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ABSTRACT

The importance of the central melanocortin system in the regulation of energy balance is
highlighted by studies in transgenic animals and humans with defects in this system. Mice that are
engineered to be deficient for the melanocortin-4 receptor (MC4R) or pro-opiomelanocortin (POMC)
and those that overexpress agouti or agouti-related protein (AgRP) all have a characteristic obese
phenotype typified by hyperphagia, increased linear growth, and metabolic defects. Similar attributes
are seen in humans with haploinsufficiency of the MC4R. The central melanocortin system modulates
energy homeostasis through the actions of the agonist, �-melanocyte-stimulating hormone (�-MSH),
a POMC cleavage product, and the endogenous antagonist AgRP on the MC3R and MC4R. POMC
is expressed at only two locations in the brain: the arcuate nucleus of the hypothalamus (ARC) and
the nucleus of the tractus solitarius (NTS) of the brainstem. This chapter will discuss these two
populations of POMC neurons and their contribution to energy homeostasis. We will examine the
involvement of the central melanocortin system in the incorporation of information from the
adipostatic hormone leptin and acute hunger and satiety factors such as peptide YY (PYY3–36) and
ghrelin via a neuronal network involving POMC/cocaine and amphetamine-related transcript (CART)
and neuropeptide Y (NPY)/AgRP neurons. We will discuss evidence for the existence of a similar
network of neurons in the NTS and propose a model by which this information from the ARC and
NTS centers may be integrated directly or via adipostatic centers such as the paraventricular nucleus
of the hypothalamus (PVH).

I. Introduction

Pro-opiomelanocortin (POMC) modulates energy homeostasis principally
through one of its cleavage products, �-melanocyte-stimulating hormone (�-
MSH), which exerts a tonic inhibitory control on food intake and energy storage
though its actions in the central nervous system (CNS) at two of the five known
melanocortin receptors, melanocortin-3 receptor (MC3R) and melanocortin-4
receptor (MC4R) (for a review, see Cone, 1999). While the contribution of the
agonist �-MSH is important, it is the endogenous antagonist at these receptors,
agouti-related protein (AgRP) (Ollmann et al., 1997), whose mRNA shows a
greater degree of regulation by extremes of negative or positive energy balance
such as fasting and diet-induced obesity in rodents (Mizuno and Mobbs, 1999;
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Ziotopoulou et al., 2000). The most-compelling evidence, however, for a pivotal
role for the central melanocortin system in the regulation of energy homeostasis
comes from studies in transgenic mice (for a review, see Butler and Cone, 2001).
POMC and MC4R knockout mice and mice that overexpress the agouti gene
(Ay/a) or AgRP all have a characteristic obese phenotype typified by hyperpha-
gia, increased linear growth, and metabolic defects (Yen et al., 1994; Huszar et
al., 1997; Ollmann et al., 1997; Yaswen et al., 1999). Similar attributes are seen
in humans with mutations in genes of the central melanocortin system. Defects
in the MC4R gene have been linked to obesity, particularly severe early-onset
obesity in children (Farooqi et al., 2000). Significantly, alterations in this gene
have been linked to up to 5% of cases in children and adults (Farooqi et al.,
2003).

Although there are five melanocortin receptors, it is the MC3R and MC4R
subtypes that have been implicated in the regulation of energy balance (for a
review, see Adan et al., 1997). While these receptors both have a fairly
widespread distribution in the rodent brain (Roselli-Rehfuss et al., 1993; Mount-
joy et al., 1994; Kishi et al., 2003), POMC has a limited distribution, with only
two neuronal populations described: one in the arcuate nucleus of the hypothal-
amus (ARC) and the other in the nucleus of the tractus solitarius (NTS) of the
brainstem (Joseph et al., 1983; Palkovits et al., 1987; Bronstein et al., 1992). Of
these two populations, the ARC neurons have drawn the most attention from
researchers. The ARC and other hypothalamic nuclei have classically been
associated with the actions of leptin and the regulation of body weight in the long
term, while the NTS and other brainstem nuclei predominantly are linked to the
regulation of meal initiation and termination (Grill and Kaplan, 2002). We will
review evidence for the involvement of both populations of POMC neurons in
the regulation of energy homeostasis, both in the long term and short term, and
discuss the potential for the integration of information from these two sites by
adipostatic centers.

