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In this chapter we describe an ongoing project designed to investigate gaze control in face 
perception, a problem of central importance in both human and machine vision. The project 
uses converging evidence from behavioral studies of human observers and computational 
studies in machine vision. The research is guided by a formal framework for understanding 
gaze control based on Markov decision processes (MDPs). Behavioral data from human 
observers provide new insight into gaze control in a complex task, and are used to motivate 
an artificial gaze control system using the Markov framework. Furthermore, the efficacy of 
a foveal Markov-based approach to gaze control for face recognition in machine vision is 
tested. The general goal of the project is to uncover key principles of gaze control that cut 
across the specific implementation of the system (biological or machine). 

 
The Problem of Gaze Control 
 
 The majority of work in human and 
machine vision to date has made the 
simplifying assumption that visual acuity 
during stimulus input is equally good across 
the image to be processed. A property of 
human perception, though, is that high acuity 
vision is restricted to a small (2º) foveal region 
surrounding fixation, with acuity dropping off 
precipitously from the fixation point (Anstis, 
1974; Riggs, 1965). The human visual system 
takes advantage of this high-acuity region by 
rapidly reorienting the eyes via very fast 
(saccadic) eye movements (Buswell, 1935; 
Henderson & Hollingworth, 1998, 1999; 
Rayner, 1998; Yarbus, 1967). Recent work in 
computer vision and robotics (Kuniyoshi et al., 
1995; Brooks et al., 1998) suggests that 
outfitting artificial vision systems with a 
central high-acuity region can similarly 
provide important computational advantages in 
computer vision. However, foveated vision 
systems require that the direction of gaze be 
controlled so that the foveal region is 
appropriately directed within the image based 
on the properties of the stimulus and the goals 
of the agent (human or machine), a complex 
real-time learning and control problem. The 

interdisciplinary project described in this 
chapter is an attempt to integrate the study of 
human and machine gaze control during face 
learning and recognition, with the ultimate 
goal of shedding light on the underlying 
principles and properties of gaze control 
within the important context of face 
perception. 

 
 Gaze Control in Human Vision. The 
human visual system takes advantage of the 
high resolving power of the fovea by 
reorienting the fixation point around the 
viewed scene an average of three times each 
second via saccadic eye movements. Saccades 
are ballistic, very fast sweeps (velocities of up 
to 900º/s; Carpenter, 1988) of gaze position 
across the scene during which visual 
information acquisition is severely limited 
(Matin, 1974; Volkmann, 1986). Fixations are 
brief epochs (averaging about 300 ms; 
Henderson & Hollingworth, 1998) in which 
the fovea is directed at a point of interest, gaze 
position remains relatively still, and pattern 
information is acquired from the scene. Given 
the importance of foveation in human vision, 
the control of fixation placement over time 
(gaze control) is a sequential decision-making 
problem that the brain must to solve to  acquire 
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visual information about the world.  
Furthermore, gaze control appears to have 
important consequences for other cognitive 
processes beyond the timely and efficient 
acquisition of visual information. For example, 
Ballard and colleagues have suggested that 
fixation is necessary for enabling computations 
that require the binding of cognitive and motor 
processes to external objects (Ballard, 1996; 
Ballard et al., in press; also Henderson, 1996; 
Milner & Goodale, 1995). An important issue 
in the study of vision and visual cognition 
therefore is the nature of the process that 
controls sequential decision-making for 
saccadic eye movements during dynamic 
visual and cognitive tasks. 
 

 Gaze Control in Computer Vision. 
Most classical methods in computer vision 
process images at constant resolution. In 
contrast, in human vision the magnitude and 
complexity of the input is reduced by the 
decrease in the resolution of the visual field 
from the fovea to the periphery. This decrease 
in resolution across the retina leads to loss of 
information, but the human visual system 
compensates for the loss by employing an 
efficient gaze control mechanism, directing the 
fovea to different points in the image to gather 
more detailed information as it is needed. 
Thus, rather than analyzing an enormous 
amount of detailed visual information at once, 
a computationally expensive proposition, the 
brain processes detailed information 
sequentially, turning vision in part into a 
sequential decision-making  process. Recently 
the importance and the potential of foveated 
vision has gained more attention in computer 
vision (Kunioshy 1995, van der Soiegel 1989, 
Bandera 1996). As these foveated vision 
systems develop, algorithms will be required 
to control the timely placement of the artificial 
fovea over the external scene. 

