
Learning Reactive and Planning Rules in aMotivationally Autonomous AnimatJean-Yves Donnart and Jean-Arcady MeyerTo Appear in IEEE Transactions on Systems, Man, and Cybernetics.Special Issue on Learning Autonomous Robots.
Abstract|This work describes a control architecture basedon a hierarchical classi�er system. This system, which learnsboth reactive and planning rules, implements a motivation-ally autonomous animat that chooses the actions it performsaccording to its perception of the external environment, toits physiological or internal state, to the consequences ofits current behavior, and to the expected consequences ofits future behavior. The adaptive faculties of this architec-ture are illustrated within the context of a navigation task,through various experiments with a simulated and a realrobot. I. IntroductionThe work presented in this paper �ts into the so-calledanimat approach, which aims at designing animats, i.e.,simulated animals or real robots whose rules of behaviorare inspired by those of animals. The proximate goal of thisapproach is to discover architectures or working principlesthat allow an animal or a robot to exhibit an adaptivebehavior and, thus, to survive or ful�ll its mission evenin a changing environment ([13], [35], [36]). The ultimategoal of this approach is to embed human intelligence withinan evolutionary perspective and to seek how the highestcognitive abilities of man can be related to the simplestadaptive behaviors of animals ([37], [40], [54]).An animat is usually equipped with sensors, with actua-tors, and with a control architecture that allow it to reactor to respond to variations in its external or internal envi-ronment, notably to those that might impair its chances ofsurvival. This paper describes the control architecture ofa motivationally autonomous animat ([17], [33], [34]) thatenhances its chances of survival by learning to do the rightthing at the right time. Action selection [31] in this animatdepends upon its perception of the external environment,upon its physiological or internal state, upon the conse-quences of its current behavior, and upon the expectedconsequences of its future behavior. In other words, likean animal, such an animat is endowed with a motivationalsystem that, according to Toates and Jensen, "selects [atevery moment] a goal to be pursued and organizes [the an-imat's] commerce with it" [48]. This system is said to beautonomous because it is very unlikely to be completelycontrollable and observable by an external agent.Such a control architecture relies upon reactive and plan-ning rules whose expected utilities in solving a given taskThe authors are with the Groupe de BioInformatique of the Ecole Nor-male Sup�erieure. 46, rue d'Ulm. 75230 Paris Cedex 05. France(e-mail : donnart@wotan.ens.fr - meyer@wotan.ens.fr) (URL :http://www.ens.fr:80/bioinfo/www/francais/perso/donnart/donnart.htmlhttp://www.ens.fr:80/bioinfo/www/francais/perso/meyer/meyer.html)

can be submitted to a reinforcement learning procedure,thus allowing the animat to improve over time the way itselects its actions. An originality of this architecture is thatits capability of analyzing the behavior it generates allowsit to learn situated plans ([1], [45]). Thus, although theanimat's moment-to-moment decisions can be taken at acertain level of abstraction and depend upon a global viewof the survival problem to be solved, they are also reactiveto the actual state of the environment that, in turn, canmodify the expected utilities of the memorized plans. Suchadaptive capacities should prove to be very general and tobe exhibited in a variety of future applications. They willbe illustrated here within the context of a simple navigationtask through various simulations. The operational value ofthese capacities will then be demonstrated through equiv-alent experiments with a robot.II. The Control ArchitectureIn order to survive in a complex environment, an ani-mat may rely on various reinforcement signals that indicatewhether or not a given action, or sequence of actions, en-hances its chances of survival in given circumstances. How-ever, although various algorithms - like Holland's bucketbrigade [24], Sutton's temporal di�erence learning [46] orWatkins's Q-learning [50]- can be used to let the animatlearn how to choose a favorable action in preference to anunfavorable one in each possible circumstance, such a learn-ing process turns out to be very slow. This is due to thefact that reinforcement signals are generally provided in afew particular environmental states and that the step bystep propagation of the corresponding information to everyother state through a 
at organization takes a long time.Among the solutions that have been suggested to improvelearning speed - like generalization procedures [12] or theuse of an action model [47] - the most promising seem tobe those that advocate a hierarchical organization of statetransitions1, within which the propagation of reinforcementsignals is expedited.The hierarchical control architecture presented here iscalled MonaLysa2 and relies upon the same principles. How-ever, the hierarchy it implements, instead of being �xed bythe designer ([18], [27],[29], [42], [53]), can be dynamicallyrecon�gured - thus enhancing the animat's adaptive capac-ities. In particular, the possibility of introducing or sup-1The operators of such transitions, which will be referred to as taskshereafter, are called behavioral modules [53], skills [29], abstract models[42] or macro-operators [27] elsewhere.2MOtivatioNAlLY autonomouS Animat.1



pressing tasks within the current hierarchy is a�orded by amechanism that allows the survival value of these tasks tobe monitored, according to a heuristic criterion of internalsatisfaction.
ENVIRONMENT

 REACTIVE

sensory
detections

internal context

internal context

internal context
+ satisfaction

task

rules
planning

detections
sensory

+ action
AUTO-ANALYSIS 

actions

PLANNING

MODULEMODULE

MANAGER

CONTEXT

MODULE

MODULE

INTERNAL REINFORCEMENT

task

reinforcementreinforcementFig. 1. The MonaLysa architectureIn the present application, the MonaLysa architectureenables a simulated robot to explore a two-dimensional en-vironment that may contain various assorted materials, inparticular some obstacles, and to navigate from a giveninitial place to a given goal place despite such obstacles.The robot is equipped with proximate sensors that keepit informed of the presence or absence of any obstacle infront of it, 90� to its right, or 90� to its left. It is alsoable to estimate the spatial coordinates of the position it islocated in and the direction of a goal to be reached in eachof the eight sectors of the space surrounding it. Lastly, itis capable of moving straight ahead, 90� to its right, or 90�to its left. The size of each such move is equal to the lengthof the robot.This architecture, which relies upon a hierarchical clas-si�er system [24], is organized into �ve modules - a reac-tive module, a planning module, a context manager, anauto-analysis module and an internal reinforcement mod-ule (Figure 1). It allows the robot to reactively escape fromany obstacle it gets trapped into by skirting around it, andto analyze the corresponding skirting path in order to plana trajectory that will later allow it to avoid the obstaclefrom a distance.The role of the reactive module is to decide what actionto perform next. The corresponding decisions depend notonly upon the robot's sensory detections, but also upon thedirection of the robot's current goal. The latter is speci�ed

by the robot's current task that is posted on the contextmanagermodule either by the planning or the auto-analysismodules. Thus, the context manager contains the pile ofall the tasks the animat has to perform. The role of theplanning module is to use its planning rules to decomposea given task into simpler tasks. The auto-analysis mod-ule either generates a skirting task that is posted on thecontext manager module when an obstacle is detected, orgenerates avoidance tasks that are converted into planningrules sent to the planning module. The internal reinforce-ment module is used to monitor the internal satisfactionof the robot and to provide a reinforcement signal to thereactive and planning modules.A. The Reactive ModuleThis module is responsible for choosing which action therobot performs at every moment. It contains a series ofrules - or classi�ers - that allow the robot to react to in-coming sensory information from the environment, as wellas to the internal context speci�ed by the context man-ager. In the current con�guration, the internal context isthe direction of the current goal. The reactive rules takethe form:If <sensory information> and <direction of current goal>Then <action>For example, rule R : 100j001 ==> 01 can be activatedwhen the robot becomes aware of the presence of a materialelement in front of it, but not on either side (informationcoded by "100"), and when the direction of the current goalis 45� to its right (direction "001"). If this rule is activated,the robot performs an elementary move 90� to its right (ac-tion "01"). In the simulations to be shown below, to eachpair of conditions on the <sensory information> and the<direction of current goal> correspond, at any moment,three rules capable of being actuated, each of which is as-sociated with one of the three possible actions. The choiceof which rule is actually triggered is e�ected probabilisti-cally on the basis of the strength - that will be discussedlater (see Section II.E) - of each of the three rules involved.In the case of this simulated robot, there are 8�8�3 = 192possible reactive rules. These rules are all created whenthe system is initialized and are charged into the reactivemodule, which does not change in size as long as the sys-tem is in operation. The strength of each rule is initializedto a given value and is subsequently modi�ed by learning.In other experiments, yet unpublished, a genetic algorithm[20] has been used successfully in the interest of discoveringmore general rules.B. The Planning ModuleThe role of the planning module is to decompose a taskinto a series of subtasks according to current sensory infor-mation. The planning rules it contains take the form:If <sensory information> and <current task>Then <subtask>2



