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The inflammatory response is a highly regulated physiologi-
cal process that is critically important for homeostasis. A pre-
cise physiological control of inflammation allows a timely re-
action to invading pathogens or to other insults without
causing overreaction liable to damage the host. The cellular
signaling pathways identified as important regulators of in-
flammation are the signal transduction cascades mediated by
the nuclear factor-�B and the activator protein-1, which can

both be modulated by glucocorticoids. Their use in the
clinic includes treatment of rheumatoid arthritis, asthma,
allograft rejection, and allergic skin diseases. Although glu-
cocorticoids have been widely used since the late 1940s, the
molecular mechanisms responsible for their antiinflamma-
tory activity are still under investigation. The various molec-
ular pathways proposed so far are discussed in more detail.
(Endocrine Reviews 24: 488–522, 2003)
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I. Introduction

THE INFLAMMATION PROCESS was first described by
Cornelius Celsus (30 BC–38 AD) who mentioned that

“rubor et tumor cum calore et dolore” (redness and swelling,

accompanied with heat and pain) are the cardinal symptoms
of inflammation. The inflammatory response can be inter-
preted as notification of a threatening agent or organism and
subsequent activation of the defense system developed to
eliminate these threats. Immunity and inflammation are
physiological processes of profound importance to the or-
ganism; without these processes, a host would quickly suc-
cumb to invading pathogens or damaging stimuli, whereas
excessive or inappropriate activation of these responses
causes tissue and cell damage and even death. Therefore,
maintaining immune homeostasis is critical for the survival
of an organism. Both pro- and antiinflammatory mechanisms
must be present and functional for a cell (organism) to sur-
vive in the face of environmental stimuli that elicit an im-
mune response. These pathways provide homeostasis by
pulling the cell in opposite directions (1–4). Over the last 10
yr, the transcription factors nuclear factor (NF)-�B and ac-
tivator protein (AP)-1 have been shown to be crucial for the
induction of genes involved in inflammation, as well as in a
wide range of diseases originating from chronic activation of
the immune system, including asthma, atherosclerosis, in-
flammatory bowel disease, and autoimmune diseases such
as multiple sclerosis and rheumatoid arthritis (5–8). A pleth-
ora of immunoregulatory genes coding for cytokines, cyto-
kine receptors, chemotactic proteins, or adhesion molecules,
such as TNF-�, IL-1�, IL-2, IL-6, IL-8, macrophage chemo-
tactic protein (MCP-1), regulated on activation, normal T cell
expressed and secreted (RANTES), interferon (IFN)-�, gran-
ulocyte-macrophage colony stimulating factor (GM-CSF), in-
tercellular adhesion molecule-1 (ICAM-1), vascular cellular
adhesion molecule-1 (VCAM-1), and E-selectin, contain
NF-�B and/or AP-1 sites in their promoters or regulatory
regions. Therefore, both transcription factors represent an
obvious target for immunosuppressive therapies (9–15).
Glucocorticoids (GCs) and catecholamines, the major stress
hormones, counteract the production of (pro)inflammatory
cytokines, such as IL-12, IL-6, and TNF-�, whereas they stim-
ulate the production of antiinflammatory cytokines such as

Abbreviations: AF, Activation function; AP, activator protein; AR, an-
drogen receptor; Bcl, B cell lymphoma; BRG-1, brahma-related gene-1;
CARM, coactivator-associated arginine methyltransferase; CBG, cortico-
steroid-binding globulin; CBP, CREB-binding protein; COX, cyclooxygen-
ase; CREB, cAMP response element-binding protein; DBD, DNA-binding
domain; DEX, dexamethasone; DRIP, vitamin D receptor-interacting pro-
tein; ER, estrogen receptor; FKBP, FK-binding protein; GC, glucocorticoid;
GILZ, GC-induced leucine zipper; GM-CSF, granulocyte-macrophage col-
ony stimulating factor; GR, GC receptor; GRE, GC response element; HAT,
histone acetyltransferase; HDAC, histone deacetylase; hsp, heat shock pro-
tein(s); ICAM, intercellular adhesion molecule; IFN, interferon; I�B, inhib-
itory protein �B; IKK, I�B kinase; JNK, Jun amino-terminal kinase; LBD,
ligand-binding domain; LPS, lipopolysaccharide(s); LTR, long terminal re-
peat; MAPKKK, MAPK kinase kinase; MCP, macrophage chemotactic pro-
tein; MR, mineralocorticoid receptor; NCoR, nuclear corepressor; NF, nu-
clear factor; nGRE, negative GRE; NR, nuclear receptor; PK, protein kinase;
POMC, proopiomelanocortin; PPAR, peroxisome proliferator-activated re-
ceptor; PR, progesterone receptor; PRL, prolactin; PRMT, protein arginine
N-methyltransferase; P-TEFb, transcription elongation factor; RAR, retinoic
acid receptor; RHD, Rel homology domain; RXR, retinoid X receptor;
SMRT, silencing mediator of retinoid and thyroid receptors; SNF, sucrose
nonfermenting; SRC, steroid receptor coactivator; STAT, signal transduc-
tion activator of transcription; TBP, TATA box-binding protein; TCR, T cell
receptor; Th, T helper; TPA, tetradecanoylphorbol acetate; TR, thyroid
receptor; TRAP, thyroid receptor-activated protein; TSA, trichostatin A;
VCAM, vascular cellular adhesion molecule.
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IL-10, IL-4, and TGF-� (16–19). Systemically, by activation of
the stress system, an excessive immune response stimulates
an important negative feedback mechanism, which protects
the organism from an overshoot of proinflammatory cyto-
kines and other tissue-damaging products (3, 20–24).

A. NF-�B

Transcriptional regulators of the NF-�B/inhibitory pro-
tein (I)�B family promote expression of more than 100 target
genes, the majority of which participate in the host immune
response (4, 25–28) (for a recent update, visit http://people.
bu.edu/gilmore/nf-kb/). Gene knockout and other studies
established roles for NF-�B in the ontogeny of the immune
system and demonstrated that NF-�B participates at multiple
steps during oncogenesis and regulation of programmed cell
death (5, 8, 29–31). The involvement of the ubiquitous tran-
scription factor NF-�B in the pathogenesis of the inflamma-
tory response has been well documented by experiments,
both in vitro and in vivo (5–7, 10, 32). NF-�B is a heterodimer,
typically consisting of p50 and p65 monomeric proteins. A
targeted disruption of the genes encoding p50 or p65 leads
to extreme immunodeficiencies, and even to lethality in the
case of p65 knockout mice (28, 33, 34). The mammalian NF-
�B/Rel family includes five members: p65 or RelA, RelB,
c-Rel, NF-�B1 (p50/p105), and NF-�B2 (p52/p100). All mem-
bers are characterized by a conserved stretch of 300 amino
acids, designated as the Rel homology domain (RHD). This
domain is important for DNA binding and mutual interac-
tions between the different Rel family members. It also serves
as an interaction surface for the I�B. NF-�B is latently present
in the cytoplasm, under tight control of the associated protein
I�B-�. The I�B protein family comprises the following mem-
bers: I�B-�, I�B-�, I�B-�/p105, I�B-�/p100, I�B-�, and B cell
lymphoma (Bcl)-3. They are characterized by several 30- to
33-amino acid motifs called ankyrin repeats. Potent inducers
of NF-�B include the proinflammatory cytokines IL-1 and
TNF, byproducts of microbial, fungal, and viral infections
such as lipopolysaccharides (LPS), sphingomyelinase,
double strand (ds)RNA, Tax protein from human T cell
leukemia/lymphoma virus (HTLV), and proapoptotic and
necrotic stimuli, such as oxygen-free radicals, UV irradiation,
and � irradiation. The first step in the activation process of
NF-�B is an I�B kinase complex (IKK)-dependent phosphor-
ylation of I�B-� at serines 32 and 36. Subsequently, ubiq-
uitinylation at lysines 21 and 22 takes place by a specific
ubiquitin ligase belonging to the SCF (Skp-1/Cul/F box)
family and tags I�B-� for degradation by the 26S proteasome
complex. The actual recognition of N-terminally phosphor-
ylated I�Bs is carried out by a WD repeat- and F box-
containing protein called �-TrCP (35). This finally leads to
release of the NF-�B protein, which migrates to the nucleus
to exert its effects on gene regulation (25, 27, 35–42). Many
groups focused on the identification of the serine-specific I�B
kinase complex IKK, which comprises multiple subunits (43,
44) and acts as an integrator of multiple NF-�B-activating
stimuli (41, 45, 46).

The differential activity of the two IKK kinases on different
I�B family members probably also results in a differentially
regulated downstream NF-�B response and activity (47).

Further examination of these proteins confirmed the involve-
ment of IKK-� in proinflammatory cytokine-induced acti-
vation of NF-�B, whereas IKK-� was found to be crucial for
B cell maturation, formation of secondary lymphoid organs,
increased expression of certain NF-�B target genes, process-
ing of the NF-�B2 (p100) precursor, and NF-�B activation in
the limb and skin during embryogenesis (48–50). Results
from IKK-� and IKK-� double-deficient mice confirmed the
importance of IKKs for NF-�B activation in vivo and further
demonstrated a neuroprotective role for these kinases during
development (51). Antagonistic effects of IKK-� and IKK-�
have recently also been described in Wnt signaling depend-
ing on �-catenin phosphorylation and localization, thus in-
tegrating signaling events between the NF-�B and Wnt path-
ways (52). A third component, IKK-� (also known as NEMO/
IKKAP/FIP-3), was designated as a scaffold platform for the
assembly of the IKK complex (53–56). Several studies indi-
cate that the IKK complex consists of two IKK-�/IKK-� het-
erodimers held together by one IKK-� monomer. Many pro-
teins have been reported to activate the IKK complex, but so
far there is no full understanding of their specificity and
redundancy; they include protein kinase (PK)C isozymes,
MAPK kinase kinase (MAPKKK) family members, NIK,
AKT/TPB, MEKK-1, MEKK-2, MEKK-3, COT/TPL-2, TAK-1
and NAK (46, 57, 58). Many of the previous reports regarding
the ability of kinases to activate IKK and induce NF-�B DNA
binding activity may be the result of overexpression studies
and have not necessarily been confirmed by knockout stud-
ies (59).

Alternative IKK complexes causing NF-�B activation were
also identified (42, 60, 61). Besides the classical I�B metab-
olism, variations have also been described at the level of
phosphorylation (Ser32, Ser36, Thr273, Tyr42) and degrada-
tion (nonproteosomal, lysosomal, or caspase-dependent)
(62–71). Both the release and activity of NF-�B are subject to
different control mechanisms. I�B-� expression itself is con-
trolled by NF-�B, establishing an autoregulatory feedback
loop and shutting down activation of NF-�B (72). Further-
more, NF-�B activation can be negatively regulated by a
SUMO-1 (small ubiquitin-like modifier-1 or sentrine) mod-
ification of unphosphorylated I�B-�. This leads to a degra-
dation-resistant I�B molecule (73) which may relocalize to
particular subcellular compartments (74). Another level of
regulation of NF-�B is imposed by the catalytic subunit of
PKA, which has been demonstrated to form a cytosolic com-
plex together with NF-�B and I�B (75). p65 phosphorylation
by PKA at Ser276 affects its transcriptional activity and was
reported to mediate a functional interaction of NF-�B with
the cofactor cAMP response element-binding protein
(CREB)-binding protein (CBP) (76, 77). Phosphorylation at
various other amino acid residues in p65 was also found to
contribute to the transcriptional activity of NF-�B (28, 42,
77–86).

