Learning Reactive and Planning Rules in a
Motivationally Autonomous Animat

Jean-Yves Donnart and Jean-Arcady Meyer

Abstract— This work describes a control architecture based
on a hierarchical classifier system. This system, which learns
both reactive and planning rules, implements a motivation-
ally autonomous animat that chooses the actions it performs
according to its perception of the external environment, to
its physiological or internal state, to the consequences of
its current behavior, and to the expected consequences of
its future behavior. The adaptive faculties of this architec-
ture are illustrated within the context of a navigation task,
through various experiments with a simulated and a real
robot.

I. INTRODUCTION

The work presented in this paper fits into the so-called
animat approach, which aims at designing animats, i.e.,
simulated animals or real robots whose rules of behavior
are inspired by those of animals. The proximate goal of this
approach is to discover architectures or working principles
that allow an animal or a robot to exhibit an adaptive
behavior and, thus, to survive or fulfill its mission even
in a changing environment ([13], [35], [36]). The ultimate
goal of this approach is to embed human intelligence within
an evolutionary perspective and to seek how the highest
cognitive abilities of man can be related to the simplest
adaptive behaviors of animals ([37], [40], [54]).

An animat is usually equipped with sensors, with actua-
tors, and with a control architecture that allow it to react
or to respond to variations in its external or internal envi-
ronment, notably to those that might impair its chances of
survival. This paper describes the control architecture of
a motivationally autonomous animat ([17], [33], [34]) that
enhances its chances of survival by learning to do the right
thing at the right time. Action selection [31] in this animat
depends upon its perception of the external environment,
upon its physiological or internal state, upon the conse-
quences of its current behavior, and upon the expected
consequences of its future behavior. In other words, like
an animal, such an animat is endowed with a motivational
system that, according to Toates and Jensen, ”selects [at
every moment] a goal to be pursued and organizes [the an-
imat’s] commerce with it” [48]. This system is said to be
autonomous because it is very unlikely to be completely
controllable and observable by an external agent.

Such a control architecture relies upon reactive and plan-
ning rules whose expected utilities in solving a given task

The authors are with the Groupe de BioInformatique of the Ecole Nor-
male Supérieure. 46, rue d’Ulm. 75230 Paris Cedex 05. France
(e-mail donnart@wotan.ens.fr - meyer@wotan.ens.fr) (URL

http://www.ens.fr:80/bioinfo/www /francais/perso/donnart/donnart.html
http://www.ens.fr:80/bioinfo/www /francais/perso/meyer/meyer.html)

can be submitted to a reinforcement learning procedure,
thus allowing the animat to improve over time the way it
selects its actions. An originality of this architecture is that
its capability of analyzing the behavior it generates allows
it to learn situated plans ([1], [45]). Thus, although the
animat’s moment-to-moment decisions can be taken at a
certain level of abstraction and depend upon a global view
of the survival problem to be solved, they are also reactive
to the actual state of the environment that, in turn, can
modify the expected utilities of the memorized plans. Such
adaptive capacities should prove to be very general and to
be exhibited in a variety of future applications. They will
be illustrated here within the context of a simple navigation
task through various simulations. The operational value of
these capacities will then be demonstrated through equiv-
alent experiments with a robot.

II. THE CONTROL ARCHITECTURE

In order to survive in a complex environment, an ani-
mat may rely on various reinforcement signals that indicate
whether or not a given action, or sequence of actions, en-
hances its chances of survival in given circumstances. How-
ever, although various algorithms - like Holland’s bucket
brigade [24], Sutton’s temporal difference learning [46] or
Watkins’s @Q-learning [50]- can be used to let the animat
learn how to choose a favorable action in preference to an
unfavorable one in each possible circumstance, such a learn-
ing process turns out to be very slow. This is due to the
fact that reinforcement signals are generally provided in a
few particular environmental states and that the step by
step propagation of the corresponding information to every
other state through a flat organization takes a long time.
Among the solutions that have been suggested to improve
learning speed - like generalization procedures [12] or the
use of an action model [47] - the most promising seem to
be those that advocate a hierarchical organization of state
transitions', within which the propagation of reinforcement
signals is expedited.

The hierarchical control architecture presented here is
called MonaLysa? and relies upon the same principles. How-
ever, the hierarchy it implements, instead of being fixed by
the designer ([18], [27],[29], [42], [53]), can be dynamically
reconfigured - thus enhancing the animat’s adaptive capac-
ities. In particular, the possibility of introducing or sup-

1 The operators of such transitions, which will be referred to as tasks
hereafter, are called behavioral modules [53], skills [29], abstract models
[42] or macro-operators [27] elsewhere.

2MOtivatioNAILY autonomou$ Animat.

pressing tasks within the current hierarchy is afforded by a
mechanism that allows the survival value of these tasks to
be monitored, according to a heuristic criterion of nternal
satisfaction.

//—\

K ENVIRONMENT
actions
i sensory i
detections
REACTIVE PLANNING
MODULE MODULE
/F internal context /F
task
CONTEXT
MANAGER
internal context
INTERNAL REINFORCEMENT
reinforcement MODULE reinforcement
internal context
+ satisfaction
sensory
i task
detec:“"“ AUTO-ANALYSIS
+ action .
MODULE planning
rules

Fig. 1. The MonalLysa architecture

In the present application, the MonaLysa architecture
enables a simulated robot to explore a two-dimensional en-
vironment that may contain various assorted materials, in
particular some obstacles, and to navigate from a given
initial place to a given goal place despite such obstacles.
The robot i1s equipped with proximate sensors that keep
it informed of the presence or absence of any obstacle in
front of it, 90° to its right, or 90° to its left. It is also
able to estimate the spatial coordinates of the position it 1s
located in and the direction of a goal to be reached in each
of the eight sectors of the space surrounding it. Lastly, it
is capable of moving straight ahead, 90° to its right, or 90°
to its left. The size of each such move is equal to the length
of the robot.

This architecture, which relies upon a hierarchical clas-
sifier system [24], is organized into five modules - a reac-
tive module, a planning module, a context manager, an
auto-analysis module and an internal reinforcement mod-
ule (Figure 1). Tt allows the robot to reactively escape from
any obstacle it gets trapped into by skirting around it, and
to analyze the corresponding skirting path in order to plan
a trajectory that will later allow i1t to avoid the obstacle
from a distance.

The role of the reactive module is to decide what action
to perform next. The corresponding decisions depend not
only upon the robot’s sensory detections, but also upon the
direction of the robot’s current goal. The latter is specified

by the robot’s current task that is posted on the context
manager module either by the planning or the auto-analysis
modules. Thus, the context manager contains the pile of
all the tasks the animat has to perform. The role of the
planning module is to use its planning rules to decompose
a given task into simpler tasks. The auto-analysis mod-
ule either generates a skirting task that is posted on the
context manager module when an obstacle is detected, or
generates avoidance tasks that are converted into planning
rules sent to the planning module. The internal reinforce-
ment module is used to monitor the internal satisfaction
of the robot and to provide a reinforcement signal to the
reactive and planning modules.

A. The Reactive Module

This module is responsible for choosing which action the
robot performs at every moment. It contains a series of
rules - or classifiers - that allow the robot to react to in-
coming sensory information from the environment, as well
as to the internal context specified by the context man-
ager. In the current configuration, the internal context is
the direction of the current goal. The reactive rules take
the form:

If <sensory information> and <direction of current goal>
Then <action>

For example, rule R : 100|001 ==> 01 can be activated
when the robot becomes aware of the presence of a material
element in front of it, but not on either side (information
coded by 7100”), and when the direction of the current goal
is 45° to its right (direction ”001”). If this rule is activated,
the robot performs an elementary move 90° to its right (ac-
tion 701”). In the simulations to be shown below, to each
pair of conditions on the <sensory information> and the
<direction of current goal> correspond, at any moment,
three rules capable of being actuated, each of which is as-
sociated with one of the three possible actions. The choice
of which rule is actually triggered is effected probabilisti-
cally on the basis of the strength - that will be discussed
later (see Section IT.E) - of each of the three rules involved.
In the case of this simulated robot, there are 8«8+ 3 = 192
possible reactive rules. These rules are all created when
the system is initialized and are charged into the reactive
module, which does not change in size as long as the sys-
tem 1is in operation. The strength of each rule is initialized
to a given value and is subsequently modified by learning.
In other experiments, yet unpublished, a genetic algorithm
[20] has been used successfully in the interest of discovering
more general rules.

