX. The use of MAJ gates in MUX improves over
MUX schemes based on NAND gates. That is why, in
Section III we analyze different implementations for MAJ
functions. Beside reliability, power is becoming an
important issue, hence we are going to discuss MAJ-3
gates targeted for subthreshold operation. Section IV will
put all of these together, and present different
configurations of a MAJ-3 MUX 32-bit adder. Only serial
addition will be considered, as it outperforms parallel
addition when operated in subthreshold. Simulation results
will be presented and discussed before concluding.

II. ON MULTIPLEXING

In [11], von Neumann introduced the multiplexing
redundancy algorithm MUX as a plausible representation
for reliable (neural-inspired) computation. The MUX
algorithm aims to improve the reliability of a sequence of
computations. This ‘multiplexing’ of each computation
serves to contain error propagation, by selecting the more-
likely result at each stage. MUX was developed for
arbitrary gates, including MAJ and NAND gates (see Fig.
1 showing the executive stage followed by two restorative
stages of a NAND-2 MUX). However, a detailed
reliability analysis was performed for two-input NAND
(NAND-2) gates only, assuming independent gate failures
and very large redundancy factors. The performance of
NAND-2 MUX was compared with the performance of
other fault tolerance techniques in [4]–[8]. In [8], NAND-
2 MUX was analyzed at small to moderate redundancy
factors of 30, 300, and 3000. NAND-2 MUX has been
analyzed using a CAD tool in [21]. The results reported in
[21] show that for small redundancy factors the theoretical
results from [8] are inaccurate.

The PAR-REST scheme [10] is of particular interest.
The authors distinguish PAR-REST from NAND-2 MUX
based on the fact that the computations are not collapsed
after each layer of the circuit (see [10] for details) and that
restorative stages are only used periodically. They show
that PAR-REST can significantly improve upon NAND-2
MUX for small to moderate R. A similar approach was
taken in [22], [23], where MAJ-3 gates were used instead
on NAND-2.

The issue of which gate to use is debatable. MUX can
be applied to any logic gate, but for each new gate and
even for another fan-in value, the analysis must be redone.
Following is a list of pros and cons.

• NAND MUX requires two restoration stages, while
MAJ requires only one. This leads to less area, shorter
delay, less power, and less energy. Still, this is not as
clear as it seems, by proper design one NAND
restoration could be eliminated.

• MAJ has an error threshold higher NAND (see Fig.

2). In this figure, the error threshold for MAJ-k gates
(for k odd) is the one determined in [24], [25], while
the error threshold for NAND-k gates was recently
proven in [26]. The figure also suggests that MAJ
gates of large fan-ins are (theoretically) better for
improving reliability (see also [27]).

• Finally, MAJ-3 MUX can achieve accurate
computations for gate failure probabilities qMAJ-3
< 0.0197 (see [23]). This outperforms the NAND-2
gate failure probabilities qNAND-2 < 0.0107 (see [10]
for a relevant discussion).

The idea of using MAJ was presented in the original
article of von Neumann [11]. Still, exact evaluation of the
probability of failure at very small redundancy factors was
analyzed and proven only recently [22], [23].

A single MAJ-3 MUX logic computation is presented in
Fig. 3(a). The MUX computation comprises an executive
stage and a restorative stage. The executive stage repeats
the desired logic computation a total of N times, operating
on N different sets of inputs obtained from the previous
computation. The restorative stage triplicates and
randomly orders (see randomizer in Fig. 3(b)) the outputs
from the executive stage, and then chooses the majority of
each randomly-chosen set of three signals using a set of N
MAJ-3 gates, to generate the N final outputs. This
restoration is central to the global performance of the
MUX scheme. The purpose of the restorative stage in
MUX is to reduce error propagation from a logic
computation’s input to its output, by selecting the more

R
an

dom
izer

R
an

dom
izer

Execution Restoration # 1 Restoration # 2

I1

I2

1

2

N

1

2

N

•

•

•

•

•

•

1

2

N

•

•

•

R
an

dom
izer

R
an

dom
izer

ExecutionExecution Restoration # 1Restoration # 1 Restoration # 2Restoration # 2

I1

I2

1

2

N

1

2

N

•

•

•

•

•

•

1

2

N

•

•

•

Fig. 1. NAND-2 von Neumann multiplexing.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fan−in of One Gate

E
rr

o
r

 T
h

re
sh

o
ld

 V
al

u
e

NAND

MAJ

Fig. 2. The error thresholds for NAND and MAJ gates with
respect to their fan-in.

