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Differential Privacy Under Fire

Andreas Haeberlen Benjamin C. Pierce Arjun Narayan

University of Pennsylvania

Abstract

Anonymizing private data before release is not enough

to reliably protect privacy, as Netflix and AOL have

learned to their cost. Recent research on differential

privacy opens a way to obtain robust, provable privacy

guarantees, and systems like PINQ and Airavat now of-

fer convenient frameworks for processing arbitrary user-

specified queries in a differentially private way. How-

ever, these systems are vulnerable to a variety of covert-

channel attacks that can be exploited by an adversarial

querier.

We describe several different kinds of attacks, all fea-

sible in PINQ and some in Airavat. We discuss the space

of possible countermeasures, and we present a detailed

design for one specific solution, based on a new primi-

tive we call predictable transactions and a simple differ-

entially private programming language. Our evaluation,

which relies on a proof-of-concept implementation based

on the Caml Light runtime, shows that our design is ef-

fective against remotely exploitable covert channels, at

the expense of a higher query completion time.

1 Introduction

Privacy is a problem. Vast amounts of data about individ-

uals is constantly accumulating in various databases—

patient records, content and link graphs of social net-

works, mobility traces in cellular networks, book and

movie ratings, etc.—and there are many socially valu-

able uses to which it can potentially be put. But, as Net-

flix and others have discovered [3, 22], even when data

collectors try to protect the privacy of their customers by

releasing anonymized or aggregated data, this data often

reveals much more than intended, especially when it is

combined with other data sources. To reliably prevent

such privacy violations, we need to replace current ad-

hoc solutions with a principled data release mechanism

that offers strong, provable privacy guarantees.

Recent research on differential privacy [8–10] has

brought us a big step closer to achieving this goal. Dif-

ferential privacy allows us to reason formally about what

an adversary could learn from released data, while avoid-

ing many assumptions (e.g., what exactly the adversary

might try to learn, or what he or she might already know)

that have been the cause of privacy violations in the past.

Early work on differentially private data analysis relied

on manual proofs by privacy experts that the answers to

particular queries were safe to release [21]; today, sys-

tems like PINQ [20] and Airavat [26] can perform dif-

ferentially private data analysis automatically, without

needing a human expert in the loop.

Airavat and PINQ go beyond just certifying queries by

the data owner as differentially private; they are explic-

itly designed to support untrusted queries over private

databases. In this model, a third party is permitted to

submit arbitrary queries over the database, but the data

owner imposes a “privacy budget” that limits the amount

of information the third party can obtain about any indi-

vidual whose data is in the database. The system ana-

lyzes each new query to determine its potential “privacy

cost” and allows it to run only if the remaining balance

on the privacy budget is sufficiently high. This mode of

operation is attractive for many scenarios; for example,

Netflix could give researchers access to its database of

movie ratings via such a query interface and still give

strong privacy assurances to customers. An adversarial

querier could not, for instance, obtain an accurate answer

to the query “Has John Doe watched any adult movies?”

because the cost of such a query would exceed any rea-

sonable privacy budget.

However, Airavat and PINQ both contain vulnerabili-

ties that can be exploited by an adversary to extract pri-

vate information through covert channels.1 The reason is

that these systems rely on the assumption that the querier

can observe only the result of the query, and nothing else.

In practice, however, the querier is also able to observe

other effects of his query, such the time it takes to com-

1The designers of these systems were aware of these covert chan-

nels, and each addresses them to some extent. See Sections 3.5 and 3.6.
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plete. Such observations can be exploited to mount a

covert-channel attack. To continue with our earlier ex-

ample, the adversary might run a query that always re-

turns zero as its result but that takes one hour to com-

plete if John Doe has watched adult movies and less than

a second otherwise. Both Airavat and PINQ would con-

sider the output of such a query to be safe because it does

not depend on the contents of the private database at all.

However, the adversary can still learn with perfect cer-

tainty whether John Doe has watched adult movies—a

blatant violation of differential privacy. PINQ’s proto-

type implementation also permits global variables to be

used as covert channels to leak private information dur-

ing query execution.

Covert channels have plagued computer systems for

many years [1,2,15,16,18,27,30, etc.], and they are no-

toriously difficult to avoid [7]. However, they are partic-

ularly devastating in a system that is designed to enforce

differential privacy: if a channel allows the adversary to

learn even a single bit of private information, the differ-

ential privacy guarantees are already broken! Thus, dif-

ferential privacy puts particularly high demands on a de-

fense against covert channels; merely limiting the band-

width of the channels is not enough.

Fortunately, the untrusted-query scenario has two fea-

tures that make a solution feasible. First, there is no need

to allow the querier direct access to the machine that

hosts the database; he can be forced to submit queries

and receive results over the network. This rules out diffi-

cult channels such as power consumption [17] and elec-

tromagnetic radiation [13,24], essentially leaving the ad-

versary with just two channels: the privacy budget and

the query completion time.

Our key insight is that, in this specific scenario, these

two channels can be closed completely through a com-

bination of two techniques. The budget channel can be

closed by using program analysis to statically determine

the privacy cost of each query. Thus, the deduction from

the privacy budget is independent of the database con-

tents. The external timing channel can be closed by a)

breaking each query into “microqueries” that operate on

a single database row at a time, and by b) enforcing that

each microquery takes a fixed amount of time. (If nec-

essary, the microquery is aborted and a default value is

returned. In the context of differential privacy, this is

safe—and does not open another channel—because the

privacy cost of the default values is already included in

the privacy cost of the query.) Thus, we can obtain strong

privacy assurances even if the adversary can pose arbi-

trary queries and can observe all the (remotely measur-

able) channels that are possible in our model.

We present the design of Fuzz, a system that imple-

ments this defense. Fuzz uses a novel type system [25]

to statically infer the privacy cost of arbitrary queries

written in a special programming language, and it uses

a novel primitive called predictable transactions to en-

sure that a potentially adversarial computation completes

within a specific time or returns a default value. We have

built and evaluated a proof-of-concept implementation of

Fuzz based on the Caml Light runtime system [5, 19].

Our results show that Fuzz effectively closes all known

remotely exploitable channels, at the expense of a higher

query completion time.

Implementing predictable transactions is challenging

in practice: Fuzz must be able to abort an arbitrary and

potentially adversarial computation by a specified dead-

line, even if the adversary is actively trying to cause the

deadline to be missed, and must ensure that—whether

or not the computation is aborted—it leaves no linger-

ing traces that can measurably affect the program’s over-

all execution time (garbage in the heap, VM pages that

must later be freed by the OS, etc). Nevertheless, we

show that, across a variety of adversarial queries that ex-

ploit different attack strategies, our implementation ex-

hibits extremely small variation in completion time—on

the order of the time required to handle a single timer

interrupt. This variation is so small that it is difficult to

measure even on the machine itself. Thus, it would be

useless to a remote attacker, who would have to measure

it across a wide-area network using the limited number

of trials that the privacy budget permits.

In summary, we make the following contributions:

1. a detailed analysis of several classes of covert-

channel attacks and a discussion of which are feasi-

ble in PINQ and Airavat (Section 3);

2. an analysis of the space of potential solutions (4);

3. a concrete design for one specific solution, based on

default values and predictable transactions (5+6);

4. a proof-of-concept implementation of our design

(7); and

5. an experimental evaluation (8).

We close with a discussion of related work and a few

concluding thoughts.