 A central component of a successful 
general theory of gaze control will be an 
account of how the perceiving agent� whether 
it be a human or a machine� can decide where 
to fixate at each point in time. This problem of 
sequential decision-making for gaze control is 
formidable.  The world offers a dizzying array 
of stimuli to which the agent could direct the 

fovea. Compounding the problem, the 
consequences of particular alternative actions 
(foveating Feature A rather than Feature B, C, 
D... N) may not become apparent until a 
sequence of related fixations has been taken, 
and yet the perceiving agent may need to 
estimate the likely payoff of a particular 
fixation (or sequence of fixations) in advance. 
Furthermore, for a perceiving agent, decisions 
about fixation position need to be made in 
quick succession, leaving little time to sort 
through the space of all possible fixation 
placements and associated outcomes. Finally, a 
well-designed agent should be able to modify 
its fixation behavior through learning, raising 
the problem of how to assign credit to the 
correct decision and how to store all this 
information in memory. 

 
The Problem of Face Perception 

 
 Face Perception in Human Vision. 

Faces are arguably the most important and 
salient visual stimulus a human ever 
encounters. Faces are central in human social 
interaction, providing critical information 
about the age, gender, emotional state, 
intention, and identity of another. There is 
substantial evidence that the perception of 
faces by human observers may be �special� in 
at least two ways. First, the computational 
processes responsible for face perception 
appear to be qualitatively different from those 
involved in the recognition of other kinds of 
objects or complex scenes. This view is 
supported by behavioral data showing that 
faces are preferentially attended by young 
infants when compared to similarly complex 
visual stimuli or even scrambled faces (Bruce, 
1988). When placed in complex scenes, faces 
preferentially draw the attention of adult 
viewers (Yarbus, 1967). Inverting a face 
disrupts face recognition to a greater degree 
than does inverting other types of objects (Yin, 
1969). Second, the neural systems that 
underlie face perception appear to be partially 
independent of those systems that underlie 
object perception more generally. For 
example, single cell recording from neurons in 
the temporal cortex of monkeys has revealed a 
population of cells that respond selectively to 
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faces, and in some cases to specific faces 
(Desimone, 1991). Evidence from human 
neuropsychology has provided examples for a 
double dissociation between object and face 
recognition, with some patients showing intact 
face recognition and impaired object 
recognition (prosopagnosia), and other patients 
showing the opposite pattern (visual object 
agnosia; e.g., Moscovitch et al., 1997; 
Newcome et al., 1994). Recent functional 
neuroimaging studies similarly provide 
evidence that face recognition is supported by 
a neural module in the fusiform gyrus of the 
human cortex that is not active during 
perception of other types of objects (Ishai et 
al., 1997; Kanwisher et al., 1997; McCarthy et 
al., 1997), though it has been suggested that 
this area may be more generally devoted to the 
analysis of exemplars of a well-learned object 
class (Diamond & Carey, 1986; Gautier et al., 
1997). Together, these converging sources of 
evidence strongly support the hypothesis that 
the human visual system contains specialized 
neural and computational systems that are 
devoted to face perception. 