(a) (b)

Fig. 3. (a) Generic MAJ-3 MUX stage, and (b) the N = 5 case.

common outputs from the computation. The restorative
stage is only effective when the probabilities of error in the
inputs are sufficiently large. In fact, for small input error
probabilities, the chance of error introduced by the gates in
the restorative stage might outweigh the advantage of
having the restorative stage. Thus, if the input error
probabilities for a particular logic computation are small
enough, we can simultaneously improve the output error
probability and economize (reduce the redundancy factor
R) of any MUX design by eliminating the restorative stage.

If one is seeking the best-performing architecture for a
particular redundancy factor R, it has been shown that the
standard MUX algorithm can be improved on by applying
the restorative stage on only some computations, while
simultaneously increasing the bundle size N. This idea was
used in [23] to improve MAJ-3 MUX, but the same
principle can be applied when using any other type of gate
or combinatorial logic block. Let us consider architectures
in which the logical depths of all inputs to a given
computation are the same (but in general this need not be
the case). The enhanced MAJ-3 MUX(N, k) architecture is
one in which an executive stage with bundle size N is used
for all computations, and a restorative stage is applied only
on every kth stage (i.e., for computations with logical depth
k, 2k, … — while in general the restorative stages could be
distributed unevenly). The redundancy factor introduced
by a MAJ-3 MUX(N, k) architecture is R = N + N / k. By
placing the restorative stage only every kth stage, the
bundle size N can be increased to N+ = [2k/(k+1)]×N for
the same redundancy factor R. Obviously, this not only
maximizes reliability, but also reduces delay, area, and
power. A comparison of R-modular redundancy (RMR),
NAND-2 MUX, reconfiguration, and the enhanced MAJ-3
MUX can be seen in Fig. 4.

Finally, we return to the comparison between MAJ-3
MUX and PAR-REST. As in enhanced MAJ-3 MUX(N,k),
PAR-REST takes advantage of periodic restoration to
improve performance. Hence, a comparison between
MAJ-3 MUX and PAR-REST is the most fair comparison
of the reliability of MAJ-3 and NAND-2 architectures. We
have compared the performance of MAJ-3 MUX and
PAR-REST at the smallest analyzed redundancy for PAR-
REST (R = 48) and also at R = 100 (which is the largest
redundancy we have considered for MAJ-3 MUX). At
R = 48, MAJ-3 MUX improves on PAR-REST by a factor
of 1.5 (2.3×10–4 versus about 1.5×10–4), while achieving a
factor of 4.25 at R = 100 (1.7×10–3 versus about 4×10–4).

These fresh results and enhancements on MUX show
that the technique is able to start competing with
reconfiguration (which is not able to deal with faults) for
quite small redundancy factors, if the reconfiguration is
performed on large blocks (N > 103).

Novel redundancy techniques that combine device-level
([13], [14]) and gate-level design ideas have also been
presented [15]. In [16], the authors propose a redundant
design approach that creates a rescaled weighted average
of the redundant blocks’ outputs. This results in a
multiple-valued logic representation (of the function to be
implemented), and provides an effective means of
absorbing faults. The authors show that the new design
technique improves the immunity to permanent and
transient faults occurring at the transistor level, and works
even for a redundancy factor R = 2. The paper suggests
that dynamically adjustable threshold levels may further
enhance this method. This solution presented in [15]
precedes [16], and also has the advantage of lower power
consumption for the case of fault-free operation. Other
low-level approaches which we should mention here
belong to the larger class of rad-hard by design [28], and
high matching techniques used in analog circuits [29], [30]
(recently used for enhancing the reliability of CMOS
TLGs [13], and capacitive SET [14]).

Very recently [18], examples of hardware architectures
that incorporate one or multiple redundancy schemes
(triple modular redundancy together with encoding) were
tested using VHDL/Spice/Monte Carlo simulations.

III. MAJORITY GATES

Based on the discussion of the previous section, MAJ
MUX schemes seem to have an edge over NAND MUX
ones. It then becomes a question of how we implement the
MAJ function. Before going further, we mention that MAJ
functions can always be replaced by minority functions if
the inputs are inverted and vice versa. That is why we are
going to refer to these implementations as MAJ gates,
even if sometimes the function they implement is the
minority function.