B. AP-1

The transcription factor AP-1 is encoded by protoonco-
genes and regulates various aspects of cell proliferation and
differentiation (12, 14, 87). AP-1 can be composed of either
homodimers or heterodimers between members of the Jun
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(c-Jun, v-Jun, Jun-B, and Jun-D), Fos (c-Fos, Fos-B, Fra-1, and
Fra-2), activating transcription factor (ATF-2, ATF-3/LRF-1,
B-ATF, JDP-1, JDP-2) or Maf (v-Maf, c-Maf, Maf-A/B/F/
G/K, Nrl) families; they all belong to the class of the basic
zipper (bZIP) family of sequence-specific dimeric DNA-
binding proteins. The protein products of the fos and jun gene
families, i.e., the so-called immediate-early genes that are
directly activated and require no new transcription or trans-
lation for their induction, are transcription factors that acti-
vate and repress other genes, thereby producing secondary
transcriptional reprogramming appropriate to the stimulus
used (88–90). The regulation of AP-1 activity is complex and
first occurs by changes in jun and fos gene transcription and
mRNA turnover; secondly, by effects on Jun and Fos protein
turnover; thirdly, by posttranslational modifications of Jun
and Fos proteins that modulate their transactivation poten-
tial; and fourthly, by interactions with other transcription
factors that can either synergize or interfere with AP-1 ac-
tivity (12, 88–92). AP-1 was originally identified to interact
with the control regions of genes containing promoter ele-
ments responsive to tetradecanoylphorbol acetate. Today,
various stimuli, such as physiological agents (growth factors,
mitogens, polypeptide hormones, cell-matrix interactions,
and inflammatory cytokines), bacterial and viral infections,
pharmacological compounds (anisomycin, phorbol esters,
and okadaic acid), cellular stress (ultraviolet or ionizing ra-
diation), as well as hyperosmotic and heavy-metal stress,
have been shown to induce AP-1 activity. These stimuli ac-
tivate MAPK cascades [mostly p38, Jun amino-terminal ki-
nase (JNK), and ERKs] that enhance AP-1 activity by phos-
phorylating distinct substrates. The transcriptional activity
of c-Jun is enhanced by amino-terminal phosphorylation at
Ser63 and Ser73 by JNK (93). This inducible phosphorylation
step is required to recruit the transcriptional coactivator CBP,
which leads to transcriptional enhancement (94, 95). In ad-
dition to positive regulatory effects, the AP-1 complex has
been shown to confer negative regulation, for instance of GC
receptor (GR) (96). The growth-promoting activity of c-Jun is
mediated by repression of tumor suppressors, as well as
up-regulation of positive cell cycle regulators. c-Jun is a
mostly positive regulator of cell proliferation, whereas Jun-B
has the adverse effect. However, the ability of c-Jun and
Jun-B to elicit opposite transcriptional responses in the pres-
ence of apparently similar AP-1 recognition sites, found in
the control regions of different genes, remains enigmatic (14).
Knockout studies indicated a biological role for c-Fos in
survival during bone development and homeostasis, game-
togenesis, and neuronal functions, besides its role in cell
proliferation and differentiation. For c-Jun, a role has also
been demonstrated in development, hepatogenesis, and liver
erythropoiesis (12).

C. Glucocorticoid (GC) hormones

1. Molecular aspects and physiology. GCs exert their effects by
binding to the GR, a transcription factor capable of regulating
several genes in a positive or negative way (for a compre-
hensive list, see Ref. 1). GR belongs to the family of steroid
hormone receptors, comprising structurally similar modular
proteins, such as GR, progesterone (PR), mineralocorticoid

(MR), androgen (AR), and estrogen (ER) receptor forms,
which further belong to the nuclear receptor (NR) super-
family (97). Other classes of NRs include thyroid (TR), ret-
inoid and orphan receptors [retinoic acid receptor (RAR)/
retinoid X receptor (RXR)]. In general, the receptor members
share a variable amino-terminal transactivation domain (98),
a central and well-conserved DNA-binding domain (DBD),
and a moderately conserved carboxy-terminal domain re-
sponsible for ligand binding. The latter domain also contains
activating functions (1, 99–102).

In vivo, GC hormones are synthesized stepwise from cho-
lesterol by a series of cytochrome P450-catalyzed reactions
within the adrenal cortex (zona fasciculata). The synthesis
and secretion of cortisol, the major GC hormone in man, is
tightly controlled by the balance of adrenocorticotropin (se-
creted from the anterior pituitary gland) and CRH (secreted
from the hypothalamus during stress) in a pulsatile and
circadian way (103, 104). The most widely accepted mech-
anism for GC entry into the cell is by free diffusion of the
lipophilic molecules across the lipid bilayer of the cell into the
cytoplasm. In its unliganded resting state, in the absence of
GC hormone, GR is present in the cytoplasm in an inactive
complex (i.e., DNA binding-incompetent) with chaperones
and cochaperone molecules (105, 106). The most important
chaperones in NR action are heat shock protein (hsp)90 and
hsp70. Their action is further positively or negatively regu-
lated by cochaperones such as immunophilins (FK506-bind-
ing proteins FKBP1/2), dynein, p23, hsp40/hdj1, hip, car-
boxy terminus of hsp70-interacting protein (CHIP) and
BAG-1 (Bcl-2 binding athanogene-1) (105, 107–109). Receptor
activation and hyperphosphorylation occurs upon ligand
binding, which initiates substitution of one immunophilin
(FKBP-51) for another (FKBP-52), and concomitant recruit-
ment of the transport protein dynein, but leaving hsp90
unchanged. Immunofluorescence and fractionation revealed
hormone-induced translocation of the hormone-generated
GR-hsp90-FKBP-52-dynein complex from cytoplasm to nu-
cleus, a step that precedes dissociation of the complex within
the nucleus and conversion of GR to the DNA-binding form
(109, 110). From recent studies, it has become apparent that
the role of the (co)chaperones is not only restricted to the
cytoplasm. Apart from inhibiting hormone binding to GR,
they can also regulate the regulatory functions of the recep-
tors in the nucleus (108) by dynamic (dis)assembly of various
transcription complexes (111–113). Activated GR binds to
specific DNA sequences as a homodimer. Genes positively
regulated by GR are characterized by GC-response elements
(GRE) in the promoter (Fig. 1A and Table 1), whereas neg-
atively regulated genes contain either a negative GRE (nGRE)
(Fig. 1B) or are inhibited by direct or indirect interference of
GR with the transcriptional activity of other DNA-bound
transcription factors [such as NF-�B, AP-1, CREB, CCAAT
enhancer binding protein (C/EBP), signal transduction ac-
tivator of transcription (STAT), p53, Smad, etc.] (Fig. 1C–N).

2. Biological effects of GCs. GCs are of major importance for
protection of the body against stress by regulating glucose
metabolism and blood pressure. They are also involved in
lipid metabolism and deposition of glycogen in the liver.
Besides the metabolic actions, GC effects have also been
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described with respect to behavior and brain function (114–
118). Furthermore, GCs affect organ development, tissue
maturation, wound healing, and calcium reabsorption (104,

119). Highly important is the role of GCs in the dynamic
modulation of inflammatory and immune responses. This
involves cross-talk with transcription factors and signaling

FIG. 1. Cartoons of the proposed models as described throughout the text are drawn in Fig. 1 and represented in Table 1, explaining interactions
of GR with DNA/transcription factors and corresponding effects on gene regulation (represented by � or � sign). BTM, Basal transcription
machinery; nucl., nucleosome; P-TEFb, transcription elongation factor; pol, polymerase; TA, transactivation domain; TF, transcription factor.
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pathways, effects on cytokine receptor expression (120, 121),
regulation of thymocyte and lymphocyte survival, selection,
and functions (122–126), as well as interference with eosi-
nopoiesis (127) or erythropoiesis (128). If optimally balanced,
GC-dependent functions will contribute to a resolution of
infection, trauma, or other immunologically related stres-
sors. However, disruption or malfunction of these dynamic
interactions may result in a fatal outcome of acute inflam-
mation or may predispose for autoimmunity or atopic reac-
tions (129). An understanding of the true role of endogenous
GCs in host defense can open new avenues for the treatment
or prophylaxis of immune-mediated diseases.

3. Tissue specificity of GC effects. Because GR is expressed in the
vast majority of tissues, it is reasonable to assume that GCs
affect nearly all cells in the body (130). The regulation and
action of GC-mediated effects further depend on other tissue-
specific factors, on the bioavailability of the hormone, and on
tissue-specific hormone-modifying enzymes. At one level,
the biological sensitivity of GCs is achieved by binding to
circulating proteins present in plasma and blood, such as
corticosteroid-binding globulin (CBG) (131). During a stress-
ful situation (e.g., septic disorder), CBG levels drop due to an
IL-6-dependent hepatic posttranscriptional blockade. This
results in enhanced exposure of cells and tissues to free GC
hormone to suppress the inflammatory response, which
would otherwise lead to death. CBG homeostasis is normally
restored after 1 or 2 d (132, 133). In kidney, liver, brain, and
pancreas cells, 11�-hydroxysteroid dehydrogenases can con-
vert cortisol to a biologically inactive form or reactivate it
from hormone precursors in a cell-specific manner (134–136).
At another level, GC sensitivity is determined by expression

levels of the transporter protein LEM1 or multidrug resis-
tance protein MDR1 (137, 138). The expression levels of GR
are also cell- and tissue-specific. GR levels are themselves
negatively regulated by GCs, contributing to the fact that
long-term treatment with GCs results in a decrease of the
physiological response (139, 140). Other levels of regulation
that determine GC sensitivity include variations in the re-
ceptor protein (mutations, polymorphisms, isoforms) (141–
147), alternative receptor dimerization (GR heterodimeriza-
tion has been described with MR, PR, and AR) (144, 148–151),
presence of GC modulatory element binding proteins (152–
155), receptor cochaperones (111, 112, 156, 157), DNA-bend-
ing (158), altered expression levels of hsp proteins (159, 160),
effects of signaling cascades (141, 161–163), and posttrans-
lational modifications (phosphorylation, nitrosylation, ubiq-
uitinylation, sumoylation, and acetylation) (141, 159, 164–
173). Finally, it is now clear that differences between
endogenous GCs (produced by the adrenal glands) and syn-
thetic GCs, in terms of their regulatory mechanisms, are
crucial for their biological actions. For example, synthetic
GCs differ from endogenous GCs in binding to CBG, tissue-
specific metabolism, affinity for various GRs, and interaction
with transcription factors (174).

4. GCs in the clinic. GCs belong to the most commonly and
effectively used drugs in the clinic to relieve inflammation
and various immune disorders (1, 104, 175–178). Inflamma-
tory diseases, for which administration of GCs are a standard
treatment, include rheumatoid arthritis, inflammatory bowel
diseases, systemic lupus erythematosus, sarcoidosis, and ne-
phrotic syndrome. Local treatments with GCs are applied
against dermatitis, ophthalmological disorders, asthma, and

TABLE 1. Overview of the different models for GC activation or suppression of genes

Model Gene Transcription factor Ref.

A TAT, PEPCK, lipocortin GR 775–777
BC Keratin GR monomer 213–215, 778, 779

Osteocalcin, POMC GR-TBP
Type 1 vasoactive intestinal polypeptide receptor GR-basal factor

DE IL-6, IL-8, E-selectin, COX-2 NF-�B 212, 217, 227, 240, 260, 321–323, 760, 780–782
Collagenase AP-1
POMC Nurr-77
Prolactin Pit-1
Glycoprotein-� subunit CREB
Type 1 plasminogen activator inhibitor Smad-3/4

F Proliferin AP-1 222, 223, 783–785
�-Fetoprotein AP-1
c-fms AP-1
Prolactin Pit-1

G NF-�B-driven genes (see Table 3) NF-�B 250, 251
H IL-2 and other NF-�B-driven genes NF-�B 228, 786, 787

Bax, bcl-2, p21WAF1/CIP1 p53
IL-2R, Jak3 STAT5

I E-selectin NF-�B 347, 357, 506
Collagenase AP-1

J GRE-driven genes GR 472, 571, 572, 788
NF-�B- or AP-1-driven genes NF-�B/AP-1 427, 476, 477

K CBP-sensitive genes CREB-CBP 492
L AP-1-driven genes AP-1 283, 286, 326, 786

STAT5-driven genes STAT5
GRE-driven genes GR
NF-�B-driven genes NF-�B

M NF-�B-driven genes NF-�B 603
N IL2-R NF-�B/AP-1 645, 647
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conjunctivitis (179–183). Furthermore, GCs are used to sup-
press the immune system post transplantation. GCs are also
used to treat brain edema, shock conditions, and certain
cancers (e.g., hematological malignancies), as well as condi-
tions involving adrenal cortex insufficiency (e.g., Addison’s
disease). There is a huge drawback, however, to the bene-
ficial use of GCs, because treatments with high doses for
longer periods cannot only cause resistance to the steroid-
based therapy (184, 185), but can also be accompanied by a
range of detrimental side-effects (178, 186–188). These in-
clude diabetes, impaired wound healing, skin atrophy, mus-
cle atrophy, increased susceptibility to infections, activation
of latent infections, hypothalamus-pituitary-adrenal axis in-
sufficiency, cataracts, peptic ulcers, hypertension (due to ac-
tivation of the MR), metabolic disorders (resulting from hy-
perglycemia and a decreased carbohydrate tolerance),
retention of water and sodium and excretion of potassium
(disturbing the water household balance of the body), and
loss of mineral from bone (leading to osteoporosis) (104, 176,
178, 189–195). To date, physicians attempt to minimize these
side-effects with local therapies, intervals, supplementation
with calcium, vitamin D3, and estrogens, and using specific
GCs with a minimum of mineralocorticoid agonistic effects
(178).