2 Background

Before describing our attacks and the Fuzz design and

implementation, we briefly review some technical back-

ground on differential privacy, function sensitivity, and

differentially private programming languages.

2.1 Differential privacy

Differential privacy [8] is a property of randomized func-

tions that take a database as input and return a result that

is typically some form of aggregate (a real number rep-

resenting a count; a histogram; etc.). The database (db)
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is a collection of “rows,” one for each individual whose

privacy we mean to protect.

Informally, a randomized function is differentially pri-

vate if arbitrary changes to a single individual’s row

(keeping other rows constant) result in only statistically

insignificant changes in the function’s output distribu-

tion; thus, any individual’s presence in the database has a

statistically negligible effect. Formally [12], differential

privacy is parametrized by a real number ε , correspond-

ing to the strength of the privacy guarantee: smaller ε’s

yield more privacy. Two databases b and b′ are consid-

ered similar, written b ∼ b′, if they differ in only one

row. We then say that a randomized function q : db → R

is ε-differentially private if, for all possible sets of out-

puts S ⊆ R, and for all similar databases b,b′, we have

Pr[q(b) ∈ S] ≤ eε ·Pr[q(b′) ∈ S]. That is, when the in-

put database is changed in one row, there is at most a very

small multiplicative difference (eε ) in the probability of

any set of outcomes S.

Methods for achieving differential privacy can be at-

tractively simple—e.g., perturbing the true answer to a

numeric query with carefully calibrated random noise.

For example, the query “How many patients at this hos-

pital are over the age of 40?” is intuitively “almost safe”:

safe because it aggregates many individuals’ information

together, but only “almost” because, if an adversary hap-

pened to know the ages of every patient except John Doe,

then answering this query exactly would give him certain

knowledge of a fact about John. The differential privacy

methodology rests on the observation that, if we add a

small amount of random noise to this query’s result, we

still get a useful estimate of the true answer while ob-

scuring the age of any single individual. By contrast, the

query “How many patients named John Doe are over the

age of 40” is plainly problematic, since the answer is

very sensitive to the presence or absence of a single indi-

vidual. Such a query cannot usefully be privatized: if we

add enough noise to mostly obscure the contribution of

John Doe’s age, there will be essentially no signal left.

2.2 Compositionality and privacy budgets

An important consequence of the definition of differ-

ential privacy is that composing a differentially private

function with any other function that does not, itself, de-

pend on the database yields a function that is again dif-

ferentially private—that is, no amount of postprocessing,

even with unknown auxiliary information, can lessen the

differential privacy guarantee. This allows us to reason

about harmful effects of data release that might seem

quite far removed from the function that is actually being

computed.

Another important property of differential privacy is

that its guarantee degrades gracefully under repeated ap-

plication: a pair of two ε-differentially private functions

is always 2ε-differentially private, when taken together.

This allows us to think of having a fixed “privacy bud-

get” up front, which is slowly exhausted as queries are

answered: if our privacy budget is ε , we may feel free to

independently answer k queries, where the ith query is εi-

differentially private and ∑i εi ≤ ε , without fear that the

aggregation of these k queries will violate ε-differential

privacy.

2.3 Function sensitivity

The central idea in proofs of differential privacy is to

bound the sensitivity of queries to small changes in their

inputs. Sensitivity is a kind of continuity property; a

function of low sensitivity maps nearby inputs to nearby

outputs.

Sensitivity is relevant to differential privacy because

the amount of noise required to make a deterministic

query differentially private is proportional to its sensi-

tivity. For example, the sensitivity of the two age queries

discussed above is 1: adding or removing one patient’s

records from the hospital database can change the true

value of each query by at most 1. This means that we

should add the same amount of noise to “How many pa-

tients at this hospital are over the age of 40?” as to

“How many patients named John Doe are over the age of

40?” This may appear counter-intuitive, but it achieves

the right goal: the privacy of single individuals is pro-

tected to exactly the same degree in both cases. What

differs is the usefulness of the results: knowing the an-

swer to the first query with, say, a typical error margin of

±100 could still be valuable if there are thousands of pa-

tients, whereas knowing the answer to the second query

(which can only be zero or one) ±100 is useless. We

might try making the second query more useful by scal-

ing its answer up numerically: “Is John Doe over 40? If

yes, then 1,000, else 0.” But this scaled query now has a

sensitivity of 1,000, not 1, and so 1,000 times the noise

must be added, blocking our attempt to violate privacy.

2.4 Programming with privacy

Early work on differential privacy has mostly focused

on specific algorithms rather than general, compositional

mechanisms: given a particular algorithm, we prove by

hand that it is differentially private. Most of the time, this

does not require much ingenuity—just applying known

techniques—but even so, this approach doesn’t scale

well because it demands that each new algorithm be cer-

tified by a skilled, trusted human. A better approach is to

automate this certification process with a programming

language in which every well-typed program is guaran-

teed to be differentially private. Then (untrusted) non-

experts can write as many different algorithms as they

like, and the database administrator can rely on the lan-

guage to ensure that privacy is not being violated.
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Systems are beginning to be available that implement

such languages—notably Privacy Integrated Queries

(PINQ) [20] and Airavat [26]. PINQ is an embedded

extension of C# that tracks the privacy impact of vari-

ety of relational algebra operations on database tables, as

well as certain forms of query composition. Airavat inte-

grates differential privacy into a distributed, Java-based

MapReduce framework.

2.5 Processing model

Although PINQ and Airavat differ in many particu-

lars, they embody essentially the same basic process-

ing model, which we also follow in the Fuzz system de-

scribed below. A query in each of these systems can be

viewed as consisting of one or more mapping operations

that process individual records in the database, together

with some reducing code that combines the results of

the mapping operations without directly looking at the

database. When a query is submitted, the system verifies

that it is εi-differentially private, deducts εi from the total

privacy budget ε associated with the database, and—if ε
remains nonzero—returns the query result. (Note that,

in this model, we account for the possibility of collu-

sion between adversaries by associating the privacy bud-

get with the database and not with individual queriers.

Thus, once the budget is exhausted, we must throw away

the database and never answer any more queries.) We

call the mapping operations microqueries and the rest of

the code the macroquery.

Airavat implements a simple version of this model:

a query consists of a sequence of chained microqueries

(“mappers” in Airavat terminology) plus a selection from

among a fixed set of macroqueries (“reducers”). The

mappers are the only untrusted code: the reducers are

part of the trusted base. When a query is submitted,

the adversary must also declare the expected numerical

range of its outputs, which amounts (since its input is

a single record of the database) to stating its sensitiv-

ity. If the actual output ever falls outside of the declared

range, it is clipped—in essence, the declared sensitivity

is enforced by the system. From the declared sensitivity,

Airavat can calculate how much noise must be added to

the reducer’s results to achieve ε-differential privacy.

In PINQ, macroqueries are written in LINQ, a SQL-

like declarative language, which can be embedded in oth-

erwise unconstrained C# programs. Microqueries can

be general C# computations (optionally constrained by

a checker method called Purify; see Section 3.5).

3 Attacks on differential privacy

Naturally, database administrators may be nervous about

offering adversaries the opportunity to run arbitrary

queries against their raw data. They will need strong

assurances that such adversarial queries not only play

by the rules of differential privacy but also have no in-

direct means of improperly leaking private information

about individuals in the database. Unfortunately, this is

not currently the case: while the authors of both PINQ

and Airavat have anticipated the possibility of covert-

channel attacks and have implemented either a partial

defense (Airavat) or hooks for adding one (PINQ), both

systems remain vulnerable to a range of attacks, as we

now demonstrate.