NC=106

Fig. 4. Comparison of RMR, NAND-2 vN-MUX,
reconfiguration, and the enhanced MAJ-3 MUX(N, k).

MAJ gates can be implemented in many different ways.
A standard CMOS implementation is the well-known
“mirrored adder” [31] (see Fig. 5). Domino logic gates
could be used to improve the speed, but raise problems
with distributing the clock, higher power consumption, and
reduced noise margins (sensitivity to variations and clock
skew). Differential logic could be another alternative, but
with scaling the leakage currents are going to be higher (as
compared with the other logic styles) [32]. Using pass
transistors/gates as a multiplexor followed by an inverter
(as buffer) is a very simple solution. This type of gates has
been recently shown to work reliably even in subthreshold
[33]. They are low power, but also kind of slow. Pseudo-
nMOS (or its variations) have long been known and used
for implementing threshold logic gates [34]. These can be
very fast, but power hungry, and the noise margins are
small. These gates are also sensitive to variations.

MAJ-3 gates operating in subthreshold are the basic
building blocks to be used in this paper. This is because
subthreshold operation is considered to consume less
power than any other known low-power solution, even
lower than energy recovery logic [35]. Because reduction
of power consumption is mandatory for future scaled
CMOS [36], subthreshold operation is very likely to play
an important role in the design of circuits on the scaling
path towards the 10 nm node [37]. That is why in this
paper we suggest using MAJ-3 in subthreshold [38]–[53].
Combining such gates with low-level redundancy
(improved matching and fault-tolerance) was suggested in
[15], by short-circuiting the outputs of three gates, so no
voter (MAJ-3) was required.

In Figure 5 the second gate from left [38] is a floating
gate structure depending on a somewhat exotic UV-
postprocessing technique (probably not suitable for future
scaled CMOS). This is due to the dependence on
nonvolatile analog memory from charges depleted on the
floating gates, through UV activated conductances [43].

The gate from [41], [42], is the third gate in Fig. 5. It
exploits the transistor as a four terminal device, using the
wells to control the threshold for changing the
functionality in real time, and/or some automatic body
biasing [44]. This is able to also implement NOR-3 and

NAND-3 [42]. The larger relative transconductance in
subthreshold, compared to the classical above threshold
region, makes this possible. This is not the case for other
circuits based on inverters with short-circuited outputs
(e.g., [45]), as they are not intended for subthreshold, and
use the transistors as 3 terminal devices.

IV. FAULT-TOLERANT ADDERS

The particular example we are going to use in this paper
is a 32-bit adder. Many different alternative designs are
possible, starting from the serial ripple carry adder (RCA)
and going towards parallel implementations [46]–[50]. It
is commonly accepted that the slowest one is the RCA,
while Kogge-Stone [47] (KS) is expected to be the fastest.
Classical CMOS gates are almost never used when fast
addition is in the picture, and domino gates are the norm,
with threshold logic gates advocated for even higher
speeds [51], or for optimal mixed combinations with
domino logic [52].

An RCA and a KS have very recently been analyzed
[53] when operating in subthreshold (at 100 nm and 70
nm). The main conclusions are that:

• the wires are reducing the speed advantage of the KS
over RCA from 4.5x to 2.2x;

• the speed of the KS at a given VDD can be matched by
RCA at a slightly larger VDD (10% to 20%);

• at equal speeds, the RCA still maintains a clear power
and energy advantage [53].

The integration of MAJ-3 MUX with an adder was
discussed in [54]. A KS adder can be seen in Fig 6(a), and
a MAJ-3 MUX(3,3) enhanced KS adder can be seen in
Fig. 6(b). The connectivity pattern gets complex, and the
longer wires will contribute both to increasing the delay
and the switching power. Based on the above factors, and
on the simulation results from [53], we decided to focus on
RCA. It is also much easier to integrate MAJ-3 MUX with
an RCA (see Fig. 7, and compare with Fig. 6(b)).