II. POMC Neurons and the ARC Neuronal Network

A. THE ARC NEURONAL NETWORK AND LONG-TERM
REGULATORS OF ENERGY HOMEOSTASIS

The POMC neurons of the ARC are known to be responsive to leptin via
leptin receptors (Ob-R) expressed on their surface (Cheung et al., 1997). In
addition to the POMC neurons, another important element of the melanocortin
system in the hypothalamus is the neurons that express the melanocortin receptor
antagonist AgRP, which also express the orexigenic peptide, neuropeptide Y
(NPY) (Hahn et al., 1998) and are leptin sensitive (Wilson et al., 1999). These
NPY/AgRP-containing neurons are able to form synapses with POMC neurons
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of the ARC and exert regulatory effects, producing a neuronal network that is
responsive to the modulatory actions of leptin (Figure 1) (Cowley et al., 2001).
In this model, leptin causes hyperpolarization of NPY/AgRP neurons, leading to
a reduction in the release of gamma aminobutyric acid (GABA) that, in turn,
causes disinhibition of the POMC neurons with which they synapse. In addition
to its indirect actions on the POMC neurons via NPY/AgRP cells, leptin appears
to act on the POMC system directly by causing a depolarization of the ARC
neurons, increasing their firing rate. This model demonstrates how leptin may
serve as an overall modulator of energy homeostasis by altering the firing rate of
orexigenic and anorexigenic neurons. The fact that serum leptin levels do not
vary after meals (Korbonits et al., 1997) but generally are proportional to adipose
mass (Maffei et al., 1995) suggests that leptin is not acting as an anorectic factor

FIG. 1. The arcuate nucleus (ARC) neuronal network. Neuropeptide Y/agouti-related protein
(NPY/AgRP) neurons form synapses with the pro-opiomelanocortin/cocaine and amphetamine-
regulated transcript (POMC/CART) neurons in the ARC, forming a regulatory network that is
responsive to leptin via leptin receptors (Ob-R) present on their surface. Leptin acts on POMC
neurons directly and indirectly via a reduction in the release of gamma aminobutyric acid (GABA)
from NPY/AgRP neurons. The circuit is able to respond, via growth hormone secretagogue receptor
(GHS-R) and Y2-R, to signals from ghrelin and PYY3–36.
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but rather as an indicator of the long-term energy status of the animal. Thus,
modulation of the firing rate of neurons of the ARC and other hypothalamic sites
may be a means by which the body weight of an animal is maintained and
adjusted over extended periods of time in response to variations in leptin levels.

B. THE MELANOCORTIN SYSTEM AND SHORT-TERM REGULATORS
OF ENERGY HOMEOSTASIS

In addition to the mediation of long-term changes in energy balance via
signals from leptin, we have shown that POMC neurons of the ARC may be able
to respond to signals from the gut hormone peptide YY3–36 (PYY3–36) (Batter-
ham et al., 2002). PYY3–36, an N-terminal truncated form of PYY, is released
from the lower intestine following a meal in proportion to the number of calories
ingested (Pedersen-Bjergaard et al., 1996). ARC POMC neurons are activated by
administration of PYY3–36 via Y2 receptors (Y2-R) on NPY/AgRP neurons that,
in turn, causes modulation of the hypothalamic ARC network previously de-
scribed. This evidence suggests that the ARC network actually may integrate
information from both long-term signals of nutritional status and satiety signals
that are released postprandially from the gut. While the finding that direct
injection of PYY3–36 into the ARC causes a reduction in food intake, it remains
to be established whether the ARC is the functional site of action of PYY3–36 in
vivo or whether, in common with other postprandially released gastric peptides,
it acts via the brainstem and sites in the gut itself. In addition to PYY3–36, there
is evidence to suggest that the network may be activated by other gut hormones.
The satiety signal cholecystokinin (CCK) has been shown to electrically (Burda-
kov and Ashcroft, 2002) modulate the activity of ARC neurons, although these
have not been identified as containing POMC or NPY/AgRP. This indicates that
there is potential for an interaction between the central melanocortin system and
other postprandially released gut peptides.