 
 Face Perception in Computer 
Vision. Face recognition is a well-studied 
problem in computer vision, but is not 
completely solved. The problem is typically 
posed in the following way: Suppose we have 
a database of images of N people.  In general, 
all images are the same size, and there are 
several images for each person. Given a test 
image (i.e., an image of a person whose 
identity is not known), one must detect 
whether or not the person is in the database, 
and if it is, correctly identify that person. The 
traditional approach is to treat each image as a 
(high dimensional) vector by concatenating the 
rows of pixels that compose it (e.g. see 
Pentland et al., 1994). The dimensionality of 
the vector, K, equals the total number of pixels 
in the image; each dimension is a measure of 
the gray-scale level (or color) of a particular 
pixel in the image. Analyzed in this way, each 
image in the database defines a point in a K-
dimensional Euclidean space. If it turns out 
that images of the same person are closer to 
each other in this space than they are close to 
images of other people, a clustering algorithm 

can be used to form decision boundaries. Thus, 
to classify a test image it suffices to determine 
the class of its nearest neighbors or, in other 
words, to determine the cluster to which that 
image belongs. 

Although this classical approach has 
led to some highly accurate algorithms for face 
recognition, it suffers from two limitations.  
First, most algorithms are not incremental, in 
that it is not possible to add new faces to a set 
already learned without recomputing the 
patterns of variation over all the existing faces 
in the set.  Second, the classical approach is 
computationally difficult to implement, for 
reasons of dimension. An image as small as 60 
x 80 pixels yields a vector of dimension 4800. 
If the database contains a few hundred images, 
it is difficult if not impossible to find the 
nearest neighbors in reasonable time.  
 A variety of techniques, each with its 
own strengths and weaknesses, have been 
developed to deal with the problems 
incrementality and high dimensionality.  These 
techniques include Principal Component 
Analysis (Pentland et al., 1994), Neural 
Networks (Mitchell, 1997) and Markov 
models (Samaria et al., 1994). From a purely 
computational point of view, any method is 
acceptable, as long as it produces high 
classification rates, e.g., see recent work on 
probabilistic face matching (Mogaddam et al., 
1998). Such methods do not have to imitate 
nature. However, there must be a good reason 
nature chose, through evolution, certain 
algorithms over others. From a theoretical 
point of view, it is of interest to discover the 
nature of the algorithms used by the human 
brain, and to come to understand why those 
algorithms have been selected. Furthermore, 
the superiority of the algorithms used by the 
human visual system (whatever they may be) 
over standard face recognition (and more 
generally, computer vision) algorithms is 
obvious. Of the frameworks used to reduce the 
dimensionality of the face recognition 
problem, the one that appears most promising 
in uncovering the algorithm used by nature, 
given the characteristics of the human foveal 
vision system, is a sequential decision-making 
framework. Our work thus asks the following 
fundamental, and complementary, questions: 
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Figure 1. Example scan pattern of a human 
observer in the behavioral experiment. Dots 
represent fixations, and lines represent 
saccades. 

What role does foveal vision play in face 
recognition by humans, and is it possible to 
develop good performance in face recognition 
by an artificial foveal vision system inspired 
by human data?  
 
An Investigation of Gaze Control in Face 
Learning and Recognition 
 
 We have recently undertaken an initial 
investigation designed to integrate the study of 
gaze control for face learning and recognition 
across humans and artificial agents. This 
investigation entailed a behavioral study of 
gaze control with human participants, and the 
implementation of a face learning and 
recognition system within a Hidden Markov 
Model (HMM) framework. In this section we 
will summarize the work so far and the 
promise it holds for the future. 
 
Behavioral Study: Human Gaze Control 
during Face Learning and Recognition 
 
 In an initial behavioral study (Falk, 
Hollingworth, Henderson, Mahadevan, & 
Dyer, 2000), we asked 16 participants to view 
full-color images of human faces in two 
phases, a study phase in which the participants 
were asked to learn the faces of twenty 
previously unknown undergraduate women, 

and a recognition phase in which the 
participants were asked to distinguish these 