The main block of an RCA is the well-known full adder
(FA). Many investigations for optimizing the FA at the
gate level have been reported [55]. The results for the
many FAs investigated are not directly translatable for
subthreshold operation. We have investigated an FA based

Vdd

Gnd

P1

N1 N2 N3

X Y Z

Ps

Ns

X

Y

Z

Vdd

Gnd

P1 P2

P3

P4

P5

N1

N2 N3

N4

N5

Out

X

Y

Z
OUT

Gnd

Vdd

Ps

Ns

P1 P2 P3

N1 N2 N3

Vdd

P1

N1

Ps

Ns

X

Y

Z

Fig. 5. Different MAJ-3 gates from left to the right: [31], [38], [42], [34].

on MAJ-3 gates implemented as “output-wired inverters”
[53]. We have also experimented with combinations of
gates for optimizing the FA. A very low power FA in
subthreshold uses a “mirrored adder” for the MAJ-3
(computing the carry-out), and two pass-gates (like the
ones in [33]) for implementing the XOR-3 (computing the
sum). This is the FA that we have used in all the RCAs in
this paper (see Fig. 7). The XOR-3 is very low power and
kind of slow, but it is not in the critical path of the RCA. A
standard CMOS implementation of an XOR-3 not only
dissipates more than the pass-gate solution (in
subthreshold), but is also more sensitive to variations and
skewed inputs.

The top drawing in Fig. 7 presents a block diagram of
the standard RCA. The MAJ-3 MUX RCA configurations
have three parallel FAs per stage, and can be summarized
as follows:

• use three RCAs in parallel;
• use three MAJ-3 gates to ‘vote’ on the carry-out

coming from the three FAs at position i;
• use the output of each of these three MAJ-3 to drive

the three carry-in of the three FAs at bit position i+1.
These are mapped into the next three structures in Fig. 7,
with each subsequent structure being less complex than the
previous.

• The first of the three structures properly uses MAJ-3
gates for the restorative stages (represented as circles).
This will double the delay and increase power.

• The complexity of the second structure is reduced
with the outputs of the FAs being tied together and fed
as inputs to the restorative inverters. The MAJ-3 gate
is now reduced to several wires and an inverter. This
solution is faster, and will dissipate less than the
pervious one, as long as there are no faults/defects. If
there are faults/defects, the fighting on the carry-out
will increase the power consumption of the inverters
which will try to restore the logic levels.

• The simplest structure of all eliminates the restorative
inverters and uses the next stage of the FAs to provide
signal restoration. The MAJ-3 has now vanished. Note
how the outputs of each structure are shorted. This
solution will be the fastest as long as no faults/defects.

Shorting the outputs could result in a path from VDD to
ground, resulting in increased current, while placing the
gates in parallel and making them drive subsequent stages
sequentially increases the signal propagation delay. These
three solutions show very different power-delay tradoffs
both when working correctly and when faulty. We have
tested the structures for stuck-at-faults. This corresponds
to a worst case scenario, as in practice a fault/defect would
manifest itself as an analog value in between VDD and
GND (see [16], [56]). If the number of stuck inputs per

Fig. 6. (a) Kogge-Stone adder; and (b) MAJ-3 MUX(3,3) implementation of the Kogge-Stone adder [54].

Fig. 7. Classical RCA where the square blocks represent FAs.
The three different MAJ-3 MUX RCAs: (i) using MAJ-3 gates
(circles) in between FAs; (ii) short-circuiting the outputs of
three FAs and using three inverters (triangles) to recover the
voltage; and (iii) short-circuiting the outputs of three FAs (the
voltage is recovered by the next three FAs).

stage exceeds one, the condition constitutes immediate
failure.

The behavior of the three different MAJ-3 MUX RCAs
can be seen in Figs. 8–10, while numerical values are
reported in Table I. The traces of Fig. 8 show a worst case
with 32 faults (one in every stage), but the current does not
increase. The short circuited MAJ-3 MUX RCAs with
faults show the current increasing linearly in steps as the
number of fights in different stages increase. These traces
can be seen in Figs. 9 and 10 for the 180nm node, and in
Fig. 11 for the 70nm node (Fig. 11 is equivalent to Fig. 9).
It can be seen that a designer has quite a large number of
options for trading off power and speed when using MUX.

The results from Figs. 9–11 show a significant current
increase when faults occur (see step values in Table I). A
current-aware circuit can trigger a reconfiguration process
at a higher level. The current work is however aimed at
showing that these faults cause significant current changes
we can depend on for detecting them. The simulation
results are promising as showing that scaling from the
180nm node to the 70nm node results in significantly
shorter delays (40x), with small increase of currents (6x),
both with and without faults.