B. The Planning Module

The role of the planning module is to decompose a task
into a series of subtasks according to current sensory infor-
mation. The planning rules it contains take the form:

If <sensory information> and <current task>
Then <subtask>

Sensory information is provided by the sensors and comes
from the environment. It consists of information supplied
by the proximate sensors and of the robot’s coordinates
and current orientation. As explained below, the <current
task> is the one registered at the top of the pile of tasks
governed by the context manager and, when a planning
rule is triggered, the corresponding <subtask> is put above
the <current task> on the context manager’s pile. Such a
procedure will be called task decomposition hereafter.

The <current task> and the <subtask> are each coded
as a pair of coordinates, which respectively define an initial
position and a final position - i.e., a goal - to be reached.
Thus, rule P :5,1|001|000|3,0;3,5 ==> 5,1;5,2 can be
activated at position 5,1 if the robot is headed in a north-
easterly direction (coded by 7001”), if it perceives no mate-
rial element ahead or on either side of it (coded by ”70007),
and if 1ts current task is to reach the position with coor-
dinates 3,5 when starting at position 3,0. If this rule is
activated, the subtask that involves reaching position 5,2
from position 5,1 will be placed on top of the context man-
ager pile.

With each rule of the planning module are associated two
strengths - one local, the other global - the evaluation of
which will be explained later (see Section II.E). The local
strength is used to determine the probability of trigger-
ing a rule whose condition part matches the current situa-
tion. When the system is initialized, the planning module
is empty. During operation, this module can dynamically
acquire rules - generated by the auto-analysis module - or
loose rules - according to how the global strengths of these
rules evolve. The size of the planning module thus varies
over time, though it cannot exceed a preestablished upper
limit.

C. The Context Manager

The context manager provides an internal context to the
other modules and influences their inner working. This
internal context is the direction of the robot’s current goal
in the case of the reactive module; it is the robot’s current
task in the case of all other modules. The context manager
consists essentially of a pile of tasks, at the top of which
is the system’s current task. New tasks are added to the
pile either by the auto-analysis module, when an obstacle
is detected, or by the planning module, as just mentioned.
The former allow the robot to escape from an obstacle by
skirting around it, while trying to cross specific lines that
characterize the obstacle. The latter allow the robot to
avoid an obstacle from a distance, while passing through
specific positions characterized along the obstacle.

The context manager includes an algorithm that trans-
forms the current task into a goal, then supplies the di-
rection of this goal to the reactive module. In the case of
a task posted by the planning module, the corresponding
goal is simply described by the coordinates of the final po-
sition to be reached. In the case of a task posted by the
auto-analysis module, the corresponding goal is described
by the coordinates of the projection of the robot’s current

location on the line that must be crossed to skirt around
the obstacle. This projection, and accordingly the corre-
sponding direction information, varies whenever the robot
moves.

D. The Auto-Analysis Module

The role of the auto-analysis module is to analyze the
current behavior of the robot in order to alter its current
task dynamically and to create new tasks that will enhance
its behavior in the future. In other words, the auto-analysis
module is responsible for detecting obstacles, for trigger-
ing skirting behaviors and for characterizing salient states
in the environment, through which it will be useful to travel
in the future in order to avoid the obstacles from a distance.

Obstacle Detection:

Within the present application, an obstacle is any mate-
rial element that prevents the execution of the best action
the robot can perform in order to move in the direction
of its current goal. To escape from such an obstacle, the
robot must skirt around 1t. However, it may happen that
some material elements - like a wall at the periphery of
the area that is explored - can be detected in the vicin-
ity of the robot by its proximate sensors without impeding
movement in the direction of the current goal. In such a
case, no specific skirting behavior needs to be triggered.
Therefore, the detection of an obstacle and the triggering
of the relevant skirting behavior depend upon the following
procedure. When the proximate sensors detect a material
element in a given position, the robot first searches which
reactive rule has the greatest strength among the three
rules that could be actuated in the context of the current
goal’s direction if no material element were actually de-
tected. If the move that this rule would trigger cannot be
executed because of the presence of the material element,
this element is recognized as an obstacle at the position
where that move would lead, and a subsequent skirting
subtask is sent to the context manager. Recursively, if the
move that corresponds to the second best rule cannot be
executed, a second obstacle is recognized at the correspond-
ing position, and so on. Whether the material element has
been recognized as an obstacle or not, the robot then prob-
abilistically chooses a rule that matches both the <sensory
wnformation> in the presence of the material element and
the <direction of current goal>. If the material element
doesn’t prevent the corresponding action from being exe-
cuted, the action is executed and the strength of the rule is
changed as explained in section E. If the action cannot be
executed, the strength of the rule is set to zero and other
reactive rules matching the <direction of current goal> in
the presence of a material element are probabilistically se-
lected in turn, until one is found that allows motion.

The reason why obstacle detection involves two rule match-

ing procedures, one that takes the actual <sensory information>

into account and one that operates as if this information
were set to 70007, is that the strength of rules triggered
according to the former procedure can be equal to zero -

thus indicating that these rules would lead the robot in
the direction of the obstacle, an action that is not suitable.
A zero strength prevents the corresponding rules from be-
ing probabilistically selected for action and, if such rules
cannot be executed, they cannot be used to recognize the
obstacle, nor to skirt around it. Hence, the necessity of
relying on the second rule matching procedure for these
purposes.

Skirting Behavior:

When an obstacle 1s detected, the auto-analysis mod-
ule generates a subtask that specifies that the robot must
cross the line that lies parallel to the direction of the move
performed, and that passes through the position where the
obstacle has been detected. This subtask is coded by the
pair <coordinates of the place> <direction vector of the
straight line to be crossed> and is registered at the top of
the pile of the context manager. An emergent functionality
[44] of such subtasks is to enable the robot to skirt around
the obstacles it encounters. For example, in the case of Fig-
ure 2a, an obstacle is detected in front of the robot when it
arrives at position 1. If the robot probabilistically chooses
to turn left to try to avoid the obstacle, the task of having
to cross the straight line 67 is placed on top of the current
task - which corresponds to the goal direction d0 - and the
current goal becomes the position marked with a ”?” on
the figure, in direction di. After its move to the left, the
robot arrives at position 2. The current goal, with which
direction d2 is associated, becomes that in Figure 2b, but
the pile of tasks doesn’t change. If, at position 2, the robot
chooses to move forward, it arrives at position 3, and the
current goal becomes that of Figure 2c. In this position,
if the robot chooses to turn right, it reaches the current
goal and the task associated with 67 is erased. Then, the
robot can resume pursuing its initial goal, in direction d4

(Figure 2d).

a) b)

fo o
—r o — SN
% 2 1 3 2 1

0) d)

Fig. 2. Different stages in a skirting behavior involving one skirting task.

Following this reasoning, had the robot encountered an
obstacle perpendicular to the preceding, preventing it, for
example, from reaching position 3, the task of having to

cross the line 62 would have been placed on top of the
task associated with 1. The robot would thus have been
directed successively through positions 3 and 4 (Figure 3).
In position 4, it would have been able to turn right and
reach position b, where the task linked with 62 would have
been erased. Likewise, the task linked with 671 would in

turn have been erased at position 9.

-

62
— 9|
8 2 1
7 3

6?'5:_310 11
|

61
14
13
12

Fig. 3. Skirting behavior involving two skirting tasks.

In some situations, it can happen that the robot, seeking
to attain the current goal, erases a task placed farther down
than the current task in the pile. In this case, all the tasks
situated above the erased task are also erased, as they were
generated for the sole purpose of executing this task and
no longer have any justification. For instance, if in the
situation shown in Figure 3, the robot chooses to move
through positions 10 to 15, it will erase the task of having
to cross line 81 at position 15. As the task of having to
cross line 62 will no more be justified by the necessity of
crossing 61, this task will also be erased from the pile of
the context manager.