5. GCs and inflammation. GCs have been described to inhibit
leukocyte migration to the sites of inflammation and to in-
terfere with the functions of endothelial cells, leukocytes, and
fibroblasts. They suppress the production and effects of hu-
moral factors involved in the inflammatory response (104,
196). From a mechanistic point of view, it is generally as-
sumed that the beneficial, antiinflammatory potential of the
GR resides in a negative modulation of proinflammatory
cytokines and that its side-effects are mainly the consequence
of its transactivating capacities (197). Nevertheless, other
compounds have not matched the clinical use of GCs as a
potent immune suppressive and antiinflammatory agent.

To explain the repressive action of GCs on immune target
genes, the role of GCs in inhibiting the activity of the tran-
scription factors NF-�B, AP-1, or CREB has been widely
investigated. Table 2 lists a number of proinflammatory

genes and the main transcription factors contributing to their
up-regulation. It would be an improvement for many ste-
roid-treated patients if one could redesign GR function and
reduce its side-effects while retaining the antiinflammatory
characteristics (198). To that end, many investigators are
currently trying to elucidate how GCs exert their mechanism
of action (177, 199). The final goal is to reach a more effective
and targeted immunosuppressive therapy. In this respect,
the development and characterization of so-called dissoci-
ating GCs, which separate transrepression from transactiva-
tion, have been the holy grail of steroid pharmacology for
years, although they did not live up to their expectations in
vivo so far (198, 200–208).

The main purpose of this review is to discuss currently
proposed mechanisms responsible for the antiinflammatory
properties of GCs. Different experimental settings and cell
systems have indeed led to many different, sometimes con-
flicting conclusions. We will focus on discrepancies in the
proposed hypotheses and on the concomitant controversy in
the actual mechanism explaining the cross-talk between the
GR and genes driven by NF-�B or AP-1.

II. Molecular Mechanisms

A. GC receptor (GR) activity and direct DNA binding

Activated GR binds to specific DNA sequences as a ho-
modimer. The dimerization domain (DBD) consists of two
zinc ions coordinated with eight cysteine residues to form
two zinc fingers. Each zinc finger is followed by an amphi-
pathic �-helix. GR DBDs bind cooperatively to specifically
spaced target half-sites in the DNA (the consensus sequence
is 5�-GGTACAnnnTGTTCT-3�); the N-terminal zinc finger is
involved in specific DNA interaction, whereas the C-termi-
nal zinc finger mainly provides DNA-dependent dimeriza-
tion (209, 210). One function of the DBD is to discriminate
between different response elements and determine which
target genes are activated. This function is achieved by a few
crucial amino acids localized in the C-terminal part of the
N-terminal zinc finger, the so-called P-box (211).

TABLE 2. Proinflammatory genes down-regulated by GCs independently of the presence of a nGRE

Proinflammatory genes Main transcription factor(s) Ref.

Cytokines
IL-2 NF-AT, AP-1, NF-�B 251, 741, 742
IL-6 NF-�B, C/EBP-� (� NF-IL6), AP-1 80, 226, 233, 351, 554
TNF-� NF-�B 743–745
IL-1� CREB, NF-IL6, NF-�B 746, 747
GM-CSF NF-�B 748
IFN-� AP-1 749

Chemokines
IL-8 NF-�B 750
CINC/gro NF-�B 751
RANTES NF-�B 752

Enzymes
iNOS NF-�B 753–755
COX-2 NF-�B 227, 323, 756, 757
Collagenase AP-1 96, 758

Adhesion molecules
ICAM-1 NF-�B 227, 321
E-selectin NF-�B 759–761
VCAM-1 NF-�B 762
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Direct transcriptional repression by GCs can be achieved
by the interaction of GR with a site on the DNA, designated
nGRE, of which the actual sequence is poorly defined. This
mechanism of action was proposed to account for repression
of the proopiomelanocortin (POMC) gene (precursor of
ACTH), type 1 vasoactive intestinal polypeptide (VIPR1),
keratin, prolactin (PRL) and proliferin genes, as well as the
vitamin D-induced osteocalcin gene (212) (Fig. 1, B and C).
Detailed footprinting revealed that the function of nGREs is
to instruct GR to bind as a monomer (213). In addition, for
some of these genes the mechanism was also found to involve
GR-dependent displacement of another factor (for example
TATA-binding protein TBP) or DNA-independent tethering
by GR of another transcription factor (214, 215) (Fig. 1, D and
E). GR tethering of the transcription factors CREB, AP-1, or
the orphan NR Nurr-77 has been studied in detail in the
human glycoprotein hormone �-subunit (216, 217), the col-
lagenase gene (96, 218), and the POMC gene (212, 219), re-
spectively. A variation on this theme is observed for the
proliferin gene, in which a composite GRE/AP-1 site, termed
pflG, was defined; the GR can regulate activated AP-1 and
enhance transcription of proliferin if AP-1 consists of c-Jun
homodimers, but represses when AP-1 consists of c-Jun/c-
Fos heterodimers (220, 221) (Fig. 1F). A similar regulation
was reported for �-fetoprotein (222). Finally, a nGRE/Pit1/
XTF composite element was detected in the PRL3 gene (223).

B. Protein-protein cross-talk

Because no nGRE could be detected in the majority of
inflammatory genes, transcriptional interference was discov-
ered to mostly result from cross-talk between the GR and
other transcription factors, such as NF-�B or AP-1 (Table 2)
(224, 225). GC repression by a direct physical association
between GR and NF-�B was supported by several research
groups, but these conclusions relied on in vitro data (226–
228). Only recently, Adcock et al. (229) succeeded in showing
an interaction between endogenous p65 and GR, using IL-1�-
and dexamethasone (DEX)-costimulated A549 cells, which
contain a considerable amount of immunoreactive GR. It
remains to be investigated whether such a complex is also
formed during GR-mediated repression in other cell lines,
whether ligand binding can play a modulatory role, and
whether other factors or modifications are also involved. To
further understand how GR interferes with the activity of
NF-�B and AP-1, several groups focused on delineating the
relevant domains by mutation analysis or domain swapping
experiments. Essentially, exchanging the DBD between dif-
ferent NRs (viz. GR, ER, and TR�) has proven the importance
of the GR DBD both in transactivation and transrepression
(102, 211, 230). Deleting the ligand-binding domain (LBD)
diminished transrepression, whereas replacing it with an
unrelated �-galactosidase moiety greatly restored the tran-
srepressive action, arguing for an exclusively steric role of the
LBD (231). However, depending on the cell type and/or the
NF-�B-dependent promoter tested, some conflicting results
were found regarding the requirement of the GR DBD (232)
or the C-terminal zinc finger in NF-�B transrepression (211,
233). The presence of a different subset of cofactors or GR
function-modulating chaperones, or distinct signaling mech-

anisms in the different cell lines may explain particular dis-
crepancies (1, 234, 235). Alternatively, the promoter context
or effector site may also determine whether a specific NR can
interfere with NF-�B activity (236–238). NF-�B-dependent
up-regulation of ICAM-1 in human tracheal smooth muscle
cells was found to be largely refractory to DEX inhibition,
whereas simultaneous NF-�B stimulation of the COX-2 gene
did respond to the inhibitory action of DEX (239). Similarly,
GR-mediated NF-�B repression was found to be highly de-
pendent on the core promoter and/or TATA-box environ-
ment (240, 241). For some hepatic acute-phase reactant genes,
e.g., angiotensinogen, it appears that NF-�B and GR posi-
tively interact at the acute phase response element to activate
transcription (242–244).

Complementary to mapping the GR domains involved in
NF-�B repression, domains of p65 important in repressing
the GR activity have also been mapped (245). Extensive mu-
tational analysis illustrated that both the N-terminal RHD
and the C-terminal domain of p65 are required for repression
of GR transactivation. In vitro, a physical interaction could be
demonstrated between GR and the RHD of p65, but not with
the C-terminal part of p65 (228, 245). p50 Has also been
shown to interact in vitro with GR, supporting the notion that
there is an interaction with the homologous RHD. However,
because p50 lacks transactivation domains, it cannot, in con-
trast to p65, reciprocally repress the transcriptional activity
of the GR (228). Remarkably, c-Rel, which does contain a
transactivation function, is also incapable of inhibiting GR-
mediated transactivation. These data suggest that the pres-
ence of a conserved RHD alone is not sufficient to mediate
repression and that an additional input is given by the
unique transactivation functions of p65 (227).

Although AP-1 transrepression displays a lot of similari-
ties to NF-�B repression, some important differences are to
be noted. Recently, a GR mutated in the first zinc finger
(S425G) of the GR DBD was found to lose its capacity to
repress NF-�B without affecting AP-1 transrepression (246),
allowing discrimination between both types of repression.
Along the same line, the GC antagonist ZK98299 is not able
to repress NF-�B activity, whereas it efficiently inhibits AP-1
(211, 247). Repression specificity toward NF-�B, AP-1, or
other GR targets may be codetermined by distinct signaling
mechanisms toward the various transcription components
(see Section II.E.4, 7, and 9). Similarly, as for NF-�B, repres-
sion of AP-1 activity was also shown to be strictly dependent
on promoter, receptor, and cell type (248, 249).

C. Up-regulation of I�B-�

The alteration or induced expression of a regulatory pro-
tein capable of inhibiting NF-�B activity may lie at the basis
of GC repression of NF-�B-mediated gene expression. One
such candidate is the cytoplasmic inhibitor of NF-�B, viz.
I�B-�. GC-dependent repression of NF-�B-driven genes has
been proposed to be mediated by increased synthesis of
I�B-�, which would then sequester NF-�B in an inactive
cytoplasmic form (Fig. 1G) (250, 251). However, the involve-
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ment of this mechanism cannot be generalized and seems to
be strongly cell type and target gene dependent (Tables 3 and
4). Interestingly, other antiinflammatory signaling pathways
(i.e., TGF-�, IL-10, etc.) that inhibit NF-�B activity through
up-regulation of the I�B-� protein have also been described
(8, 252–255).

1. Transcriptional regulation of the I�B-� promoter by GCs. DEX
is able to stimulate synthesis of I�B-� in HeLa cells by directly
activating I�B-� gene transcription. The newly synthesized
I�B-�, induced by DEX treatment, was suggested to associate
with newly released NF-�B, thus further preventing NF-�B-
dependent gene transcription (250). Experiments using ac-

TABLE 3. Presence of up-regulation of I�B-� in GC-mediated repression

NR Cell type Repressed gene or origin of
NF-�B site NF-�B inducer NF-�B binding Ref.