V. CONCLUSIONS

The paper has analyzed multiplexed adder designs
working in subthreshold. The subthreshold operation was
employed to address the power challenge. Still, while

reducing the voltage supply into the subthreshold region
might save the day for power consumption, it will
adversely affect reliability. That is why, we proposed and
investigated a MAJ-3 MUX architectural approach for 32-
bit adders. Serial solutions seem to have an advantage over
parallel ones, and also integrate well with MUX. The
implementation of the MAJ-3 gates can be done in several
different ways, with three being detailed in this paper,
namely: classical CMOS gate, short-circuits followed by
inverters, or only short-circuits. Simulations have shown
that the two solutions relying on short-circuiting the
outputs are faster in case of no faults/defects. The delay
increases when faults/defects start appearing, but the
circuit is still able to function correctly, showing a gradual
degradation of its speed performance. The faults/defects
also significantly increase current (power). This might be
seen as a disadvantage, but can be used as a way of
detecting the faults/defects. A current-aware circuit can
trigger reconfiguration at a higher level if currents get
above a certain threshold. Once the reconfiguration has
been achieved, the defective circuit/block can be swapped
with a non-defective one, and then shut down.

REFERENCES

[1] International Technology Roadmap for Semiconductors, ITRS,
2004. Available: http://public.itrs.net/

[2] R. Compañó, L. Molenkamp, and D. J. Paul (Eds.), Technology
Roadmap for Nanoelectronics, EC-FET, 2000. Available:
http://www.cordis.lu/esprit/src/melna-rm.htm

[3] C. Constantinescu, “Trends and challenges in VLSI circuit
reliability,” IEEE Micro, vol. 23, Jul.-Aug. 2003, pp. 14–19.

[4] P. Sivakumar, M. Kistler, S. W. Keckler, D. Burger, and L.
Alvisi, “Modeling the effect of technology trends on soft error
rate of combinatorial logic,” Proc. Intl. Conf. Dependable Sys.
and Networks DSN’02, Washington, DC, Jun. 2002, pp. 389–

Fig. 8. Current (worst case) for MAJ-3 MUX RCAs using MAJ-
3 gates (in 180nm).

Fig. 9. Current (worst case) for MAJ-3 MUX RCAs using
inverters and short-circuiting the outputs (in 180nm).

Fig. 10. Current (worst case) for MAJ-3 MUX RCAs with short-
circuited outputs (in 180nm).

C
u

r
re

n
t

(
)

�
�

Time (s)�

8.0

7.5

1.2

7.0

6.5

6.0

5.5

5.0

4.5

4.0
0.0 0.1 0.2 0.30.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Fig. 11. Current (worst case) for MAJ-3 MUX RCAs using
inverters and short-circuiting the outputs (in 70nm).

398.
[5] P. Sivakumar, S. W. Keckler, C. R. Moore, and D. Burger,

“Exploiting microarchitectural redundancy for defect
tolerance,” Proc. Intl. Conf. Comp. Design ICCD’03, San Jose,
CA, Oct. 2003, pp. 481–488.

[6] M. Forshaw, K. Nikolić, and A. S. Sadek, “ANSWERS:
Autonomous Nanoelectronic Systems With Extended
Replication and Signaling,” MEL-ARI #28667, 3rd Year
Annual Report, 2001, pp. 1–32. Available:
http://ipga.phys.ucl.ac.uk/research/answers/reports/3rd_year_U
CL.pdf

[7] K. Nikolić, A. S. Sadek, and M. Forshaw, “Fault-tolerant
techniques for nanocomputers,” Nanotechnology, vol. 13, Jun.
2002, pp. 357–362.

[8] J. Han, and P. Jonker, “A system architecture solution for
unreliable nanoelectronic devices,” IEEE Trans. Nanotech.,
vol. 1, Dec. 2002, pp. 201–208.

[9] J. Han, and P. Jonker, “A defect- and fault-tolerant architecture
for nanocomputers,” Nanotechnology, vol. 14, Feb. 2003, pp.
224–230.

[10] A. S. Sadek, K. Nikolić, and M. Forshaw, “Parallel information
and computation with restitution for noise-tolerant nanoscale
logic networks,” Nanotechnology, vol. 15, Jan. 2004, pp. 192–
210.