3.1 Threat model

It is well known that covert channels are essentially

impossible to eliminate if we allow the adversary to

run other processes on the same computer that runs the

query. Even if these other processes have no access to

the database and cannot communicate directly with the

query process, there are just too many ways for the query

process to perturb local conditions in ways that can be

measured fairly accurately if the observer is this close—

e.g., processor usage, disk activity, cache pollution, etc.

However, if we assume that the adversary is on the other

end of a network connection, we have a much better

chance of success. This is fortunate, since the demands

of the situation are very strong. It is not enough to limit

leakage to a low bandwidth or a small number of bits:

even one bit is too much if that bit is the answer to Does

John Doe watch adult movies?

We therefore assume that the database and associated

query system are hosted on a private, secure machine.

The adversary does not have physical access to this ma-

chine or its immediate environment (so that there is no

way to measure its power usage, etc.) and can only com-

municate with it over a network. The adversary submits

arbitrary queries to the system over the network. The

system executes each query (if it determines that doing

so is safe) and returns the answer over the network. The

system also maintains a privacy budget for the database

as a whole, and it refuses to answer any more queries

once the budget is exhausted.

This threat model is shared by all differentially private

query systems (PINQ, Airavat, and our Fuzz system),

and its assumptions seem reasonable in practice. Essen-

tially, it gives the adversary three pieces of information:

(1) the actual answer to their query (a number, histogram,

etc.), if any, (2) the time that the response arrives on their

end of the network connection, and (3) the system’s deci-

sion whether to execute their query or refuse because do-

ing so would exceed the available privacy budget. How-

ever, this threat model still provides plenty of room for

attacks on privacy. We will see that, unless appropriate

steps are taken, both the decision whether or not to ex-

ecute a query and the execution time itself can be used

as channels to leak private information. In essence, both

the query’s finishing time and the fact that it is accepted
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noisy sum, foreach r in db, of {
if embarrassing(r)

then { pause for 1 second };
return 0

}

Figure 1: Timing attack example

or refused are results that the system is giving back to

the adversary, and we need to consider whether the com-

bination of all results—not just the query’s numerical

answer—is differentially private. Moreover, we will see,

for PINQ, some ways that a malicious query may cause

the actual answer to not be differentially private.

3.2 Timing attacks

Under the constraints of the above threat model, the eas-

iest way for a query to send a bit to the adversary is by

simply pausing for a long time (by entering an infinite

loop, computing factorial of a million, etc.) when a cer-

tain condition is detected in the private data, as illustrated

(in PINQ-like pseudocode) in Figure 1. The macroquery

adds together the results of running the microquery on

each row of the database (always 0) and finally adds

some random noise to the total. Since almost all of the

microquery instances finish very quickly, the distribution

of query execution times observed by the adversary will

change significantly when an embarrassing record exists

in the database—a violation of differential privacy.

A simple “microquery timeout” will not solve this

problem, for at least two reasons. First, the adversary

can also signal the condition by causing the query to take

an unusually small amount of time. The simple way to

do this is to create an exception condition that aborts the

entire query. If this is blocked (e.g., by trapping an ex-

ception in a microquery and replacing it with a default

result just for that single microquery), the adversary can

instead make all microqueries take a uniformly longish

time (say, exactly two milliseconds) except when they

detect the condition, in which case they terminate im-

mediately. If the adversary happens to know exactly

how many records are in the database, this leaks one bit.

Second, the adversary can defeat a simple “microquery

timeout” by causing side-effects in the microquery that

will slow down the macroquery or other microqueries—

for example, by allocating lots of memory to trigger

garbage collection in the macroquery. We discuss this

issue in more detail below.

3.3 State attacks

A different class of attacks involves using a channel be-

tween microqueries, such as a global variable, to break

differential privacy of the result, as illustrated in Figure 2.

found = false;

noisy sum, foreach r in db, of {
if (found) then { return 1 }
if embarrassing(r) then {

found = true;

return 1

} else { return 0 }
}

Figure 2: State attack example

noisy sum, foreach r in db, of {
if embarrassing(r) then {

run sub-query that uses

a lot of privacy budget

} else {
return 0

}
}

Figure 3: Privacy budget attack example

This time, the result of each microquery is either 0 or 1,

depending on whether any previous microquery detected

an embarrassing record. Since, in general, the embar-

rassing record will not be the last one in the database,

this greatly magnifies the contribution of this one record

to the result, again violating differential privacy.

3.4 Privacy budget attack

A related form of attack uses the query processor’s deci-

sion whether to publicize the result of a query as a chan-

nel for leaking private data, relying on the fact that this

decision can be influenced by actions of the query that in

turn depend on private data. This idea can be applied to

systems that use a dynamic analysis to determine the ’pri-

vacy cost’ of a query, i.e., the amount that must be sub-

tracted from the privacy budget before the result can be

returned to the querier. As illustrated in Figure 3, the at-

tack consists of looking for an embarrassing record and,

when it is found, invoking some sub-query that will use

up a bit of the remaining privacy budget. Once the outer

query returns, the adversary simply checks how much the

privacy budget has decreased.

3.5 Case study: PINQ

We have verified that the current PINQ implementation

(version 0.1.1, released 08/18/09, available from [23]) is

vulnerable to all of the above attacks. To demonstrate the

vulnerabilities, we have written three example programs,

each based on the test harness that comes with PINQ.

The original test harness computes several differen-

tially private statistics on a given text file, including the
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Constant execution time Variable execution time

Database size public Database size private

ε-differential privacy (ε,δ )-differential privacy

Static enforcement Exact timing analysis
Time bound analysis

Time noise

Dynamic enforcement
Timeouts Timeouts

Rounding up Time noise

Table 1: Four approaches to the timing-channel problem.

number of lines that contain a semicolon. When the

program starts, it first reads the text file and creates a

database whose rows each contain one line of text. Then

it selects all the rows that contain a semicolon, using mi-

croqueries with a boolean predicate p, and finally per-

forms a noisy count on the resulting set of rows.

Our attacks are implemented by changing the predi-

cate p so that it produces some observable side-effects

when the input file contains a certain string s. For the

timing attack, we changed p so that, when invoked on a

line that contains s, p performs an expensive computa-

tion that takes several seconds and cannot be optimized

out. For the state attack, we added a static variable that is

incremented by p when it discovers s, and we write the

(un-noised) value of this variable to the console at the

end. For the budget attack, we added a different static

variable that contains a reference to the database; when s

is found, p computes a noisy count of the number of rows

in the database, which decreases the privacy budget.

The possibility of such attacks is acknowledged in the

PINQ paper [20], and the PINQ implementation does

contain hooks for an expression rewriter (called Purify

in [20]) that is invoked on all user-supplied expressions

and could potentially change or remove code that causes

side-effects. However, such a rewriter is not provided;

indeed, the PINQ downloads page contains an explicit

warning that the code is not hardened or secured and

should not be used ‘in the wild.’

