
Asymptotic Optimal Lossless Compression via the CSE Technique

Hidetoshi Yokoo

Department of Computer Science
Gunma University

Kiryu, 376-8515 Japan
yokoo@cs.gunma-u.ac.jp

Abstract—A novel lossless compression algorithm known
as compression by substring enumeration (CSE) is analyzed
and modified. The CSE compression algorithm is a block-
based, off-line method, as is the case with enumerative codes
and the block-sorting compression scheme. First, we propose
an encoding model that achieves asymptotic optimality for
stationary ergodic sources. The codeword length attained by
the proposed model converges almost surely to the entropy rate
of a source when the length of a string generated by the source
tends to infinity. Then, we propose a novel decoding algorithm
that requires fewer codewords than the original CSE.

Keywords-Asymptotic optimality; BWT; CSE; data compres-
sion; lossless; universal codes;

I. INTRODUCTION

Compression by substring enumeration (CSE), proposed

by Dubé and Beaudoin [4], is a relatively new universal

lossless compression algorithm. Although it has not been

investigated thoroughly, initial experiments [4], [3] show that

it is a potential alternative to existing high-performance com-

pression methods. Some similarities between CSE and other

existing methods have been reported; however, they have

not been analyzed in detail. CSE has significant potential

from the viewpoint of both research and practice. In this

paper, we propose an appropriate coding model for CSE to

achieve asymptotic optimality for stationary ergodic sources.

In addition, we introduce a novel decoding algorithm that

requires fewer codewords than the original CSE for decoding

the source data.

The CSE compression algorithm operates only on binary

data, and it performs compression by encoding the number

of occurrences of every distinct substring of data, enumer-

ating the substrings from the shortest to the longest. It is

similar to enumerative coding [2] in that both enumerate

the number of symbols or substrings of data. However, CSE

is quite different in that it repeats the enumeration process

until it uniquely identifies the input data.

CSE assumes the data to be circular, and it uses the

technique described above to encode an equivalence class of

strings under rotation. Then, it encodes the correct rotation

of data as the rank or the lexicographic order in the set of all

rotations. In this respect, CSE is quite similar to the block-

sorting compression scheme based on the Burrows–Wheeler

Transform (BWT) [1]. However, the BWT outputs the right-

most column of the BWT-transformed matrix whereas CSE

outputs the information on the matrix itself from the first

column. For circular data, Shields [9] showed the existence

of universal codes by introducing the circular k-type, which

is the relative frequency of a substring of length k, counted

on a circular string. We actually use the circular k-type

to bound the length of the codeword produced by CSE.

However, the code proposed by Shields is essentially an

enumerative code, and it is different from CSE.

In this paper, we first review the basics of CSE in

Section II. In section III, we describe the proposed model,

which predicts and encodes the number of occurrences of

a substring in the CSE framework; in addition we prove its

asymptotic optimality for stationary ergodic sources. In spite

of its asymptotic optimality, the original CSE is inefficient,

as will be shown in Section IV. In the section, we first

present an example to show that the original CSE tends to

enumerate more substrings than are necessary. To overcome

this drawback, we focus on the similarity between CSE and

the BWT. We apply a finite-order variant [6], [7], [11] of

the BWT to the development of a novel decoder that makes

fuller use of the circularity of an input string. We show

that the proposed decoder is more efficient than the original

decoder in most cases. In Section V, we briefly discuss

future work related to the current study.

Throughout the paper, all logarithms are taken to the base

2.

II. COMPRESSION BY SUBSTRING ENUMERATION (CSE)

We consider the lossless compression of a binary string

of length N . We represent the data string by D ∈ {0, 1}+

and its length by N = |D|. In this paper, | · | denotes

the length of a binary string or the size of a set, de-

pending on the context. When we refer to a particular

element in D, we regard D as an N -dimensional array, i.e.,

D[0..N−1] = D[0] · · ·D[N−1]. Other vectors and matrices

are represented as arrays with indices beginning from 1.

The CSE encoder converts D into two components: its

equivalence class of strings under rotation and its rank in the

class. In the literature, such an equivalence class of strings

is known as a necklace [8]. We identify each necklace by

the lexicographically smallest string in its equivalence class.

2011 First International Conference on Data Compression, Communications and Processing

978-0-7695-4528-8/11 $26.00 © 2011 IEEE

DOI 10.1109/CCP.2011.32

11

Let Cw denote the number of occurrences of a substring

w ∈ {0, 1}∗ in D; we define Cε = N for the empty string ε.