[11] J. von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” in C. E.
Shannon, and J. McCarthy (Eds.), Automata Studies, Princeton,
NJ: Princeton Univ. Press, 1956, pp. 43–98.

[12] J. R. Heath, P. J. Keukes, G. S. Snider, and R. S. Williams, “A
defect-tolerant computer architecture: Opportunities for
nanotechnology,” Science, vol. 280, Jun. 12, 1998, pp. 1716–
1721.

[13] S. Tatapudi, and V. Beiu, “Split-precharge differential noise
immune threshold logic gate (SPD-NTL),” in J. Mira, and J. R.
Álvarez (Eds.): Artificial Neural Nets Problem Solving

Methods (Proc. IWANN’03, Menorca, Spain), Springer, LNCS
2687, Jun. 2003, pp. 49–56.

[14] M. Sulieman, and V. Beiu, “Design and analysis of SET
circuits: Using MATLAB and SIMON,” Proc. IEEE-
NANO’04, Munich, Germany, Aug. 2004.

[15] S. Aunet, and M. Hartmann “Real-time reconfigurable
threshold elements and some applications to neural hardware,”
Proc. Intl. Conf. Evolvable Sys. ICES’03, Trondheim, Norway,
Springer LNCS 2606, Mar. 2003, pp. 365–376.

[16] A. Schmid, and Y. Leblebici, “Robust circuit and system
design methodologies for nanometer-scale devices and single-
electron transistors,” Proc. IEEE-NANO’03, San Francisco,
CA, USA, Aug. 2003, vol. 2, pp. 516–519.

[17] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli,
“Fault tolerance techniques for wireless ad hoc sensor
networks,” Proc. IEEE Sensors, 2002, pp. 1491–1496.

[18] A. J. KleinOsowski, and D. J. Lilja, “The NanoBox project:
Exploring fabrics of self-correcting logic blocks for high defect
rate molecular device technologies,” Proc. IEEE Annual Symp.
VLSI ISVLSI’04, Lafayette, LA, USA, Feb. 2004, pp. 19–24.

[19] R. Reischuk, and B. Schmeltz, “Area efficient methods to
increase the reliability of combinatorial circuits,” Proc. Intl.
Symp. Theoretical Aspects of Comp. Sci. STACS’89, Paderbon,
Germany, Feb. 1989, Springer, LNCS vol. 349, pp. 314–326.

[20] R. Reischuk, and B. Schmeltz, “Area efficient methods to
increase the reliability of circuits,” in B. Monien, and T.
Ottmann (Eds.): Data Structures and Efficient Algorithms,
Springer, LNCS vol. 594, 1992, pp. 363–389.

[21] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla,
“Evaluating reliability of defect tolerant architecture for
nanotechnology using probabilistic model checking,” Proc.
Intl. Conf. VLSI Design VLSID’04, Mumbai, India, Jan. 2004,
pp. 907–912.

[22] S. Roy, V. Beiu, and M. Sulieman, “Reliability analysis of
some nano architectures,” presented at the Special Workshop

TABLE I
PERFORMANCES OF DIFFERENT MAJ-3 MUX (REDUNDANT) RIPPLE CARRY ADDERS

Circuit and Technology Node Delay (us) Current (nA) Power (nW) PDP (fJ) PDP per stage (fJ)
0.18µm CMOS
One RCA 17.140 11.68 4.09 69.90 2.18
3 RCAs short-wired 17.230 36.15 12.65 218.00 6.81

Max 1353.00 473.60 26779.00 836.90
Min 784.00

3 RCAs short-wired
(one RCA stuck-at)

56.550
Step 17.78

3 RCAs with inverters 21.260 35.07 12.27 261.00 8.35
Max 1337.00 467.950 18152.00 581.00
Min 655.00

3 RCAs with inverters
(one RCA stuck-at)

38.790
Step 21.31

3 RCAs with MAJ-3 32.150 38.39 13.44 432.00 13.50
3 RCAs with MAJ-3
(one RCA stuck-at)

32.200

34.93 12.23 393.70 12.30

70nm (BPTM)
One RCA in 70nm 0.543 362.00 72.40 39.31 1.23
3 RCAs with inverters in 70nm 0.652 1053.00 210.60 137.31 4.29