We conjecture that implementing a reliable Purify

will be far from trivial. Avoiding the privacy budget at-

tack will probably be easiest: every function that might

consume privacy budget could be wrapped with a check

that raises an exception if it is called from inside a run-

ning microquery (i.e., with a PINQ operation already on

the call stack); this exception could then be turned into a

default result for the microquery. State attacks are more

difficult: since microqueries in PINQ are arbitrary bits

of C#, it seems the choices are either to execute them on

a modified virtual machine that detects writes to global

state (as Airavat does), or else to create a small domain-

specific language for writing microqueries that avoids

global updates by design (as we do in Fuzz). Address-

ing timing attacks will require deeper changes to PINQ:

the issues and available solutions are precisely the ones

we study in this paper.

3.6 Case study: Airavat

Because Airavat calculates sensitivity and deducts the re-

quired amount from the privacy budget before query ex-

ecution begins, it is inherently safe from privacy budget

attacks. However, Airavat’s mechanism for preventing

state attacks permits a related vulnerability. To prevent

microqueries from communicating via static variables,

Airavat runs microqueries on a modified JVM; if a mi-

croquery ever attempts to modify a static variable, an ex-

ception is thrown and the whole query is marked “not

differentially private.” Unfortunately, the adversary can

now observe whether the system gives them the result at

the end of query execution or says, “Sorry, that’s not dif-

ferentially private.” A better alternative would be to abort

just the microquery, return, a default result, and allow the

remainder of the query to run to completion.

In its published form, Airavat is also vulnerable to tim-

ing attacks. Its authors acknowledge this weakness [26]

but counter that the bandwidth of the channel it creates

is very low. This, we agree, may make it tolerable in

some contexts, e.g., with “mostly trusted” queriers that

might be careless but will not write malicious queries

that intentionally attempt to reveal specific targeted se-

crets. We understand that Airavat may soon be enhanced

to add timeouts to microquery executions [Shmatikov,

personal communication, July 2010]; the implementa-

tion techniques described below should be useful in this

effort.

4 Defending against timing attacks

State and privacy budget attacks can (and must) be ad-

dressed by designing the query language so that they are

impossible. Timing attacks require more work, and this

will be our concern for the remainder of the paper.

4.1 Four approaches to the problem

There are two basic strategies. One is to ensure that a

given query takes very close to the same amount of time

for all possible databases (of a given size—see below),

so that the adversary can learn nothing from observing

the time it takes the query result to arrive. The other is

to treat time as an additional output of the query, and to

limit the amount of information the adversary can gain

using the same mechanisms (sensitivity analysis and ap-
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propriate perturbation) that are used for data outputs.2

In either approach, we can either obtain the information

about running time statically (by analyzing the program

before running it) or enforce limits dynamically (e.g.,

by using timeouts). This gives us the four possibilities

shown in Table 1.

The solutions in the right-hand column provide some-

what weaker privacy guarantees than those on the left.

In order to properly “noise” a resource like time, we

must have the ability to both increase and decrease its

consumption. While we can clearly increase execution

time by adding a delay, we cannot easily decrease it. We

can mitigate this problem by adding a default delay T ;

thus, we can add “time noise” ν ≥ −T by delaying for

T +ν at the end of each query. Nevertheless, since noise

distributions guaranteeing differential privacy have un-

bounded support (i.e., P(ν) > 0 for all ν), there is al-

ways a possibility that ν < −T , in which case we can-

not complete the computation. Thus, ε-differential pri-

vacy seems impossible in practice; all we can hope for

is the slightly weaker property of (ε,δ )-differential pri-

vacy [11], where δ is a bound on the maximum additive

(not multiplicative) difference between the probability of

any given query output with and without a particular row

in the input.

On the other hand, in the constant-time solutions (left

column), the size of the database becomes public knowl-

edge, since, except for the most trivial queries, execution

time depends on the size of the database. In practice,

this is probably a reasonable concession. In the case of

the variable-time solutions (right column), the size of the

database does not need to be published.

The static solutions (top row) are attractive in prin-

ciple, but they depend on a static analysis of time

sensitivity—something that has proved challenging ex-

cept for very simple, inexpressive programming lan-

guages. We therefore concentrate on the bottom row.

In this row, we choose one column to explore further:

the “constant execution time” alternative, where we try

to make each microquery take as close as possible to

exactly the same amount of time. (The other column

also deserves exploration; we believe similar mecha-

nisms will be required.)

4.2 Default values

The approach we explore in the rest of this paper is to

dynamically ensure that each microquery m takes the ex-

act same amount of time T . If the microquery takes less

time to execute, we delay it and only return its result af-

ter T . If the microquery has executed for time T without

returning a result, we abort it. However, aborting the en-

2Note that the sensitivity analysis would have to account for inter-

dependencies between a query’s execution time and its output value,

which is far from trivial.

closing macroquery is not an option because this would

leak information to an adversarial querier. Instead, our

approach is to have the microquery return a default value

d in this case.

To avoid privacy leaks through the default value, d

must not itself depend on the contents of the database.

In Fuzz, a static value for d is included with the query.

Also, for reasons that will become clear in Section 4.4,

d should fall within the range of the microquery m.

4.3 Do default values decrease utility?

When the microquery for a row r times out while an-

swering a non-adversarial query, the utility of the query’s

overall result almost inevitably degrades. After all, the

result no longer incorporates the intended contribution

of r or any other row whose microquery has timed out,

but rather uses the default value for each such micro-

query. However, a non-adversarial querier can always

avoid the inclusion of any default values by choosing

a sufficiently high timeout. If the timeouts are chosen

properly, timeouts should never occur while answering

non-adversarial queries. Thus, the only querier who ex-

periences degraded utility is the adversary.

The question, then, becomes how to choose the time-

out values. One possible method is as follows. The

querier is supplied with a reference implementation of

the query processor that additionally outputs the max-

imum processing time Tmax for each microquery. The

querier can then (locally) test his queries on arbitrary

databases of his own construction and thus infer a rea-

sonable time bound. The querier then adds a small safety

margin and uses, say, 1.1 · Tmax as the timeout for his

query. He then submits the query to the actual query

processor, to be run on the private database.

4.4 Do default values create privacy leaks?

At first glance, it may appear that default values are re-

placing one evil with another: they seem to plug the tim-

ing channel at the expense of introducing a data channel.

However, this is not the case: as long as the timeouts are

applied at the microquery level (as opposed to imposing

a timeout on the whole query), differential privacy is pre-

served, for the following reason.

First, recall that Fuzz is designed to ensure that the

completion time of a query depends only on the size of

the database, but not its contents. Since we have assumed

that the size of the database is public, and since our threat

model rules out all the other channels, the only remaining

way in which private information could ‘leak’ is through

the (noised) data that the query returns.

Now, recall that the type system Fuzz implements

is based on the type system from [25]. As described

in [25], this type system ensures that all programs that

type-check are differentially private. This is achieved by
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inferring an upper bound on the program’s sensitivity to

small changes in its inputs—specifically, a change to an

individual database row.

Fuzz extends the type system from [25] with micro-

query timeouts on map and split, but, crucially, time-

outs do not increase the sensitivity of these two func-

tions. The reason is that the sensitivity of map and split

depends on the range of values that the microquery can

return. Since the default value is taken from the range

of values that the microquery can already return in the

absence of timeouts, the addition of timeouts does not

increase this range, and thus does not increase the sensi-

tivity either.