Since we assume that D is circular, we have the following

compatibility conditions:

Cw = Cw0 + Cw1

= C0w + C1w for any w ∈ {0, 1}∗. (1)

We also have∑
w∈{0,1}k

Cw = N for any k = 0, 1, (2)

From Eq. (1), we can derive

C0w1 = C0w − C0w0, (3)

C1w0 = Cw0 − C0w0, (4)

C1w1 = Cw1 − C0w1, (5)

which are used to compute each quantity on the left-hand

sides. We combine these equations with C0w0 ≥ 0, C0w1 ≥
0, C1w0 ≥ 0, and C1w1 ≥ 0 to obtain

max(0, C0w − Cw1) ≤ C0w0 ≤ min(C0w, Cw0). (6)

When we already have C0w, Cw0, and Cw1, we can effi-

ciently encode C0w0 by using the bounds (6)1. The range of

possible values of C0w0 is given by

min(C0w, Cw0) − max(0, C0w − Cw1) + 1
≤ min(C0w, C1w, Cw0, Cw1) + 1. (7)

We can summarize these observations into the following

CSE compression algorithm.

1) /∗ Encode the string length ∗/
Encode N ;

2) /∗ Encode the number of zeros ∗/
i := 1; Encode C0;

3) /∗ Main loop for encoding the necklace ∗/
For l := 2 to N do

For every w ∈ D such that |w| = l − 2 and
min(C0w, C1w, Cw0, Cw1) ≥ 1 do

i := i + 1; Encode C0w0;

4) /∗ Encode the rank of the string ∗/
Encode rank(D);

The counter variable i is unnecessary for encoding, and

it is simply introduced for explanation. In the main loop,

possible substrings for w are selected from {0, 1}∗ from

the shortest (= ε) to the longest (see Lemma 2, below), in

lexicographic order. Therefore, the length of the ith substring

(0 for i = 1, and 0w0 for i ≥ 2) whose number of

1In some cases, the upper bound is not tight. For example, if C0 > 0 and
C1 > 0, then naturally C01 > 0 and C10 > 0. In this case, C00 ≤ C0−1.
If C0 > C1, then we have at least one substring 001, so C001 ≥ 1. In
this case, C000 ≤ C00 − 1. Shima et al. [10] have recently succeeded in
incorporating these facts into a general upper bound.

occurrences is actually encoded is greater than or equal to

�log i� + 1. Thus, we have

log i + 1 ≤ �log i� + 1 ≤ |0w0| (8)

in the main loop.

In order to upperbound the maximal i or the maximum

number of outputted numbers, we introduce the following

two sets of strings.

U(D) = {w | Both w0 and w1 occur in D},
V (D) = {w | Both 0w and 1w occur in D}.

For example, we have, for D = 00000101,

U(D) = {ε, 0, 00, 10, 000, 010, 0000},
V (D) = {ε, 0, 00, 01, 000, 010, 0000}. (9)

The main loop of the CSE algorithm encodes C0w0 only

for w ∈ U(D) ∩ V (D). We can easily show the following

bounds [5].

Lemma 1: For a string D of length N , we have |U(D)| ≤
N − 1 and |V (D)| ≤ N − 1. The equalities hold for a non-

repetitive (aperiodic) D.

From this lemma, it follows that the numbers encoded

using CSE do not exceed the string length. Furthermore, we

can prove the following.

Lemma 2: For a string D, the longest substrings in U(D)
and V (D) are the same, and therefore, they are included in

U(D) ∩ V (D).
Proof: Let wM be the longest substring in V (D). By

the definition of V (D), both 0wM and 1wM occur in D.

If their following bits are the same, wM is no longer the

longest substring in V (D). Therefore, wM is followed by

both 0 and 1 in D. This means that wM ∈ U(D). Similarly,

we can show that the longest substring in U(D) is also in

V (D). Hence, the lemma is proved.

III. CODING MODEL AND ITS ASYMPTOTIC OPTIMALITY

A. Preliminaries

Let NN,k({Cw}) = NN,k({Cw}w∈{0,1}k) be the set of

necklaces determined by the numbers of occurrences of all

substrings of length k. The argument {Cw} is a list of 2k

numbers from C0k to C1k , arranged in the lexicographic

order of the corresponding substrings. Thus, N8,2(4, 2, 2, 0)
is the set of necklaces of length N = 8 with C00 = 4, C01 =
2, C10 = 2, and C11 = 0. From Eq. (2), the sum of the

numbers in NN,k(. . .) is equal to the string length N . Note

that for enumerating necklaces in NN,k({Cw}) , we consider

only the set of fixed-length (= k) substrings. The numbers of

shorter substrings are automatically determined by Eq. (1).

Table I shows examples of necklaces. The sets of necklaces

are monotonic in the sense

NN,k({Cw}w∈{0,1}k) ⊇ NN,k+1({Cw′}w′∈{0,1}k+1),

where Cw =
∑

Cw′ for w′ = w0 and w′ = w1.

12

Table I
NECKLACE EXAMPLES.

N8,1(6, 2) = {00000011, 00000101, 00001001, 00010001}
N8,2(4, 2, 2, 0) = {00000101, 00001001, 00010001}
N8,3(3, 1, 2, 0, 1, 1, 0, 0) = {00000101}

First, we prove an upperbound on the size of the set of

necklaces.