It will be demonstrated later on that such mechanisms
enable the robot to skirt around obstacles and to extricate
itself from dead-ends with arbitrarily complicated shapes.

Detection of Salient States:

Another role of the auto-analysis module is to analyze
the trajectory followed by the robot in order to detect re-
cursively the salient states® in the environment. To accom-
plish this, the module evaluates the internal satisfaction of
the robot after each completed action - that 1s, the success
with which this rule brought the robot closer to, or took
it farther from, the current goal - and calculates the vari-
ation of this satisfaction between two successives actions.
At positions where the corresponding gradient is positive,
the analysis module detects satisfaction states, which are
added to the initial and final states of the path in ques-
tion. These satisfaction states are only detected when the
context manager pile contains a skirting task.

The recursive process executed by the auto-analysis mod-
ule applies first of all to the path actually travelled by the
robot, then to the successive fictitious paths that can be
abstracted from the satisfaction states detected on these

°In a purely navigational task, one could have used the word ”land-

marks” instead. We prefer to refer to ”salient states”, as our approach
alms at solving more general tasks.

paths. Such a process is thus an illustration of the metaphor
which conceives planning as a series of ”thought experi-
ments” [15]. When the path obtained by direct connection
of the satisfaction states detected on the preceding path
generates the same sequence of satisfaction states, the re-
cursion 1is stopped, and the last satisfaction states discov-
ered are recognized as salient states.

>)

\"
ﬁ“ 05 09 (3) ﬁ
10| 0() 0.9 (>)
04 04" b y ®
a 8 8
G & . b
i i
it bl
X X

Fig. 4. Detection of satisfaction and salient states. Numerical values
indicate the satisfaction brought by each action. >, < and = symbols
indicate the sign of the satisfaction gradient.

Thus, in the case of Figure 4, the robot has accomplished
fourteen actions in order to reach position ffrom position
1, and 1t was under the control of a skirting task between
positions u and v. As the gradient of satisfaction is positive
at a and b, the auto-analysis module generates four satis-
faction states: ¢, f, a and b. At the next stage, the satisfac-
tion gradient associated with each fictitious action, which
malkes it possible to progress from one satisfaction state to
the next, is computed. State a can then be eliminated, as
the gradient is negative between a and b. Because no other
satisfaction state can be eliminated along the path directly
connecting the three remaining states with one another,
the recursive process stops at this stage, and the analysis
module recognizes and memorizes three salient states, ¢, f
and b, each characterized by its coordinates, by the sensory
information obtained by the robot at this state, and by the
corresponding orientation of the robot.

The salient states are then used to generate planning
rules. Thus, at the conclusion of the path described in
Figure 4, the two rules PI and P2 that decompose path i-f
into i-b and b-f.

P1: 1,1]000{000[1,1;1,7 ==> 1,1;4,2
P2: 4,2]010[000[1,1;1,7 ==> 4,2:1,7

are created and input to the planning module. The ad-
vantage of the redundancy in the description of these rules
1s to make it possible to recognize the salient states, even
when there are imprecisions in the coordinates, or in the
sensory information, or in the orientation of the robot, or
when the robot reaches one of these states with a new ori-
entation.

E. The Internal Reinforcement Module

The internal reinforcement module works through a pro-
cess of reinforcement which causes the strengths of the rules
of the reactive and planning modules to change. Within
the reactive module, this internal reinforcement takes place
each time a rule 1s used and depends on the satisfaction of
the robot, that is, on an estimation of the success with
which this rule brought the robot closer to, or took it far-
ther from, the current goal:

S(R)ys1 = (1 —a) * S(R)y + o * satisf

where
satisf = dist_goal(u) — dzst_gogl(u + 1) + max_dist
max _dist * 2
S(R)y : strength of rule R after u triggers

S(R)o, «, max_dist : parameters of simulation (set re-
spectwvely to 0.1, 0.1 and to the robot’s length in the exper-
iments described herein)

dist_goal(u) : estimated distance to the current goal.

If max_dist evaluates the maximum distance by which
any move can bring the robot closer or farther from its cur-
rent goal, the satisfaction brought by a given move varies
between 0 and 1. The strength of a given reactive rule is
an evaluation of the average satisfaction brought by the
move it generates and this evaluation is performed by an
mcremental learning procedure, which is in line with the
arguments of biological plausibility put forth by Wilson
[52] and Holland [25]. As already mentioned, the strength
of a rule that is selected for action and that would move
the robot through a material element is set to zero.

Differently from the reactive module in which rules have
a single associated strength, the rules of the planning mod-
ule are characterized by two strengths: alocal strength and
a global strength. The local strength evaluates the useful-
ness of decomposing a task into a subtask proposed by the
rule. The global strength, on the other hand, is used to
detect and suppress the rules which are unlikely to be used
by the system.

To calculate the local strength of a rule P1 that decom-
poses, for example, a task T - such as that of going from 1
to fin Figure 5 - into a subtask T1 - such as that of going
from 7 to j - the reinforcement module evaluates the aver-
age cost of all the paths tested by the robot which enable
it to reach ffrom 7 without resorting to any decomposition.
In the present version of the system, this cost, denoted by
AC(T), is an average of the lengths of the paths expressed
in terms of the number of elementary moves they necessi-
tate. AC(T) is evaluated incrementally:

AC(TYys1 = (1 —a) « AC(T)y + ax C

where

u : number of times that task T was achieved without using
any planning rule

C : cost (number of moves) of the u+1th path

a : parameter (set to 0.1 in the experiments described
herein).

The reinforcement module also evaluates the average
cost of all the paths joining ¢ to f and using rule P, that
is, that reach j from i

AC(Pl)ys1 = (1 —a)*« AC(Pl)y + ax C

where

u : number of times that task T was achieved using plan-
ning rule P1

C : cost (number of moves) of the u+1th path

a : parameter (set to 0.1 in the experiments described
herein).

The cost C of the path covered is used as an internal
reinforcement and is dispatched to all the rules P1, P2,...
that decomposed T. This succession of rules is thus mem-
orized, and a profit sharing algorithm [21] is called on to
change their average costs AC(P1), AC(P2),... Under these
conditions, the local strength of P1, LS(P1), is updated ac-
cording to the equation:

AC(T)

LS(P1) = A0

The shorter the paths joining ¢ to f and passing through j
have turned out to be than the paths joining ¢ to f by way
of other paths, the stronger this strength i1s. For example,
while following paths 1 and 2 under the control of task T
in Figure 5, the robot has characterized six salient states -
1, j, k, [, m and f- and created six planning rules - P1, P2,
P3, P4, P5 and P6 - detailed in Figure 6. When task T has
been decomposed into the subtasks associated with these
planning rules; paths 3, 4 and 5 have been followed by the
robot. The lengths of paths 1 to b being respectively of
29, 39, 23, 27 and 23 moves, it follows that AC(T) = (29
+ 39)/2 = 34 %, because AC(T) is the average cost of all
the paths - like path 1 and path 2 - that lead the robot
from ¢ to f without using any planning rule. AC(P1) is
the average cost of all the paths - like path 3 and path 5 -
that lead the robot from ¢ to f via j, under the control of
the planning rule P1. Therefore, AC(P1) = (23 + 23)/2
= 23. Likewise, P4 being a rule that decomposes T into
the subtask of going from i to {, AC(P4) is the cost of path
4 and equals 27. Tt then follows that LS(P1) = 34/23 =
1.478 and that LS(P4) = 34/27 = 1.259. Because LS(P1)
turns out to be greater than LS(P4), the robot in position
¢ 1s more likely to choose moving in the direction of 7 than
in the direction of I In other words, after having been able
to reactively escape from the obstacle via paths 1 and 2
and after having detected the salient states j and ! on these
paths, the robot is now capable of directing itself towards
each of these states from state ¢ and, thus, of avoiding

the obstacle from a distance. Moreover, it 1s capable of

4For a clearer comprehension of this section, the average values that
are actually incrementally estimated by the robot are computed here in
a direct way.

choosing the most advantageous among these avoidance
trajectories.