Another more-recently identified gut-derived peptide is ghrelin. Ghrelin is
the endogenous peptide for the growth hormone secretagogue receptor (GHS-R),
the mRNA for which is expressed in a number of sites in the hypothalamus (Guan
et al., 1997). Ghrelin originally was described as being produced by the oxyntic
cells of the stomach (Kojima et al., 1999) but since has been shown to be
expressed at low levels in the small intestine (Date et al., 2000), kidney (Mori et
al., 2000), testis (Tanaka et al., 2001), placenta (Gualillo et al., 2001), brain (Lu
et al., 2002; Cowley et al., 2003), lymphocytes (Hattori et al., 2001), pituitary
(Korbonits et al., 2001), and pancreas (Volante et al., 2002). Perhaps unsurpris-
ingly, due to the close association between growth and energy homeostasis and
what was already known about the effects of synthetic growth hormone secret-
agogue (Bercu et al., 1992), ghrelin peptide and mRNA levels were shown to be

398 KATE L.J. ELLACOTT & ROGER D. CONE

 at Penn State Hershey George T. Harrell Health Sciences Library on February 23, 2013 rphr.endojournals.orgDownloaded from 

http://rphr.endojournals.org


regulated by changes in energy balance such as fasting (Tschop et al., 2000;
Cummings et al., 2001), hypoglycemia (Toshinai et al., 2001), and diet-induced
obesity (Tschop et al., 2000) in rodents. However, the effects of ghrelin are
independent of GH secretion (Tschop et al., 2000; Wren et al., 2000; Nakazato
et al., 2001).

NPY/AgRP neurons of the ARC have been implicated in mediating ghrelin’s
effects on energy homeostasis (Kamegai et al., 2001; Nakazato et al., 2001;
Shintani et al., 2001; Lawrence et al., 2002b; Wang et al., 2002). Ghrelin has a
unique distribution in the brain, encompassing the internuclear space between the
ARC, ventromedial (VMH), dorsomedial (DMH), and paraventricular hypotha-
lamic nuclei (PVH) (Cowley et al., 2003). The discovery of this network led to
questions about whether the effects of ghrelin on the ARC NPY/AgRP neurons
were due to centrally or peripherally derived ghrelin, or both. Indeed, axons from
ghrelin-containing neurons form synaptic contact with NPY/AgRP and POMC
neurons of the ARC (Cowley et al., 2003). Electrical recording from these ARC
neurons indicates that ghrelin is able to cause depolarization of ARC NPY/AgRP
neurons and hyperpolarization of POMC neurons. When considered in conjunc-
tion with studies showing that c-fos is activated in NPY/AgRP but not in POMC
neurons following peripheral ghrelin administration (Wang et al., 2002), the data
would suggest that the effect of ghrelin on POMC neurons is probably inhibitory,
mediated by the action of GABA released by NPY/AgRP neurons (Cowley et al.,
2003).

In the same study, it was demonstrated that in addition to its effects in the
ARC, ghrelin is able to influence the activity of PVH corticotropin-releasing
hormone (CRH) neurons, possibly via an increase in release of GABA from
NPY/AgRP neurons, in a similar manner to its effects on POMC neurons. The
interaction between the ARC neuronal network and the neurons of the PVH will
be discussed further in this review. In addition to interacting with NPY and the
central melanocortin system, evidence suggests that ghrelin interacts with the
orexigenic peptide orexin/hypocretin in the brain. Central administration of
ghrelin in rats causes activation of orexin-containing neurons of the lateral
hypothalamic area (LHA) (Lawrence et al., 2002b). Ghrelin-immunoreactive
terminals make contact with orexin neurons in the LHA (Toshinai et al., 2003).
The blockade of orexin-A and -B receptors by injection of antisera attenuates the
effects of centrally administered ghrelin on food intake, providing in vivo
evidence for an interaction between the two peptides. The wide distribution of
ghrelin-immunoreactive neurons (Cowley et al., 2003), GHS-R mRNA (Guan et
al., 1997), and the data outlined earlier suggest that, in common with leptin,
ghrelin may serve as an overall modulator of a number of anorexigenic and
orexigenic pathways directly and via the ARC neuronal network.
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III. POMC Neurons of the NTS