Lemma 3: For N ≥ 1 and k ≥ 0,

|NN,k({Cw}w∈{0,1}k)|k ≤ N !∏
w∈{0,1}k

Cw!
. (10)

Proof: We prove the lemma by induction on k for fixed

N .

For k = 0, Eq. (10) obviously holds with equality.

Now, we assume that Eq. (10) holds for k = l ≥ 0:

|NN,l({Cw})|l ≤ N !∏
w∈{0,1}l Cw!

, (11)

and we prove this for k = l + 1.

Suppose that we are given a set of numbers of occurrences

of all substrings of length l+1. For a string D = D[0..N−1],
if we observe Cw occurrences of a substring w of length

l in the concatenation D ·D[0..l], there are at most
(

Cw

Cw0

)
possible combinations of their following bits. The number

of necklaces never exceeds the product of these possible

combinations over all substrings of length l. That is, for

|w′| = l + 1,

|NN,l+1({Cw′}w′∈{0,1}l+1)| ≤
∏

w∈{0,1}l

(
Cw

Cw0

)
. (12)

From the monotonicity on the size of the necklaces, we have

|NN,l+1({Cw′})|l ≤ |NN,l({Cw})|l
for |w′| = l + 1 and |w| = l.

Combining this and (12) with the induction hypothesis (11),

we have

|NN,l+1({Cw′})|l+1

≤ |NN,l({Cw})|l
∏

w∈{0,1}l

(
Cw

Cw0

)

≤ N !∏
w∈{0,1}l Cw!

∏
w∈{0,1}l Cw!∏

w∈{0,1}l Cw0!Cw1!

=
N !∏

w′∈{0,1}l+1 Cw′ !
. (13)

Thus, we confirm that Eq. (10) is the case with k = l + 1;

hence the lemma is proved.

Next, we introduce another expression to represent the

same quantity as NN,k({Cw}). Let NCSE(N ; C0, C00, . . . ,

C0w0) denote the set of necklaces determined by the num-

bers N, C0, C00, . . . , C0w0, which are actually encoded by

the CSE compressor. Obviously, we have

NCSE(N) ⊇ NCSE(N ; C0) ⊇ NCSE(N ; C0, C00)
⊇ · · · ⊇ NCSE(N ; C0, C00, . . . , C0w0).

We can regard the main loop of CSE as a process in which

we gradually reduce the set of necklaces to a singleton.

When we encode 0w0 in the ith step and v in the i + 1st

step, if |v| > |0w0| = k, we have

NCSE(N ; C0, . . . , C0w0) = NN,k({Cw′}w′∈{0,1}k). (14)

B. Coding Model

When we encode C0w0 in the main loop, it is reasonable

to assign the probability

|NCSE(N ; C0, C00, . . . , Cu, C0w0)|
|NCSE(N ; C0, C00, . . . , Cu)| (15)

to the number C0w0, where u is a substring such that Cu

is encoded immediately before C0w0. We have no closed

form expressions for |NCSE(N ; C0, C00, . . . , C0w0)|, except

for some initial sets [8]; however, we continue our analysis

under the assumption that these numbers are available.

When we use (15) to encode C0w0, we can encode it with

− log
|NCSE(N ; C0, C00, . . . , Cu, C0w0)|

|NCSE(N ; C0, C00, . . . , Cu)| (16)

bits provided that we can perform the encoding ideally (i.e.,

by using an ideal arithmetic code). Hereafter, we refer to the

ideal codeword length assumed by the model as the model
entropy.

We now present a coding model for encoding the value

of C0w0 in the main loop. The proposed model uses the fol-

lowing two probability estimators, depending on the length

of the substring.

Uniform over (6) when |0w0| ≤
log log N�,
Prediction by (15) when |0w0| ≥
log log N� + 1.

It follows from (8) that the proposed model encodes the

ith C0w0 using a uniform distribution over the range (6)

when log i+1 ≤
log log N�, which implies that i < log N .

Since any number in (6) can be encoded with at most log N
bits, the total number of bits to be outputted by the uniform

model never exceeds (log N)2. After that, the model begins

to encode C0w0 by prediction (15).

When the model uses the prediction in (15), Eq. (16)

is our model entropy for C0w0. Since the set of neck-

laces monotonically decreases and eventually converges to

a singleton, the sum of (16) over all 0w0s that satisfy

|0w0| ≥
log log N� + 1 is equal to

log |NCSE(N ; C0, C00, . . . , Cu)|
= log |NN,|u|({Cw}w∈{0,1}|u|)|, (17)

13

in which u is a substring such that Cu is encoded im-

mediately before the use of model (15), and its length is

log log N� or shorter. For example, for N =8,
log log 8� =
1 bit. In the example provided in Table I, C00 and C000 are

encoded by prediction (15), and the corresponding model

entropy is

− log
|NCSE(N ; C0, C00)|

|NCSE(N ; C0)|
− log

|NCSE(N ; C0, C00, C000)|
|NCSE(N ; C0, C00)|

= − log
3
4
− log

1
3

= log 4

= log |NCSE(N ; C0)| = log |NN,1(C0, C1)|.
We now bound the model entropy in (17) using the

following lemma.
Lemma 4: For any natural numbers n, a1, a2, . . . , ad such

that n = a1 + a2 + · · · + ad,

n!
d∏

i=1

ai!