learned faces from distracter faces, drawn from 
the same pool, that had not been learned. In 
addition, during the recognition phase, half of 
the previously learned and half of the new 
(distracter) faces were presented upright, and 
half were presented upside-down. The purpose 
of this latter manipulation was to examine 
whether differences in gaze control to upright 
and inverted faces might be related to fixation 
position or scanning sequence. 
 The method of the experiment was as 
follows: In the Study Phase, 16 participants 
viewed a series of 20 upright faces for 10 sec 
each, with the order of faces and conditions 
randomized within the block. The participants 
then viewed a series of 10 pictures of 
naturalistic scenes for 10 sec each, with the 
order of scenes randomized within the block. 
This scene viewing phase constituted a period 
of time over which the learned faces had to be 
remembered. In the Recognition Phase, the 
same 16 participants viewed 10 new upright 
faces, 10 new inverted faces, 10 previously 
learned upright faces, and 10 previously 
learned inverted faces. Each face was 
presented until the participant responded, or 
for 20 sec maximum. All four types of face 
stimuli were presented in a single block, with 
order of stimuli (and hence condition) 
randomized within that block. Assignment of 
particular faces to particular learning and 
recognition conditions (learned or distracter, 
upright or inverted) was counterbalanced over 
participants.  

The face stimuli used in the study were 
generated from photographs of undergraduate 
women with dark hair. The photographs were 
scanned into a computer and cropped so that 
each picture included only the face and hair. 
Hair was also cropped so that its style was 
relatively uniform across the set of stimuli 
(See Figure 1 for an example). Faces that 
included distinctive features such as 
eyeglasses, jewelry, moles, and so on were not 
used. Each cropped face was pasted onto a 
uniform gray background. All images were 
presented at a resolution of 800 by 600 pixels 
by 15 bit color (32,768 colors) and appeared 
photographic in quality. The faces subtended 
7.56º horizontally by 10.47º vertically on 
average at a distance of about 1 meter; thus, 
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they appeared at a natural size for a human 
face at this viewing distance. 
 The viewer's eye position over the 
course of face learning and recognition was 
precisely tracked using a Generation 5.5 
Stanford Research Institute Dual Purkinje 
Image Eyetracker (Crane, 1994; Crane & 
Steele, 1985). Eye position was sampled at 
1000 Hz, with spatial resolution better than 10' 
of arc. 
 
Summary of Results.  

Study Phase. Figure 1 presents the 
scan pattern (the sequence of fixations and 
saccades) of a single participant viewing a 
single face during the study phase. The straight 
lines represent saccades, and the dots represent 
fixations. This scan pattern is typical: 
Participants tended to focus on the salient 
features of the faces, including the eyes, the 
nose, the mouth. 

To quantitatively examine the data, 
each face was divided into ten scoring regions, 
consisting of the two eyes, the nose, the 
mouth, the two ears, the chin, the two cheeks, 
and the forehead, as shown in Figure 2. All 
fixations for each participant were then 
assigned to one of these regions. Figure 3 

shows the mean percentage of times each 
facial region was entered at least once during a 
trial. As can be seen, both eyes were fixated at 
least once in over 95% of all trials. The nose, 
mouth, and forehead were also examined with 
a high degree of regularity, whereas the 

cheeks, ears, and chin were rarely fixated over 
the course of 10 seconds of viewing time. 
Thus, consistent with the qualitative results of 
prior face viewing studies, participants 
generally distributed the majority of their 
fixations on or near important facial features 
(e.g., Buswell, 1935; Yarbus, 1967). 

Fixation sequences (an example of 
which is shown in the figure above) were 
analyzed using zero- and first-order Markov 
transition matrices of fixation sequences from 
the pre-defined face regions shown in Figure 
2. A Markov analysis quantitatively 
characterizes the distribution of gaze 
transitions from one fixation position to the 
next. The goal of the Markov analysis was to 
determine if the location of fixation position n, 
and hence perceptual and cognitive processing 
during fixation n, influences the spatial 
placement of fixation n+1. The zero-order 
matrix captures the probability of fixating a 
given region (zero-order Markov matrix), and 
the first-order Markov matrix captures the 
probability of moving to a given region from 
another given region. If the location of the 
current fixation does significantly influence 
where subsequent fixations are made, then the  
first-order matrix should deviate from that 
predicted by the base probabilities represented 
by the zero-order matrix. The method used for 
computing the zero- and first order matrices 
was modified from that given by Liu (1998).  