Of course, running a query on a given database with

and without timeouts (or with shorter vs. longer time-

outs) can yield very different results. Suppose we have a

database b and a function with microqueries that, without

timeouts, produces an output o when it is run on b. If we

now add a very short microquery timeout, we can easily

cause all the microqueries to abort and return their de-

fault value, and the resulting output for the same database

D can be dramatically different from o. However, this

does not mean that differential privacy is violated. Re-

call from Section 2.1 that the differential privacy guaran-

tee makes a statement about running the same query on

two databases b and b′ that differ in exactly one row r. If

we run a query with timeouts on both b and b′, the only

microquery that could behave differently is the one on

row r. All the other microqueries start in the same state

for both databases, so their behavior will be exactly the

same—they will either time out on both b and b′, or on

neither.

5 The Fuzz system

Next, we present the design of the Fuzz system, which

represents one specific point (the lower left quadrant) in

the solution space from Table 1. This point is a good

first step because it works with existing programming-

language technology and is relatively easy to implement.

5.1 Overview

Fuzz consists of three main components: a simple pro-

gramming language, a type checker, and a predictable

query processor. The programming language rules out

channels based on global state or side effects, simply by

not supporting any primitives that could produce either.

The type checker rules out budget-based channels by

statically checking queries before they are executed and

rejecting any query that cannot be guaranteed to com-

plete with the available balance. Finally, the predictable

query processor closes timing-based channels by ensur-

ing that each microquery terminates after very close to

exactly a specified amount of time. Figure 4 illustrates

our approach.

NetworkQuerier Database

Type checker

Admission control

Predictable

query processor

Fuzz runtime

Privacy

budget

Figure 4: Scenario. Queries are first type-checked by

Fuzz and then executed in predictable time.

5.2 Language and type system

Fuzz queries are written in a simple functional program-

ming language whose functionality is roughly compara-

ble to PINQ. The Fuzz language contains a special type

db for databases, which is not a valid return type of any

query. We say that a primitive is critical if it takes db

as an argument. Our language ensures that critical prim-

itives either return other values of type db (and nothing

else) or add noise to all of their return values. Fuzz de-

termines the correct amount of noise to add by using the

sensitivity analysis and type system from [25].

Fuzz currently supports four critical primitives (Ta-

ble 2): map applies a function f to each row in one

database and returns the results in another database;

split applies a boolean predicate p to each row in a

database and returns two databases, one with all rows r

for which p(r) = TRUE and the other with the rest; count

returns the (noised) number of rows in a database; and

sum returns the (noised) sum of all the rows. sum’s type

ensures that it can only be applied to databases with nu-

meric rows.

5.3 Predictable query processor

To close timing channels, the query processor must en-

sure that all critical primitives take a predictable amount

of time that depends only on the size of the database.

This is trivial for sum and count. However, map and

split involve arbitrary microqueries, and it can be diffi-

cult to statically analyze how much time these will take.

To avoid the need for such an analysis, Fuzz instead

relies on predictable transactions. A predictable trans-

action is a primitive P-TRANS(λ ,a,T,d), where λ is a

function, a an argument, T a timeout, and d a default

value. P-TRANS takes exactly time T , and returns λ (a) if

λ terminates within time T , or d otherwise. Note that an

implementation of P-TRANS may have to (a) add a delay

if λ terminates early, and (b) abort λ slightly before T

expires to ensure that any resources allocated by λ can

be released in time. In Section 6, we describe two ap-

proaches to implementing P-TRANS in practice.

When evaluating map or split, Fuzz invokes P-TRANS

for each microquery, using the specified timeout T and—

in the case of map—the specified default value (split

has an implicit default of TRUE).
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Primitive Arguments Return value

map db f T d Database db, function f, timeout T, default value d Database

split db p T Database db, boolean predicate p, timeout T Two databases

count db Database db Noised |db|
sum db Database db Noised ∑i dbi

Table 2: Critical primitives in the Fuzz language

All values of type db internally have representations

of the same size, i.e., they consume the same amount

of memory and (conceptually) have the same number

of rows as the original database. If necessary, they are

padded with dummy rows. For example, if the original

database has 1,000 rows and consumes 1 MB of mem-

ory, the two databases returned by a split both consume

1 MB, and an invocation of map on either of them will

invoke 1,000 microqueries—though of course the results

of microqueries on dummy rows will be discarded.

5.4 How Fuzz protects privacy

We now briefly summarize how Fuzz protects against

covert channels. First, the only observations a querier

can make that depend on the contents of the database are

the completion time of the query and its return value.

This is because of (a) our threat model from Section 3.1,

(b) the fact that the language contains no primitives with

side-effects, such as mutating global state, and (c) the

fact that the type system rules out abnormal termination.

Second, the return value of the query is differentially

private. Since db is not a valid return type and critical

operations return only values of type db or else appropri-

ately noised values (based on the sensitivity that has been

statically inferred [25]), the return value cannot depend

on non-noised values from the database directly. Also,

the language does not contain any primitives for observ-

ing side-effects within the query, such as memory con-

sumption or the current wallclock time. The only time-

related primitives are the timeouts on the microqueries;

these have a sensitivity of 1 because (a) each microquery

operates on only one row from the database at a time, and

(b) microqueries have no access to global state and there-

fore cannot communicate with one another. Thus, if we

add or remove one individual’s data from the database,

this affects only one row, so this can only cause one more

(or less) microquery to time out and add a default result

to the output.

Third, the completion time of a query depends only

on the size of the database (which we assumed to be

public) and data that has already been noised. To see

why, consider that the only operations that have access to

non-noised data are the microqueries, for which Fuzz en-

forces a constant runtime (by aborting or padding them

to their timeout), and that values of type db cannot af-

fect the control flow directly, only indirectly through re-

turn values of critical operations, which are noised. It

is perfectly OK for the completion time of a query to de-

pend on noised data, since such data is safe to release and

could even have been returned to the querier directly.

In summary, Fuzz is designed to ensure that everything

observable by the querier—whether directly through the

data channel or indirectly through the timing channel—

either does not depend on the contents of the database or

has been noised appropriately.

6 Implementation strategies

In this section, we describe the abstract requirements for

implementing predictable transactions, and we propose

two concrete implementation strategies: one for newly

designed runtimes (6.2) and one for retrofitting Fuzz into

an existing runtime (6.3). Naturally, we expect the for-

mer to be more efficient and the latter to be easier to im-

plement.

6.1 Requirements

To implement P-TRANS(λ ,a,T,d), the following three

properties need to hold for the language runtime:

• Isolation: λ (a) can be executed without interfering

with the succeeding computation in any way, apart

from contributing its return value.

• Preemptability: The execution of λ (a) can be

aborted at any time, or at most within some time

bound ∆a;

• Bounded deallocation: At any point during the ex-

ecution of λ (a), there is a upper bound ∆d on the

time needed to deallocate all resources allocated so

far by λ (a).

If these requirements hold, we can implement P-TRANS

by running λ (a) in isolation and setting a timer to T −
∆a−∆d (which must be updated when ∆d changes due to

new allocations). If the timer fires, we can abort λ and

deallocate its resources without overrunning the overall

timeout T . After a final delay to reach T exactly, we

can return either the result of λ (a) if we have it, or d

otherwise.

6.2 White-box approach

If we design a new language runtime from scratch, or

if we are willing to make extensive changes to an exist-

ing runtime, we can achieve isolation and preemptability
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by avoiding global variables that could be left in an in-

consistent state when a microquery is aborted, as well

as any termination of the microquery that does not cor-

rectly return the default value. Thus, it becomes possible

to abort a microquery simply by performing a longjmp

or its equivalent.