≤ nn

d∏
i=1

aai
i

. (18)

Proof: Omitted, but standard.
Noting Eq. (2), we can show the following.

Theorem 1: For any natural numbers 1 ≤ k ≤ N ,

log |NN,k({Cw})| ≤ − N

k

∑
w∈{0,1}k

Cw

N
log

Cw

N
. (19)

Proof: Follows from Lemmas 3 and 4.
Let LCSE(D) denote the model entropy or the ideal

codeword length attained by the CSE compressor with the

model described above for D of length N . We can now

establish that it is upperbounded by

LCSE(D) ≤ − N

k(N)

∑
w∈{0,1}k(N)

Cw

N
log

Cw

N

+(log N)2 + O(log N), (20)

where

k(N) =
log log N�. (21)

On the right-hand side of (20), the second term represents

the cost incurred by the uniform model, and the last term

corresponds to the costs for representing the value of N and

rank of D.

C. Asymptotic Optimality
Consider a stationary ergodic source X = {Xi}∞i=1, Xi ∈

{0, 1} with entropy rate H(X). Let Xn
1 denote an n-tuple

of random variables X1, X2, . . . , Xn drawn from the source.

Define

H(n)(X) =
1
n

H(Xn
1)

= − 1
n

∑
w∈{0,1}n

μn(w) log μn(w), (22)

where μn is a probability measure that defines the source

X , i.e.,

μn(w) = Pr{Xn
1 = w}, w ∈ {0, 1}n. (23)

Then,

H(X) = lim
n→∞H(n)(X). (24)

Here, we show our main result.

Theorem 2: For any stationary ergodic source X =
{Xi}∞i=1, Xi ∈ {0, 1} with entropy rate H(X), the model

entropy LCSE(XN
1)/N per bit satisfies the following:

lim
N→∞

LCSE(XN
1)

N
= H(X), a.s. (25)

Proof: For an integer k ≤ N , let X̃N+k−1
1 be the

concatenation of XN
1 and Xk−1

1 . Define

p(k)(w | XN
1) =

|{i : X̃i+k−1
i = w, 1 ≤ i ≤ N}|

N

for w ∈ {0, 1}k, and

H̃(k)(XN
1) = −1

k

∑
w∈{0,1}k

p(k)(w |XN
1) log p(k)(w |XN

1).

From (20), we have

LCSE(XN
1)

N
≤ H̃(k(N))(XN

1) +
(log N)2 + O(log N)

N
.

Thus, it is sufficient to show

lim
N→∞

H̃(k(N))(XN
1) = H(X), a.s. (26)

to prove the theorem. Note that H(n)(X) is monotonic in

the sense that

H(1)(X) ≥ H(2)(X) ≥ · · · ≥ H(X).

Equation (24) means that for an arbitrary ε > 0 we can

choose an integer K such that

H(K)(X) ≤ H(X) + ε. (27)

Since p(k)(w | XN
1) satisfies the compatibility condition:

p(k)(w |XN
1) = p(k+1)(w0 |XN

1) + p(k+1)(w1 |XN
1),

H̃(k)(XN
1) is also monotonic, i.e.,

H̃(1)(XN
1) ≥ · · · ≥ H̃(k)(XN

1) ≥ H̃(k+1)(XN
1) ≥ · · · .

(28)

For the integer K chosen above, since

lim
N→∞

p(K)(w | XN
1) = μK(w), a.s.

from the ergodicity of the source, we have

lim
N→∞

H̃(K)(XN
1) = H(K)(X), a.s.

This implies that for almost every infinite binary string x
there exists an integer No(x, ε) such that

H̃(K)(xN
1) ≤ H(K)(X) + ε for ∀N ≥ No(x, ε). (29)

14

From (27) and (29), for almost every x we have

H̃(K)(xN
1) ≤ H(X) + 2ε for ∀N ≥ No(x, ε).

Since k(N) is given in (21), we can make k(N) ≥ K for

sufficiently large N . For such N , we have

H̃(k(N))(xN
1) ≤ H̃(K)(xN

1)

from (28). Thus, for almost every x we have

H̃(k(N))(xN
1) ≤ H(X) + 2ε for ∀N ≥ No(x, ε).

Since ε is arbitrary, this shows that (26) is the case, and

therefore the theorem is proved.