GR HeLa (human cervix carcinoma) H-2Kb region I enhancer TNF-� Decreased 250
THP-1 monocytes

GR FJ8.1 (murine T cell hybridoma) IL-2 TNF-� Decreased 251
Jurkat T lymphocyte TPA N.D.
Lymph node, spleen, thymus tissue

AR LNCaP prostate carcinoma cells IL-6 PMA N.D. 258a

HeLa
GR Rat hepatocytes iNOS (NOSII) TNF/IL-1/IFN-� mix Decreased 763
GR GCA (giant cell arteritis tissue) IL-6 In vivo inflamed N.D. 764
GR rCI8 derived from sympathetic precursor-

like PC12 cells
Ig-� light chain High constitutive

NF-�B
Equal 765

GR/PR A549 (human pulmonary epithelial cells) ICAM-1 IL-1� Equal 323b

T47D (breast carcinoma) COX-2
HIV-LTR

GR Rat mesangial cells iNOS LPS � TNF N.D. 327
GR PBMC (peripheral blood mononuclear cells) IL-2 Mitogen N.D. 766
GR Vascular endothelial cells from Crohn’s

disease patients
– In vivo inflamed N.D. 315

GR Rat mesangial cells MMP-9 IL-1� Decreased 767

N.D., Not determined.
a The authors did not see up-regulation of I�B-�, only maintenance of I�B-� levels.
b The authors propose a dual mechanism for GC-mediated repression.

TABLE 4. Absence of up-regulation of I�B-� in GC-mediated repression

NR Cell type Repressed gene or
origin of NF-�B site NF-�B inducer NF-�B binding Ref.

ER Osteoblast U2-OS IL-6 IL-1� N.D. 688
GR Aortic primary endothelial cells (BAEC

and PAEC)
E-selectin TNF, LPS Equal 260

GR A549/8 alveolar epithelium-like iNOS (NOSII) Cytokine mix N.D. 756
GR NRK-52E rat kidney epithelial cells CINC/gro IL-1� Decreased 751
AR COS-1, CV-1 p�B6-tk-LUC p65 plasmid N.D. 257
GR TC10 mouse endothelial cells IL-6 TNF-� Equal 322

L929sA mouse fibroblast cells
VDR/GR G-361 human melanoma-derived cells IL-8 TNF-� 768
ER/GR MCF-7 human breast carcinoma cells HIV-LTR or IL-6 TNF-� N.D. 256a

AR Mouse fibroblast cells HIV-LTR TNF-� N.D. 256
LNCaP prostate carcinoma cells

GR A549 human pulmonary epithelial cells E-selectin IL-1� N.D. 769a

GR L929sA NF-�B reporter TNF-� N.D. 324
GR A549, BEAS-2B (airway epithelial cells) NF-�B reporter IL-1� Equal 770
GR Human placenta cytotrophoblasts IL-6, IL-8, TNF-� In vivo inflamed N.D. 771
GR Lamina propria biopsies from Crohn’s

disease patients
– In vivo inflamed N.D. 772

GR/PR A549 ICAM-1, COX-2 IL-1� N.D. 323b

T47D HIV-LTR
GR A549 GM-CSF IL-1� N.D. 229
GR 1321N1 human astrocytoma IL-8 IL-1� N.D. 773

SK.N.SH human neuroblastoma VCAM-1, ICAM-1
GR Plasma blood PAF LPS N.D. 774a

GR Infiltrating mononuclear cells from
Crohn’s disease patients’ lamina
propria biopsies

– In vivo inflamed N.D. 315

N.D., Not determined.
a The authors observed upregulated I�B levels, but no correlation with GC repression.
b The authors propose a dual mechanism for GC-mediated repression.
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tinomycin D, which blocks de novo synthesis, suggested that
the effect of DEX on I�B-� gene expression is mainly at the
transcriptional level (251, 256).

The mechanism by which DEX stimulates the I�B-� pro-
moter is still unresolved. The pI�B-�-Luc (�623 to �11)
promoter construct, transiently transfected in HeLa cells and
induced with tetradecanoylphorbol acetate, showed a two-
fold increase in luciferase activities when DEX was included
(256); this is in agreement with data previously obtained in
HeLa cells (250). Mutational analysis demonstrated that ho-
modimerization of the GR is a prerequisite for induction of
the I�B-� gene, which would argue for a classical GRE in the
promoter (256). The same response element is also recog-
nized by PR, in accordance with the fact that progesterone
can also induce I�B-� synthesis (256). However, AR and ER
are not able to enhance I�B-� synthesis in LNCaP prostate
cancer cells and MCF-7 cells, respectively (256), or in AR-
transfected COS-1 cells (257). On the other hand, an andro-
gen-mediated increase in I�B-� synthesis was reported with
endogenously present AR in LNCaP cells (258). The reason
for these discrepancies remains unresolved. The suggestion
of direct binding of GR to the I�B-� promoter DNA is com-
plicated by the fact that no classical GRE can be detected up
to 600 bp upstream of the start site of transcription. However,
a related motif at positions �93 to �73 with a conserved one
half of the normally palindromic hexanucleotide motif AGT-
TCT might suffice to carry out this induction (256). It would
therefore be interesting to test the functionality of this pu-
tative GRE in HeLa cells by mutational analysis. Detailed
DNase I footprinting recently confirmed a GR half-site at
position �91/�81, although the results were obtained in
breast cancer cells overexpressing GR (259).

The I�B-� promoter also contains three elements respon-
sive to NF-�B, which ensures a negative feedback loop for
activation of NF-�B. It is intriguing why this promoter does
not show repression by DEX as observed with other NF-�B-
dependent promoters. In fact, a stably integrated pI�B-�-Luc
(�623 to �11) construct in L929 sA cells showed no enhanc-
ing effect of DEX alone or DEX � TNF on promoter activity,
but was clearly repressed (202). Likewise, the porcine I�B-�
promoter construct �600 to �20 coupled to luciferase and
transiently transfected in BAEC cells showed induction with
LPS or TNF, but was not induced by DEX (260). The basis for
the apparent cell-specific opposing responses may be a cell-
specific subset of cofactors (261, 262) that may allow the GR
to cooperate, perhaps even in a DNA-binding independent
way, with other LPS- or TNF-activated transcription factors
in the I�B-�-promoter. This type of regulation is not without
precedent, because a cooperative effect between the GR and
NF-IL6 has previously been demonstrated for activation of
the �1-acid glycoprotein gene (263, 264). Also, induction of
the c-IAP2 promoter (containing two NF-�B response ele-
ments and one GRE) by DEX and TNF results in a more than
additive increase of the promoter activity. A c-IAP2 promoter
variant in which the GRE site had been mutated resulted not
only in loss of GC-mediated induction, but also, surprisingly
enough, in loss of GC repression of the NF-�B activity (238).
In addition, synergistic stimulation of the I�B-� promoter can
also be observed under conditions of activated NF-�B and
peroxisome proliferator-activated receptor PPAR-� or the

retinoid-related orphan receptor (ROR)-� (265, 266). Inter-
estingly, PPAR-� ligand-dependent recruitment of vitamin
D receptor-interacting protein (DRIP)/thyroid receptor-ac-
tivated protein (TRAP) complex together with Sp1-flanking
NF-�B lies at the basis of the observed transcriptional syn-
ergy (265, 267). Whether this mechanism can be generalized
for the GR and/or other cell types needs to be investigated
further (268). The diversity of NR interactions with cofactor
complexes may further be codetermined by chaperone pro-
teins (107, 111–113, 154, 269, 270).

2. I�B-� expression vs. NF-�B/DNA binding. Conflicting results
have been published on the relationship between I�B ex-
pression levels and NF-�B/DNA binding. A few groups
found an elevated I�B-� protein level after a combined treat-
ment with DEX and an inflammatory stimulus, concomi-
tantly with a redistribution of p65 from the nucleus to the
cytoplasm and a reduction in NF-�B/DNA-binding, deemed
responsible for gene repression (Fig. 1H and Table 3). In
complete contrast, we and others observed DEX-mediated
repression in the complete absence of I�B-� induction, with-
out release of the TNF-induced NF-�B complex from its
response element in various cell types (Table 4). Similar
observations were recorded for another NR, viz. the PR,
which also antagonizes NF-�B activity. This indicates that
NRs can repress DNA-bound NF-�B via tethering, without
actually affecting DNA binding itself. In vivo footprinting
experiments of the NF-�B site in the ICAM promoter further
proved that GC repression occurs by changing the confor-
mation of the protein complex binding to the NF-�B-binding
site, without apparent perturbation of NF-�B binding (87,
271). Sustained NF-�B/DNA binding and resynthesis of I�B
may coexist if resynthesized I�B is simultaneously degraded
(272). Finally, repressive effects of DEX have also been de-
scribed to appear with increased I�B levels (but without a
parallel decrease in NF-�B/DNA binding) or with unaf-
fected I�B levels (with decreased NF-�B expression levels)
(Tables 3 and 4).

Intriguingly, in the neuronal cortex of DEX-treated rats,
the levels of I�B-� are lower than in untreated animals,
whereas the levels of I�B-� are enhanced in peripheral cells
from the same animal. It would be interesting to investigate
the underlying basis and the reason for the variations ob-
served between related cell types in the same animal (273,
274). Apparently, there is no exclusive relationship between
NF-�B relocalization from nucleus to cytoplasm, reduced
NF-�B/DNA binding, and elevation in expression levels of
I�B-� during GC repression.

3. Discriminating conditions determining a possible up-regulation
of I�B-� by GCs. Tables 3 and 4 show that I�B-� up-regulation
is predominantly and consistently observed in lymphocytes
and monocytes, whereas no such mechanism can be re-
trieved for endothelial or fibroblast cells in vitro. How can
GCs achieve an up-regulation of I�B-� in some cell types and
not in others? Different cell types may use alternative path-
ways to mediate GC effects. For example, in cells of lymphoid
origin unique redox-sensitive NF-�B signaling pathways re-
quiring lipoxygenases or glutathione have been described
(275, 276). In this respect, GC effects on oxidative stress and
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on lipoxygenase and glutathione levels have already been
demonstrated for cells of lymphoid origin, arguing for the
fact that unique redox-sensitive modes could have devel-
oped during evolution that may affect I�B stability (277–281).
Along the same line, JNK has been reported to mediate
degradation of I�B in a redox-dependent manner (282); be-
cause GCs were found to block JNK activity, I�B-� degra-
dation may similarly be delayed (283–286). Further evidence
for this concept is provided by the fact that various links
between IKK and JNK signaling have now been established
(287, 288).

Besides cell-dependent variations in particular redox path-
ways, sensitivity to GC-induced apoptosis is also a cellular
response known to be highly cell type- and stimulus-depen-
dent (125, 289, 290). Cellular injury induces a differential
adaptive response depending on the nature of the insult,
whether physical (e.g., heat, radiation), chemical [e.g., reac-
tive oxygen species (ROS), GCs], infectious (e.g., bacteria), or
inflammatory (e.g., LPS, TNF). Recent data indicate that the
cross-talk between various responses is not predictable and
that permutations in triggering can have opposite effects on
the outcome after injury (291, 292). For example, although it
is well known that a prior heat shock can protect cells against
inflammatory stress both in vitro and in vivo, it has also been
shown that induction of a heat stress in cells primed by
inflammation can precipitate cell death by apoptosis. This
ability of heat shock to induce cytoprotection and cytotox-
icity is therefore also known as the heat shock paradox.
Experimental data currently link the heat shock paradox to
induction of the NF-�B inhibitor I�B (293). Indeed, hsp pro-
teins have currently been found to connect death receptor
signaling, steroid activities, and inflammatory responses
(112, 157, 160, 294–301); besides its chaperone function in GR
activity, hsp90 was recently found to be a functional com-
ponent of the IKK complex, required for TNF signaling (302–
304). Whether GC treatment relocates hsp90 association from
GR to IKK complexes remains to be demonstrated, but this
might explain why GCs modulate I�B levels in particular cell
types (112).

Besides hsp, ras chaperone proteins, proteasomes, and
caspases have also been described as targets for GCs, which
may in turn affect I�B-� turnover rates (169, 305–307). As
such, GR/Raf1-Ras signaling toward a subclass of ras chap-
erone proteins was found to affect I�B half-life (306–308).
Proteasome inhibitors were found to sensitize leukemia cells
for GC therapy (309). Furthermore, I�B has been described
as a caspase target both in vitro and in vivo (63, 70), whereas
various caspases are required to mediate GC effects during
apoptosis (310–312). Finally, differences in cell-culturing
conditions and cell proliferation rate have been found to
induce variations in GC-induced I�B gene expression, de-
pending on gene clusters involved in energy metabolism
(313, 314).