Each time a task generated by the planning module is at
the top of the context manager pile, the planning module
can decide whether or not to decompose this task and to
trigger one of various planning rules PI, P2 ... it con-
tains according to current sensory information. The deci-
sion to decompose 1s made on the basis of a probabilistic
choice depending on the local strength of each rule (a local
strength of 1 being assigned to the non-decomposition op-
tion), weighted by an exploration-exploitation coefficient.
The role of this coefficient is to modify, in the course of
operation, the probability that the system will apply rules
with a high local strength. Its value is under the experi-
menter’s control for the time being and varies between 0
(pure exploitation mode) and 1 (pure exploration mode).
It could subsequently be made to depend upon the progress
of the simulation.

Fig. 5. Several trajectories in a specific environment.

It is clear that, whatever the local strength of rules P1,
P2,... that decompose task T, these rules are unlikely to
be triggered if task T itself is unlikely to be posted on the
context manager pile. The global strength of each rule
allows this type of situation to be detected and the less
useful rules to be eliminated whenever the size of the plan-
ning module exceeds the maximum permissible threshold.
A procedure that leads to coherent results consists in eval-
uating the global strength of P1 that decomposes T into
T1 according to the equation:

GS(P1) = LS(P1) + GS(T)

In such an equation, the global strengh of a task T, GS(T),
is the average of the global strengths of all the rules P liable
to post T on the context manager pile, this average being
calculated incrementally:

GS(T)usr = (1 — a) * GS(T)y + a + GS(P)yt1

where

u : number of times that task T was achieved

v . number of triggers of rule P

a : parameter (set to 0.1 in the experiments described
herein).

In the present implementation, when the system 1s ini-
tialized, a principal task PT - for example, going from po-
sition 7 to position f- is assigned to the robot, and the
corresponding global strength GS(PT) is set arbitrarily at
1000. This amounts to considering that an external rein-
forcement of 1000 (in arbitrary units) is provided in posi-
tion f. In future implementations, the robot will discover
by itself the positions where reinforcements are provided
and will autonomously assess the values of these reinforce-
ments. Whatever the case, the above equations allow the
global strength of the principal task to be propagated down
the hierarchy of tasks and subtasks by means of the corre-
sponding planning rules and, if a given task T happens to
be generated only rarely, its global strength will be weak,
as will those of all the rules that decompose T.

GS (i-f) = 1000

(P2:j,i-f-->j-k)

AC (i-fy =34

(PL:i,i-f-->i-) (P8 K, i-f --> k)

GS (i) = 1478

GS (j-K) = 1478 GS (k-f)

= 1478
AC (k-f)=8

AC (i) =11 AC (j-k) =4
GS (i-f) = 1000 AC (i-f) =34
(P4, i-f—->i-1) (P5:1,i-f -->1-m) (P6: m,i-f -->mH)
AC (P4 =27 AC (P5) =27 AC (P6) =27

LS (P4)=1.259
GS (P4) = 1259

LS(PS) = 1259
GS (P5) = 1259

LS (P6) = 1.259
GS (P6) = 1259

GS (i-l) = 1259
AC(i-)=9

GS (I-m) = 1259
AC(-m)=8

GS (mH) = 1259
AC (mH) = 10

Fig. 6. Tasks and planning rules associated with Figure 5.

Figure 6 describes the tasks and planning rules that are
associated with Figure 5. Tasks are characterized by their
initial and final positions; planning rules are arrows decom-
posing tasks into subtasks. Figure 6 also gives the local and
global strengths of the planning rules, the global strengths
of the tasks, and the associated costs of both rules and
tasks. For example, because LS(P1) = 1.478 and GS(PT)
= GS(i-f) = 1000, it follows that GS(P1) = 1.478 * 1000 =
1478. Then, because the global strengths of rules P4, Ph
and P6 are smaller than those of rules P1, P2 and P3, the
former rules have a higher likelihood of being eliminated
from the planning module than the latter, in the event of
memory overflow.

However if, in this situation, a new obstacle is introduced

in the environment, as in Figure 7, the robot is committed
to skirting around the new obstacle. Having followed paths
6 and 7 under the control of task i-j, it characterizes four
additional salient states - n, o, p and ¢ - and creates six
new planning rules - P7 to P12 - of which only the first
three are detailed in Figure 8. When task ¢-j has been de-
composed into the subtasks associated with these planning
rules, paths 8 and 9 have been followed by the robot. The
lengths of paths 6 to 9 being respectively of 31, 31, 29 and
29 moves, it follows that AC(P1) is now equal to the mean
of these four values, i.e., to 30. Therefore, LS(P1) being
now equal to 34/30 = 1.133, its value turns out to be lower
than that of LS(P4), i.e. 1.259. As a consequence, there
are now more chances that the robot at position ¢ will try
to avoid the obstacle in Figure 7 by turning in the direc-
tion of state [than by turning in the direction of state j. In
other words, in the presence of the new obstacle, the robot
will now tend to avoid the initial obstacle by turning to the
right instead of turning to the left.

f

Fig. 7. Several trajectories in the environment of Figure 5 with a new
obstacle added.

Figures 6 and 8 also illustrate how task decomposition
proceeds within the MonaLysa architecture. In particular,
they show that such decomposition is modular, contrary
to what happens with classical planning procedures. In
the latter case, indeed, the decomposition of a task like i-f
into the sequence i-j-k-fis made once and for all during the
planning phase, and it 1s up to the execution algorithm to
figure out a means for successively reaching positions j, k
and f from i. Once the execution of such a sequence has
started, there is no opportunity to decide, for instance, to
go to position other than k& when arriving at j. In con-
trast, the procedure used here allows for several different
decompositions of a task like i-f. Thus it becomes possible
to decompose i-f into ¢-j according to rule P1 and, when
arriving at 7, to opportunistically choose to use other rules
than P2 and P3 - these rules not being shown on the figures
- that will lead the robot to fvia another position than .
Such opportunities for reactive planning are at the core of

the adaptive capacities of the robot.

GS(i-f) = 1000 AC(i-f)=34
(PL:i,if-->i) (P2:],i-f-->jk) (P3: K, i-f > k)
AC (P1) =30 AC (P2) =30 AC (P3) =30
LS(P1)=1.133 LS(P2)=1.133 LS(P3)=1.133
GS (P1) = 1133 GS(P2) = 1133 GS(P3) = 1133

GS (i) = 1133
AC (i) =19

GS (j-k) = 1133 GS (k-f) = 1133

AC (j-k) =4 AC (kf)=8
AC(P7) =17 AC (PB) =17 AC (P9) = 17
LS(P7)=1118 LS(P8)=1118 LS(P9)=1118

GS(P7) = 1267 GS (P8) = 1267 GS (P9) = 1267

GS (j-n) = 1267
AC (i-n) = 11

GS(n-0) = 1267
AC(n-0)=2

GS (o)) = 1267
AC (o) =4

Fig. 8. Tasks and planning rules associated with Figure 7.

III. SIMULATED RESULTS

This section describes the results obtained in various ex-
periments performed in a square environment, each side of
which being 40 times as long as the robot’s length. The
robot’s main task was to reach - within given approxima-
tion limits - a goal position situated near the middle of one
side, from a starting position situated near the middle of
the opposite side. One or several obstacles might be placed
in the environment, which forced the robot to deviate from
the direct trajectory to the goal.

To illustrate the learning abilities of the robot, each ex-
periment consisted in placing the robot in its starting po-
sition and letting it use its rules to choose where to move.
When the robot succeeded in reaching the approximate
goal position, the number of moves since the starting posi-
tion was recorded, the robot was brought back in its start-
ing position, and the whole process was iterated again, for
a given number of loops called iterations hereafter. Be-
cause all the reactive rules within the control architecture
had the same strengths at initialization, the first moves of
the robot were chosen at random. However, because the
strengths of the reactive rules that tend to bring the robot
closer to its current goal were increased and because the
strengths of the reactive rules that tend to bring the robot
farther from the current goal were decreased, the former
soon acquired a higher likelihood of being activated than
the latter. Thus, according to such a learning scheme, the
number of moves leading to the goal position or to any sub-
goal decreased from iteration to iteration and, eventually,
an optimal reactive trajectory was followed by the robot.