Theorem 2 shows the asymptotic optimality of our model

in the sense that the per-bit model entropy approaches almost

surely the entropy rate of the source that produces a source

string when its length tends to infinity.

IV. NEW DECODING ALGORITHM

A. Redundancy in Coding Process

In the previous section, we have shown that there exists an

asymptotically optimal coding model in the CSE framework.

However, it is essential to have complete knowledge on the

size of the set of necklaces when we wish to realize the

model. We may overcome this difficulty by introducing an

estimator of the size itself or of the predictor in (15). For

example, we may use the kth root of the upperbound in (10)

instead of the size of a necklace set for the computation of

the ratio in (15). In fact, we have another combinatorial

predictor [5], which can be relatively easily computed and

shown to be universal in a similar sense to our present model.

Even if we use such a model that requires no knowledge on

the size of necklaces, we need to be able to detect if the

necklace is unique so that we can efficiently terminate the

main loop of the CSE compressor. We here say that the

necklace D is unique for a given length k if D is the sole

element in the necklace set NN,k({Cw}) that are determined

by the numbers of occurrences of all substrings of length k
in D.

As an example, consider D = 00000101 (N = 8). Since

we know U(D) ∩ V (D) = {ε, 0, 00, 000, 010, 0000} from

(9), the CSE compressor may encode N and the numbers

in the following table.

w − ε 0 00 000 010 0000
C0w0 C0 C00 C000 C0000 C00000 C00100 C000000

6 4 3 2 1 0 0

On the decoding end, however, upon receiving N =
8, C0 = 6, C00 = 4, and C000 = 3, we can imme-

diately know that only the necklace 00000101 can fulfill

these numbers and any further numbers from C0000 are no

longer needed. The numbers C0000, C00000 and so on are

redundant to encode D = 00000101. Here, we propose a

new implementation of CSE that can remove this kind of

redundancy.

B. New Decoder

The proposed implementation can be characterized by the

decoding procedure, in which the numbers (N ; C0, . . . , Cw)
are used as an input for recovering the necklace corre-

sponding to an original string. Let k be the length of the

longest substring in the input. We defer to Section IV-C our

discussion on the length k to be required for decoding.

The decoding procedure for a necklace can be divided into

three steps. The first step is devoted to recovering the left k
columns of the BWT-transformed matrix. In the following

two steps, we apply a finite-order variant [6], [7], [11] of

the BWT.

Step 1. (Ordering of substrings)

We assume that the numbers {Cw}w∈{0,1}k are already

computed for all substrings of length k. We sort all the

substrings of length k with Cw > 0 lexicographically, and

put them into an N × k matrix M ′[1..N][1..k] as its N
rows. The number of the same row vectors as w must be

equal to Cw. Then, perform a stable sort on the row vectors

of M ′[1..N][1..k] in disregard of the first column, and let

M [1..N][1..k] be the obtained N × k matrix.

Step 2. (Computation of auxiliary vectors)

Correspond the first and second columns of M [1..N][1..k]
in a stable manner (i.e., respecting the orders), and represent

the correspondence by Q[1..N]. That is, if the jth bit

M [j][1] in the first column corresponds to the ith bit M [i][2]
in the second column, then we set

Q[i] = j (1 ≤ i, j ≤ N).

The vector Q[1..N] can be calculated in the following way:

1) Set p0 := 1 and p1 := C0 + 1;

2) For j := 1 to N do
a) If M [j][1] = 0 then set Q[p0] := j and p0++;

b) If M [j][1] = 1 then set Q[p1] := j and p1++;

We introduce other two vectors C[1..N] and T [1..N],
which are computed using the following procedure. Non-

zero elements in C[1..N] represent the numbers of occur-

rences of substrings of length k − 1.

1) Initialize C[1..N] as a zero-vector;

2) For i := 1 to N do
a) If i = 1 or M [i][2..k] = M [i − 1][2..k]

then set j := i;
b) Set T [Q[i]] := j;

c) Set C[j]++;

Step 3. (Reconstruction of a necklace)

The necklace corresponding to an input string D is

obtained in x[1..N] in the following way:

1) Set i := 1;

2) For j := N downto 1 do
a) Set C[i]−−;

b) Set i := i + C[i];
c) Set x[j] := M [i][1];

15

i M [1..8][1..3] Q[i] C[i] T [i]
1 01 01 0 1 4 1
2 02 02 0 2 0 1
3 03 03 0 3 0 1
4 14 05 0 5 0 7
5 05 07 1 7 2 1
6 16 08 1 8 0 7
7 07 14 0 4 2 5
8 08 16 0 6 0 5

(a) Step 2

a) b) c) d)

j C[i] i x[j] i
8 C[1] = 3 4 x[8] = M [4][1] = 1 T [4] = 7
7 C[7] = 1 8 x[7] = M [8][1] = 0 T [8] = 5
6 C[5] = 1 6 x[6] = M [6][1] = 1 T [6] = 7
5 C[7] = 0 7 x[5] = M [7][1] = 0 T [7] = 5
4 C[5] = 0 5 x[4] = M [5][1] = 0 T [5] = 1
3 C[1] = 2 3 x[3] = M [3][1] = 0 T [3] = 1
2 C[1] = 1 2 x[2] = M [2][1] = 0 T [2] = 1
1 C[1] = 0 1 x[1] = M [1][1] = 0 T [1] = 1

(b) Step 3

Figure 1. Decoding example from (N ; C0, C00, C000) = (8; 6, 4, 3).

d) Set i := T [i];
Before analyzing the decodability, we give an example

that shows how the above procedure works.