Max 7751.00 1550.20 1664.91 52.03
Min 3737.00

3 RCAs with inverters in 70nm
(one RCA stuck-at)

1.074
Step 125.44

on Neural Inspired Architectures for Nanoelectronics, Neural
Information Processing Systems NIPS’03, Whistler, Canada,
Dec. 2003. Available:
http://www.eecs.wsu.edu/~vbeiu/workshop_nips03/Presentatio
ns/S_Roy.pdf

[23] S. Roy, and V. Beiu, “Multiplexing schemes for cost effective
fault tolerance,” Proc. IEEE-NANO’04, Munich, Germany,
Aug. 2004. Extended version to appear as “Majority
multiplexing: Economical redundant fault-tolerant designs for
nano architectures,” IEEE Trans. Nanotech., 2005

[24] W. S. Evans, “Information Theory and Noisy Computation,”
Ph.D. dissertation, Univ. of California at Berkeley, ICSI Tech.
Rep. TR-94-57, Nov. 1994.
Available http://www.cs.ubc.ca/~will/papers/thesis.pdf

[25] W. S. Evans, and L. J. Schulman, “On the maximum tolerable
noise of k-input gates for reliable computations by formulas,”
IEEE Trans. Inform. Theory, vol. 49, Nov. 2003, pp. 3094–
3098.

[26] Y. Qi, J. Gao, and J. A. B. Fortes, “Probabilistic computation:
A general framework for fault-tolerant nanoelectronic
systems,” Tech. Rep. TR-ACIS-03-002, ECE Dept., University
of Florida, Gainesville, FL, USA, Nov. 28, 2003. Available:
http://www.acis.ufl.edu/techreports/acis03002.pdf

[27] R. Reischuk, “Can large fanin circuits perform reliable
computations in the presence of faults?,” Theoretical Comp.
Sci., vol 240, Jun. 2000, pp. 319–335.

[28] H. L. Hughes, and J. M. Benedetto, “Radiation effects and
hardening of MOS technology: Devices and circuits,” IEEE
Trans. Nuclear Sci., vol. 50, Jun. 2003, pp. 500–521.

[29] M. Lan, A. Tammineedi, and R. Geiger, “A new current mirror
layout technique for improved matching characteristics,” Proc.
Midwest Symp. Circ. and Sys. MWSCAS’99, Aug. 1999, vol. 2,
pp. 1126–1129.

[30] M. Lan, and R. Geiger, “Gradient sensitivity reduction in
current mirrors with non-rectangular layout structures,” Proc.
Intl. Symp. Circ. and Sys. ISCAS’00, May 2000, vol. 1, pp.
687–690.

[31] D. Hampel, K. J. Prost, and N. R. Scheinberg, “Threshold logic
using complementary MOS device,” U.S. Patent 3 900 742,
Jun. 24, 1974.

[32] J. Nyathi, V. Beiu, S. Tatapudi, and D. Betwoski, “A charge
recycling differential noise-immune perceptron,” Proc. Intl.
Joint Conf. Neural Networks IJCNN’04, Budapest, Hungary,
Jul. 2004, pp. 1995–2000.

[33] B. H. Calhoun, A. Wand, and A. Chandrakasan, “Device sizing
for minimum energy operation in subthreshold circuits,” Proc.
Custom IC Conf. CICC’04, Oct. 2004, pp. 95–98.

[34] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI
implementation of threshold logic: A comprehensive survey,”
IEEE Trans. Neural Networks, vol. 14, Sep. 2003, pp. 1217–
1243.

[35] J. Rabaey, M. Pedram, and P. Landman, “Low Power Design
Methodologies,” Kluwer, Boston, 1995.

[36] P. P. Gelsinger, “Microprocessors for the new millennium:
Challenges, opportunities, and new frontiers,” Proc. Intl. Symp.
Circ. and Sys. ISCAS’01, Sydney, Australia, May 2001, pp.
22–25.

[37] E. J. Nowak, “Maintaining the benefits of CMOS scaling when
scaling bogs down,” IBM J. Res. & Dev., vol. 46, pp. 169–180,
Mar./May 2002.

[38] S. Aunet, Y. Berg, O. Tjore, Ø. Næss, and T. Sæther, “Four-
MOSFET floating-gate UV-programmable elements for

multifunction binary logic,” Proc. World Multiconf. Sys.
Cyber. & Informatics, Orlando, FL, USA, Jul. 2001, vol. 3, pp.
141–144.