Sensory information is provided by the sensors and comesfrom the environment. It consists of information suppliedby the proximate sensors and of the robot's coordinatesand current orientation. As explained below, the <currenttask> is the one registered at the top of the pile of tasksgoverned by the context manager and, when a planningrule is triggered, the corresponding <subtask> is put abovethe <current task> on the context manager's pile. Such aprocedure will be called task decomposition hereafter.The <current task> and the <subtask> are each codedas a pair of coordinates, which respectively de�ne an initialposition and a �nal position - i.e., a goal - to be reached.Thus, rule P : 5; 1j001j000j3; 0; 3;5 ==> 5; 1; 5; 2 can beactivated at position 5,1 if the robot is headed in a north-easterly direction (coded by "001"), if it perceives no mate-rial element ahead or on either side of it (coded by "000"),and if its current task is to reach the position with coor-dinates 3,5 when starting at position 3,0. If this rule isactivated, the subtask that involves reaching position 5,2from position 5,1 will be placed on top of the context man-ager pile.With each rule of the planningmodule are associated twostrengths - one local, the other global - the evaluation ofwhich will be explained later (see Section II.E). The localstrength is used to determine the probability of trigger-ing a rule whose condition part matches the current situa-tion. When the system is initialized, the planning moduleis empty. During operation, this module can dynamicallyacquire rules - generated by the auto-analysis module - orloose rules - according to how the global strengths of theserules evolve. The size of the planning module thus variesover time, though it cannot exceed a preestablished upperlimit.C. The Context ManagerThe context manager provides an internal context to theother modules and in
uences their inner working. Thisinternal context is the direction of the robot's current goalin the case of the reactive module; it is the robot's currenttask in the case of all other modules. The context managerconsists essentially of a pile of tasks, at the top of whichis the system's current task. New tasks are added to thepile either by the auto-analysis module, when an obstacleis detected, or by the planning module, as just mentioned.The former allow the robot to escape from an obstacle byskirting around it, while trying to cross speci�c lines thatcharacterize the obstacle. The latter allow the robot toavoid an obstacle from a distance, while passing throughspeci�c positions characterized along the obstacle.The context manager includes an algorithm that trans-forms the current task into a goal, then supplies the di-rection of this goal to the reactive module. In the case ofa task posted by the planning module, the correspondinggoal is simply described by the coordinates of the �nal po-sition to be reached. In the case of a task posted by theauto-analysis module, the corresponding goal is describedby the coordinates of the projection of the robot's current

location on the line that must be crossed to skirt aroundthe obstacle. This projection, and accordingly the corre-sponding direction information, varies whenever the robotmoves.D. The Auto-Analysis ModuleThe role of the auto-analysis module is to analyze thecurrent behavior of the robot in order to alter its currenttask dynamically and to create new tasks that will enhanceits behavior in the future. In other words, the auto-analysismodule is responsible for detecting obstacles, for trigger-ing skirting behaviors and for characterizing salient statesin the environment, through which it will be useful to travelin the future in order to avoid the obstacles from a distance.Obstacle Detection:Within the present application, an obstacle is any mate-rial element that prevents the execution of the best actionthe robot can perform in order to move in the directionof its current goal. To escape from such an obstacle, therobot must skirt around it. However, it may happen thatsome material elements - like a wall at the periphery ofthe area that is explored - can be detected in the vicin-ity of the robot by its proximate sensors without impedingmovement in the direction of the current goal. In such acase, no speci�c skirting behavior needs to be triggered.Therefore, the detection of an obstacle and the triggeringof the relevant skirting behavior depend upon the followingprocedure. When the proximate sensors detect a materialelement in a given position, the robot �rst searches whichreactive rule has the greatest strength among the threerules that could be actuated in the context of the currentgoal's direction if no material element were actually de-tected. If the move that this rule would trigger cannot beexecuted because of the presence of the material element,this element is recognized as an obstacle at the positionwhere that move would lead, and a subsequent skirtingsubtask is sent to the context manager. Recursively, if themove that corresponds to the second best rule cannot beexecuted, a second obstacle is recognized at the correspond-ing position, and so on. Whether the material element hasbeen recognized as an obstacle or not, the robot then prob-abilistically chooses a rule that matches both the <sensoryinformation> in the presence of the material element andthe <direction of current goal>. If the material elementdoesn't prevent the corresponding action from being exe-cuted, the action is executed and the strength of the rule ischanged as explained in section E. If the action cannot beexecuted, the strength of the rule is set to zero and otherreactive rules matching the <direction of current goal> inthe presence of a material element are probabilistically se-lected in turn, until one is found that allows motion.The reason why obstacle detection involves two rule match-ing procedures, one that takes the actual<sensory information>into account and one that operates as if this informationwere set to "000", is that the strength of rules triggeredaccording to the former procedure can be equal to zero -3



thus indicating that these rules would lead the robot inthe direction of the obstacle, an action that is not suitable.A zero strength prevents the corresponding rules from be-ing probabilistically selected for action and, if such rulescannot be executed, they cannot be used to recognize theobstacle, nor to skirt around it. Hence, the necessity ofrelying on the second rule matching procedure for thesepurposes.Skirting Behavior:When an obstacle is detected, the auto-analysis mod-ule generates a subtask that speci�es that the robot mustcross the line that lies parallel to the direction of the moveperformed, and that passes through the position where theobstacle has been detected. This subtask is coded by thepair <coordinates of the place> <direction vector of thestraight line to be crossed> and is registered at the top ofthe pile of the context manager. An emergent functionality[44] of such subtasks is to enable the robot to skirt aroundthe obstacles it encounters. For example, in the case of Fig-ure 2a, an obstacle is detected in front of the robot when itarrives at position 1. If the robot probabilistically choosesto turn left to try to avoid the obstacle, the task of havingto cross the straight line �1 is placed on top of the currenttask - which corresponds to the goal direction d0 - and thecurrent goal becomes the position marked with a "?" onthe �gure, in direction d1. After its move to the left, therobot arrives at position 2. The current goal, with whichdirection d2 is associated, becomes that in Figure 2b, butthe pile of tasks doesn't change. If, at position 2, the robotchooses to move forward, it arrives at position 3, and thecurrent goal becomes that of Figure 2c. In this position,if the robot chooses to turn right, it reaches the currentgoal and the task associated with �1 is erased. Then, therobot can resume pursuing its initial goal, in direction d4(Figure 2d).
4

3 2

d0 d1

4

13

d2

12

d3

123

d4

a) b)

c) d)Fig. 2. Di�erent stages in a skirting behavior involving one skirting task.Following this reasoning, had the robot encountered anobstacle perpendicular to the preceding, preventing it, forexample, from reaching position 3, the task of having to

cross the line �2 would have been placed on top of thetask associated with �1. The robot would thus have beendirected successively through positions 3 and 4 (Figure 3).In position 4, it would have been able to turn right andreach position 5, where the task linked with �2 would havebeen erased. Likewise, the task linked with �1 would inturn have been erased at position 9.
1