Each experiment was run in two phases. During the
first one, although planning rules were learned since the
beginning, they were not allowed to modify the goal of the
robot, which accordingly chose its action in a purely re-
active mode. During the second phase, the planning rules
were allowed to generate a succession of appropriate sub-

goals, which the robot, now acting in planning mode, tried
to reach in turn.

Figures 9 to 11 illustrate the optimal trajectories that
were followed by the robot when acting in reactive mode.
These trajectories were followed in three environmental
conditions, when the robot had to learn to skirt around a
barrier obstacle, a dead-end obstacle, and a double-spiral
obstacle, respectively.

Fig. 9. Optimal reactive trajectory in an environment with a barrier.

| 1

Fig. 10. Optimal reactive trajectory in an environment with a dead-end.

ﬂ

Fig. 11. Optimal reactive trajectory in an environment with a double-
spiral.

Figure 12 shows the corresponding learning curves, where
four experiments, all starting from scratch, have been per-
formed during 200 iterations each. The first experiment

was performed in an environment with no obstacle. The
three others were performed in environments each contain-
ing one of the obstacles shown in Figures 9 to 11. Results
obtained show that, in each of the four environments, the
robot quickly learns to select the reactive rules that are
efficient for skirting around the obstacles. Differences in
the sizes and numbers of the leaps that characterize these
curves indicate that, the more complex the obstacle, the
greater the likelihood of probabilistically triggering subop-
timal rules, and the greater the likelihood that such rules
will lengthen the trajectory to the goal.

o0 T T T T T T T T T
double-spiral

480 1= dead-end -1
barrier

ELI o

no_ohstacle - -1

380

300

260

200

150 |+ .

1 1 1 1 1 1 1 1 |
1} 20 40 B0 a0 100 120 140 160 180 200

Fig. 12. Evolution of the number of moves necessary to reach the goal
in four different environments (average over 10 experiments). Number of
moves (ordinate) versus number of iterations (abscissa).

Likewise, Figure 13 illustrates the results obtained when
the four experiments were performed consecutively, the en-
vironment being changed every 50 iterations, but with no
reinitialization of the strengths of the reactive rules. Thus
the robot had to capitalize on the rules learned in the pre-
vious environment to adapt its behavior to a new environ-
ment. These results show that the reactive rules that are
found to be efficient in a given environment are general
enough to be useful in another environment. Therefore,
adaptation from one environment to another is very quick.

o0 T T T T T T 1 T

no_obstacle barrier dead_end double-spiral
480 = -1

400 |- -
/0 |-
00 |-

280 =

LU o

150 = : -1
100 H -1

50 ; -

1 1 1 1 1 1 1 H 1 |
1} 20 40 B0 a0 100 120 140 160 180 200

0

Fig. 13. Adaptation to new environments. Number of moves (ordinate)
versus number of iterations (abscissa).

Figure 14 shows three planning rules discovered in the

environment containing a double spiral. These rules were
created while the robot was moving along the reactive tra-
jectory of Figure 11, i.e., in a single iteration.

B

Fig. 14. Three planning rules discovered in an environment with a double
spiral.

Figure 15 illustrates the actual trajectory followed by the
robot in the environment with a double-spiral when acting
in planning mode. From its starting position, the robot
successively reached two subgoals that allowed it to avoid
entering the obstacle and to finally reach its initial goal.

Fig. 15. Actual trajectory followed by the robot in the environment with
a double-spiral when acting in planning mode.

Figures 16 to 18 illustrate the fact that the robot re-
tains several plans in 1ts memory and that i1t is continu-
ally updating the local and global strengths of its planning
rules according to the procedures described in Section II.LE
above. Therefore, the robot can switch rapidly from one
plan to another, or create new plans, and thus adapt its
behavior to new obstacles appearing in its environment.

Thus, after 15 iterations in the environment depicted in
Figure 16, the robot has memorized two plans for avoiding
the dead-end. The best plan is shown in Figure 16, while
the less effective one is shown in Figure 17. If, at itera-
tion 16, a new obstacle is added to the environment along
the robot’s optimum path, the robot skirts around this ob-
stacle, and the corresponding plan is modified accordingly.
However, as the cost of this modified plan exceeds the cost
of the second plan stored in memory, this second plan is

the one most likely to govern the robot’s path from the
22nd iteration on (Figure 17).

Likewise, introducing a new obstacle into the environ-
ment at the 30th iteration gives the advantage to the mod-
ified version of the first plan (Figure 18). It is thereby seen
that the robot is capable of altering its plans as a reaction
to modifications in its environment.

It should be noted that the plan presented in Figure 18
is a hierarchical plan with two levels. Indeed, the first task
of the plan shown in Figure 16 has been decomposed into
a three-task sub-plan. Another exemple of this faculty to
generate hierarchical plans can be found in [17].

Fig. 16. The best plan in an environment with a dead-end. Iteration 15.

N

Fig. 17. The best plan in an environment with a dead-end and one ob-
stacle added. Iteration 22.

Fig. 18. The best plan in an environment with a dead-end and two ob-
stacles added. Iteration 38.

10

Finally, results shown in Figure 19, as well as results
published elsewhere [17], demonstrate that the decomposi-
tion of goals into subgoals can be efficient enough to devise
a way of escaping from rather complex mazes.

Fig. 19. Overall plan discovered in a maze.

IV. REAL RoBOT IMPLEMENTATION

To reproduce the simulated experiments and results of
the previous section, the Monalysa architecture has been
used with a Khepera robot ([28], [38]), shown in Figure 20.
The size of each side of the square environment used for
such a purpose was set at 70cm. The Khepera robot is
equipped with six IR frontal sensors (with two additional
sensors in the back) that can detect an obstacle within a
range of approximately 5 cm, and with two wheels that can
turn forward or backward. For the present application, the
signals generated by the frontal sensors have been thresh-
olded to mimick the functioning of the proximate sensors
of the previous simulated robot, whose number has thus
been raised from three to six. The functionality of obsta-
cle detection has been assigned to the four sensors nearer
the frontal axis of the robot, in such a way that, when the
signals of two neighboring sensors were at their maximum
value, an obstacle preventing any move in its direction was
detected. Likewise, because the sensors of Khepera are not
evenly distributed over the periphery of the robot, it some-
times happens that they are unable to detect an obstacle
before the robot has turned 90° to its right or 90° to its left.
Therefore, the Khepera robot was given three elementary
actions: move a step forward, turn 45° to the right and
move a step forward, or turn 45° to the left and move a
step forward. In principle, the size of each step forward
has been set at 5.5 c¢m, i.e., to a value that is approxi-
mately equal to the size of the robot. However, if during
the corresponding move one or more sensors did detect a
modification in the environment (i.e., one or more thresh-
olded sensory readings switched from 0 to 1 or from 1 to
0), the robot stopped until a new reactive rule was selected
and actuated. Thus, the actual trajectory of the Khepera
robot was made of straight lines of unequal lengths, which
followed each other at angles of 0° or 45°. Furthermore,
an odometric device connected to each wheel allowed the
robot’s position and orientation to be monitored at each

instant. Finally, with six binary sensors, eight goal direc-
tions and three actions, the number of rules in the reactive
module of Khepera was 64*8*3 = 1536.

Fig. 20. The robot Khepera and the experimental setting.

Figure 21 shows the learning curves obtained when three
experiments of 50 iterations each were performed consecu-
tively. The first experiment used an environment without
any obstacle, the second and third experiments used an
environment with, respectively, a barrier and a dead-end
obstacle. Figures 22 and 23 show the optimal reactive tra-
jectories obtained in the presence of obstacles.