[39] T. Ytterdal, and S. Aunet, “Compact low-voltage self-
calibrating digital floating-gate CMOS logic circuits,” Proc.
Intl. Symp. Circ. and Sys. ISCAS’02, Scottsdale, AZ, USA,
May 2002, vol. 5, pp. 393–396.

[40] S. Aunet, T. Ytterdal, Y. Berg, and T. Sæther, “Multiple-input
floating-gate linear threshold element tuned by well potential
adjustment ,” Proc. Norchip Conf., Copenhagen, Denmark,
Nov. 2002, pp. 220–225.

[41] Leiv Eiriksson Nyskaping, Trondheim, Snorre Aunet,
Norwegian patent application no. 20035537, Dec. 2003

[42] S. Aunet, B. Oelmann, S. Abdalla, and Y. Berg
“Reconfigurable subthreshold CMOS perceptron,” Proc. Intl.
Joint Conf. Neural Networks IJCNN’04, Budapest, Hungary,
Jul. 2004, pp. 1983–1988.

[43] T. S. Lande, D. T. Wisland, T. Sæther, and Y. Berg “FLOGIC
– Floating-gate logic for low-power operation,” Proc. Intl.
Conf. Circ. Electr. Sys. ICCES’96, Rhodos, Greece, Oct. 1996,
vol. 2, pp. 1041–1044.

[44] T. Kobayashi, and T. Sakurai, “Self-adjusting threshold-voltage
scheme (SATS) for low-voltage high-speed operation,” Proc.
Custom Integr. Circ. Conf. CICC’94, San Diego, CA, USA,
May 1994, pp. 271–274.

[45] J. B. Lerch, “Threshold gate circuits employing field-effect
transistors,” U.S. Patent 3 715 603, Feb. 6, 1973.

[46] A. Weinberger, and J. L. Smith, “A logic for high-speed
addition,” Natl. Bur. Stand., Circ. 591, pp. 3–12, 1958.

[47] P. M. Kogge, and H. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,”
IEEE Trans. Comp., vol. 22, Aug. 1973, pp. 786–793.

[48] R. E. Ladner, and M. J. Fischer, “Parallel prefix
computations,” J. ACM, vol. 27, Oct. 1980, pp. 831–838.

[49] R. P. Brent, and H. T. Kung, “A regular layout for parallel
adders,” IEEE Trans. Comp., vol. 31, Mar. 1982, pp. 260–264.

[50] T. Han, D. A. Carlson, and S. P. Levitan, “VLSI design of
high-speed, low-area addition circuitry,” Proc. Intl. Conf.
Comp. Design ICCD’87, 1987, 418–422.

[51] V. Beiu, “A survey of perceptron circuit complexity results,”
Proc. Intl. Joint Conf. Neural Networks IJCNN’03, Portland,
OR, USA, Jul. 2003, vol. 2, pp. 989–994.

[52] P. Celinski, S. Al-Sarawi, D. Abbott, S. D. Cotofana, and S.
Vassiliadis, “Logical effort based design exploration of 64-bit
adders using a mixed dynamic-CMOS/threshold-logic
approach,” Proc. Annual Symp. VLSI ISVLSI’04, Lafayette,
LA, Feb. 2004, pp. 127–132.

[53] A. Djupdal, S. Aunet, and V. Beiu “Ultra low power neural
inspired addition: When serial might outperform parallel
architectures,” Intl. Work-conf. Artif. Neural Networks
IWANN’05, Barcelona, Spain, Jun. 2005, under review.

[54] V. Beiu, “A novel highly reliable low-power nano architecture:
When von Neumann augments Kolmogorov,” Proc. Intl. Conf.
App.-specific Sys., Arch. and Processors ASAP’04, Galveston,
TX, USA, Sep. 2004, pp. 167–177.

[55] A. M. Shams, T. K. Darwish, and M. A. Bayoumi,
“Performance analysis of low-power 1-bit CMOS full adder
cells,” IEEE Trans. VLSI Sys., vol. 10, Feb. 2002, pp. 20–29.

[56] S. Aunet, and V. Beiu, “Ultra low power fault tolerant neural
inspired CMOS logic,” Intl. Joint Conf. Neural Networks
IJCNN’05, Montréal, Canada, Jul.-Aug. 2005, under review.