3

2

6

7

8

9

10 11 12

13

14

15Fig. 3. Skirting behavior involving two skirting tasks.In some situations, it can happen that the robot, seekingto attain the current goal, erases a task placed farther downthan the current task in the pile. In this case, all the taskssituated above the erased task are also erased, as they weregenerated for the sole purpose of executing this task andno longer have any justi�cation. For instance, if in thesituation shown in Figure 3, the robot chooses to movethrough positions 10 to 15, it will erase the task of havingto cross line �1 at position 15. As the task of having tocross line �2 will no more be justi�ed by the necessity ofcrossing �1, this task will also be erased from the pile ofthe context manager.It will be demonstrated later on that such mechanismsenable the robot to skirt around obstacles and to extricateitself from dead-ends with arbitrarily complicated shapes.Detection of Salient States:Another role of the auto-analysis module is to analyzethe trajectory followed by the robot in order to detect re-cursively the salient states3 in the environment. To accom-plish this, the module evaluates the internal satisfaction ofthe robot after each completed action - that is, the successwith which this rule brought the robot closer to, or tookit farther from, the current goal - and calculates the vari-ation of this satisfaction between two successives actions.At positions where the corresponding gradient is positive,the analysis module detects satisfaction states, which areadded to the initial and �nal states of the path in ques-tion. These satisfaction states are only detected when thecontext manager pile contains a skirting task.The recursive process executed by the auto-analysis mod-ule applies �rst of all to the path actually travelled by therobot, then to the successive �ctitious paths that can beabstracted from the satisfaction states detected on these3In a purely navigational task, one could have used the word "land-marks" instead. We prefer to refer to "salient states", as our approachaims at solving more general tasks.4



paths. Such a process is thus an illustration of the metaphorwhich conceives planning as a series of "thought experi-ments" [15]. When the path obtained by direct connectionof the satisfaction states detected on the preceding pathgenerates the same sequence of satisfaction states, the re-cursion is stopped, and the last satisfaction states discov-ered are recognized as salient states.
X

Y
X

Y

(>)

(<)

(>)
(>) (=)

(>)

0.40.4

(<)

(<)0

(=)

i

u

a b

f

i

a

b

f

v

0.9

0.9
0.5

1.0Fig. 4. Detection of satisfaction and salient states. Numerical valuesindicate the satisfaction brought by each action. >, < and = symbolsindicate the sign of the satisfaction gradient.Thus, in the case of Figure 4, the robot has accomplishedfourteen actions in order to reach position f from positioni, and it was under the control of a skirting task betweenpositions u and v. As the gradient of satisfaction is positiveat a and b, the auto-analysis module generates four satis-faction states: i, f, a and b. At the next stage, the satisfac-tion gradient associated with each �ctitious action, whichmakes it possible to progress from one satisfaction state tothe next, is computed. State a can then be eliminated, asthe gradient is negative between a and b. Because no othersatisfaction state can be eliminated along the path directlyconnecting the three remaining states with one another,the recursive process stops at this stage, and the analysismodule recognizes and memorizes three salient states, i, fand b, each characterized by its coordinates, by the sensoryinformation obtained by the robot at this state, and by thecorresponding orientation of the robot.The salient states are then used to generate planningrules. Thus, at the conclusion of the path described inFigure 4, the two rules P1 and P2 that decompose path i-finto i-b and b-f:P1: 1; 1j000j000j1;1; 1; 7 ==> 1; 1; 4; 2P2: 4; 2j010j000j1;1; 1; 7 ==> 4; 2; 1; 7are created and input to the planning module. The ad-vantage of the redundancy in the description of these rulesis to make it possible to recognize the salient states, evenwhen there are imprecisions in the coordinates, or in thesensory information, or in the orientation of the robot, orwhen the robot reaches one of these states with a new ori-entation.

E. The Internal Reinforcement ModuleThe internal reinforcement module works through a pro-cess of reinforcement which causes the strengths of the rulesof the reactive and planning modules to change. Withinthe reactive module, this internal reinforcement takes placeeach time a rule is used and depends on the satisfaction ofthe robot, that is, on an estimation of the success withwhich this rule brought the robot closer to, or took it far-ther from, the current goal:S(R)u+1 = (1� �) � S(R)u + � � satisfwheresatisf = dist goal(u) � dist goal(u+ 1) +max distmax dist � 2S(R)u : strength of rule R after u triggersS(R)0, �, max dist : parameters of simulation (set re-spectively to 0.1, 0.1 and to the robot's length in the exper-iments described herein)dist goal(u) : estimated distance to the current goal.If max dist evaluates the maximum distance by whichany move can bring the robot closer or farther from its cur-rent goal, the satisfaction brought by a given move variesbetween 0 and 1. The strength of a given reactive rule isan evaluation of the average satisfaction brought by themove it generates and this evaluation is performed by anincremental learning procedure, which is in line with thearguments of biological plausibility put forth by Wilson[52] and Holland [25]. As already mentioned, the strengthof a rule that is selected for action and that would movethe robot through a material element is set to zero.Di�erently from the reactive module in which rules havea single associated strength, the rules of the planning mod-ule are characterized by two strengths: a local strength anda global strength. The local strength evaluates the useful-ness of decomposing a task into a subtask proposed by therule. The global strength, on the other hand, is used todetect and suppress the rules which are unlikely to be usedby the system.To calculate the local strength of a rule P1 that decom-poses, for example, a task T - such as that of going from ito f in Figure 5 - into a subtask T1 - such as that of goingfrom i to j - the reinforcement module evaluates the aver-age cost of all the paths tested by the robot which enableit to reach f from i without resorting to any decomposition.In the present version of the system, this cost, denoted byAC(T), is an average of the lengths of the paths expressedin terms of the number of elementary moves they necessi-tate. AC(T) is evaluated incrementally:AC(T )u+1 = (1� �) �AC(T )u + � �Cwhereu : number of times that task T was achieved without usingany planning ruleC : cost (number of moves) of the u+1th path5



� : parameter (set to 0.1 in the experiments describedherein).The reinforcement module also evaluates the averagecost of all the paths joining i to f and using rule P1, thatis, that reach j from i:AC(P1)u+1 = (1� �) �AC(P1)u + � �Cwhereu : number of times that task T was achieved using plan-ning rule P1C : cost (number of moves) of the u+1th path� : parameter (set to 0.1 in the experiments describedherein).The cost C of the path covered is used as an internalreinforcement and is dispatched to all the rules P1, P2,...that decomposed T. This succession of rules is thus mem-orized, and a pro�t sharing algorithm [21] is called on tochange their average costs AC(P1), AC(P2),... Under theseconditions, the local strength of P1, LS(P1), is updated ac-cording to the equation:LS(P1) = AC(T )AC(P1)The shorter the paths joining i to f and passing through jhave turned out to be than the paths joining i to f by wayof other paths, the stronger this strength is. For example,while following paths 1 and 2 under the control of task Tin Figure 5, the robot has characterized six salient states -i, j, k, l, m and f - and created six planning rules - P1, P2,P3, P4, P5 and P6 - detailed in Figure 6. When task T hasbeen decomposed into the subtasks associated with theseplanning rules, paths 3, 4 and 5 have been followed by therobot. The lengths of paths 1 to 5 being respectively of29, 39, 23, 27 and 23 moves, it follows that AC(T) = (29+ 39)/2 = 34 4, because AC(T) is the average cost of allthe paths - like path 1 and path 2 - that lead the robotfrom i to f without using any planning rule. AC(P1) isthe average cost of all the paths - like path 3 and path 5 -that lead the robot from i to f via j, under the control ofthe planning rule P1. Therefore, AC(P1) = (23 + 23)/2= 23. Likewise, P4 being a rule that decomposes T intothe subtask of going from i to l, AC(P4) is the cost of path4 and equals 27. It then follows that LS(P1) = 34/23 =1.478 and that LS(P4) = 34/27 = 1.259. Because LS(P1)turns out to be greater than LS(P4), the robot in positioni is more likely to choose moving in the direction of j thanin the direction of l. In other words, after having been ableto reactively escape from the obstacle via paths 1 and 2and after having detected the salient states j and l on thesepaths, the robot is now capable of directing itself towardseach of these states from state i and, thus, of avoidingthe obstacle from a distance. Moreover, it is capable of4For a clearer comprehension of this section, the average values thatare actually incrementally estimated by the robot are computed here ina direct way.