250 T T T T T T T

no_ohstacle barrier dead_end

200 - : -

100 -1

0 20 40 B0 a0 100 120 140

Fig. 21. Khepera’s adaptation to new environments. Number of moves

(ordinate) versus number of iterations (abscissa).

Fig. 22. Khepera’s optimal reactive trajectory in an environment with a
barrier.

Fig. 23. Khepera’s optimal reactive trajectory in an environment with a
dead-end.

Results shown in Figure 21 are qualitatively similar to
those obtained by simulation (Figure 13). The robot is
able to use reactive rules already learned in order to adapt
its behavior to new environments. Likewise, the skirting
behaviors that are obtained with the simulated robot (Fig-
ures 9 and 10) and the real robot (Figures 22 and 23) are
qualitatively similar.

Fig. 24. Three planning rules discovered by Khepera in an environment
with a dead-end.

Fig. 25. Actual trajectory followed by Khepera in the environment with
a dead-end, when acting in planning mode.

Figures 24 and 25 show a plan generated and a trajec-

tory followed when Khepera was acting in planning mode.
Again, the observed behaviors are qualitatively the same as

those that have been obtained by simulation in a previous

work [17].

T
dead-end

harrier

use_of_plans

Fig. 26. Improvement of Khepera’s performance after shifting to the plan-
ning mode at iteration 10. Number of moves (ordinate) versus number of
iterations (abscissa).

Figure 26 shows how the performance of Khepera im-
proved when the robot shifted from the reactive mode to
the planning mode. As might be expected, a greater im-
provement 1s obtained with the dead-end obstacle, because
it constitutes a more challenging obstacle than the barrier
with regard to progression towards the goal.

Fig. 27. The best plan (on the right) and an alternative (on the left).

Fig. 28. A trajectory followed when using the best plan of Figure 27.
Iteration 20

12

Fig. 29. A trajectory followed when using the alternative plan of Fig-
ure 27. Iteration 25

Finally, Figures 27 to 29 illustrate the ability of Khep-
era to switch adaptively from one plan to another. For
instance, the trajectory shown in Figure 28 is that which
is followed when the best plan of Figure 27 is used.

If a new obstacle is added to the environment at iteration
21, the best plan kept in memory by Khepera becomes the
alternative plan of Figure 27, and this plan generates the
trajectory of Figure 29, as might have been expected from
the theoretical considerations in Section II.E and from the
simulated results shown in Figures 16 and 17.

V. DiscussioN

The transfer of the MonalLysa architecture from a simu-
lated robot to a real robot has been almost straightforward.
Moreover, results obtained in both cases have been quali-
tatively very similar, as they were in the work of Jakobi,
Husbands and Harvey [26] that also involved a Khepera
robot. Therefore the common argument (e.g., [8], [9],[10],
[43]) according to which no simulation will ever replace
actual robot experimentation is certainly not universal, al-
though it probably gets stronger support when a sophisti-
cated robot is used instead of a primitive one.

The MonaLysa architecture has been conceived in order
to generate very general adaptive behaviors, and current
work aims at demonstrating its applicability to, for exam-
ple, traditional block-world planning [39]. Likewise, this ar-
chitecture should prove useful for managing more numerous
and varied motivations than those studied here. In partic-
ular, it will be used to control the behavioral sequences of
a simulated animal facing realistic survival problems, like
those described by Tyrrel [49].

Whatever the case, results shown here demonstrate that
the Monal.ysa architecture allows expedient learning of re-
active and planning rules within the context of simple nav-
igation tasks. In particular, a robot equipped with such
a control architecture is not only capable of generating
and memorizing plans that help to avoid obstacles, but
also of altering these plans in reaction to modifications in
its environment. In the experiments described here, such
modifications were caused by the addition of one or more
obstacles in the environment. It turns out that the removal
of obstacles leads to the same kind of results as those ob-

tained by Sutton with the DYNA architecture [47].
particular, MonaLysa allows the animat to discover new
shortcuts leading to the goal, but the speed of such a dis-
covery depends upon the current value of the exploration-
exploitation coefficient. For instance if, in the situation
depicted on Figure 17, the obstacle that has been previ-
ously added were removed, less than 100 iterations would
allow the animat to favor again the plan on Figure 16,
when a very low exploration-exploitation coefficient (0.1)
is used. In future implementations, it will be easy to dy-
namically control such a coefficient and to take advantage
of the fact that each salient state is characterized by an as-
sociated <sensory information>. Thus, the animat would
notice that the value of this information shifted from ”010”
- indicating that the obstacle was present to the left of the
robot in this state - to 7000” - indicating that the obstacle
has been removed. This event would automatically reset
the exploration-exploitation to 1, thus increasing the like-
lihood of shortcut discovery.

As far as the results shown here are concerned, it should
also be noted that, although the external contours of the
obstacles were always piecewise linear for convenience, it
has been shown elsewhere [17] that the same control ar-
chitecture allows navigation in the presence of more com-
plex obstacles. Likewise, it should also be noted that the
Monalysa architecture is capable of discovering quite in-
tricate optimal trajectories, as exemplified by the results
in Figure 19 for instance. However, because the odomet-
ric capacities of the Khepera robot are limited, the longer
the path to a goal, the greater the chances of getting lost.
Therefore, in order to be able to reproduce simulated re-
sults like those of Figure 19, which relied on accurate posi-
tion and orientation estimates, it is necessary to endow the
robot with the possibility of relocating itself in its environ-
ment. This has been accomplished by means of adequate
relocalization rules in an extension of the Monalysa archi-
tecture, and proved to be effective by simulation. Such re-
localization rules predict which salient states are expected
to be reached from a given salient state, under the control
of a specific task, and within the uncertainty margins that
are associated with the current position and orientation of
the robot. In particular, the use of such rules allow the
robot to treat the goal as a salient state among others,
with no specific requirements about the precision of its po-
sition and direction. The implementation of this extended
architecture in a Khepera robot is in progress.

Results shown here also demonstrate that learning is
quite efficient within the current version of the MonaLysa
architecture. For instance, Figures 12 and 13 show that
less than ten 1terations are usually needed to substantially
decrease the number of moves necessary to reach a goal
reactively, and Figures 16 to 18 show that about the same
number of iterations allows the robot to switch adaptively
from one plan to another. This efficiency is due to the fact
that the classical problem of temporal credit assignment
[47] is avoided in the case of the reactive rules because
the strength of each such rule is updated after each uti-
lization, thanks to the management of an internal reward

In

13

based on the satisfaction criterion. Thus, the internal rein-
forcement module plays here the role of an adaptive critic
element [46]. Learning efficiency is also due to the fact
that the temporal credit assignment problem is minimized
in the case of the planning rules because of the hierarchy
of tasks and subtasks they implement. Indeed, as soon as
a given task is achieved, the corresponding reinforcement
is immediately forwarded to each rule that contributed to
this result, and applied either to the task itself or to all
its corresponding subtasks. Thus, the strenghts of many
rules can be updated at reinforcement time, a logic more
efficient than that of the classical bucket brigade algorithm
[24], as demonstrated by Wilson [53]. However, although
Wilson’s description involved a hierarchical bucket brigade
algorithm, the solution implemented here can be qualified
as a hierarchical profit sharing algorithm.

Like MonaLysa, the control architectures described by
Wilson [53], Shu and Schaeffer [41] and by Dorigo and
Colombetti [18] also rely on hierarchical classifier systems,
but only the first - which is a theoretical construction and
has not given rise to any concrete application - might im-
plement a planning process. Nevertheless, Wilson does not
specify how the corresponding tasks and subtasks could be
identified by the system. Likewise, though the architecture
proposed by Colombetti and Dorigo provides for a classifier
system to coordinate the actions proposed by other clas-
sifier systems, the hierarchical relationships are predeter-
mined by the programmer. On the contrary, in the present
work, the hierarchical relationships among tasks are dy-
namic, because they are generated internally on the basis
of the experience gained by the animat.