A. THE INVOLVEMENT OF NTS POMC NEURONS IN THE
REGULATION OF FOOD INTAKE

In recent years, while most of the attention in the field of energy homeostasis
has been concentrated on the hypothalamus, the importance of the brainstem
largely has been neglected. As such, comparatively little is known about the
POMC neurons of the brainstem. An extensive network of fibers immunoreactive
for POMC-derived peptides exists in the brainstem. This network includes
immunoreactivity in the NTS, lateral reticular nucleus (A5-C1 groups), ventro-
lateral medulla (A1 cell group), and nucleus ambiguus. The only POMC cell
bodies present in the brainstem are found in the commissural region of the NTS.
Interestingly, POMC neurons have been shown to send a number of projections
within the brainstem, particularly to the ventral lateral medulla and onto the
spinal cord. However, studies involving lesioning of hypothalamic connections
indicate that only 30–50% of the POMC-derived immunoreactivity in the
brainstem originates from cell bodies in the commissural NTS (Palkovits et al.,
1987; Joseph and Michael, 1988). The remainder of the immunoreactivity seen
is derived from projections from the hypothalamic POMC neurons. Hypotha-
lamic POMC fibers innervate the brainstem via two distinct pathways: one that
travels via the periaqueductal gray and the dorsomedial tegmentum to innervate
the rostral NTS and lateral reticular nucleus (A5-C1 groups) and a second,
more-dominant pathway through the ventrolateral tegmentum, believed to be the
route of the majority of descending pathways, that innervates the rostral NTS,
ventrolateral medulla (A1 cell group), nucleus ambiguus, and the descending
spinal bundle. The MC4R is expressed at a number of these sites, indicating that
hypothalamic POMC may exert some of its effects on energy homeostasis via
receptors in the brainstem (Kishi et al., 2003).

The work of Grill and colleagues has demonstrated that the melanocortin
system of the brainstem plays a role in regulation of energy homeostasis.
Administration of MTII, a synthetic melanocortin receptor agonist, or SHU9119,
an MC3R and MC4R antagonist, into the fourth ventricle or directly into the
dorsal vagal complex (DMX) causes a reduction in food intake in the case of
MTII and an increase in food intake in the case of SHU9119 (Williams et al.,
2000). Following fourth ventricular administration, changes seen are comparable
with those following administration of MTII or SHU9119 into the lateral
ventricle (Grill et al., 1998).

A potentially important consideration when studying the melanocortin sys-
tem of the brainstem is the low level of expression of the endogenous antagonist
AgRP. In contrast to the hypothalamus, where there is a relatively high level of
expression of both the AgRP- and POMC-immunoreactive fibers and terminals
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that project to identical areas of the brain (Bagnol et al., 1999), the brainstem has
few, if any, AgRP-immunoreactive cell bodies and receives limited terminals
from the ARC. Given the lack of AgRP in the brainstem, it is unknown what
regulates melanocortinergic tone in this area. It is unlikely that much regulation
comes from AgRP projections from the hypothalamus but it is feasible that the
system in this area is regulated by other mechanisms such as differences in
POMC processing or post-translational modification (for a review of POMC
processing, see Pritchard et al., 2002).

B. EVIDENCE FOR THE EXISTENCE OF A REGULATORY NEURONAL
NETWORK IN THE BRAINSTEM: COMPARISON WITH THE ARC

NEURONAL NETWORK

Taking into account all the evidence to suggest the existence of a POMC-
NPY/AgRP neuronal network in the ARC, it is interesting to speculate whether
a similar network may be involved in modulating energy homeostasis via the
brainstem. While the ARC network is able to respond to what are considered
long-term as well as short-term modulators of energy homeostasis, is there any
reason that a similar network should not exist in the NTS?

A number of similarities between the ARC and the NTS make the existence
of such a network possible. First, they both lie in close anatomical proximity to
a circumventricular organ, the median eminence in the case of the ARC and the
area postrema in the case of the NTS. Although AgRP cell bodies are absent, the
NTS contains cell bodies that show immunoreactivity for NPY and POMC-
derived peptides. In common with the ARC, the NTS contains leptin receptors
(Hakansson et al., 1998; Mercer et al., 1998). These neurons have been shown
to be able to mediate the inhibitory effects of leptin on food intake and body
weight gain following fourth ventricle administration (Grill et al., 2002). In
addition to causing activation of hypothalamic sites, peripheral administration of
leptin activates neurons of the NTS, as measured by the expression of signal
transducer and activator of transcription (STAT)-3 (Hosoi et al., 2002; Munzberg
et al., 2003) or c-fos (Elmquist et al., 1997). The NTS receives projections from
numerous centers in the brain but is also the site at which vagal afferents
terminate, making it an important site in mediating the vago-vagal reflex.