Suppose that we have (N ; C0, C00, C000) = (8; 6, 4, 3)
with k = 3. Then, we derive C1 from (1), and C01, C10, C11,

C001 = 1, C010 = 2, C100 = 1, C101 = 1 (no occurrences

of other three-bit substrings) from (3), (4), and (5). Thus,

we have the following two matrices in Step 1.

M ′[1..8][1..3]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
0 1 0
1 0 0
1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M [1..8][1..3]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0
0 0 1
1 0 1
0 1 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Keys for the sort in the last half of Step 1 are shown in

the box. The first column of matrix M will be treated as if

it were the last column of the BWT matrix.

We then proceed to Step 2, which produces the three

vectors shown in Fig. 1 (a). In the figure, we add subscripts

to each of the bits in order to explicitly show their corre-

spondences in the first and second columns of matrix M .

All N substrings of length k in circular D are arranged

lexicographically in M ′[1..N][1..k], in which in turn the row

vectors are rearranged in lexicographic order of M ′[·][2..k].
Therefore, in the obtained matrix M [1..N][1..k], we have

M [i][2..k] = M [Q[i]][1..k − 1], for i = 1, 2, . . . , N.

Note also that

M [T [i]][2..k] = M [i][1..k − 1], for i = 1, 2, . . . , N. (30)

Finally, the loop in Step 3 works as shown in Fig. 1

(b). Actually, x[1..8] = 00000101 equals D in our running

example.

C. Decodability

In order to demonstrate the decodability of the input string

by the above decoder, we need some notions. Assume that

D = D[0..N−1] is a necklace. That is, D is circular, and is

the lexicographically smallest string of all the cyclic shifts.

We refer to its substring:

s
(�)
i = D[i..i + � − 1] for i = 0, 1, . . . , N − 1

as the ith (forward) context of length �, where we take

indices mod N . Next, for an �-bit binary substring w ∈
{0, 1}�, we define the index set for symbols occurred in the

context w of length � ≥ 0 by

ID(w) = {i | s
(�)
i+1 = w, 0 ≤ i ≤ N − 1}.

For D = 00000101, we have, for example,

ID(ε) = {0, 1, 2, 3, 4, 5, 6, 7},
ID(0) = {0, 1, 2, 3, 5, 7},
ID(10) = {4, 6}.

(31)

Definition 1: (Consistency of an index set) The index set

ID(w) is consistent either if D[i] ≤ D[j] for any i ≤ j ∈
ID(w), or if ID(w) is empty.

Generally, the longer the contexts, the more likely they

will be consistent. Hence, we introduce the following length:

�min(D) = min{� | all index sets ID(w) for ∀w

∈ {0, 1}� are consistent}. (32)

For a necklace D and a given � > 0, consider a pair

〈C0w, C1w〉
for every w ∈ {0, 1}�. Then, we have the following lemma.

Lemma 5: For two different necklaces D and D′, the two

sets {〈C0w, C1w〉} of pairs corresponding to D and D′ are

distinct for any |w| ≥ max{�min(D), �min(D′)}.

Proof: The case where the lengths of D and D′ are

different is trivial. Thus, we assume that they have the same

16

length N . We also assume without loss of generality that

|w| = � ≥ �min(D′) ≥ �min(D). Let

b0b1 · · · b�−1, bi ∈ {0, 1}
be the lexicographically smallest substring of length � among

such w’s that Cw = C0w + C1w > 0 in D. This substring

corresponds to the �-bit prefix of D. Suppose on the contrary

that a necklace D′ (= D) with �min(D′) ≥ �min(D)
produces the same set of pairs as {〈C0w, C1w〉} of D.

D′ must also begin with the same prefix as b0b1 · · · b�−1.

Consider the two strings:

D[0..N − 1] b0b1 · · · b�−1 = x0x1 · · ·xN+�−1,

D′[0..N − 1]b0b1 · · · b�−1 = x′
0x

′
1 · · ·x′

N+�−1,

and the rightmost position j for which xj = x′
j . Then, we

have

� ≤ j ≤ N − 1,

xj+1xj+2 · · ·xj+� = x′
j+1x

′
j+2 · · ·x′

j+�.