From another point of view, cell culture experiments in
vitro may not exactly reflect GC effects in vivo. In vascular
endothelial tissue from patients suffering from Crohn’s dis-
ease, elevated levels of I�B-� were found after GC treatment,
whereas in mononuclear cell infiltrates no such GC-induced
up-regulation could be demonstrated (315). It was therefore
concluded that up-regulation of I�B-� in these endothelial

cells might correlate with the beneficial effects of GC treat-
ment in Crohn’s disease. One should consider that, in chronic
inflammatory disease models in vivo, the continuous induc-
tion of proinflammatory responses as well as the treatment
last much longer (days to months) than investigations per-
formed in in vitro cell lines (minutes to hours). In addition,
in in vivo situations, many more parameters have to be taken
into account. This includes signal transduction cascades elic-
ited by different cell-cell contacts, systemic signals, GR me-
tabolism, and neuroendocrine effects (178, 203, 316, 317).

4. Are GC-mediated transrepression and I�B-� up-regulation un-
coupled phenomena? The aforementioned observations raise
the assumption that up-regulation of the I�B-� protein is not
the main mechanism by which GCs can suppress immune
genes. This view is further corroborated by various genetic
approaches. First, the DNA-binding capacities of the GR
itself do not determine transrepression, arguing against the
induction by DEX of I�B-� as an element in transrepression
(227). Furthermore, a dimerization-defective mutant rat GR
(D4X, with the exchanges N454D, A458T, R460D, and
D462C) (247) that does not bind DNA and does not trans-
activate GC-responsive genes or enhance I�B-� synthesis is
still able to repress NF-�B activity. These results have now
been confirmed by experiments using mice with a dimer-
ization-defective GRdim/dim mutant (A458T), which demon-
strates that GR/DNA binding and I�B gene activation are
dispensable for the antiinflammatory activity of the GR (197,
318–320). Reciprocally, the GC analogs ZK57740 and
ZK077945, selected for their lack of antiinflammatory activ-
ities in vivo, do not repress NF-�B-regulated genes but can
still enhance I�B-� synthesis (256). Similar results were ob-
tained with a GR mutant (S425G) lacking NF-�B-repressing
activity, but leaving enhanced I�B synthesis intact (246). Sec-
ond, repressive effects by the GR remain apparent in the
presence of the protein synthesis inhibitor cycloheximide
(321–323). Third, experiments with the GC antagonist RU486
or dissociated compounds RU24782 and RU24858 lacking GR
transactivation activities demonstrated that GR-mediated
transcription is not required for the inhibition of p65 trans-
activation (202, 228, 245). Moreover, the activity of constitu-
tively nuclear Gal4-p65 chimeric proteins can efficiently be
repressed by GCs, demonstrating that repression can occur
in a promoter-independent way (322). Along the same line,
a study comparing the activity of various clinically important
GCs showed that it is possible to prevent TNF-induced deg-
radation of I�B-� to various extents without affecting the
NF-�B/DNA-binding activity (324). Finally, comparable GC
repression of NF-�B has been observed in wild-type and
I�B-��/� mouse embryonic fibroblasts (325, 326). These find-
ings demonstrate that up-regulation of I�B-� and the phe-
nomenon of GC repression are in many cases two indepen-
dent processes.

If GC repression of NF-�B activity and GC-mediated up-
regulation of the I�B-� protein are uncoupled phenomena,
the question remains what the biological significance is for
the latter event. That two independent mechanisms of NF-�B
repression by GR may exist within the same cell suggests that
maintaining negative control on NF-�B-signaling pathways
is of real physiological importance. I�B-� up-regulation rep-
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resents a roundabout route to achieve effective repression,
whereas a direct interference between preexisting, activated
GR and NF-�B proteins is a direct and quicker way to im-
mediately repress proinflammatory excesses. The need for
induction of I�B-� could, for instance, provide a molecular
explanation for the limited efficacy of GCs in the therapy of
septic shock (327). DEX-induced up-regulation of I�B-� has
mainly been described for monocytes and T-lymphoid cells,
which are sensitive to GC-induced apoptosis. In this respect,
GCs are frequently used as therapeutic agents in the treat-
ment of B or T cell lymphomas (328–330). Alternatively, in
T cells, stimulation of I�B-� in response to GCs could have
evolved to counter the antiapoptotic effects of constitutive
NF-�B levels by reducing its DNA binding (331). The first
genetic evidence for NF-�B in antiapoptotic events was
found in p65-deficient embryos dying from massive liver
apoptosis (33, 332–334). Analysis of mice carrying a dimer-
ization-defective GR highlighted the importance of gene-
inducing effects for subsequent apoptosis (197, 320). Inter-
estingly, I�B-� induction was found in GC-induced
apoptosis-sensitive cells, but not in resistant human leukemic
T cells (335). Along the same line, variations in GC sensitivity
and I�B induction may also be caused by variations in GR�/
GR� ratio (336, 337). Overall, these data imply that particular
cell types (such as T lymphocytes) need, in order to survive,
threshold levels of NF-�B transcriptional activity to maintain
cell cycle progression (338–341). This threshold may be sub-
ject to modulation by GCs via regulation of I�B-� expression
during apoptosis (342, 343). This feedback mechanism may
act as a back-up or final checkpoint to efficiently induce
apoptosis in cells that sensed too much damage and to pre-
vent an avalanche of systemic immune responses capable of
inducing a life-threatening septic shock.

D. Cofactor competition model

Coactivator molecules are characterized by an intrinsic
histone acetyltransferase (HAT) activity, believed to result in
a more relaxed chromatin environment, which promotes
gene activation (344). Hence, it may be assumed that com-
petition between nuclear transcription factors for limited
amounts of coactivator molecules leads to gene repression.
The NR LBD has been shown to interact, in a ligand-depen-
dent way, with coactivator proteins such as CBP, p300, and
steroid receptor coactivator (SRC)-1 (345, 346). Because the
same coactivators are also implicated in bridging p65, AP-1,
or GR to the factors of the basal transcription machinery
(347–351), transrepression was suggested to result from a
competition between different transcription factors for a lim-
ited amount of cofactors (Fig. 1I). This model was first in-
vestigated for RAR- and GR-mediated repression of AP-1-
dependent transactivation (347) and was supported by data
from a number of other groups investigating negative cross-
talk between various transcription factors and NRs (352–
355). Similarly, a competition between p65 or AP-1 and GR
for limiting amounts of CBP or SRC-1 was proposed to ac-
count for transrepression of NF-�B- and AP-1-dependent
genes, respectively (356–358). However, a number of exper-
iments and arguments counter the involvement of cofactor
squelching in transrepression. First, an increase in coactiva-

tor concentrations (CBP, p300, SRC-1) in the cell generally
leads to an increase in absolute gene expression levels of
NF-�B- or AP-1-driven promoters (which, in the presence of
GR, was misinterpreted as relief of repression), but relative
levels of GR-mediated transrepression remain unaffected.
Notably, under conditions of GC repression, the physical
association between p65 and CBP is not disrupted by re-
pressing amounts of activated GR, both in vivo and in vitro
(224, 240, 359). Second, if NR-mediated repression of both
AP-1 and NF-�B activities occurs through a general squelch-
ing for common cofactors, then RAR should also be able to
mediate repression of NF-�B. However, this NR only re-
presses AP-1 activity, disfavoring a general competition
model (360). Third, the existence of dissociating ligands (200,
202) as well as the availability of various receptor point-
mutants of GR, which either separate transactivation and
transrepression (197, 211, 320) or distinguish between NF-�B
and AP-1 repression (246), is not compatible with competi-
tion for a general cofactor (361, 362). Actually, GR may adopt
a different conformation when working as a monomer in
“trans” to inhibit NF-�B activity or when it is bound to DNA
as a homodimer to transactivate (319, 320, 363–367), requir-
ing different cofactor configurations. In this respect, ligand-
dependent allosteric effects of DNA-bound GR have recently
been observed (368). Fourth, mutants of AP-1 that lack the
N-terminal transactivation domain still repress NRs,
whereas the interaction with CBP is lost (95, 96). Along the
same line, the NF-�B mutant Ser276C, defective in CBP re-
cruitment (76), is as efficiently repressed as the wild-type
molecule (240). In contrast, DNA-binding deficient mutants
of p65, but with an intact predicted coactivator-recruiting
transactivation domain, could no longer repress GC-medi-
ated transactivation (245). These results suggest that com-
petition for common cofactors is probably not a valid mech-
anism underlying mutual repression between GR and p65 or
AP-1 (369). Finally, because various transcription factor fam-
ilies converge to the level of CBP/p300 for their transcrip-
tional activities, the competition model struggles with a lack
of specificity. If a cell were to inactivate the entire cellular
pool of a given coactivator or activator in response to one
signal, such a mechanism would preclude responsiveness by
other activators or cooperativity at other genes in response
to additional signals. As such, posttranslational modifica-
tions (e.g., phosphorylation, acetylation, methylation) (370–
375) or accessory chaperone proteins (e.g., SNIP-1, INHAT,
DREAM, p35rsj) (376–380) may selectively regulate cofactor
access for specific transcription factors. Alternatively, CBP
access may depend on dynamic nucleosome positioning
around the target promoter of interest (381–386).

Today, a number of observations are more consistent with
the notion of territorial subdivision rather than a competition
for factors (387–391). If transcription factor complexes are
assembled within segregated nuclear compartments, then
cofactor effects may be restricted to the designated compart-
ment without affecting the same factors in other compart-
ments associated with different genes (391–401). A specific
nuclear matrix targeting signal has been identified within
GR, including part of its DBD and transactivation domains
(402–404). In addition, sumoylation, proposed to play a role
in protein targeting, has now been observed for NF-�B/I�B
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(73, 74) as well as for GR (167, 170, 171). Of special interest
is the cytoplasmic sequestration of nuclear corepressor
(NCoR) and silencing mediator of retinoid and thyroid re-
ceptors (SMRT) corepressors upon complexation with I�B/
p65 RHD (405, 406). Nucleocytoplasmic shuttling is finally
also affected by cofactor phosphorylation (407, 408).

Besides the spatial dimension of transcription, temporal
aspects also argue against the cofactor competition model.
Biological systems are highly dynamic, and transcription
factors only transiently associate with their cognate DNA
recognition sites and cofactor targets (368, 409–412). In con-
trast to static transcription models supporting ordered re-
cruitment of huge coregulator complexes (372, 413–417),
more recent views propose very dynamic cofactor modules
[(dis)assembly of distinct configurations depends on hsp
chaperone molecules] that hit the promoter in a cyclic way
during transcription (111–113, 418, 419). One study surpris-
ingly revealed that ligand-dependent promoter remodeling,
coactivator association, and target gene transcription in-
duced by NRs are remarkably transient (minutes), despite
continuous receptor association with the target DNA (hours)
(420–422). Importantly, at a fixed DNA concentration, DEX-
bound GR dissociates from DNA 10 times faster than does
ligand-free GR or RU486-bound GR (368). Various experi-
mental approaches (such as transient transfection, microin-
jection), which overload cells with transcription components
(transcription factors, cofactors) neglect the dynamic stoi-
chiometry of cofactor complexes and may not reflect appro-
priate regulation with respect to nuclear architecture (391,
393, 419, 422–425). New RNAi approaches combining mul-
tiple somatic knockouts of transcription components in a
single cell may soon shed new light on various aspects of NR
and coregulator functions (235, 422).