Table 1 provides a summary of the 
Markov matrix analysis. Chi-squared tests of  

Figure 2. Scoring regions on an example face 
stimulus from the behavioral experiment. 
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Figure 3.  Mean percentage of times (averaged 
across viewers) that each facial region was 
fixated at least once. 
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deviations of observed fixation positions from 
those that would be expected based on the 
marginal (zero-order) matrices showed 
systematic deviations from base probabilities, 
suggesting that there was a degree of regularity 
in the fixation sequences. A non-zero number 

baseline fixation rates. Second, there were a 
large number or transitions from one eye to the 
other, suggesting a greater likelihood of 
moving to an eye if the other eye was presently 
fixated. These data provide additional 
evidence that the eyes are a particularly 

 
Target Region 

Region 
L_Eye R_Eye Nos

e 
Mouth L_Ear R_Ear Chin L_Chk R_Chk F_Head 

L_Eye + +    - -  -  

R_Eye  + -  -  - -   

Nose  - + +  -    - 

Mouth  -     +   - 

L_Ear  - -  +      

R_Ear -  -   +     

Chin - -     +   - 

L_Chk  -         

R_Chk -         - 

 
 
 
 
 
 
 
 
 
 

Source 
Region 
 
 

F_Head -  - -      + 
Table 1. Deviations of fixation transition frequencies observed in the first-order Markov matrix from the 
frequencies predicted by the zero-order Markov matrix. Positive (+) indicates more observed fixations than 
predicted. Negative (-) indicates fewer observed fixations than predicted. 
 

in the difference matrix in Table 1 indicates a 
reliable difference between the predicted first-
order matrix and the observed first-order 
matrix as determined by the Chi-Square 
analysis. A plus sign in the difference matrix 
means that there were more observed 
transitions in that cell than would be predicted 
from the zero-order matrix. A minus sign 
indicates fewer transitions than would be 
predicted. As Table 1 demonstrates, in several 
instances position of fixation n significantly 
affected the selection of fixation n+1 position. 
For example, notice that along the diagonal 
axis there is almost a uniform influence of 
current fixation position. This shows that the 
tendency to refixate the currently fixated facial 
region was higher than that predicted by 

important or salient facial features for gaze 
targeting during face learning. 
 
 Recognition Phase. In the 
Recognition Phase, participants viewed the 
twenty previously learned faces and 20 new 
faces drawn from the same pool. Half of the 
new and old faces were presented upright, and 
half were presented upside-down. Participants 
viewed each face freely and indicated, via 
button press, whether the current face was new 
or was one of the faces viewed during the 
learning phase. When the participant pressed 
the response button, the current face was 
removed from the computer screen and, 
following a brief calibration screen, the next 
face was displayed. 
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Overall accuracy in the Recognition 
Phase, collapsed over new and old faces, was 
about 73% correct. As expected from the face 
recognition literature, accuracy was influenced 
by the orientation of the face in the 
Recognition Phase, with accuracy of about 
79% in the upright condition and 66% in the 
inverted condition. Average viewing time 
during the Recognition Phase was about 2.3 
seconds, with participants taking about 560 ms 
longer to respond to new than to learned faces, 
and about 144 ms longer to respond to inverted 
than to upright faces. 
 Interestingly, although viewing time in 
the Recognition Phase was about an order of 
magnitude shorter than in the Learning Phase, 
the distribution of fixations over the faces in 
these two phases was remarkably similar 
(Falk, Hollingworth, Henderson, Mahadevan, 
& Dyer, 2000). This similarity can be seen in 
Figure 4, which shows the proportion of total 
time spent on the major features defined in 
Figure 2. As can be seen, the same features 
received the same proportion of total fixation 
time in the Learning and Recognition Phases. 