choosing the most advantageous among these avoidancetrajectories.Each time a task generated by the planning module is atthe top of the context manager pile, the planning modulecan decide whether or not to decompose this task and totrigger one of various planning rules P1, P2, ... it con-tains according to current sensory information. The deci-sion to decompose is made on the basis of a probabilisticchoice depending on the local strength of each rule (a localstrength of 1 being assigned to the non-decomposition op-tion), weighted by an exploration-exploitation coe�cient.The role of this coe�cient is to modify, in the course ofoperation, the probability that the system will apply ruleswith a high local strength. Its value is under the experi-menter's control for the time being and varies between 0(pure exploitation mode) and 1 (pure exploration mode).It could subsequently be made to depend upon the progressof the simulation.
Path 5

i

f

k m

l

j

Path 1 Path 2

Path 3

Path 4Fig. 5. Several trajectories in a speci�c environment.It is clear that, whatever the local strength of rules P1,P2,... that decompose task T, these rules are unlikely tobe triggered if task T itself is unlikely to be posted on thecontext manager pile. The global strength of each ruleallows this type of situation to be detected and the lessuseful rules to be eliminated whenever the size of the plan-ning module exceeds the maximum permissible threshold.A procedure that leads to coherent results consists in eval-uating the global strength of P1 that decomposes T intoT1 according to the equation:GS(P1) = LS(P1) �GS(T )In such an equation, the global strengh of a task T, GS(T),is the average of the global strengths of all the rules P liableto post T on the context manager pile, this average beingcalculated incrementally:GS(T )u+1 = (1� �) �GS(T )u + � �GS(P )v+16



whereu : number of times that task T was achievedv : number of triggers of rule P� : parameter (set to 0.1 in the experiments describedherein).In the present implementation, when the system is ini-tialized, a principal task PT - for example, going from po-sition i to position f - is assigned to the robot, and thecorresponding global strength GS(PT) is set arbitrarily at1000. This amounts to considering that an external rein-forcement of 1000 (in arbitrary units) is provided in posi-tion f. In future implementations, the robot will discoverby itself the positions where reinforcements are providedand will autonomously assess the values of these reinforce-ments. Whatever the case, the above equations allow theglobal strength of the principal task to be propagated downthe hierarchy of tasks and subtasks by means of the corre-sponding planning rules and, if a given task T happens tobe generated only rarely, its global strength will be weak,as will those of all the rules that decompose T.
AC (i-f) = 34 GS (i-f) = 1000

i-f

AC (P1) = 23 AC (P2) = 23 AC (P3) = 23

AC (i-f) = 34 GS (i-f) = 1000

i-f

LS (P1) = 1.478 LS (P2) = 1.478 LS (P3) = 1.478

i-j j-k

GS (j-k) = 1478GS (i-j) = 1478
AC (i-j) = 11 AC (j-k) = 4 

GS (k-f) = 1478
AC (k-f) = 8 

AC (P4) = 27
LS (P4) = 1.259
GS (P4) = 1259

i-l

GS (i-l) = 1259
AC (i-l) = 9 

AC (P5) = 27
LS (P5) = 1.259
GS (P5) = 1259

GS (l-m) = 1259
AC (l-m) = 8 

AC (P6) = 27
LS (P6) = 1.259
GS (P6) = 1259

GS (m-f) = 1259
AC (m-f) = 10 

k-f

m-fl-m

P1 : i, i-f --> i-j P2 : j, i-f --> j-k P3 : k, i-f --> k-f

P4 : i, i-f --> i-l P5 : l, i-f --> l-m P6 : m, i-f --> m-f

GS (P1) = 1478 GS (P2) = 1478 GS (P3) = 1478

Fig. 6. Tasks and planning rules associated with Figure 5.Figure 6 describes the tasks and planning rules that areassociated with Figure 5. Tasks are characterized by theirinitial and �nal positions; planning rules are arrows decom-posing tasks into subtasks. Figure 6 also gives the local andglobal strengths of the planning rules, the global strengthsof the tasks, and the associated costs of both rules andtasks. For example, because LS(P1) = 1.478 and GS(PT)= GS(i-f) = 1000, it follows that GS(P1) = 1.478 * 1000 =1478. Then, because the global strengths of rules P4, P5and P6 are smaller than those of rules P1, P2 and P3, theformer rules have a higher likelihood of being eliminatedfrom the planning module than the latter, in the event ofmemory over
ow.However if, in this situation, a new obstacle is introduced

in the environment, as in Figure 7, the robot is committedto skirting around the new obstacle. Having followed paths6 and 7 under the control of task i-j, it characterizes fouradditional salient states - n, o, p and q - and creates sixnew planning rules - P7 to P12 - of which only the �rstthree are detailed in Figure 8. When task i-j has been de-composed into the subtasks associated with these planningrules, paths 8 and 9 have been followed by the robot. Thelengths of paths 6 to 9 being respectively of 31, 31, 29 and29 moves, it follows that AC(P1) is now equal to the meanof these four values, i.e., to 30. Therefore, LS(P1) beingnow equal to 34/30 = 1.133, its value turns out to be lowerthan that of LS(P4), i.e. 1.259. As a consequence, thereare now more chances that the robot at position i will tryto avoid the obstacle in Figure 7 by turning in the direc-tion of state l than by turning in the direction of state j. Inother words, in the presence of the new obstacle, the robotwill now tend to avoid the initial obstacle by turning to theright instead of turning to the left.
i

f

k m

l

j

Path 6 Path 7

Path 8

Path 9

n

o q

pFig. 7. Several trajectories in the environment of Figure 5 with a newobstacle added.Figures 6 and 8 also illustrate how task decompositionproceeds within the MonaLysa architecture. In particular,they show that such decomposition is modular, contraryto what happens with classical planning procedures. Inthe latter case, indeed, the decomposition of a task like i-finto the sequence i-j-k-f is made once and for all during theplanning phase, and it is up to the execution algorithm to�gure out a means for successively reaching positions j, kand f from i. Once the execution of such a sequence hasstarted, there is no opportunity to decide, for instance, togo to position other than k when arriving at j. In con-trast, the procedure used here allows for several di�erentdecompositions of a task like i-f. Thus it becomes possibleto decompose i-f into i-j according to rule P1 and, whenarriving at j, to opportunistically choose to use other rulesthan P2 and P3 - these rules not being shown on the �gures- that will lead the robot to f via another position than k.Such opportunities for reactive planning are at the core of7