E. New perspectives

1. Histone vs. (co)factor acetylation. Because simple competition
for common coactivators is probably not the main
mechanism of GC repression, the question remains what the
effective mechanism is. As an alternative to cofactor com-
petition, a coactivator repulsion model, based on transcrip-
tion factor domains that prevent enhanceosome-dependent
recruitment of the CBP-PolII holoenzyme complex by repul-
sion, was suggested (415, 426). However, we and others
found no disruption of p65-CBP interaction under repressive
conditions with the GR (240, 427). Over the last 10 yr, a vast
amount of novel proteins interacting with members of the
NR superfamily were identified by two-hybrid screening,
functional complementation studies, far-Western blotting,
and expression cloning (101, 262). Most of these proteins
appear to be ubiquitously expressed and to interact with
multiple members of the NR superfamily, although speci-
ficities and different affinities have also been detected (261,
268, 428–432). It should be noted that a correlation between
levels of histone acetylation and transcriptional activity of
specific loci has been established (433). Similarly, targeted
deacetylation of chromatin may contribute to transcriptional
repression in mammals (434, 435). Some members of nuclear
hormone receptors, such as TR, actively silence gene expres-
sion in the absence of hormone. Corepressors, which bind to

the receptors silencing domain, are involved in this repres-
sion (436, 437). A histone deacetylase (HDAC)-containing
corepressor complex consisting of NCoR, SMRT, mSin-3, and
RPD-3/HDAC-1 was identified to be associated with unli-
ganded RAR/RXR and TR (438, 439). Upon ligand binding,
this silencing complex is displaced by a HAT-containing
coactivator complex comprising CBP, p300/CBP-associated
factor (p/CAF) and SRC-1 (440, 441). Thus NR-dependent
transcription may be regulated by an acetylation/deacety-
lation flip-flop mechanism (442, 443) (Fig. 1J). Of particular
interest is the possibility that multiple ligands for NRs in-
fluence the biological activity of the receptor by selectively
affecting the recruitment of coregulator complexes (361, 362,
397, 444–446). Cocrystal structures have revealed that an-
tagonist-bound and agonist-bound ER display a different
position of helix 12 in the LBD (447, 448). Similarly, antag-
onist-bound PR was shown to interact in vitro with the core-
pressor NCoR (449). Furthermore, NCoR and SMRT associ-
ated only with antagonist-bound PR and ER, as assessed by
a two-hybrid screen (450–452). A novel coregulatory protein,
template-activating factor I� associates with ER� and regu-
lates transcription of estrogen-responsive genes by modu-
lating acetylation of histones and ER� (453). In a molecular
dynamics study, it has recently been shown that the GR DBD
can exist in two conformational states, a transcriptionally
active and a transcriptionally inactive state (454). The trans-
activating DNA-bound homodimeric GR may, as opposed to
the repressing non-DNA-bound monomer, adopt a different
conformation, favoring interactions with NR coactivator or
corepressor complexes (363, 365, 368). In this respect, the
crystal structure of the human GR LBD, bound to DEX and
a coactivator motif, derived from the transcriptional inter-
mediary factor 2 (TIF-2), adopts a surprising dimer config-
uration involving formation of an intermolecular � sheet; an
additional charge clamp determines the binding selectivity
of cofactors, whereas a distinct ligand-binding pocket ex-
plains its selectivity for endogenous steroid hormones (198,
364, 455). The synergism between GR and c-Jun homodimers
is not easily explained; it would require a GRE-bound GR
conformation in a composite element context. The allosteric
model does, however, not suffice to explain why the non-
transactivating form of GR actively hinders the activity of the
Jun/Fos heterodimer (456), unless one assumes that a GR-
bound corepressor molecule can also negatively influence
the neighboring Jun/Fos heterodimer. An important chal-
lenge for future experiments will be to provide the currently
lacking experimental connection between in vitro data (over-
expression) and in vivo behavior of the receptor [chromatin
immunoprecipitations, real-time imaging by means of green
fluorescent protein (GFP), fluorescence resonance energy
transfer (FRET), fluorescence recovery after photobleaching
(FRAP), fluorescence loss in photobleaching (FLIP), bimo-
lecular fluorescence complementation (BiFC), etc.] with re-
spect to its cofactor partners (274, 392, 457, 458). The phys-
iological relevance of predominantly in vitro observations
can ultimately be answered only in knockout mice of indi-
vidual coactivators, like that of SRC-1 (459), or in combined
somatic knockouts (e.g., NCoR, SMRT, SRC-1, CBP) by means
of RNAi (235, 460).

There is no doubt that GR will recruit specific coactivators
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to enable transactivation. The key question to be addressed
is whether a distinct GR cofactor configuration is involved in
repression of NF-�B-mediated gene expression (361, 362, 443,
461). Recently, GR has been found to be associated with
HDAC-2 in vivo. In addition, GR antagonist was able to
abrogate this interaction (462). Blocking HDAC-2 activity by
cigarette smoke in alveolar macrophages was further found
to block GR transrepression and increase cytokine expression
(463). Interestingly, HAT and HDAC activities coexist within
the same complex in the presence of p65 and GR, and they
can each act independently without competing with each
other, as revealed by in vivo chromatin immunoprecipita-
tions (77, 427). A different histone acetylation pattern was
observed in the presence of p65 alone, as compared with p65
and GR. In addition, GR was able to block specific histone
acetylation and CBP phosphorylation under particular con-
ditions, which may be tightly linked to gene repression (427,
464–466). In this configuration, the HDAC inhibitor tricho-
statin A (TSA) again relieves GR-mediated repression. How-
ever, similarly as for CBP overexpression experiments, re-
porter gene activities in response to the GR ligand
DEX�TNF�TSA should be compared with the response to
TNF�TSA, demonstrating that relative repression is con-
served under conditions of inhibited deacetylases (357, 427,
462, 463). In addition, promoter responsivity to TSA does not
necessarily reflect sensitivity to GCs because IL-8 and HIV
promoter activity can be similarly increased with TSA,
whereas only the IL-8 promoter shows a strong repression in
the presence of DEX. This proves that the dynamic balance
of acetylation/deacetylation can be uncoupled from GR-me-
diated repression (224). It still remains to be established how
liganded GR recruits HDAC-2 to the p65-CBP HAT complex.
Besides HDAC-2, association of NF-�B with HDAC-1 and
HDAC-3 has also been observed recently (77, 467, 468). Be-
cause histones (465, 469, 470), NRs (172, 173), NF-�B (468), as
well as cofactors (370, 371, 420, 471) can be (de)acetylated, it
will be interesting to understand cross-talk of the various
modifications under conditions of gene activation and GC
repression (372, 442, 472–474).

2. Methylation of histones, (co)factors and DNA. Besides acet-
ylation, other posttranslational modifications such as phos-
phorylation and methylation also do occur in core histone
tails (465, 466, 469, 470, 475). Different hormone-dependent
histone H3- or H4-specific methyltransferases, e.g., coactiva-
tor-associated arginine methyltransferase (CARM-1), protein
arginine N-methyltransferase (PRMT-1), and SUV39H-1
(472, 476–478), synergizing with acetylases and kinases,
have now been characterized (472, 479–483) and play an
important role in transcriptional regulation. Recent results
reveal an extensive interplay between histone acetylation,
methylation, and phosphorylation in transcriptional control
by nuclear hormone receptors (NHR) (472) (Fig. 1J). Because
the inflammatory response of NF-�B target genes was found
to strongly depend on its histone modifications (H3/H4 acet-
ylation, H3 phosphorylation, and H3 methylation) (484–488)
(Fig. 1J), the potential interference of GCs in histone regu-
lation will remain a hot research issue for the coming years
(489–491).

In addition, hormone-dependent CARM-1 recruitment

has also been shown to methylate the cofactor CBP/p300
(which causes destabilization of its KIX domain), disabling
the interaction with the transcription factor CREB (492–494).
Furthermore, PRMT-1 has been reported to affect transcrip-
tion by methylation of the transcription factor STAT1 (495),
which further regulates its dephosphorylation by phospha-
tases (496). To what extent methylation of either CBP, GR,
AP-1, or NF-�B/I�B contributes to hormone-dependent re-
pression remains an open question (Fig. 1K). Finally, a role
for DNA methylation in both GR transrepression and trans-
activation has been described (497, 498). Interestingly, DNA
methylation was recently found to be guided by histone
modifications (497, 499–501).

3. GR repression and histone/cofactor/transcription factor code. An
emerging theme in cofactor complexes is the juxtaposition of
distinct enzymatic activities and diverse functional domains
(362, 479, 481, 502–504). These include (de)acetylases (CBP,
p300, SRC-1, HDAC-1, HDAC-2), kinases [TIF-1, ribosomal
S6 kinase (RSK), mitogen- and stress-activated protein kinase
(MSK)], methyltransferase [CARM-1, PRMT-1, SUV39H-1,
DNA methyltransferase (DNMT-1)], ubiquitin ligases (E6-
AP), ATPases [brahma-related gene-1 (BRG-1), sucrose non-
fermenting (SNF-2)], proteases (E6-AP) and coregulators
(p/CAF, NCoR, SMRT), which all together orchestrate tran-
scription by fingerprinting the DNA-chromatin interface
(397, 427, 456, 466, 484, 485, 500, 504–507). RNA cofactor
molecules may additionally act as scaffolding, catalyzing, or
targeting platforms that confer further functional specificity
on recruitment of multiprotein complexes by liganded re-
ceptors (440, 508–512). In parallel to modifications at the
DNA-chromatin interface, a specific biological response also
depends on the complete pattern of modifications present in
the surrounding transcription factor or coregulators at a par-
ticular moment.

Tandem cofactor complexes (e.g., CBP-kinase, CBP-meth-
yltransferase) have now been found to modify both tran-
scription factors, cofactors and histone components (83, 88,
479, 492, 503, 513–515), suggesting important cross-level reg-
ulation (transcription factor vs. cofactor vs. chromatin level).
A balance in cofactor levels also plays a role. As such, it has
been suggested that the ratio between the cofactors RIP140
(receptor-interacting protein 140) and GRIP1 (glucocorticoid
receptor-interacting protein 1) codetermines a negative or
positive transcriptional outcome on an AP-1-driven and
estrogen-costimulated promoter (516). By analogy with
histone code (465, 469, 470, 517), the interplay of modifica-
tions at the cofactor (370, 371) and transcription factor levels
(418, 518–521) may similarly have important functional im-
plications (such as, e.g., localization, shuttling/trafficking
characteristics, enzymatic activity, transactivation dynamics,
affinity, and stability) in achieving specific transcriptional
responses.

Although ligand binding is essential for the activation of
GR, the receptor is also subject to posttranslational modifi-
cation by phosphorylation (522–525). GR is a phosphoprotein
in the absence of ligand, with additional phosphorylation on
hormone binding (ligand-dependent). Therefore, hormone-
dependent phosphorylation of GR may help to determine
target promoter specificity, cofactor interaction, dimeriza-
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tion, GR activity, strength and duration of receptor signaling
(recycling), and receptor stability (degradation) (168, 372,
522, 523, 526, 527). Cyclin-dependent kinases, MAPKs (p38,
ERK, JNK), PKA, glycogen synthase kinase-(GSK)-3, and
redox-sensitive enzymes were all demonstrated to affect di-
rectly or indirectly GR phosphorylation (163, 168, 326, 522,
523, 528–535). On the other hand, protein phosphatases 1, 2,
and 5 have also been shown to associate with GR and affect
GR phosphorylation and nucleocytoplasmic shuttling (536–
539). By analogy with phosphorylation-dependent regula-
tion of activation function (AF)-1 activity of ER (540–543), GR
function may be similarly affected; conceivably, phosphor-
ylation of AF domains may alter the receptor conformation
or modulate interactions with coregulators (364, 527, 544,
545). Interestingly, GR phosphomutants of AF-1 showed re-
duced association with the AF-1 coregulator DRIP-150 (168,
546). Furthermore, immunofluorescence microscopy of dif-
ferent phospho-GR isoforms reveals distinct cytoplasmic,
perinuclear, or nuclear populations of phospho-GR, suggest-
ing that differentially phosphorylated receptor species are
located in different subcellular compartments, likely mod-
ulating distinct aspects of receptor function (168, 534, 547).
Considering the different phosphorylation kinetics observed
for different GR residues, GR phosphorylation/function
may be spatiotemporally controlled (168, 547). Whether dif-
ferentially phosphorylated species have a distinct role in
transrepression vs. transactivation remains to be investi-
gated. Interestingly, in GC-resistant asthma patients, where
GR has lost its antiinflammatory (transrepression) activity,
the antiinflammatory function of the receptor can be restored
if the therapy is combined with MAPK inhibitors. It is be-
lieved that hyperactivity of MAPK in asthma-resistant pa-
tients may desensitize transrepression because of reduced
ligand or coregulator affinities due to GR phosphorylation
(163, 544, 548, 549).