Also clear in Figure 4 is the fact that inversion 
in the Recognition Phase had little influence 
on the distribution of fixation time over the 
faces. A similar pattern is observed when 
proportion of discrete fixations rather than 

proportion of fixation time is used as the 
dependent measure. These data suggest that, at 
least insofar as the overt selection of facial 
features for visual analysis is concerned, the 
face inversion effect is not due to a transition 
from more wholistic face processing to more 
local, feature-based processing. 
 We can draw four main conclusions 
from this behavioral study. First, selection of 
facial features through overt orienting of the 
eyes is observed during both face learning and 
recognition. Although we don't have evidence 
here that gaze control is strictly necessary for 
face learning and recognition, it is striking that 
when allowed to view faces freely, human 
observers moved their eyes over the face, 
making clear choices about which features to 
orient to and which to ignore. Second, as 
shown by the results of the Markov analysis, 
the selection of a fixation site during learning 
is driven, in part, by the specific feature that is 
currently under fixation. Thus, there is some 
sequential dependency to gaze control 
decisions. Third, the facial features selected 
for fixation during recognition are very similar 
to those selected for fixation during learning. It 
is tempting to conclude that feature processing 
during learning influences this selection during 
recognition, though we do not yet have direct 
evidence for this proposition. Fourth, the facial 
features selected for fixation during 
recognition of an upright face are very similar 
to those selected for fixation during 
recognition of an inverted face. This finding is 
intriguing, because one might have expected 
that recognition of upright faces, hypothesized 
to be supported by wholistic pattern 
processing, would lead to less feature-specific 
analysis than would inverted faces, which are 
hypothesized to be supported by feature-based 
analysis (Farah, Tanaka, & Drain, 1995; 
Tanaka & Farah, 1993). 
 
Formal Framework: A Probabilistic Model 
of Sequential Decision Making 
 We have seen in the previous section 
that human gaze control is regular and 
efficient. It is deeply puzzling how to endow 
machines with the apparent fluidity and 
accuracy of human gaze control. What is 
needed is a formal framework that both 
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Figure 4. Proportion of total time spent on the 
major facial features in the Learning Phase and 
the four Recognition conditions. The first four 
bars represent the four recognition conditions: 
familiar -upright, familiar-inverted, unfamiliar-
upright, unfamiliar-inverted,. The fifth bar 
represents the study phase. 
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accounts for patterns of human gaze and 
allows the development of algorithms for gaze 
control of an artificial visual system. The long-
term goal of our project is to investigate 
whether Markov decision processes (MDPs) 
can be the basis of such a framework.  

MDPs are a well-developed formal 
framework for studying sequential decision 
making, originally proposed in the operations 
research literature (Bellman, 1957; Howard, 
1960; Puterman, 1994). In recent years, MDPs 
have become a unifying formalism for 
studying a range of problems in artificial 
intelligence and robotics, from planning in 
uncertain environments (Kaelbling et al., 
1998) to learning from delayed reward 
(Mahadevan et al., 1992).  MDP-based models 
range in complexity from the simple case of 
Markov chains when states are observable and 
there is no choice of action, to the intermediate 
cases of hidden-Markov models (HMMs) when 
states are not observable but there is no action 
choice and Markov decision processes (MDPs) 
where states are observable but there is a 
choice of action, leading finally up to the most 
complex case of partially-observable MDPs 
(POMDPs) where states are not observable 
and the agent has a choice of action in any 
state. In our project to date, we have focused 
first on the HMM case, since the underlying 
states during the process of face recognition 
are not themselves observable, but have to be 
inferred from fixation points during 
recognition. Our goal is to use the simpler 
HMM case as a jumping-off point to the more 
complex POMDP problem of allowing the 
agent choice of what the next fixation point 
should be. One advantage of starting with the 
HMM case is that the principal algorithms for 
learning an HMM model (the well-known 
Baum Welch, forward-backward, and Viterbi 
algorithms) all extend nicely to the POMDP 
case. 
 