the adaptive capacities of the robot.
AC (i-f) = 34 GS (i-f) = 1000

i-f

i-j j-k

AC (k-f) = 8 

k-f

P1 : i, i-f --> i-j P2 : j, i-f --> j-k P3 : k, i-f --> k-f

P7 : i, i-j --> i-n

P9 : o, i-j --> o-j

i-n n-o o-j

AC (i-j) = 19 

AC (P7) = 17 AC (P8) = 17 AC (P9) = 17
LS (P7) = 1.118 LS (P8) = 1.118 LS (P9) = 1.118

P8 : n, i-j --> n-o

AC (j-k) = 4 

AC (P1) = 30 AC (P2) = 30 AC (P3) = 30
LS (P1) = 1.133
GS (P1) = 1133

LS (P2) = 1.133
GS (P2) = 1133

LS (P3) = 1.133
GS (P3) = 1133

GS (i-j) = 1133

GS (j-k) = 1133 GS (k-f) = 1133

GS (P7) = 1267 GS (P8) = 1267 GS (P9) = 1267

GS (i-n) = 1267 GS (n-o) = 1267
AC (i-n) = 11 AC (n-o) = 2 

GS (o-j) = 1267
AC (o-j) = 4 Fig. 8. Tasks and planning rules associated with Figure 7.III. Simulated ResultsThis section describes the results obtained in various ex-periments performed in a square environment, each side ofwhich being 40 times as long as the robot's length. Therobot's main task was to reach - within given approxima-tion limits - a goal position situated near the middle of oneside, from a starting position situated near the middle ofthe opposite side. One or several obstacles might be placedin the environment, which forced the robot to deviate fromthe direct trajectory to the goal.To illustrate the learning abilities of the robot, each ex-periment consisted in placing the robot in its starting po-sition and letting it use its rules to choose where to move.When the robot succeeded in reaching the approximategoal position, the number of moves since the starting posi-tion was recorded, the robot was brought back in its start-ing position, and the whole process was iterated again, fora given number of loops called iterations hereafter. Be-cause all the reactive rules within the control architecturehad the same strengths at initialization, the �rst moves ofthe robot were chosen at random. However, because thestrengths of the reactive rules that tend to bring the robotcloser to its current goal were increased and because thestrengths of the reactive rules that tend to bring the robotfarther from the current goal were decreased, the formersoon acquired a higher likelihood of being activated thanthe latter. Thus, according to such a learning scheme, thenumber of moves leading to the goal position or to any sub-goal decreased from iteration to iteration and, eventually,an optimal reactive trajectory was followed by the robot.Each experiment was run in two phases. During the�rst one, although planning rules were learned since thebeginning, they were not allowed to modify the goal of therobot, which accordingly chose its action in a purely re-active mode. During the second phase, the planning ruleswere allowed to generate a succession of appropriate sub-

goals, which the robot, now acting in planning mode, triedto reach in turn.Figures 9 to 11 illustrate the optimal trajectories thatwere followed by the robot when acting in reactive mode.These trajectories were followed in three environmentalconditions, when the robot had to learn to skirt around abarrier obstacle, a dead-end obstacle, and a double-spiralobstacle, respectively.
Fig. 9. Optimal reactive trajectory in an environment with a barrier.

Fig. 10. Optimal reactive trajectory in an environment with a dead-end.
Fig. 11. Optimal reactive trajectory in an environment with a double-spiral.Figure 12 shows the corresponding learning curves, wherefour experiments, all starting from scratch, have been per-formed during 200 iterations each. The �rst experiment8



was performed in an environment with no obstacle. Thethree others were performed in environments each contain-ing one of the obstacles shown in Figures 9 to 11. Resultsobtained show that, in each of the four environments, therobot quickly learns to select the reactive rules that aree�cient for skirting around the obstacles. Di�erences inthe sizes and numbers of the leaps that characterize thesecurves indicate that, the more complex the obstacle, thegreater the likelihood of probabilistically triggering subop-timal rules, and the greater the likelihood that such ruleswill lengthen the trajectory to the goal.
Fig. 12. Evolution of the number of moves necessary to reach the goalin four di�erent environments (average over 10 experiments). Number ofmoves (ordinate) versus number of iterations (abscissa).Likewise, Figure 13 illustrates the results obtained whenthe four experiments were performed consecutively, the en-vironment being changed every 50 iterations, but with noreinitialization of the strengths of the reactive rules. Thusthe robot had to capitalize on the rules learned in the pre-vious environment to adapt its behavior to a new environ-ment. These results show that the reactive rules that arefound to be e�cient in a given environment are generalenough to be useful in another environment. Therefore,adaptation from one environment to another is very quick.
Fig. 13. Adaptation to new environments. Number of moves (ordinate)versus number of iterations (abscissa).Figure 14 shows three planning rules discovered in the

environment containing a double spiral. These rules werecreated while the robot was moving along the reactive tra-jectory of Figure 11, i.e., in a single iteration.
Fig. 14. Three planning rules discovered in an environment with a doublespiral.Figure 15 illustrates the actual trajectory followed by therobot in the environment with a double-spiral when actingin planning mode. From its starting position, the robotsuccessively reached two subgoals that allowed it to avoidentering the obstacle and to �nally reach its initial goal.
Fig. 15. Actual trajectory followed by the robot in the environment witha double-spiral when acting in planning mode.Figures 16 to 18 illustrate the fact that the robot re-tains several plans in its memory and that it is continu-ally updating the local and global strengths of its planningrules according to the procedures described in Section II.Eabove. Therefore, the robot can switch rapidly from oneplan to another, or create new plans, and thus adapt itsbehavior to new obstacles appearing in its environment.Thus, after 15 iterations in the environment depicted inFigure 16, the robot has memorized two plans for avoidingthe dead-end. The best plan is shown in Figure 16, whilethe less e�ective one is shown in Figure 17. If, at itera-tion 16, a new obstacle is added to the environment alongthe robot's optimum path, the robot skirts around this ob-stacle, and the corresponding plan is modi�ed accordingly.However, as the cost of this modi�ed plan exceeds the costof the second plan stored in memory, this second plan is9



the one most likely to govern the robot's path from the22nd iteration on (Figure 17).Likewise, introducing a new obstacle into the environ-ment at the 30th iteration gives the advantage to the mod-i�ed version of the �rst plan (Figure 18). It is thereby seenthat the robot is capable of altering its plans as a reactionto modi�cations in its environment.It should be noted that the plan presented in Figure 18is a hierarchical plan with two levels. Indeed, the �rst taskof the plan shown in Figure 16 has been decomposed intoa three-task sub-plan. Another exemple of this faculty togenerate hierarchical plans can be found in [17].
Fig. 16. The best plan in an environment with a dead-end. Iteration 15.
Fig. 17. The best plan in an environment with a dead-end and one ob-stacle added. Iteration 22.
Fig. 18. The best plan in an environment with a dead-end and two ob-stacles added. Iteration 38.

Finally, results shown in Figure 19, as well as resultspublished elsewhere [17], demonstrate that the decomposi-tion of goals into subgoals can be e�cient enough to devisea way of escaping from rather complex mazes.
Fig. 19. Overall plan discovered in a maze.IV. Real Robot ImplementationTo reproduce the simulated experiments and results ofthe previous section, the MonaLysa architecture has beenused with a Khepera robot ([28], [38]), shown in Figure 20.The size of each side of the square environment used forsuch a purpose was set at 70cm. The Khepera robot isequipped with six IR frontal sensors (with two additionalsensors in the back) that can detect an obstacle within arange of approximately 5 cm, and with two wheels that canturn forward or backward. For the present application, thesignals generated by the frontal sensors have been thresh-olded to mimick the functioning of the proximate sensorsof the previous simulated robot, whose number has thusbeen raised from three to six. The functionality of obsta-cle detection has been assigned to the four sensors nearerthe frontal axis of the robot, in such a way that, when thesignals of two neighboring sensors were at their maximumvalue, an obstacle preventing any move in its direction wasdetected. Likewise, because the sensors of Khepera are notevenly distributed over the periphery of the robot, it some-times happens that they are unable to detect an obstaclebefore the robot has turned 90� to its right or 90� to its left.Therefore, the Khepera robot was given three elementaryactions: move a step forward, turn 45� to the right andmove a step forward, or turn 45� to the left and move astep forward. In principle, the size of each step forwardhas been set at 5.5 cm, i.e., to a value that is approxi-mately equal to the size of the robot. However, if duringthe corresponding move one or more sensors did detect amodi�cation in the environment (i.e., one or more thresh-olded sensory readings switched from 0 to 1 or from 1 to0), the robot stopped until a new reactive rule was selectedand actuated. Thus, the actual trajectory of the Kheperarobot was made of straight lines of unequal lengths, whichfollowed each other at angles of 0� or 45�. Furthermore,an odometric device connected to each wheel allowed therobot's position and orientation to be monitored at each10



instant. Finally, with six binary sensors, eight goal direc-tions and three actions, the number of rules in the reactivemodule of Khepera was 64*8*3 = 1536.
Fig. 20. The robot Khepera and the experimental setting.Figure 21 shows the learning curves obtained when threeexperiments of 50 iterations each were performed consecu-tively. The �rst experiment used an environment withoutany obstacle, the second and third experiments used anenvironment with, respectively, a barrier and a dead-endobstacle. Figures 22 and 23 show the optimal reactive tra-jectories obtained in the presence of obstacles.