Since � ≥ �min(D′) ≥ �min(D), the position j is in-

cluded in a consistent index set both in D and D′. For

w = xj+1xj+2 · · ·xj+� = x′
j+1x

′
j+2 · · ·x′

j+�, since D and

D′ share the same 〈C0w, C1w〉, the numbers of occurrences

of w are the same in D and D′. The assumption xj = x′
j

contradicts the fact that D and D′ have the same C0w.

Therefore, D and D′ must be identical. Thus, if D and D′

are different, then {〈C0w, C1w〉} are also different between

D and D′.
Consider again the table in Fig. 1 (a). We now insert a

dotted line just before a row that has a non-zero C[i], as

shown in Fig. 2, where we add the values of T [Q[i]] as well.

The dotted lines divide the rows of matrix M into regions

of the same M [·][2..k]. In each region, the values of T [Q[i]]
are all the same, and are equal to the first row number of the

region. The first column of matrix M is consistent in each

region in the sense that M [i][1] ≤ M [j][1] for i < j. If we

consider M [·][2..k] as w, as shown in Fig. 2, the matrix M
is equivalent to the set of pairs {〈C0w, C1w〉}.

For any necklace D, in the first region: 1 ≤ i ≤ C[1],
M [i][2..k] corresponds to the k − 1-bit prefix of D, and

M [C[1]][1..k] = D[N − 1]·D[0..k − 2]. (33)

In the proposed decoding algorithm, Step 3 begins with

1) Set i := 1;

a) Set C[i]−−;

b) Set i := i + C[i];
c) Set x[N] := M [i][1],

which is equivalent to x[N] := M [C[1]][1]. From (33),

we know that M [C[1]][1] = D[N − 1]. After that, Step

3 produces the string that has M [·][1..k] as the associated

set of pairs. Combining this fact with (30) and Lemma 5,

we can now establish the following.

i w Q[i] C[i] T [i] T [Q[i]]
1 0 0 0 1 4 1 1
2 0 0 0 2 0 1 1
3 0 0 0 3 0 1 1
4 1 0 0 5 0 7 1. .
5 0 0 1 7 2 1 5
6 1 0 1 8 0 7 5. .
7 0 1 0 4 2 5 7
8 0 1 0 6 0 5 7

Figure 2. Regions corresponding to pairs {〈C0w, C1w〉}.

Theorem 3: For any necklace D, the proposed decoding

algorithm with k ≥ �min(D) + 1 can recover D losslessly.

Remark: For D = 00000101, we have ID(0) in (31) and

ID(1) = {4, 6}. Since 0 = D[0] = D[1] = D[2] = D[3] <
D[5]=D[7]=1 and D[4]=D[6]=0, the index sets ID(0)
and ID(1) of length 1 are both consistent, so �min(D) = 1.

Therefore, it is sufficient to encode N = 8, C0 = 6, and

C00 = 4 for recovering D. Using these numbers, Step 2 of

the decoding procedure constructs the table in Fig. 3 (a).

Note that C[1] = C0 and C[7] = C1. Step 3 uses the table

to recover D in x[1..8] as shown in Fig. 3 (b).

Intuitively, it looks strange that D = 00000101 can be

recovered only from N = 8, C0 = 6, and C00 = 4, which

are also the case with “00001001” and “00010001.” In fact,

in our decoding algorithm, “00000101” is recognized as the

necklace that has N = 8, C0 = 6, and C00 = 4; “00001001”

as the necklace that has N = 8, C0 = 6, C00 = 4, and

C000 = 2; “00010001” as the necklace that has N = 8,

C0 = 6, C00 = 4, C000 = 2, and C0000 = 0. Hence, in

a strict sense, the code that our decoder assumes is not a
prefix code when we regard an entire data block as a single

codeword. However, in practice, this is not a substantial

drawback because such a data block is usually identified

with a special delimiter or by specifying the block length.

D. Comparison of the Number of Substrings to be Encoded

In the last one (D = 00010001) of the above examples,

since U(D) = V (D) = {ε, 0, 00}, the numbers {C0w0}
for w ∈ {ε, 0, 00} are encoded in the main loop of the

original CSE. These numbers are exactly the same as those

that we need to recover D using our decoder. In this sense,

the original CSE and our proposed one have the same

performance for this particular example. In general, however,

our algorithm is never worse than the original CSE in terms

of the number of substrings to be encoded. We now show

this.