Computational Study: Gaze Control for 
Face Recognition using Hidden Markov 
Models 

In a recent study we tested the potential of 
the HMM formalism in face recognition 
(Minut, Mahadevan, Henderson, & Dyer, 
2000). HMMs are in one important respect not 

a good model of human gaze control, since 
humans clearly do not follow a fixed, 
predetermined sequence of action when 
scanning faces.  However, HMMs are 
appealing because they do not require us to 
specify the nature of the underlying states of 
the system (which are not known for human 
gaze control), only the actions available to it 
(shifts of gaze), and the (probabilistic) effects 
of the actions on the information available to 
the system.  Furthermore, it should eventually 
be possible to build on the HMM framework 
to introduce more flexible selection of action, 
hence turning it into a POMDP. 

  
Figure 5. Face stimuli used in the HMM study. 

We used a database consisting of 27 women 
and 19 men with 6 images per person, as 
shown in Figure 5. Each image was 512x512 
pixels. We defined 10 regions of interest for 
each face, loosely based on the human fixation 
patterns we observed in the behavioral study, 
and we built a left to right HMM 

1 2 10

left eye right eye forehead

Figure 6. Regions of interest for the HMM 
study. 
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corresponding to these regions (see Figure 6). 
 The goal of this experiment was to 
build an HMM for each class (person) in the 
database, using input from a foveated vision 
system. We produced for each image an 
observation sequence that consisted of 30 
observation vectors. Each observation vector 
was produced by foveating on the same image 
multiple times. The system fixated 3 times in 
each of the 10 regions, and moved to the next 
region in sequence. This order was of course 
arbitrarily imposed by us and does not agree 
with the patterns that human subjects seem to 
follow. The HMM was built when all of its 
parameters had been learned (i.e. all the state 
transition probabilities and all the observation 
density functions). The parameters were 
learned (updated) incrementally, as new 
observation sequences were processed. The 
HMMs for different faces had the same 
transition structure over states, but different 
(observation density and state transition 
probability) parameters. The recognition task 
was to determine, for a new sequence of 
observations, which of the learned HMMs was 
most likely to apply to the data. Each HMM 
was built based on 5 images for each face, 
with the 6th image used for testing of 
recognition performance. Thus, recognition 
was tested using images that had not been seen 
during learning.  
 Our simulated fovea was a software-
defined square patch centered at the desired 
fixation point, of the same resolution as the 

original 
constant 

resolution 
image. We 
surround this 
patch with rings 

of 
�superpixels'� 

which double in 
size as we 
move from the 
center towards 
the periphery of 
the image. A 
superpixel is 
simply a small 

square patch whose size is a few (physical) 

pixels. All pixels that make up a superpixel 
have the same graylevel value, namely the 
average of the pixels in the same region in the 
original image. Within a ring, all superpixels 
have the same size. Their size doubles only 
when one moves from one ring to another. 
Furthermore, each ring contains the same 
number of layers of superpixels. (Figure 7 
shows a 512 x 512 image (1:4 scale), fixation 
on the left eye.). A second dimensionality 
reduction is then achieved by applying a 
standard compression technique (DCT) to the 
image (Figure 8 shows the reduced image 
obtained by mapping each superpixel to a 
single physical pixel).  

 HMMs 
have been used 
recently to model 
faces ( Nefian & 
Hayes, 1999; 
Samaria & Young, 
1994). However, 

those 
implementations 

did not make use of 
foveated vision. 
Instead, the 
observations for 
each image were 
produced by first 

dividing the image into horizontal 
(overlapping) stripes, and then computing the 
DCT coefficients in each stripe. The images 
used were already small (about 100 x 100 
pixels), 25 times smaller than our images. Any 
attempt to run the HMM algorithms using 

Figure 7.  Example of a 
face representation with 
fixation positioned on the 
left eye. 
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Figure 9.  Recognition performance with 
foveation versus subsampling. 