Fig. 21. Khepera's adaptation to new environments. Number of moves(ordinate) versus number of iterations (abscissa).
Fig. 22. Khepera's optimal reactive trajectory in an environment with abarrier.

Fig. 23. Khepera's optimal reactive trajectory in an environment with adead-end.Results shown in Figure 21 are qualitatively similar tothose obtained by simulation (Figure 13). The robot isable to use reactive rules already learned in order to adaptits behavior to new environments. Likewise, the skirtingbehaviors that are obtained with the simulated robot (Fig-ures 9 and 10) and the real robot (Figures 22 and 23) arequalitatively similar.
Fig. 24. Three planning rules discovered by Khepera in an environmentwith a dead-end.
Fig. 25. Actual trajectory followed by Khepera in the environment witha dead-end, when acting in planning mode.Figures 24 and 25 show a plan generated and a trajec-tory followed when Khepera was acting in planning mode.Again, the observed behaviors are qualitatively the same as11



those that have been obtained by simulation in a previouswork [17].
Fig. 26. Improvement of Khepera's performance after shifting to the plan-ning mode at iteration 10. Number of moves (ordinate) versus number ofiterations (abscissa).Figure 26 shows how the performance of Khepera im-proved when the robot shifted from the reactive mode tothe planning mode. As might be expected, a greater im-provement is obtained with the dead-end obstacle, becauseit constitutes a more challenging obstacle than the barrierwith regard to progression towards the goal.
Fig. 27. The best plan (on the right) and an alternative (on the left).

Fig. 28. A trajectory followed when using the best plan of Figure 27.Iteration 20

Fig. 29. A trajectory followed when using the alternative plan of Fig-ure 27. Iteration 25Finally, Figures 27 to 29 illustrate the ability of Khep-era to switch adaptively from one plan to another. Forinstance, the trajectory shown in Figure 28 is that whichis followed when the best plan of Figure 27 is used.If a new obstacle is added to the environment at iteration21, the best plan kept in memory by Khepera becomes thealternative plan of Figure 27, and this plan generates thetrajectory of Figure 29, as might have been expected fromthe theoretical considerations in Section II.E and from thesimulated results shown in Figures 16 and 17.V. DiscussionThe transfer of the MonaLysa architecture from a simu-lated robot to a real robot has been almost straightforward.Moreover, results obtained in both cases have been quali-tatively very similar, as they were in the work of Jakobi,Husbands and Harvey [26] that also involved a Kheperarobot. Therefore the common argument (e.g., [8], [9],[10],[43]) according to which no simulation will ever replaceactual robot experimentation is certainly not universal, al-though it probably gets stronger support when a sophisti-cated robot is used instead of a primitive one.The MonaLysa architecture has been conceived in orderto generate very general adaptive behaviors, and currentwork aims at demonstrating its applicability to, for exam-ple, traditional block-world planning [39]. Likewise, this ar-chitecture should prove useful for managingmore numerousand varied motivations than those studied here. In partic-ular, it will be used to control the behavioral sequences ofa simulated animal facing realistic survival problems, likethose described by Tyrrel [49].Whatever the case, results shown here demonstrate thatthe MonaLysa architecture allows expedient learning of re-active and planning rules within the context of simple nav-igation tasks. In particular, a robot equipped with sucha control architecture is not only capable of generatingand memorizing plans that help to avoid obstacles, butalso of altering these plans in reaction to modi�cations inits environment. In the experiments described here, suchmodi�cations were caused by the addition of one or moreobstacles in the environment. It turns out that the removalof obstacles leads to the same kind of results as those ob-12



tained by Sutton with the DYNA architecture [47]. Inparticular, MonaLysa allows the animat to discover newshortcuts leading to the goal, but the speed of such a dis-covery depends upon the current value of the exploration-exploitation coe�cient. For instance if, in the situationdepicted on Figure 17, the obstacle that has been previ-ously added were removed, less than 100 iterations wouldallow the animat to favor again the plan on Figure 16,when a very low exploration-exploitation coe�cient (0.1)is used. In future implementations, it will be easy to dy-namically control such a coe�cient and to take advantageof the fact that each salient state is characterized by an as-sociated <sensory information>. Thus, the animat wouldnotice that the value of this information shifted from "010"- indicating that the obstacle was present to the left of therobot in this state - to "000" - indicating that the obstaclehas been removed. This event would automatically resetthe exploration-exploitation to 1, thus increasing the like-lihood of shortcut discovery.As far as the results shown here are concerned, it shouldalso be noted that, although the external contours of theobstacles were always piecewise linear for convenience, ithas been shown elsewhere [17] that the same control ar-chitecture allows navigation in the presence of more com-plex obstacles. Likewise, it should also be noted that theMonaLysa architecture is capable of discovering quite in-tricate optimal trajectories, as exempli�ed by the resultsin Figure 19 for instance. However, because the odomet-ric capacities of the Khepera robot are limited, the longerthe path to a goal, the greater the chances of getting lost.Therefore, in order to be able to reproduce simulated re-sults like those of Figure 19, which relied on accurate posi-tion and orientation estimates, it is necessary to endow therobot with the possibility of relocating itself in its environ-ment. This has been accomplished by means of adequaterelocalization rules in an extension of the MonaLysa archi-tecture, and proved to be e�ective by simulation. Such re-localization rules predict which salient states are expectedto be reached from a given salient state, under the controlof a speci�c task, and within the uncertainty margins thatare associated with the current position and orientation ofthe robot. In particular, the use of such rules allow therobot to treat the goal as a salient state among others,with no speci�c requirements about the precision of its po-sition and direction. The implementation of this extendedarchitecture in a Khepera robot is in progress.Results shown here also demonstrate that learning isquite e�cient within the current version of the MonaLysaarchitecture. For instance, Figures 12 and 13 show thatless than ten iterations are usually needed to substantiallydecrease the number of moves necessary to reach a goalreactively, and Figures 16 to 18 show that about the samenumber of iterations allows the robot to switch adaptivelyfrom one plan to another. This e�ciency is due to the factthat the classical problem of temporal credit assignment[47] is avoided in the case of the reactive rules becausethe strength of each such rule is updated after each uti-lization, thanks to the management of an internal reward

based on the satisfaction criterion. Thus, the internal rein-forcement module plays here the role of an adaptive criticelement [46]. Learning e�ciency is also due to the factthat the temporal credit assignment problem is minimizedin the case of the planning rules because of the hierarchyof tasks and subtasks they implement. Indeed, as soon asa given task is achieved, the corresponding reinforcementis immediately forwarded to each rule that contributed tothis result, and applied either to the task itself or to allits corresponding subtasks. Thus, the strenghts of manyrules can be updated at reinforcement time, a logic moree�cient than that of the classical bucket brigade algorithm[24], as demonstrated by Wilson [53]. However, althoughWilson's description involved a hierarchical bucket brigadealgorithm, the solution implemented here can be quali�edas a hierarchical pro�t sharing algorithm.Like MonaLysa, the control architectures described byWilson [53], Shu and Schae�er [41] and by Dorigo andColombetti [18] also rely on hierarchical classi�er systems,but only the �rst - which is a theoretical construction andhas not given rise to any concrete application - might im-plement a planning process. Nevertheless, Wilson does notspecify how the corresponding tasks and subtasks could beidenti�ed by the system. Likewise, though the architectureproposed by Colombetti and Dorigo provides for a classi�ersystem to coordinate the actions proposed by other clas-si�er systems, the hierarchical relationships are predeter-mined by the programmer. On the contrary, in the presentwork, the hierarchical relationships among tasks are dy-namic, because they are generated internally on the basisof the experience gained by the animat.As to planning, the MonaLysa architecture does not callon any prede�ned operators for decomposing problems intosubproblems, for the purpose of generating a plan whichwould then be executed [39]. Such a practice, which im-plies that planning precedes acting, has shown itself to besingularly ine�ective [9]. Conversely, here, acting precedesplanning, and the latter does not depend on prede�ned op-erators, but rather is abstracted from the paths actuallytravelled. The plans thus elaborated are initially high levelplans and are based on a small number of rules. However,these plans are re�ned as needed. They are not executedmechanically by the animat, but instead are used as oneresource among others to decide which action to perform([1], [45]). The organization of these plans thus appearsas an emergent property, arising from the interactions be-tween the animat and its environment and elicited by theanimat's needs. Lastly, the value of these plans is con-tinually reevaluated, which confers considerable adaptivefaculties to the system. As already stressed in Section II.Eabove, these incremental changes contrast with the wayother robotic realizations that involve planning solve theproblem of reacting as quickly as possible to modi�cationsin the environment. For example, within the AuRA archi-tecture ([4], [5]), any environmental alteration changes thereactive motor schemas that are used to generate action,but does not explicitly modify the corresponding overallplan. If this plan does need to be changed, because the13