Regarding bounded deallocation, we expect that the

key resource in most cases will be memory. It is possi-

ble to design the memory allocator in such a way that

the memory allocated by a microquery can be deallo-

cated in constant time. For example, we can divert the

allocator from its usual allocation pool while a micro-

query is in progress, and instead allocate memory from

a special region dedicated to microqueries. If the micro-

query takes arguments and returns results by value rather

than by reference, objects in the main heap cannot ac-

quire references to this region, so it is safe to summarily

deallocate the entire region when the microquery aborts

or terminates.

6.3 Black-box approach

The first strategy assumes a fairly deep understanding of

how all primitive operations of the language are imple-

mented, and how they interact with the allocator and each

other. If we are working with an existing runtime sys-

tem, it may be hard to be sure that the entire rest of the

state of memory outside the microquery allocation region

has been restored to its original state after a microquery

finishes; for example, if we use any off-the-shelf library

functions, they may have local buffers or other global

state through which information can leak.

In this case, we can still ensure isolation and preempt-

ability by leveraging operating system support, e.g., by

farming out microqueries to a separate process, which

can then be destroyed at any time without interfering

with the state of the main runtime. Bounded dealloca-

tion can be achieved if we know an upper bound on the

amount of time the operating system needs to destroy a

process.

7 Proof-of-concept implementation

Next, we describe our proof-of-concept implementation

of Fuzz. Our implementation does not execute Fuzz pro-

grams directly; rather, we implemented a front-end that

accepts Fuzz programs, typechecks them, and then (if

successful) translates them into Caml programs. Thus,

we did not need to implement an entire language run-

time from scratch; it was sufficient to implement a library

with Fuzz-specific primitives like map and split, and to

extend an existing runtime with support for predictable

transactions. We chose Caml because it is similar enough

to Fuzz to make the translation relatively straightforward.

7.1 Background: Caml Light

Our implementation is based on Caml Light [5, 19] ver-

sion 0.75, a stable and lightweight implementation of

Caml. Here, we briefly describe only the aspects of Caml

Light that are relevant for our discussion of Fuzz. For a

detailed description of Caml Light, please see [19].

In Caml Light, Caml code is first compiled into byte-

code for an abstract machine called ZAM (the ZINC ab-

stract machine); this bytecode is then executed on a run-

time that implements the ZAM. Because of this archi-

tecture, the actual ZAM runtime is relatively simple: it

mainly consists of an interpreter for the ZAM instruc-

tions and some code for I/O, memory management, and

garbage collection.

The state of the ZAM consists of a code pointer, a reg-

ister holding the current environment, an accumulator,

two stacks (an argument stack and a return stack) and the

heap. The heap is divided into two zones: a fixed-size

‘young’ zone and a variable-size ‘old’ zone. Most ob-

jects are initially allocated in the young zone; when this

zone fills up, a ‘minor’ garbage collection copies any ob-

jects that remain active into the old zone. This was orig-

inally done to reduce the frequency of ‘major’ garbage

collection runs (since most objects are short-lived, their

space can be reclaimed very quickly), but it is also very

convenient for Fuzz, as we shall see below.

Note that Fuzz uses the ZAM runtime to run only pro-

grams that it has previously translated from Fuzz pro-

grams. Thus, we can safely ignore features of the ZAM

runtime (such as reference cells) that Fuzz does not use.

Our threat model assumes that the adversary can submit

only Fuzz programs, so he or she is unable to access any

of these features.

7.2 Bounded deallocation

When a microquery times out, Fuzz must be able, within

a bounded amount of time, to release all of the resources

the microquery may have allocated. To this end, our im-

plementation performs a minor collection at the begin-

ning of each macroquery, which clears the young zone

of the heap, and it confines any additional memory al-

locations during microqueries to the young zone. Thus,

we can simply discard the entire young zone after each

microquery, which requires only a single instruction. If

the microquery completes normally (without a timeout),

it writes its result into a special fixed-size buffer that is

not part of young zone. If this buffer is empty after the

microquery or contains only a partial result, the macro-

query uses the default value instead.

Discarding the entire young zone is safe because, after

a microquery, there cannot be any outside references to

objects in that zone. Any new memory allocations must

be in the young zone, any new values on the stacks are

discarded as well, and the only objects in the old zone
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that could be modified in place are reference cells, which

translated Fuzz programs cannot use. Note that discard-

ing the young zone is faster than a minor collection, so

this particular modification (which is only possible for

Fuzz programs, not for arbitrary Caml programs) actu-

ally results in a speedup.

7.3 Preemptability

Fuzz must be able to preempt a running microquery af-

ter a specified time, with high precision. To this end, our

implementation creates a second thread that continuously

spins on the CPU’s timestamp counter (TSC).3 When a

microquery is started, the interpreter sets a shared vari-

able to the time at which the preemption should occur;

when that point is reached, the second thread sends a sig-

nal to the interpreter thread. To prevent the two threads

from slowing each other down, each is pinned to a dif-

ferent CPU core. If the microquery terminates before the

timeout, it simply spins until the preemption occurs.

Preemptions can occur at arbitrary points in the run-

time code. To avoid inconsistencies, our implementation

checkpoints all mutable state before each microquery;

when the signal is raised, it uses longjmp to return to the

macroquery and then restores the runtime state from the

checkpoint. We exclude from the checkpoint any state

that either is immutable or is discarded anyway – includ-

ing both zones of the heap and any existing values on the

stacks. This leaves just a handful of variables, such as

the ZAM’s stack pointers and the code pointer.

7.4 Isolation

Fuzz must ensure that a microquery cannot interfere with

the rest of the computation in any way, other than con-

tributing its return value. In the previous two sections,

we have already seen that the states of the ZAM runtime

before and after a microquery are logically equivalent,

since any changes (other than the result value) are either

discarded or rolled back. To avoid direct timing inter-

ference between microqueries, Fuzz also pads the run-

time of the preemption code to ∆a + ∆d . However, Fuzz

must also avoid indirect timing interference through the

garbage collector, or from the rest of the system.

Fuzz prevents data-dependent invocations of the

garbage collector by padding all database rows to con-

sume the same amount of memory, and by padding all

database objects to have the same number of rows. For

databases that result from a split, Fuzz adds an appro-

priate number of dummy rows that consume memory and

computation time but do not contribute to the result. Fuzz

also disables the garbage collector during microqueries;

if a microquery attempts to allocate more space than is

3There are many other ways of implementing preemptions, such as

periodic TSC checks in the interpreter loop, or using the CPU’s perfor-

mance counters.

available in the young zone of the heap, Fuzz stops it and

forces it to time out. Thus, from the perspective of the

macroquery (and the garbage collector), memory usage

does not depend on un-noised values from the database.

To prevent page faults and context switches, Fuzz pre-

allocates and pins all of its memory pages, and it as-

signs itself a real-time scheduling priority. In our experi-

ments, this was sufficient to control the timing variations

to within a a few microseconds.

7.5 Implementation effort

Altogether, we added or modified 6,256 lines of code, in-

cluding 4,887 lines of C++ for the typechecker/translator,

1,119 lines of C++ and Caml code for our implemen-

tation of predictable transactions, 186 lines of C++ for

benchmarking support, and 64 lines of Fuzz code for

common library functions. For comparison, the entire

Caml Light codebase consists of 29,984 lines of code.