Besides GR, NF-�B (28, 42, 77, 80–83) and AP-1 (14, 225,
550, 551) are also subject to phosphoregulation via various
signaling pathways including p38, ERK, JNK, MSK, RSK,
PKA, PKC, phosphatidylinositol 3 kinase (PI3K), and Ras.
Phosphorylation of NF-�B and AP-1 has been demonstrated
to affect its function at multiple levels, e.g., localization,
dimerization, translocation, DNA binding, stability, trans-
activation, and cofactor recruitment. In this respect, GC in-
hibition of AP-1 was found to depend on interference of GCs
with activation of JNK and ERK1/2 (via increased MKP1
levels), which prevented AP-1 phosphorylation (283, 286,
552, 553) (Fig. 1L). Negative cross-coupling between GCs and
NF-�B was described to require PKA phosphorylation at
NF-�B Ser276 in the RHD (326), but in our hands GR re-
pression of NF-�B was independent of p65 Ser276 phosphor-
ylation (240). Similarly, and although NF-�B transactivation
strongly depends on MAPK activity (83, 554), MAPK inhib-
itors and GCs can independently repress NF-�B activity,
suggesting distinct antiinflammatory mechanisms (our un-
published results). Although various nongenomic GC ac-
tions have now been described that are transmitted via mul-
tiple signaling pathways, it remains enigmatic how GCs
inhibit kinases; one theory suggests that membrane-localized
receptors coupled to G proteins may interfere with cytoplas-
mic signaling activities (see Section II.E.7). Recently, a

genomic GC mechanism (requiring GR and de novo mRNA
synthesis) was also described for the phosphatase MKP-1,
which seems to be responsible for inhibition of p38 and/or
ERK activities (552, 555, 556). It will be interesting to know
the basis of the MAPK inhibition or the induction of MKP-1
in response to GC and its importance in inflammation rel-
ative to the mechanism of transcriptional interference (199).

Apart from phosphorylation, other posttranslational mod-
ifications (acetylation, ubiquitinylation, sumoylation, and ni-
trosylation) have also been shown to affect GR (141, 159,
164–173), NF-�B p65 (82, 224, 468, 557–559), and AP-1 func-
tion (559–561) and will further increase the complexity of
transcription factor cross-talk. Considering the transcription
factor p53 as a paradigm for interrelated modifications (562),
it will be a real challenge to map all GR, NF-�B p65, and AP-1
modifications, as well as to understand their functional in-
terplay in a spatiotemporal context.

4. GR repression and chromatin remodeling. Besides chromatin
modifications, another type of structural alteration in vivo is
often called chromatin remodeling. This refers to a dramatic,
localized alteration in the fiber of chromatin in which a par-
ticular nucleosome, or several adjacent nucleosomes, un-
dergo a receptor-controlled structural change. It is quite
likely (although demonstrations in vivo are currently lacking)
that such remodeling effected by liganded NRs occurs by
recruitment of large ATP-using complexes (563). Several re-
ports have already focused on the association of GR with
components of the BRG-1 and/or SWI/SNF complex and
showed that GR can alter chromatin-remodeling properties
(564–570); recruitment was demonstrated to depend on sur-
rounding histone H1 phosphorylation (506, 571, 572) and to
require the transactivation domain and LBD of GR (573–579).
Furthermore, GR effects in the presence of nucleosomes may
strongly depend on rotational and translational positioning
of the responsive elements (580, 581). As such, chromatin
remodeling effects induced by GR can vary according to the
chromosomal location (381, 582). When comparing transcrip-
tional effects of GR on transient vs. chromatin-organized
promoter templates, involvement of distinct GR domains
was observed, depending on the chromatin status of the
promoter (400). Also, nucleosome binding by the RHD of p65
can specifically be stimulated by SWI/SNF but not by BRG-
1/BRG-1-associated factor (BAF)-155 complexes (583, 584).
Whether mutual transrepression between GR and p65 has
the chromatin-remodeling machinery as a target needs fur-
ther experimentation and confirmation in vivo. Exposure of
the HIV-long terminal repeat (LTR) to hormones was found
to result in disruption of the nucleosomal array within the
NF-�B/Sp1 promoter region (585). On the other hand, when
investigating the chromatin structure of the I�B-� promoter
on GC treatment, GCs did not affect the global nucleosome
positioning, but rather allosterically interfered with DNA
binding of transcription factors (259, 586). Similar allosteric
changes were reported for the IL-2 and ICAM promoters
(550, 587).

Note that both glucocorticoids and progestin can stimulate
the I�B-� promoter, demonstrated to have an open chroma-
tin structure, whereas only glucocorticoids can activate the
mouse mammary tumor virus (MMTV) promoter, which has
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a closed chromatin structure. At least one cofactor complex,
the BRG-1 chromatin remodeling complex, is thought to
contribute to this differential promoter activation (588).

5. GR repression and basal RNA polymerase II transcription.
Another way for GR-mediated repression might be the tar-
geting of non-HAT-containing cofactors, bridging p65 or
AP-1 activation domains to the RNA polymerase holoen-
zyme (240, 589) (Fig. 1E). Although the DRIP complex was
first thought to be specific for nuclear hormone receptors,
essentially the same complex [called activator-recruited fac-
tor (ARC)] binds to and is required for transactivation by
other transcription factors, e.g., as the p65 subunit of NF-�B
(261, 546, 590–593). Several DRIP/ARC subunits are also
components of other potentially related cofactor complexes,
such as cofactor required for Sp1 (CRSP) (594), TRAP (595,
596), negative regulator of activated transcription (NAT)
(597), and Srb/mediator coactivator complex (SMCC) (598),
indicating that unique classes of activators may share com-
mon sets or subsets of cofactors. Besides (in)direct contacts
of GR with the RNA polymerase II holoenzyme, p65 and/or
c-Jun can also contact basal transcription factors, such as
TF-II-B, TBP, TBP-associated factor-(TAF)- II and TAF-II-105
(599–602). The possibility exists that GR represses NF-�B, or
vice versa, by a steric hindrance mechanism, i.e. by disrupting
the interaction of p65 or GR with one of these basal factors,
or by modification of one of the basal machinery components
to eliminate a transcriptionally active complex. In fact, ex-
citing new evidence for the latter mechanism has emerged by
demonstrating that GR interferes with phosphorylation of
the C-terminal domain (CTD) of RNA polymerase II, without
inhibiting the assembly of the preinitiation complex. These
results suggest the existence of a novel corepressor, associ-
ated with the LBD of GR, possibly a serine-2-phosphatase or
a serine-2 kinase inhibitor (603–605) (Fig. 1M). Furthermore,
NF-�B was found to stimulate transcriptional elongation of
RNA polymerase II by binding transcription elongation fac-
tor (P-TEFb), which phosphorylates RNA polymerase II CTD
at Ser2 and Ser5 (606, 607). The activity of this transcription
elongation factor P-TEFb, which comprises the kinase CDK9
and cyclin T, is regulated in a specific and reversible manner
by small nuclear RNA molecules (608, 609). Because steroid
receptor RNA cofactor molecules have also been described,
it would be interesting to evaluate whether these molecules
can modulate P-TEFb activities (508, 610). Whether this phe-
nomenon is a general mechanism, also accounting for the
reciprocal repression mechanism, viz. NF-�B-mediated re-
pression of GRE-dependent transcriptional activity, is so far
unexplored. Actually, recent evidence suggests that cofactor-
mediated chromatin modifications may be coupled to RNA
polymerase II phosphorylation and elongation during tran-
scription (611–613).

6. GCs and T cell function. T lymphocytes are responsible for
coordinating the immune response and thus form a major
source of cytokines. Different cytokines induce various sub-
sets of T cells or have divergent effects on proliferation within
a particular subset. Recent studies suggest that the immune
response is in fact regulated by the balance between T helper
(Th)1 and Th2 cytokines. Th1 cells produce IL-2, IFN-�, and

TNF-�, whereas Th2 cells produce IL-4, IL-6, IL-10, and IL-13.
These two pathways are often mutually exclusive. Deregu-
lated chronic Th1 cell responses often result in autoimmu-
nity, whereas prolonged Th2 cell responses can lead to
allergy and atopy (2, 129, 614–616). Inflammation is up-
regulated after activation of Th1 cells, whereas Th2 cells may
play a significant role in down-regulating Th1 proinflam-
matory responses by overproduction of Th2 cytokines. How
helper T cells are directed toward either of these pathways
has been an area of intense research (617). Various data
indicate that GR, AP-1, and NF-�B participate in guiding
these complex pathways (125, 618, 619).

GCs are used in treating immunity disorders such as trans-
plant rejection, owing to their capacity to prevent T cell
activation and apoptosis by a multitude of mechanisms;
these include altered Th lineage development by favoring the
generation of (antiinflammatory) Th2 cells (humoral im-
mune response), suppression of the induction or activity of
established (proinflammatory) Th1 cells (cellular immunity),
and induction of the expression of the immunosuppressive
cytokine TGF-�. To convert the immune response from a
Th1- to a Th2-like phenotype, Th1 cytokine synthesis is in-
hibited and IL-10 production is stimulated (125, 457, 620–
625). In view of the inducibility of TGF-� expression by GCs
and the similarities of their inhibitory effects on cytokine
expression and T cell activation with those induced by
TGF-�, it was speculated that GCs mediate their antiprolif-
erative effect by inducing TGF-� expression at the transcrip-
tional and posttranscriptional level (626–628).

It is now accepted that lymphoid cells, especially
CD4�CD8� thymocytes, are among the few cell types that
undergo apoptosis in response to corticosteroids. Despite the
enormous efforts made in understanding GC-regulated cell
death, the mechanisms are still largely unknown, although
the proteasome, Apaf-1, caspase-9, and Bcl-2 family proteins
have been demonstrated to be critical players (126, 629).
Whether transactivation of death genes or transrepression of
survival genes is required for GC-induced antiproliferative
or apoptotic properties is not clear yet (124, 126, 630). Evi-
dence in favor of either hypothesis has accumulated over the
years. Multiple GR transcriptional regulatory mechanisms
that use distinct receptor domains are used to elicit cytostatic
and cytotoxic responses to GCs (631). In transgenic mice that
have a dimerization-defective GR, thymocytes are fully re-
sistant to GC-induced apoptosis, suggesting that this mode
of cell death is likely to rely on the binding of GR to GREs
(197, 320). In this respect, many attempts have been made to
isolate steroid-induced genes that mediate cell death. Un-
fortunately, no convincing apoptotic target genes of GR have
been reported so far (124, 126, 197, 314, 632), although a
number of gene products are blocking GC-induced apo-
ptosis, such as Bcl-2, Bcl-xL, as well as inhibitors of apo-
ptosis (IAPs) (633–636). On the contrary, other experimental
set-ups with GR mutants that lack transactivation but retain
NF-�B and AP-1 transrepression capacity, point to an intact
GC-induced apoptosis (637). Correspondingly, various tar-
get genes of AP-1 and NF-�B were identified as proliferative
and apoptotic cellular responses (8, 14, 15, 28, 30).

During studies aimed at comparing activation- and GC-
induced apoptosis of T cell hybridomas, it was unexpectedly
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found that these lethal stimuli, when administered simulta-
neously, no longer caused cell death (638–640). This mutual
antagonism was found to result from transcriptional inter-
ference between GR and AP-1/NF-�B, which modulate Fas
ligand (Fas-L) expression (641–644) via the GC-induced
leucine zipper GILZ (335, 640, 645–647). In addition, GILZ-
mediated modulation of T cell receptor (TCR)-induced re-
sponses is part of a circuit, because TCR triggering can also
down-regulate GILZ expression. Results indicate that GILZ
can inhibit NF-�B-driven (p65, p52) and AP-1-driven (Fos,
Jun) gene expression by direct protein-protein interaction
and interference with DNA-binding. This particular mech-
anism has been demonstrated for repression of IL-2/IL-2R/
Fas/Fas-L during TCR responses (642, 645, 647) (Fig. 1N). It
is not clear yet whether GILZ may target other apoptosis-
related transcription factors besides NF-�B and AP-1, such as
p53 or STAT3, because crossreactivity of the latter factors
with GR signaling has also been described (562, 648–651). In
epithelial and breast cancer cells, the serum- and glucocor-
ticoid-regulated kinase-(SGK)-1 (related to Akt/PKB family
kinases) is protecting the cells from apoptosis in response to
GCs and has been identified as a direct GR target gene.
Whether this kinase is also important in GC-mediated T cell
apoptotis or whether it affects GILZ function has not been
explored yet (652–654).