challenge of the environment is too great to be dealt withby a mere alteration of motor schemas, then the plan mustbe rebuilt entirely from scratch.Albus [2], too, described a hierarchical architecture ableto decompose a complex task into a series of subtasks, theninto a series of elemental moves, then into a series of motordrive signals which actuate observable behavior in a robot.However, although Albus describes how such an architec-ture relates to a general theory of intelligence [3], he doesn'tstate how the corresponding hierarchy might be dynami-cally generated, nor how it could be modi�ed accordingto the robot's needs and to the environmental conditionsencountered.In comparison with the literature on animal behavior,it must be stressed that the MonaLysa architecture is notdedicated to navigation tasks only and that it has beenconceived for solving general survival problems. In factthis architecture implements a motivationally autonomousagent ([33], [34]) that acts in particular ways in order toachieve certain ends. To do so, the agent must decide whataction to perform next, according to its physiological or in-ternal state, to the cue state arising from its perception ofthe external world, to the consequences of its current be-havior and to the expected consequences of its future be-havior. The latter point requires knowledge of the probableconsequences - or expected utility - of each possible action.In other words, a motivationally autonomous agent musthave some memory of the past consequences of similar ac-tivities, and it must be capable of planning - i.e., it mustuse some form of cognition. Furthermore, as Dennett [16]pointed out, it must want something, it must have goals5.An animat endowed with the MonaLysa architecture dis-plays all these characteristics. Indeed, the action it per-forms at any time depends both on sensors and on whatwas called here the "internal context". This context ac-tually takes into account the goals that the animat hasselected and that it seeks to achieve. There is nothing toprevent this context from subsequently including other in-formation about the internal state of the animat like, forinstance, its energy level. The animat's goals are generatedby an explicit planning process, and the strengths of therules memorize the consequences of the various choices thatthe animat has made in the past. In the navigation task,these consequences were evaluated in terms of their apti-tude in bringing the animat nearer to its goal; they maylater depend on an appropriate utility function and help theanimat decide, for instance, whether it should seek food,seek water, or try to escape from a predator.In comparison with other approaches aimed at includinga motivational system in the architecture of an animat ([6],[7], [11], [19], [23], [30], [51]), this approach is the only onethat incorporates a planning process that, as seen previ-ously, substantially enhances the adaptive faculties of theanimat. It would accordingly seem that, in the contin-uum described by McFarland and B�osser [34], which dis-5In other words, the agent must be goal-achieving and goal-seeking.Whether its behavior is goal-directed or intentional is another issue ([16],[32]).

tinguishes motivated automata - that choose the action toperform next without taking into account its expected con-sequences - from motivationally autonomous agents, theseother approaches tend to be situated in the former cate-gory, while the present approach would belong to the lat-ter.Finally, it is interesting to note that the animat's be-havioral sequences that are triggered by its motivationalsystem are not random, which could be demonstrated us-ing the same methods that ethologists do [22]. These se-quences are organized according to the animat's goals, sothat a given action tends preferably to be followed by oneaction in the context of a particular goal and by another ac-tion in the context of a di�erent goal. Such an organizationis by no means arbitrary and imposed by the experimenter- like, for instance, in [14] - but rather tends to maximizethe utility function. Nor is it determined once and for all,thus allowing the animat to react opportunistically to thesurprises of the environment.VI. ConclusionThis paper has shown that it is possible to endow ananimat with a control architecture inspired from currentknowledge about the motivational systems of animals. Sucha control architecture is based upon a hierarchical classi�ersystem. It uses reactive and planning rules, which generateboth simple stimulus-response behaviors and more cogni-tive abilities, as demonstrated here within the context ofa navigation task. In particular, it has been shown thatthe animat, although being equipped with very rudimen-tary sensors, is able to quickly learn to escape from obsta-cles it may get trapped into, and even to learn plans thatwill allow it to avoid these obstacles in the future. More-over, these plans can be rapidlymodi�ed if the environmentchanges. In more general contexts, the MonaLysa architec-ture could prove useful in reproducing at least some of theadaptive behaviors that allow the most advanced animalsto survive, even in quite unpredictible and threatening en-vironments. AcknowledgementsWe are greatly indebted to the anonymous referees andto Marco Dorigo for their helpful comments and construc-tive suggestions. References[1] P.E. Agre and D. Chapman, "What are Plans for ?," Design-ing Autonomous Agents. Theory and Practice from Biology toEngineering and Back, P. Maes, Ed. : The MIT Press, 1990.[2] J.S. Albus, Brains, Behavior and Robotics. Byte Books, 1981.[3] J.S. Albus, "Outline of a Theory of Intelligence," IEEE Trans.Syst. Man and Cybernetics, Vol. 21, No. 3, pp. 473-509, 1991.[4] R.C. Arkin, "Motor Schema-Based Navigation for MobileRobot: An Approach to Programming by Behavior," in Pro-ceedings of IEEE International Conference on Robotics and Au-tomation, pp. 264-271, 1987.[5] R.C. Arkin, "Navigational Path Planning for a Vision-BasedMobile Robot," Robotica, Vol. 7, pp. 49-63, 1989.[6] R.D. Beer, Intelligence as Adaptive Behavior: an Experimentin Computational Neuroethology. Academic Press, 1990.14