This supports our claim that Fuzz can be retrofitted into

existing runtimes.

7.6 Limitations

Despite all our precautions, some potential sources of

variability remain. For example, our current implemen-

tation does not freeze or flush the CPU’s caches (since in-

structions like wbinvd are not available from user level),

and it is designed to run on a commodity Linux kernel.

We believe that these sources would be difficult to exploit

because the adversary cannot control the memory lay-

out or force the runtime to invoke system calls; also, any

exploitable variation would have to be large enough to

cause the ∆a + ∆d padding to be overrun. An implemen-

tation with at least some kernel support could remove

some or all of these sources, and thus use a less conser-

vative padding.

8 Evaluation

Our evaluation has two primary goals. First, we need

to demonstrate that Fuzz is practical, in the sense that

it is sufficiently fast and expressive to process realis-

tic queries. Second, we need to demonstrate that our

Fuzz implementation is effective, i.e., that it prevents all

the covert-channel attacks that are possible in our threat

model (Section 3.1).

8.1 Non-adversarial queries

To demonstrate that Fuzz is powerful enough to support

useful queries, we implemented three example queries

that were motivated in prior work [4, 6, 12]. The weblog

query is intended to run on the log of an Apache web

server; it computes a histogram of the number of web

requests that came from specific subnets. The kmeans

query clusters a set of points and returns the three cluster
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Name Type LoC Inspired by

kmeans Clustering 119 [4]

census Aggregation 50 [6]

weblog Histogram 45 [12]

Table 3: Examples of non-adversarial Fuzz queries.

centers, and the census query runs on census data and

reports the income differential between men and women.

Table 3 reports the lines of code needed for each query.

The queries are small because programmers only need to

specify the actual data processing; parsing and I/O are

handled by Fuzz. Also, the queries use a small library of

generic primitives, such as lists and a fold operator, that

consists of 64 lines written directly in the Fuzz language.

Note that Fuzz can automatically certify queries as dif-

ferentially private and perform sensitivity analysis dur-

ing typechecking, so even non-experts can easily write

differentially private queries.

8.2 Experimental setup

To evaluate the performance and effectiveness of Fuzz,

we performed experiments using a setup consistent with

our model from Section 3.1. We installed Fuzz on a ded-

icated machine, a Dell Optiplex 780 with a 3.06 Ghz In-

tel Core 2 Duo E7600 processor and 4 GB of memory.

The machine was running a 32-bit Ubuntu Linux 11.04

with a 2.6.38-8 kernel. For our timing measurements,

we used the CPU’s timestamp counter, which is cycle-

accurate. To minimize interference, we disabled CPU

power management and the flush daemon, we kept all

mutable data in a ramdisk and mounted all other file sys-

tems read-only, and we terminated all other processes on

the machine, leaving Fuzz as the only running process

(recall our assumption that the machine is dedicated to

Fuzz). As discussed in Section 7.6, there are sources of

timing variability that we could not disable, such as the

periodic timer interrupt, which takes about 3 µs to han-

dle in this setup, but these cannot be influenced by an

adversary, so they merely add noise to the query comple-

tion time without leaking information. The padding time,

which corresponds to ∆a +∆d , was set to 10 µs; this set-

ting was chosen to be the highest preemption latency we

observed, plus a generous safety margin.

To estimate the overhead of our implementation, we

also prepared a version of the three translated Fuzz

queries that can run on the original Caml Light runtime.

Since the original runtime does not support P-TRANS or

a fixed-size memory representation for databases, this

required small modifications to the Caml code; for ex-

ample, the modified queries invoke microqueries with-

out any timeouts, and they keep the database in ordinary

Caml lists. These modifications do not affect the data

output of the queries. We used the modified Caml code
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Figure 5: Performance for non-adversarial queries.

only for experiments with the original Caml Light run-

time; all other experiments directly use the Caml code

that is output by the Fuzz front-end.

8.3 Macrobenchmarks

To estimate the performance of Fuzz, we ran each of the

example queries from Table 3 over a synthetic dataset

and measured the query completion time. Using syn-

thetic data rather than real private data does not affect

our measurements because, by design, the completion

time does not depend on the contents of the database.

However, the data format was based on realistic data—

specifically, the weblog input was based on an Apache

server log and the census input was based on U.S. census

data from [14]. The synthetic database in each case had

10,000 rows. We set the microquery timeouts for each

map and split by first running the query over example

data with timeouts and padding disabled, measuring the

maximum time taken by any of the map or split’s mi-

croqueries, and then setting the timeout to be 10% above

that. We verified that no timeouts occurred during our

measurements.

Figure 5 shows the query completion time for three

different configurations: the original Caml Light run-

time, the Fuzz runtime with both timeouts and padding

disabled, and the Fuzz runtime with all features en-

abled. As expected, Fuzz takes more time to com-

plete the queries than the original runtime; for our three

queries, the slowdown was between 2.5x (census) and

6.8x (kmeans). However, in absolute terms, the com-

pletion times were not unreasonable: the most expensive

query (kmeans) took 12.7s to complete, which seems low

enough to be practical.

Figure 5 also shows that, with timeouts and padding

disabled, Fuzz’s performance is roughly comparable to

that of the original Caml Light runtime. This is not an

apples-to-apples comparison; for example, the fixed-size

memory representation for databases costs performance,

whereas erasing the young zone after each microquery is

actually faster than garbage-collecting it. Nevertheless,
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Figure 6: Time spent in different phases of query pro-

cessing.

the numbers suggest that most of the overhead comes

from padding and timeouts. Next, we examine this in

more detail.

8.4 Microbenchmarks

To get a better picture of what factors influence the per-

formance of our implementation, we added instrumenta-

tion in such a way that query time can be attributed to

one of the following five phases:

• P1: Computation performed by a microquery;

• P2: Waiting for the preemption when a microquery

completes early;

• P3: Preemption handling, storing results, restoring

checkpoints, and loading the next row;

• P4: Padding the time of the preemption handler to

∆a + ∆d; and

• P5: Computation performed by the macroquery.

Figure 6 shows our results (we omit the time P5 taken

by the macroquery because it was below 0.2% of the to-

tal for all queries). As already suggested by the previous

section, the majority of the time is spent in either the

waiting or the padding phase. This may seem rather con-

servative at first, but recall that the completion time of

even a non-adversarial microquery can vary with the row

it is processing; the timeout needs to be sufficient for the

longest query with high probability. Timeout handling,

deallocation, checkpointing, and storing the results takes

comparatively little time.

Note that the overhead for the kmeans query is con-

siderably higher than for the others. This is because

kmeans repeatedly uses split to partition the database –

specifically, to map each point to the nearest of the three

cluster centers. Since our proof-of-concept implementa-

tion is not keeping track of the fact that the union of the

three partitions contains exactly the N rows in the orig-

inal database, it must conservatively assume that each
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Figure 7: Variation of completion time for the weblog-

delay query.

partition might contain all the N rows. Thus, functions

that operate on the partitions are padded to 3 ·N times

the timeout, when in fact N times would be sufficient.

This could be avoided by extending Fuzz with a suitable

operator, e.g., a GroupBy as in PINQ.