IV. The PVH as a Site of Integration of Hypothalamic and
Brainstem Signals

The PVH is an important hypothalamic nucleus in the integration of
autonomic and neuroendocrine information (for a review, see Palkovits, 1999).
The PVH receives projections from a number of sites in the brain, including the
ARC and NTS (Sawchenko and Swanson, 1983). Both melanocortin and NPY/
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AgRP terminals are present in this area (Bagnol et al., 1999). Indeed, NTS NPY
neurons have been shown to project to the PVH (Sawchenko et al., 1985). The
PVH may serve as a site of integration of information from melanocortin,
NPY/AgRP, and possibly other orexigenic and anorexigenic neurons via
GABAergic interneurons. Evidence for this model comes from in vivo and
electrophysiological studies. Direct injection of the melanocortin agonist MTII
into the PVH results in a reduction in food intake. MTII at this site is able to
functionally antagonize the orexigenic effects of NPY, indicating the potential
for interactions between the two systems in the PVH in vivo. Electrophysiolog-
ical studies have shown that neurons expressing NPY/AgRP and POMC have
opposing actions on neurons of the medial PVH, potentiating and inhibiting
GABAergic currents, respectively (Cowley et al., 1999). Modulation of the
central melanocortin system following intracerebroventricular administration of
MTII, �-MSH, or AgRP activates a number of hypothalamic and extrahypotha-
lamic sites in rats, including in the PVH (Thiele et al., 1998; McMinn et al.,
2000; Hagan et al., 2001). Indeed, the PVH seems to be a site that is activated
following administration of a number of orexigenic and anorexigenic peptides,
reinforcing the hypothesis that it is a key site for the integration of information
regarding energy homeostasis (Hamamura et al., 1991; Lambert et al., 1995; Van
Dijk et al., 1996; Elmquist et al., 1997; Edwards et al., 1999; Lawrence et al.,
2002a).

The ARC melanocortin and NPY neurons innervate neurosecretory neurons
of both the parvocellular and magnocellular subdivisions of the PVH (Piekut,
1985,1987; Liposits et al., 1988; Sawchenko and Pfeiffer, 1988; Li et al., 2000).
The innervation of the thyrotrophin-releasing hormone (TRH) neurons has been
particularly well characterized. Neurons containing immunoreactivity for both
AgRP and NPY or �-MSH innervate TRH neurons in the PVH directly through
projections from the ARC and indirectly via projections from the medial preoptic
nucleus (Legradi and Lechen, 1999; Fekete et al., 2000; Kawano and Masuko,
2000). These and numerous other anatomical studies highlight the importance of
the PVH as a site for the integration of information from a number of systems and
demonstrate how the regulation of energy balance may modulate other neuroen-
docrine processes such as the growth, reproductive, and stress axes (Schioth and
Watanobe, 2002; Smith and Grove, 2002).

As discussed earlier, in addition to the PVH acting as a site of integration,
the neurons of the ARC and NTS may communicate via direct projections
between the two sites. ARC POMC neurons have been shown to project to a
number of sites in the brainstem, including the NTS, periaqueductal gray, dorsal
raphe nucleus, nucleus raphe magnus, nucleus raphe pallidus, locus coeruleus,
parabrachial nucleus, nucleus reticularis gigantocellularis, and DMX (Chronwall,
1985; Sim and Joseph, 1991). Many of these regions contain MC4R mRNA
(Mountjoy et al., 1994; Kishi et al., 2003), raising the possibility that these
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receptors in the brainstem may be served by projections from the ARC neurons
in addition to or in place of projections from the POMC neurons of NTS.

V. Summary

The evidence presented herein reinforces the importance of the POMC-
NPY/AgRP system in the regulation of energy homeostasis and a number of
other neuroendocrine processes. Localization of the POMC-NPY/AgRP neuronal
networks in the ARC and possibly the NTS and the diversity of their neuronal
projections from these sites make them well placed to respond to and coordinate
both long-term adipostatic and short-term hunger/satiety signals between the
periphery and the brain.
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