As to planning, the Monal.ysa architecture does not call
on any predefined operators for decomposing problems into
subproblems, for the purpose of generating a plan which
would then be executed [39]. Such a practice, which im-
plies that planning precedes acting, has shown itself to be
singularly ineffective [9]. Conversely, here, acting precedes
planning, and the latter does not depend on predefined op-
erators, but rather is abstracted from the paths actually
travelled. The plans thus elaborated are initially high level
plans and are based on a small number of rules. However,
these plans are refined as needed. They are not executed
mechanically by the animat, but instead are used as one
resource among others to decide which action to perform
([1], [45]). The organization of these plans thus appears
as an emergent property, arising from the interactions be-
tween the animat and its environment and elicited by the
animat’s needs. Lastly, the value of these plans is con-
tinually reevaluated, which confers considerable adaptive
faculties to the system. As already stressed in Section II.E
above, these incremental changes contrast with the way
other robotic realizations that involve planning solve the
problem of reacting as quickly as possible to modifications
in the environment. For example, within the AuRA archi-
tecture ([4], [5]), any environmental alteration changes the
reactive motor schemas that are used to generate action,
but does not explicitly modify the corresponding overall
plan. If this plan does need to be changed, because the

challenge of the environment is too great to be dealt with
by a mere alteration of motor schemas, then the plan must
be rebuilt entirely from scratch.

Albus [2], too, described a hierarchical architecture able
to decompose a complex task into a series of subtasks, then
into a series of elemental moves, then into a series of motor
drive signals which actuate observable behavior in a robot.
However, although Albus describes how such an architec-
ture relates to a general theory of intelligence [3], he doesn’t
state how the corresponding hierarchy might be dynami-
cally generated, nor how it could be modified according
to the robot’s needs and to the environmental conditions
encountered.

In comparison with the literature on animal behavior,
it must be stressed that the MonaLysa architecture is not
dedicated to navigation tasks only and that it has been
conceived for solving general survival problems. In fact
this architecture implements a motivationally autonomous
agent ([33], [34]) that acts in particular ways in order to
achieve certain ends. To do so, the agent must decide what
action to perform next, according to its physiological or in-
ternal state, to the cue state arising from its perception of
the external world, to the consequences of its current be-
havior and to the expected consequences of its future be-
havior. The latter point requires knowledge of the probable
consequences - or expected utility - of each possible action.
In other words, a motivationally autonomous agent must
have some memory of the past consequences of similar ac-
tivities, and it must be capable of planning - i.e., it must
use some form of cognition. Furthermore, as Dennett [16]
pointed out, it must want something, it must have goals®.

An animat endowed with the MonaLysa architecture dis-
plays all these characteristics. Indeed, the action it per-
forms at any time depends both on sensors and on what
was called here the ”internal context”. This context ac-
tually takes into account the goals that the animat has
selected and that it seeks to achieve. There is nothing to
prevent this context from subsequently including other in-
formation about the internal state of the animat like, for
instance, its energy level. The animat’s goals are generated
by an explicit planning process, and the strengths of the
rules memorize the consequences of the various choices that
the animat has made in the past. In the navigation task,
these consequences were evaluated in terms of their apti-
tude in bringing the animat nearer to its goal; they may
later depend on an appropriate utility function and help the
animat decide, for instance, whether it should seek food,
seek water, or try to escape from a predator.

In comparison with other approaches aimed at including
a motivational system in the architecture of an animat ([6],
[7], [11], [19], [23], [30], [51]), this approach is the only one
that incorporates a planning process that, as seen previ-
ously, substantially enhances the adaptive faculties of the
animat. It would accordingly seem that, in the contin-
uum described by McFarland and Bosser [34], which dis-

5In other words, the agent must be goal-achieving and goal-seeking.
Whether its behavior is goal-directed or intentionalis another issue ([16],

[32]).

14

tinguishes motivated automata - that choose the action to
perform next without taking into account its expected con-
sequences - from motivationally autonomous agents, these
other approaches tend to be situated in the former cate-
gory, while the present approach would belong to the lat-
ter.

Finally, it is interesting to note that the animat’s be-
havioral sequences that are triggered by its motivational
system are not random, which could be demonstrated us-
ing the same methods that ethologists do [22]. These se-
quences are organized according to the animat’s goals, so
that a given action tends preferably to be followed by one
action in the context of a particular goal and by another ac-
tion in the context of a different goal. Such an organization
is by no means arbitrary and imposed by the experimenter
- like, for instance, in [14] - but rather tends to maximize
the utility function. Nor is 1t determined once and for all,
thus allowing the animat to react opportunistically to the
surprises of the environment.

VI. CONCLUSION

This paper has shown that it is possible to endow an
animat with a control architecture inspired from current
knowledge about the motivational systems of animals. Such
a control architecture is based upon a hierarchical classifier
system. It uses reactive and planning rules, which generate
both simple stimulus-response behaviors and more cogni-
tive abilities, as demonstrated here within the context of
a navigation task. In particular, it has been shown that
the animat, although being equipped with very rudimen-
tary sensors, is able to quickly learn to escape from obsta-
cles it may get trapped into, and even to learn plans that
will allow it to avoid these obstacles in the future. More-
over, these plans can be rapidly modified if the environment
changes. In more general contexts, the MonaLysa architec-
ture could prove useful in reproducing at least some of the
adaptive behaviors that allow the most advanced animals
to survive, even in quite unpredictible and threatening en-
vironments.

ACKNOWLEDGEMENTS

We are greatly indebted to the anonymous referees and
to Marco Dorigo for their helpful comments and construc-
tive suggestions.

REFERENCES

P.E. Agre and D. Chapman, "What are Plans for 7,” Design-
ing Autonomous Agents. Theory and Practice from Biology to
Engineering and Back, P. Maes, Ed. : The MIT Press, 1990.
J.S. Albus, Brains, Behavior and Robotics. Byte Books, 1981.
J.S. Albus, ”Outline of a Theory of Intelligence,” IEEE Trans.
Syst. Man and Cybernetics, Vol. 21, No. 3, pp. 473-509, 1991.
R.C. Arkin, "Motor Schema-Based Navigation for Mobile
Robot: An Approach to Programming by Behavior,” in Pro-
ceedings of IEEE International Conference on Robotics and Au-
tomation, pp. 264-271, 1987.

R.C. Arkin, "Navigational Path Planning for a Vision-Based
Mobile Robot,” Robotica, Vol. 7, pp. 49-63, 1989.

R.D. Beer, Intelligence as Adaptive Behavior: an Frperiment
in Computational Neuroethology. Academic Press, 1990.

(11]

(12]

(13]

(14]

15]

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

26]

L.B. Booker, " Classifier Systems that learn internal world mod-
els,” Machine Learning, Vol. 3, No. 2/3, pp. 161-192, 1988.
R.A. Brooks, "Intelligence without Reason,” in Proceedings
IJCAI-91, pp. 569-595, 1991.

R.A. Brooks, "Intelligence without Representations,” Artificial
Intelligence, Vol. 47, pp. 139-159, 1991.

R.A. Brooks, " Artificial Life and Real Robots,” in Proceedings
of the First European Conference on Artificial Life, F.J. Varela
and P. Bourgine, Eds. : The MIT Press/Bradford Books, pp.
3-10, 1992.

F. Cecconi and D, Parisi, "Neural Networks with Motivational
Units,” in Proceedings of the 2nd Int. Conf. on Simulation of
Adaptive Behavior, The MIT Press/Bradford Books, pp. 346-
355, 1993.

D. Chapman and L.P. Kaelbling, " Input Generalization in De-
layed Reinforcement Learning: an Algorithm and Performance
Comparisons,” in Proceedings of IJCAI-91, pp. 726-731, 1991.
D. CIiff, P. Husband, J.A. Meyer and S.W. Wilson, Eds. From
Animals to Animats 3. Proceedings of the 3rd Int. Conf. on
Simulation of Adaptive Behavior. The MIT Press/Bradford
Books, 1994.

M. Colombetti and M. Dorigo, "Training Agents to Perform
Sequential Behavior,” Adaptive Behavior, Vol. 2, No. 3, pp. 247-
275, 1993.