[7] L.B. Booker, "Classi�er Systems that learn internal world mod-els," Machine Learning, Vol. 3, No. 2/3, pp. 161-192, 1988.[8] R.A. Brooks, "Intelligence without Reason," in ProceedingsIJCAI-91, pp. 569-595, 1991.[9] R.A. Brooks, "Intelligence without Representations," Arti�cialIntelligence, Vol. 47, pp. 139-159, 1991.[10] R.A. Brooks, "Arti�cial Life and Real Robots," in Proceedingsof the First European Conference on Arti�cial Life, F.J. Varelaand P. Bourgine, Eds. : The MIT Press/Bradford Books, pp.3-10, 1992.[11] F. Cecconi and D, Parisi, "Neural Networks with MotivationalUnits," in Proceedings of the 2nd Int. Conf. on Simulation ofAdaptive Behavior, The MIT Press/Bradford Books, pp. 346-355, 1993.[12] D. Chapman and L.P. Kaelbling, "Input Generalization in De-layed Reinforcement Learning: an Algorithm and PerformanceComparisons," in Proceedings of IJCAI-91, pp. 726-731, 1991.[13] D. Cli�, P. Husband, J.A. Meyer and S.W. Wilson, Eds. FromAnimals to Animats 3. Proceedings of the 3rd Int. Conf. onSimulation of Adaptive Behavior. The MIT Press/BradfordBooks, 1994.[14] M. Colombetti and M. Dorigo, "Training Agents to PerformSequentialBehavior,"Adaptive Behavior, Vol. 2, No. 3, pp. 247-275, 1993.[15] K.J.W. Craik, The Nature of Explanation. Cambridge Univer-sity Press, 1943.[16] D. Dennett, "Intentional Systems in Cognitive Ethology: the'Panglossian paradigm' defended," Behavioral and Brain Sci-ence, Vol. 6, pp. 343-390, 1983.[17] J.Y. Donnart and J.A. Meyer, "A Hierarchical Classi�er Sys-tem Implementing a Motivationally Autonomous Animat," inProceedings of the 3rd Int. Conf. on Simulation of AdaptiveBehavior, The MIT Press/Bradford Books, pp. 144-153, 1994.[18] M. Dorigo and M. Colombetti, "Robot Shaping: DevelopingAutonomous Agents through Learning," Arti�cial Intelligence,Vol. 71, No. 2, pp. 321-370, 1994.[19] L.M. Gabora, "Should I Stay or Should I Go: CoordinatingBiological Needs with Continuously-updated Assesments of theEnvironment," in Proceedings of the 2nd Int. Conf. on Simu-lation of Adaptive Behavior, The MIT Press/Bradford Books,pp. 156-162, 1993.[20] D.E. Goldberg, Genetic Algorithms in Search, Optimization,and Machine Learning. Addison Wesley, 1989.[21] J.J. Grefenstette, "Credit Assignment in Rule Discovery Sys-tems Based on Genetic Algorithms," Machine Learning, Vol.2/3, pp. 225-245, 1988.[22] A. Guillot, "Revue g�en�erale des m�ethodes d'�etude des s�equencescomportementales," Etudes et Analyses Comportementales,Vol. 2, No. 3, pp. 86-106, 1986.[23] J.R.P. Halperin, "Machine Motivation," in Proceedings of the1st Int. Conf. on Simulation of Adaptive Behavior, The MITPress/Bradford Books, pp. 213-221, 1991.[24] J.H. Holland, "Escaping Brittleness: The Possibilities ofGeneral-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems," Machine Learning: An Arti�cial IntelligenceApproach 2, R.S. Michalski, J.G. Carbonell and T.M. Mitchell,Eds. : Morgan Kaufmann, pp. 593-623, 1986.[25] J.H. Holland, K.J. Holyoak, R.E. Nisbett and P.R. Thagard,Induction: Processes of Inference, Learning and Discovery. TheMIT Press/Bradford Books, 1986[26] N. Jakobi, P. Husbands and I. Harvey, "Noise and the RealityGap: The Use of Simulation in Evolutionary Robotics," in Pro-ceedings of the Third European Conference on Arti�cial Life,in Press, 1995.[27] L.P. Kaelbling, "Hierarchical Learning in Stochastic Domains:Preliminary Results," in Proceedings of the Ninth InternationalConference on Machine Learning, pp. 167-173, 1993.[28] K-Team, Khepera Users Manual. EPFL, Lausanne, 1993.[29] L.J. Lin, "Hierarchical Learning of Robot Skills by Reinforce-ment," in Proceedings of the IEEE International Conference onNeural Networks-93, pp. 181-186, 1993.[30] P. Maes, "A Bottom-UpMechanism for Behavior Selection in anArti�cial Creature," inProceedings of the 1st Int. Conf. on Sim-ulation of Adaptive Behavior, The MIT Press/Bradford Books,pp. 238-246, 1991.[31] P. Maes, "Modelling Adaptive Autonomous Agents," Arti�cialLife, Vol. 1, pp. 135-162, 1994.

[32] D. McFarland, "The Teleological Imperative,"Goals, No Goalsand Own Goals, Monte�ore and Noble Eds. : Unwin-Hyman,1989.[33] D. McFarland, "De�ning Motivation and Cognition in Ani-mals," International Studies in the Philosophy of Science, Vol.5, No. 2, pp. 153-170, 1991.[34] D. McFarland and T. B�osser, Intelligent Behavior in Animalsand Robots. The MIT Press/Bradford Books, 1993.[35] J.A. Meyer and S.W. Wilson, Eds. From Animals to Animats.Proceedings of the 1st Int. Conf. on Simulation of AdaptiveBehavior. The MIT Press/Bradford Books, 1991.[36] J.A. Meyer, H.L. Roitblat and S.W.Wilson, Eds. From Animalsto Animats 2. Proceedings of the 2nd Int. Conf. on Simulationof Adaptive Behavior. The MIT Press/Bradford Books, 1993.[37] J.A. Meyer, "The Animat Approach to Cognitive Science," inComparative Approaches to Cognitive Science, H.L. Roitblatand J.A. Meyer, Eds. : The MIT Press/Bradford Books, 1995.[38] F. Mondada, E. Franzi and P. Ienne, "Mobile Robot Miniaturi-sation: A Tool for Investigation in Control Algorithms," in Pro-ceedings of the 3rd International Symposium on ExperimentalRobotics, 1993.[39] N.J. Nilsson, Principles of Arti�cial Intelligence. Tioga Pub.Co., 1980.[40] H.L. Roitblat and J.A. Meyer, "Introduction to ComparativeCognition,"Comparative Approaches to Cognitive Science, H.L.Roitblat and J.A. Meyer, Eds. : The MIT Press/BradfordBooks, 1995.[41] L. Shu and J. Schae�er, "HCS: Adding Hierarchies to Classi�erSystems," Proceedings of the 4th Int. Conf. on Genetic Algo-rithms, Belew and Booker, Eds. : Kaufmann, pp. 339-345, 1991.[42] S.P. Singh, "Reinforcement Learning with a Hierarchy of Ab-stract Models," in Proceedings of AAAI, pp. 202-207, 1992.[43] T. Smithers, "On why better robots make it harder", in Proceed-ings of the 3rd Int. Conf. on Simulation of Adaptive Behavior,The MIT Press/Bradford Books, pp. 64-72, 1994.[44] L. Steels, "Towards a Theory of Emergent Functionality," inProceedings of the 1st Int. Conf. on Simulation of AdaptiveBehavior, The MIT Press/Bradford Books, pp. 451-461, 1991.[45] L.A. Suchman, Plans and Situated Actions: The Problem ofHuman-Machine Communication. Cambridge University Press,1987.[46] R.S. Sutton, "Temporal Credit Assignment in ReinforcementLearning,"Doctoral Dissertation,Department of Computer andInformation Science, University of Massachusetts, 1984.[47] R.S. Sutton, "Reinforcement Learning Architectures for Ani-mats," in Proceedings of the 1st Int. Conf. on Simulation ofAdaptive Behavior, The MIT Press/Bradford Books, pp. 288-296, 1991.[48] F.M. Toates and P. Jensen, "Ethological and PsychologicalModels of Motivation: Towards a Synthesis," in Proceedingsof the 1st Int. Conf. on Simulation of Adaptive Behavior, TheMIT Press/Bradford Books, pp. 194-205, 1991.[49] T. Tyrrell, "The Use of Hierarchies for Action Selection,"Adap-tive Behavior Vol.1, No. 4, pp. 387-420, 1993.[50] C.J. Watkins, "Learning with Delayed Rewards," Ph.D. Disser-tation, Cambridge University, 1989.[51] G.M. Werner, "Using Second Order Neural Connections forMotivation of Behavioral Choices," in Proceedings of the 3rdInt. Conf. on Simulation of Adaptive Behavior, The MITPress/Bradford Books, pp. 154-161, 1994.[52] S.W. Wilson, "Classi�er Systems and the Animat Problem,"Machine Learning, Vol 2, pp. 199-228. 1987.[53] S.W.Wilson, "Hierarchical Credit Allocation in a Classi�er Sys-tem," Genetic algorithms and simulated annealing, Davies, Ed.: Pitman, pp. 104-115, 1987.[54] S.W. Wilson, "The Animat Path to AI," in Proceedings of the1st Int. Conf. on Simulation of Adaptive Behavior, The MITPress/Bradford Books, pp. 15-21, 1991.15