7. Nongenomic GR actions. Because GRs are located in the
cytoplasm, they need to enter the nucleus to alter gene ex-
pression. This typically takes less than 30 min (half-life with
DEX is about 5 min) to result in biological effects (655, 656).
Moreover, other regulatory actions are manifested within
seconds to a few minutes. These time periods are far too rapid
to be due to changes at the genomic level and are therefore
termed nongenomic or rapid actions to be distinguished
from the classical steroid hormone action of regulation of
gene expression (657–659). Distinct GR forms might mediate
the rapid actions of GCs (660–662); these may include either
a unique gene product (such as for the progesterone receptor)
(663), a specific isoform (664, 665), or a modified version of
the classical GR capable of binding, associating, or integrat-
ing into the plasma membrane (657, 666). Alternatively, a
cytosolic subset of GR may participate or interfere with sig-
nal transduction pathways usually associated with mem-
brane receptor-signaling events (667). Many membrane-as-
sociated receptors are believed to signal via G proteins (1,
657, 664, 668–675). Although the cellular response to these
rapid actions may ultimately affect gene expression, the re-
sponse is distinguished mainly by its effect on components
of signal transduction pathways. The rapid effects of steroid
hormones are manifold, ranging from activation of MAPK,
adenylcyclase (AC), PKC, PI3K, SGK-1, as well as heterotri-
meric guanosine triphosphate-binding proteins (G proteins)
(162, 283–286, 654, 657, 676–679). Some of the effects are also
sensitive to classical steroid antagonists, whereas others are
not. One function of the rapid action is to modulate the
classical genomic action of the receptors. This is achieved in
part by modification of the transactivation domains of the
receptors. The rapid action of steroids is therefore an integral
part of the genomic action and, like the latter, it can function

in physiological and pathophysiological processes (161–163,
170, 529, 679).

8. Hormone selectivity by steroid receptors. GR belongs to the NR
superfamily, which includes MR, ER, PR, AR, PPAR, vitamin
D (VDR), and TR hormone receptors (1, 312, 680–682). En-
dogenous steroid hormones such as cortisol, testosterone, or
progesterone share a similar core chemical structure but me-
diate distinct biological responses. Structural comparisons of
GR, AR, PR, and ER start to provide insight into how func-
tional specificity is achieved, because many subtle differ-
ences in the secondary structure and the topology of their
ligand-binding pockets exist in these steroid receptors (364).
Steroid selectivity appears to be achieved by the comple-
mentarity of shape and hydrogen bonding between ligands
and the ligand-binding pocket in the receptors. Via alterna-
tive receptor dimerization of GR with MR, AR, or PR and/or
binding to composite hormone response elements, functional
diversity and cross-regulation can be further extended (144,
148–151, 683). In addition, transrepression of NF-�B and
AP-1 by multiple NRs [i.e., AR, ER, PR, GR, PPAR, ROR-�,
arylhydrocarbon receptor (AhR), vitamin D, RAR/RXR]
(257, 266, 353, 684–694) has now been demonstrated; this
further increases the complexity of steroid specificity.

Evidently, hormone selectivity also depends on cell type-
specific receptor expression, bioavailability of the hormone
(systemic transport), and tissue-specific hormone-modifying
enzymes (metabolism). From the accumulated studies of
many laboratories, it has become increasingly obvious that
the action of any hormone is much more than a simple single
linear sequence of causes and effects. Rather, hormones and
the regulatory pathways they control form interlocking net-
works. The interactive nature of the networks means that the
concentration of each network molecule and the affinity of its
molecular interactions determine the outcome of any hor-
monal effect at a given time in a particular cell type. New
approaches using powerful gene array and proteomic tools
may soon allow further unraveling of these dynamic circuit-
ries (695–697).

9. Steroid resistance and combination therapy. GC resistance
represents a serious clinical problem in various chronic in-
flammatory diseases. GC-responsive tissues with an acti-
vated inflammatory response (mediated by activated NF-�B)
may become resistant to GC signaling because of a blocked
GR function (180, 185, 698, 699). A small proportion of asth-
matic patients are GC-resistant and fail to respond to even
high doses of oral steroids; other chronic inflammatory dis-
eases, such as inflammatory bowel disease, rheumatoid ar-
thritis, and Crohn’s disease, display similar incidences of
impaired responsiveness (700, 701). This resistance is seen at
the site of inflammation, where cytokines are produced, but
not at noninflamed sites. This may explain why patients with
GC-resistant asthma are not resistant to the endocrine and
metabolic effects of GCs and thus develop GC side effects
(702). Although some steroid-resistant patients have abnor-
mally low numbers of GRs or demonstrate reduced ligand-
binding affinity, others show no defects in their GRs or in
steroid absorption or clearance.

It has recently been proposed that NF-�B may increase
expression of the �-isoform of GR (GR-�), a truncated variant
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of the �-isoform (GR-�) that neither binds steroid ligands nor
transactivates steroid-responsive genes, but acts as an en-
dogenous dominant-negative inhibitor of GR-� (336, 703–
705). However, the biological significance of this dominant-
negative effect by GR-� has been questioned, because it is
expressed at rather low levels (706, 707).

Many proinflammatory cytokines, aberrantly up-regu-
lated in chronic inflammatory diseases, require the concerted
activation of NF-�B and AP-1, which are positively con-
trolled by MAPK cascades (708, 709). Steroid-sensitive and
steroid-resistant patients with Crohn’s disease reveal a re-
markably different cellular activation pattern of proinflam-
matory mediators; steroid resistance was found to correlate
with increased epithelial activation of stress-activated pro-
tein kinases (MAPK) and NF-�B (161, 163, 710). Since we
reported on the crucial role of p38 and ERK MAPK in TNF-
dependent NF-�B transactivation (83, 554, 711), we have
tested whether the p38 and ERK MAPK inhibitors SB20358
and PD098059 affect GR inhibition of NF-�B. Inhibition of
gene expression by GR and by the MAPK inhibitors was
additive, which may suggest that different mechanisms are
involved in MAPK and GC-dependent modulation of NF-�B
activity (our unpublished results). Interestingly, p38 MAPK
has been shown to induce GR phosphorylation and to reg-
ulate ligand-binding and coregulator affinity (163, 544). Be-
sides GR, also the TBP was found to be a direct substrate for
p38 MAPK phosphorylation (712, 713) and may further co-
determine steroid sensitivity during GR transrepression
(599, 714–716). Enhanced JNK activation in steroid-resistant
patients may contribute to steroid unresponsiveness by var-
ious mechanisms, either directly by inhibiting GR activity (by
blocking its phosphorylation) or indirectly by increasing
AP-1 activity, which transrepresses the GC effects (717, 718).
Recent studies conducted at the whole animal level further
extend the AP-1-GC cross-talk to a higher order, because JNK
activity can modulate levels of circulating GCs (719).

Next to the stress-signaling aspects discussed above, other
parameters have also been shown to contribute in steroid-
resistant pathologies, viz. NR mutations affecting ligand
binding or cofactor affinities, changed cofactor expression
levels, NF-�B-dependent expression of the multidrug resis-
tance protein MDR1, oncogenic activation of growth factor-
signaling pathways, and altered circuitry in nongenomic NR
pathways (549, 720, 721). Understanding which of these path-
ways dominates in steroid desensitization will further allow
the development of strategies to overcome or bypass such
resistance. Combinations of GCs with MAPK inhibitors or
�-adrenergic agonists have already proven their therapeutic
efficacy in the treatment of inflammatory pathologies (161,
163, 181, 182, 525, 698, 722). Finally, the detection of the
activation state of mediators of the NF-�B and MAPK path-
way could serve as a possible diagnostic tool for early rec-
ognition of steroid resistance, thereby protecting patients
from the undesired severe side effects of prolonged and
ineffective steroid treatment (161, 186, 188).

III. General Conclusion

Drug discovery efforts are presently aimed at selectively
modulating the targets NF-�B and AP-1. So far, GCs are the

most widely used antiinflammatory and immunomodula-
tory agents, the activity of which is based on the interference
with these transcription factors. Understanding their precise
mechanism of action has been clouded by numerous and
sometimes conflicting hypotheses, which may result from
differences in the target gene, receptor, or cell line investi-
gated. This review highlights not only the massive work that
has already led to the development of (at first sight plausible)
models, but also pointed to some of the shortcomings of
current dogmas. We would like to point out that the different
mechanistic models discussed are not mutually exclusive.
For instance, a direct interaction does not necessarily exclude
the need for cofactors; also, it still leaves open the possibility
for loss of transcriptional activity by changing the confor-
mation of the DNA-bound complex, by steric hindrance of
coactivator access, or by active silencing of an otherwise
transcriptionally active factor. Besides the transcriptional ef-
fects discussed here, important GC effects have also been
detected at the posttranscriptional level, such as mRNA de-
stabilization of (pro)inflammatory gene (viz. iNOS, TNF-�,
GM-CSF, COX-2, IL-1, IL-2, IL-6, IL-8) or cell cycle gene (viz.
cyclin D3) transcripts, explaining why GC-mediated repres-
sion of promoter reporter gene constructs is often far less
efficient than the inhibition observed for the corresponding
endogenous genes (723–730).

In conclusion, cofactor(s) (domains) that specifically mod-
ulate interactions of GR with NF-�B, AP-1, and/or the RNA
polymerase II holoenzyme in a particular promoter context,
as well as dynamic subcellular localization of the various
transcription components and spatiotemporal regulated sig-
nals that impinge on the corresponding promoter enhanceo-
somes, remain to be explored further and investigated, and
they will become the prime focus of future investigations (80,
83, 398, 411, 444, 484, 485, 547, 731–736). Recent advances
made in the field include the development and character-
ization of so-called dissociating ligands, in addition to the
generation of mice defective in GR dimerization functions,
both aiming at separating the yin and yang of GR function-
ality (197, 198, 200, 202–208, 320, 737). These new tools not
only permit users to gain insight into the way GCs can
suppress proinflammatory genes but also facilitate the de-
velopment of a targeted strategy to combat inflammation and
autoimmune diseases. They further provide perspectives to
eliminate undesirable side effects. Because chromatin-em-
bedded promoter enhanceosomes behave like sophisticated
protein modules receptive to various signals, future GC ther-
apies may benefit from combined structural (selective ligand
or GR modifier) and signaling (selective inhibitors) ap-
proaches to establish harmless treatments (81, 162, 198, 383,
679, 738–740). Evidently, the molecular mechanisms in-
volved in GR/NF-�B or GR/AP-1 cross-repression are far
from being completely understood.
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Angel P, Herrlich P, Schütz G 2001 Repression of inflammatory
responses in the absence of DNA binding by the glucocorticoid
receptor. EMBO J 20:7168–7173

320. Kellendonk C, Tronche F, Reichardt HM, Bauer A, Greiner E,
Schmid W, Schutz G 2002 Analysis of glucocorticoid receptor
function in the mouse by gene targeting. Ernst Schering Res Found
Workshop 40:305–318

321. Van de Stolpe A, Caldenhoven E, Raaijmakers J, Van der Saag P,
Koenderman L 1993 Glucocorticoid-mediated repression of inter-
cellular adhesion molecule-1 expression in human monocytic and
bronchial epithelial cell lines. Am J Respir Cell Mol Biol 8:340–347

322. De Bosscher K, Schmitz ML, Vanden Berghe W, Plaisance S, Fiers
W, Haegeman G 1997 Glucocorticoid-mediated repression of NF-
�B-dependent transcription involves direct interference with trans-
activation. Proc Natl Acad Sci USA 94:13504–13509

323. Wissink S, van Heerde EC, vand der Burg B, van der Saag PT 1998
A dual mechanism mediates repression of NF-�B activity by glu-
cocorticoids. Mol Endocrinol 12:355–363

324. Hofmann TG, Hehner SP, Bacher S, Dröge W, Schmitz ML 1998
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