K.J.W. Craik, The Nature of Ezplanation. Cambridge Univer-
sity Press, 1943.

D. Dennett, ”"Intentional Systems in Cognitive Ethology: the
'Panglossian paradigm’ defended,” Behavioral and Bramn Sci-
ence, Vol. 6, pp. 343-390, 1983.

J.Y. Donnart and J.A. Meyer, " A Hierarchical Classifier Sys-
tem Implementing a Motivationally Autonomous Animat,” in
Proceedings of the 3rd Int. Conf. on Simulation of Adaptive
Behavior, The MIT Press/Bradford Books, pp. 144-153, 1994.
M. Dorigo and M. Colombetti, "Robot Shaping: Developing
Autonomous Agents through Learning,” Artificial Intelligence,
Vol. 71, No. 2, pp. 321-370, 1994.

L.M. Gabora, "Should I Stay or Should I Go: Coordinating
Biological Needs with Continuously-updated Assesments of the
Environment,” in Proceedings of the 2nd Int. Conf. on Simu-
lation of Adaptive Behavior, The MIT Press/Bradford Books,
pp. 156-162, 1993.

D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison Wesley, 1989.

J.J. Grefenstette, " Credit Assignment in Rule Discovery Sys-
tems Based on Genetic Algorithms,” Machine Learning, Vol.
2/3, pp. 225-245, 1988.

A. Guillot, "Revue générale des méthodes d’étude des séquences
comportementales,” FEtudes et Analyses Comportementales,
Vol. 2, No. 3, pp. 86-106, 1986.

J.R.P. Halperin, "Machine Motivation,” in Proceedings of the
1st Int. Conf. on Simulation of Adaptive Behavior, The MIT
Press/Bradford Books, pp. 213-221, 1991.

J.H. Holland, "Escaping Brittleness: The Possibilities of
General-Purpose Learning Algorithms Applied to Parallel Rule-
Based Systems,” Machine Learning: An Artificial Intelligence
Approach 2, R.S. Michalski, J.G. Carbonell and T.M. Mitchell,
Eds. : Morgan Kaufmann, pp. 593-623, 1986.

J.H. Holland, K.J. Holyoak, R.E. Nisbett and P.R. Thagard,
Induction: Processes of Inference, Learning and Discovery. The
MIT Press/Bradford Books, 1986

N. Jakobi, P. Husbands and I. Harvey, " Noise and the Reality
Gap: The Use of Simulation in Evolutionary Robotics,” in Pro-
ceedings of the Third European Conference on Artificial Life,
in Press, 1995.

L.P. Kaelbling, ”Hierarchical Learning in Stochastic Domains:
Preliminary Results,” in Proceedings of the Ninth International
Conference on Machine Learning, pp. 167-173, 1993.

K-Team, Khepera Users Manual. EPFL, Lausanne, 1993.

L.J. Lin, "Hierarchical Learning of Robot Skills by Reinforce-
ment,” in Proceedings of the IEEE International Conference on
Neural Networks-93, pp. 181-186, 1993.

P. Maes, ” A Bottom-Up Mechanism for Behavior Selection in an
Artificial Creature,” in Proceedings of the 1st Int. Conf. on Sim-
wlation of Adaptive Behavior, The MIT Press/Bradford Books,
Pp. 238-246, 1991.

P. Maes, "Modelling Adaptive Autonomous Agents,” Artificial
Life, Vol. 1, pp. 135-162, 1994.

15

(32]

(33]

(34]

(35]

[36]

(39]

40]

[41]

(42]

(43]

[44]

45]

[46]

(47]

48]

(49]
(50]

(51]

(52]

(53]

(54]

D. McFarland, " The Teleological Imperative,” Goals, No Goals
and Own Goals, Montefiore and Noble Eds. : Unwin-Hyman,
1989.

D. McFarland, ”Defining Motivation and Cognition in Ani-
mals,” International Studies in the Philosophy of Science, Vol.
5, No. 2, pp. 153-170, 1991.

D. McFarland and T. Bosser, Intelligent Behavior in Animals
and Robots. The MIT Press/Bradford Books, 1993.

J.A. Meyer and S.W. Wilson, Eds. From Animals to Animats.
Proceedings of the 1st Int. Conf. on Simulation of Adaptive
Behavior. The MIT Press/Bradford Books, 1991.

J.A. Meyer, H.L. Roitblat and S.W. Wilson, Eds. From Animals
to Animats 2. Proceedings of the 2nd Int. Conf. on Stmulation
of Adaptive Behavior. The MIT Press/Bradford Books, 1993.
J.A. Meyer, "The Animat Approach to Cognitive Science,” in
Comparative Approaches to Cognitive Science, H.L. Roitblat
and J.A. Meyer, Eds. : The MIT Press/Bradford Books, 1995.
F. Mondada, E. Franzi and P. Ienne, "Mobile Robot Miniaturi-
sation: A Tool for Investigation in Control Algorithms,” in Pro-
ceedings of the 3rd International Symposium on Erperimental
Robotics, 1993.

N.J. Nilsson, Principles of Artificial Intelligence. Tioga Pub.
Co., 1980.

H.L. Roitblat and J.A. Meyer, "Introduction to Comparative
Cognition,” Comparative Approaches to Cognitive Science, H.L..
Roitblat and J.A. Meyer, Eds. : The MIT Press/Bradford
Books, 1995.

L. Shu and J. Schaeffer, "HCS: Adding Hierarchies to Classifier
Systems,” Proceedings of the 4th Int. Conf. on Genetic Algo-
rithms, Belew and Booker, Eds. : Kaufmann, pp. 339-345, 1991.
S.P. Singh, "Reinforcement Learning with a Hierarchy of Ab-
stract Models,” in Proceedings of AAAI pp. 202-207, 1992.

T. Smithers, ”On why better robots make it harder”, in Proceed-
ings of the 8rd Int. Conf. on Simulation of Adaptive Behavior,
The MIT Press/Bradford Books, pp. 64-72, 1994.

L. Steels, "Towards a Theory of Emergent Functionality,” in
Proceedings of the 1st Int. Conf. on Simulation of Adaptive
Behavior, The MIT Press/Bradford Books, pp. 451-461, 1991.
L.A. Suchman, Plans and Situated Actions: The Problem of
Human-Machine Communication. Cambridge University Press,
1987.

R.S. Sutton, "Temporal Credit Assignment in Reinforcement
Learning,” Doctoral Dissertation, Department of Computer and
Information Science, University of Massachusetts, 1984.

R.S. Sutton, "Reinforcement Learning Architectures for Ani-
mats,” in Proceedings of the 1st Int. Conf. on Simulation of
Adaptive Behavior, The MIT Press/Bradford Books, pp. 288-
296, 1991.

F.M. Toates and P. Jensen, "Ethological and Psychological
Models of Motivation: Towards a Synthesis,” in Proceedings
of the 1st Int. Conf. on Simulation of Adaptive Behavior, The
MIT Press/Bradford Books, pp. 194-205, 1991.

T. Tyrrell, ” The Use of Hierarchies for Action Selection,” Adap-
twe Behavior Vol.1, No. 4, pp. 387-420, 1993.

C.J. Watkins, "Learning with Delayed Rewards,” Ph.D. Disser-
tation, Cambridge University, 1989.

G.M. Werner, "Using Second Order Neural Connections for
Motivation of Behavioral Choices,” in Proceedings of the 3Srd
Int. Conf. on Simulation of Adaptive Behavior, The MIT
Press/Bradford Books, pp. 154-161, 1994.

S.W. Wilson, "Classifier Systems and the Animat Problem,”
Machine Learning, Vol 2, pp. 199-228. 1987.

S.W. Wilson, "Hierarchical Credit Allocation in a Classifier Sys-
tem,” Genetic algorithms and simulated annealing, Davies, Ed.
: Pitman, pp. 104-115, 1987.

S.W. Wilson, "The Animat Path to Al,” in Proceedings of the
1st Int. Conf. on Simulation of Adaptive Behavior, The MIT
Press/Bradford Books, pp. 15-21, 1991.