8.5 Adversarial queries

As explained in Section 5.4, Fuzz rules out state attacks

and privacy budget attacks by design, and it prevents tim-

ing attacks by enforcing that each microquery takes pre-

cisely the time specified by its timeout. This last point

cannot be perfectly achieved by a practical implementa-

tion running on real hardware; we need to quantify how

close our implementation comes to this goal.

To this end, we implemented five adversarial queries,

exploiting different variants of the attacks from Section 3

to try to vary the completion time based on whether or

not some specific individual is in the database:

• weblog-delay adds an artificial delay in each micro-

query that finds a match;

• weblog-term adds an artificial delay except when a

microquery finds a match;

• weblog-mem consumes a lot of memory when a

matching individual is found;

• weblog-gc creates a lot of garbage on the heap by

repeatedly allocating and releasing memory;

• census-delay looks for a particular known person in

the database and adds a timing delay if their income

is above a specified threshold.

We ran each query on two versions of the corresponding

database: one that contains the individual (Hit) and an-

other that does not (Miss). To demonstrate the effective-

ness of these attacks on an unprotected system, we first

performed the experiment with Fuzz runtime and then

repeated it with the original Caml Light runtime. This

gives us four configurations per query. We ran 100 trials
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Query Attack type
Caml Light runtime (not protected) Fuzz runtime (protected)

Hit Miss |Hit−Miss| Hit Miss |Hit-Miss|

weblog-mem Memory allocation 1.961 s 0.317 s 1.644 s 1.101 s 1.101 s <1 µs

weblog-gc Garbage creation 1.567 s 0.318 s 1.249 s 1.101 s 1.101 s <1 µs

weblog-delay Artificial delay 1.621 s 0.318 s 1.303 s 1.101 s 1.101 s <1 µs

weblog-term Early termination 26.378 s 26.384 s 0.006 s 1.101 s 1.101 s <1 µs

census-delay Artificial delay 2.168 s 0.897 s 1.271 s 2.404 s 2.404 s <1 µs

Table 4: Effect of various attacks without and with predictable transactions. Each adversarial query tries to vary

its completion time based on whether some specific individual is in the database. We show the total macroquery

processing times when the individual is present (hit) and absent (miss), as well as the differences.

for each configuration, after a warm-up phase of two tri-

als to ensure that the Fuzz binary and the database were

in the file system caches.

Figure 7 shows how the completion times varied

across the 100 trials, using the weblog-delay query with

the Miss database as an example. With the original

runtime, the completion times varied by approximately

±150 µs around the median. With the Fuzz runtime,

the completion times are extremely stable: the difference

between maximum and minimum was <1 µs. The re-

sults for the other queries were similar, indicating that

Fuzz’s padding mechanism successfully masks internal

variations between trials. Hence, we only report median

values here.

Table 4 shows our results for the different configura-

tions. We make the following three observations. First,

the attacks are very effective when protections are dis-

abled. For four out of the five queries, the completion

times for the Hit cases were at least one second different

from the completion times for the Miss cases, so an ad-

versarial querier could easily have distinguished between

the two cases and thus learned with certainty whether or

not the individual was in the database. We could have

achieved even higher differences simply by changing the

queries. For weblog-term, the difference was only a

few milliseconds; the reason is that, in order to change

the completion time of the query by one second through

early termination, the adversary would have had to make

each microquery take at least one second, so the overall

query would have taken a conspicuously long time – in

this case, nearly three hours.

Second, the attacks cease to be effective in Fuzz. In

each case, the difference between Hit and Miss is so

small we could not even reliably measure it locally on

the machine (for comparison, handling a timer interrupt

requires about 3 µs, and one hundred of these are trig-

gered every second, limiting the achievable accuracy),

much less across a wide-area network, using the small

number of trials that the privacy budget allows.

Third, the completion times are higher when protec-

tions are enabled. This is consistent with our earlier ob-

servations from Section 8.3.

8.6 Summary

Our results show that Fuzz is effective: it eliminates state

and budget channels by design, and narrows the timing

channel to a point where it ceases to be useful to an ad-

versary. Query completion times remain practical but are

substantially higher than in an unprotected system.

9 Related Work

Differential privacy: There is a considerable body of

work on the theory of differential privacy [8–10] and

on differentially private data analysis [20, 26]. Except

for the papers on Airavat [26] and PINQ [20], none of

these papers discuss covert-channel attacks by adversar-

ial queriers. The PINQ paper briefly mentions certain

security issues, such as exceptions and non-termination;

Airavat discusses timing channels, but, as we have shown

in Section 3.5, its defense is not fully effective. The

present paper complements existing work by providing

a practical defense against covert-channel attacks, which

could be applied to existing systems.

Covert channels: Covert channels have plagued sys-

tems for decades [18, 30], and they are notoriously hard

to avoid in general. Fuzz is a domain-specific solution;

it only addresses differentially private query processing,

but it can give strong assurances in this specific setting.

A variety of defenses against covert channels have

been suggested. Most related to this paper is the work

on external timing channels. The bandwidth of external

timing channels can be reduced, e.g., by adding random

delays [15, 16] or by time quantization [2]. However, to

guarantee differential privacy, the adversary must be pre-

vented from learning even a single bit of private infor-

mation with certainty, so a mere reduction in bandwidth

is not sufficient in our setting. Fuzz avoids this problem

by converting the timing channel into a storage channel,

which in turn is handled by differential privacy.

Preventing timing channels seems hopeless in the gen-

eral case. Language-based designs can eliminate them

for certain types of programs [1], but only at the expense

of severely limiting the expressiveness of the program-

ming language. Shroff and Smith [27] show how to han-

dle more general computations but may have to abort
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them, which can result in garbled data and/or leak in-

formation through a storage channel. In the context of a

differentially private query, however, aborting individual

microqueries is safe because the impact on the overall

result is known to be bounded by the sensitivity of the

query. As shown in Section 4.4, returning default val-

ues does not open a new storage channel or increase the

privacy cost of the query (though it may decrease its use-

fulness).

Side channels: Side channels can leak private informa-

tion, e.g., through electromagnetic radiation [13, 24] or

power consumption [17]. Many of these channels can

only be exploited if the adversary is physically close to

the machine that executes the queries, which is not per-

mitted by our threat model.

Real-time systems: Some real-time systems have pro-

visions for handling timer overrun problems in untrusted

code, such as preemption or partial admission [29]. In

our scenario, it would not be sufficient to simply preempt

a microquery that has overshot its timeout—we must be

able to terminate it and clean up all of its side effects be-

fore the timeout expires. Another approach is inferring

the worst-case execution time [28], which is known to be

difficult even for trusted code.

10 Conclusion

We have demonstrated that state-of-the-art systems for

differentially private data analysis are vulnerable to sev-

eral different kinds of covert-channel attacks from adver-

sarial queriers. Covert channels are particularly danger-

ous in this context because the leakage of even a single

bit of private, un-noised information completely destroys

the guarantees these systems are designed to provide. We

analyzed the space of potential solutions, and we pre-

sented the design of Fuzz, which represents one specific

solution from this space and relies on default values and

predictable transactions. Using a proof-of-concept im-

plementation based on Caml Light, we demonstrated that

Fuzz can be retrofitted into an existing language runtime.

Our evaluation shows that Fuzz is practical and expres-

sive enough to support realistic queries. Fuzz increases

query completion times compared to systems without

covert-channel defenses, but the increase does not seem

large enough to prevent practical applications.
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