Theorem 4: For the longest substring wM ∈ U(D) ∩
V (D) and its length |wM|,

�min(D) ≤ |wM| + 1. (34)

17

i M [·][1, 2] Q[i] C[i] T [i]
1 01 01 1 6 1
2 02 02 2 0 1
3 03 03 3 0 1
4 04 04 4 0 1
5 15 07 7 0 7
6 16 08 8 0 7
7 07 15 5 2 1
8 08 16 6 0 1

(a) Step 2

j C[i] i x[j] i
8 C[1] = 5 6 x[8] = M [6][1] = 1 T [6] = 7
7 C[7] = 1 8 x[7] = M [8][1] = 0 T [8] = 1
6 C[1] = 4 5 x[6] = M [5][1] = 1 T [5] = 7
5 C[7] = 0 7 x[5] = M [7][1] = 0 T [7] = 1
4 C[1] = 3 4 x[4] = M [4][1] = 0 T [4] = 1
3 C[1] = 2 3 x[3] = M [3][1] = 0 T [3] = 1
2 C[1] = 1 2 x[2] = M [2][1] = 0 T [2] = 1
1 C[1] = 0 1 x[1] = M [1][1] = 0 T [1] = 1

(b) Step 3

Figure 3. Decoding example from (N ; C0, C00) = (8; 6, 4).

Proof: From Lemma 2, wM is the longest substring in

V (D). Therefore, both 0wM and 1wM occur in D, but only

either of 00wM or 10wM occurs in D. Similarly, only either

of 01wM or 11wM occurs in D. Thus, both I(0wM) and

I(1wM) are consistent. Therefore, �min(D) is at most the

length of wM plus one.

In the original CSE, the numbers {C0w0} are encoded

for substrings from w = ε to w = wM, and the length

of the longest one is |0wM0| = |wM| + 2. Theorems 3

and 4 show that when we incorporate our decoder into the

CSE framework, the required length of substrings is at most

�min(D) + 1, which is shorter than or equal to |wM| + 2.

However, this does not imply that we can relate �min(D)+1
to the minimum length of substrings that is required to

uniquely identify the necklace. In some cases, �min(D) + 1
is even shorter than the minimum length, as shown in the

above example, and in some cases vice versa.

V. CONCLUSION

We have given an asymptotic optimal encoding model to

CSE whose codeword length per input bit converges almost

surely to the entropy rate of a stationary ergodic source when

the length of a source string tends to infinity. We have also

proposed a relatively efficient decoder that is based on a

finite-order variant of the BWT.
We have already developed another asymptotic optimal

model for CSE [5]. Future work includes the characterization

of such optimal models or the development of a class of

these models. In particular, finding a simple and practically

efficient model is important. The development of a fast

method for computing the value of �min(D) is also future

work for the proposed decoder and its corresponding encoder

to be realized. In addition, we have to develop a method for

detecting the uniqueness of a necklace. The CSE assumes the

data to be binary. An extension to the case with an arbitrary

alphabet is also an interesting issue.

ACKNOWLEDGMENT

The author would like to thank Danny Dubé for his

comments and discussions.

REFERENCES

[1] M. Burrows and D. J. Wheeler, A block-sorting lossless data
compression algorithm, SRC Research Report, 124, 1994.

[2] T. M. Cover, Enumerative source encoding, IEEE Trans. Inf.
Theory, vol. IT-19, no. 1, pp. 73–77, 1973.

[3] D. Dubé, Using synchronization bits to boost compression by
substring enumeration, 2010 Int. Symp. Information Theory
and Appl., ISITA2010, Taichung, Taiwan, Oct. 2010, pp. 82–
87.

[4] D. Dubé and V. Beaudoin, Lossless data compression via
substring enumeration, Proc. of the Data Compression Conf.,
pp. 229–238, Snowbird, Utah, USA, Mar. 2010.

[5] D. Dubé and H. Yokoo, The universality and linearity of com-
pression by substring enumeration, to appear in 2011 IEEE
Int. Symp. Information Theory, ISIT 2011, Saint-Petersburg,
Russia, Aug. 2011.

[6] G. Nong and S. Zhang, Efficient algorithms for the in-
verse sort transform, IEEE Trans. Computers, vol. 56, no. 11,
pp. 1564–1574, 2007.

[7] G. Nong, S. Zhang, and W. H. Chan, Computing inverse ST
in linear complexity, Combinatorial Pattern Matching: 19th
Annual Symposium, CPM 2008, Pisa, Italy, Jun. 2008, LNCS,
vol. 5029, pp. 178–190.

[8] F. Ruskey and J. Sawada, An efficient algorithm for generat-
ing necklaces with fixed density, SIAM J. Comput., vol. 29,
no. 2, pp. 671–684, 1999.

[9] P. C. Shields, The Ergodic Theory of Discrete Sample Paths,
American Mathematical Society, 1996.

[10] Y. Shima, K. Iwata, and M. Arimura, An improvement
of lossless data compression via substring enumeration (in
Japanese), IEICE Technical Report, IT2011-1, pp. 1–6, 2011.

[11] H. Yokoo, Extension and faster implementation of the GRP
transform for lossless compression, Combinatorial Pattern
Matching: 21st Annual Symposium, CPM 2010, Brooklyn,
NY, Jun. 2010, LNCS, vol. 6129, pp. 338–347.

18