Figure 8. Reduced 
image obtained by 
mapping superpixels to 
a single physical pixel. 
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observations coming from 512 x 512 images 
would be futile. In order to compare our 
method with Samaria's we had to reduce the 
size of our images through subsampling (vs 
foveation) in order to achieve constant 
resolution.  
 In this study ten regions of each face 
were foveated (three fixations in each region), 
and we varied the number of states in the 
HMMs from 3 to 10, comparing foveated 
vision and subsampling. Interestingly, peak 
performance for foveated vision was observed 
at about 6-7 states, rather than 10, as expected 
(see Figure 9). Since the fixation points are 
spread rather uniformly in the ten regions 
across the image, it is unlikely that the states 
arose due to clustering, and it is very intriguing 
why the HMM algorithms, purely 
mathematical in nature, came up with an 
optimum of 6-7 states. This may suggest that 
the states of the recognition process do not 
correspond to regions in the image, or simply 
that some regions out of the 10 available prove 
uninformative.  It is also interesting to note 
that the optimal number of states for 
subsampling is different (and higher) than the 
optimal number of states for the HMMs built 
through foveation 
 Although our purpose was not 
necessarily to produce a better recognizer than 
those produced by classical methods, but 
rather to determine if the HMM framework 
using foveated vision could produce at least 
reasonable results, it is interesting that we 
achieved higher accuracy using foveation than 
with subsampling (see Figure 9). In addition, 
the sequential decision-making framework 
represented by the HMM approach has other 
advantages. For example, it provides a method 
that allows incremental learning of new 
classes. That is, new faces can be added to the 
database without recomputing the 
representations of all other learned faces. We 
are encouraged that performance benefits may 
be derived from incorporating foveal vision 
and sequential information acquisition into 
artificial recognition systems. 
 
 Further Extensions of the MDP 
Approach.  Although our models so far do not 
incorporate a decision-making component that 

must be present in a realistic model of gaze 
control, we believe that they do support the 
assumption that the MDP-based models will 
serve as a useful framework for the study 
human gaze control for face perception. MDP 
models provide a formalism that can be used 
to generate specific hypotheses about the 
decision processes supporting gaze control. 
Importantly, these models can be formulated at 
the appropriate temporal and spatial grain size, 
with an action conceptualized as a �macro�  
that specifies the goal of the saccadic system 
in a hierarchical control structure. 
Conceptualizing gaze control at this grain size 
is consistent with current cortical control 
models (Pierrot-Deseilligny et al., 1995), and 
makes the decision process far more tractable 
(Sutton, R. S., Precup, D., Singh, S. ,1999). In 
addition, recent work on foveated vision and 
gaze control in AI and robotics suggests that 
the MDP approach may provide new insights 
into decision-making for fixation placement 
and the manner in which gaze control is 
learned and optimized to support new 
perceptual tasks (Bandera et al., 1996; Darrell, 
1995; Rimey & Brown, 1991). 
 Although there has been some work 
on the applicability of Markov models to 
human scan patterns, this work has 
predominantly been descriptive and motivated 
by a theory of perceptual memory (the scan 
path theory, Noton & Stark, 1971) that has not 
been strongly supported by the behavioral data 
(Groner et al., 1984; Stark & Ellis, 1981). 
Furthermore, little work has specifically 
attempted to integrate Markov analyses of 
gaze control with face perception and 
recognition (though see Althoff & Cohen, 
1999). Finally, prior work applying Markov 
models to human gaze control has focused on 
the sequence of fixation placement. Another 
important aspect of gaze control is the duration 
of each fixation. Fixation durations in scene 
viewing have a mean of about 300 ms, but 
there is considerable variability around this 
mean (Henderson & Hollingworth, 1998). A 
substantial proportion of this variability is 
accounted for by the fact that an important 
function of gaze control is to gain information 
about the world, as suggested by the findings 
that fixation durations are shorter for 
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semantically constrained objects (Friedman, 
1979; Henderson et al., 1999; Loftus & 
Mackworth, 1978) and objects that have been 
fixated previously (Friedman, 1979). 

Human eye movements are examples of 
actions whose primary purpose is to gain 
information, not to change the state of the 
world. Such information-gathering actions 
naturally arise in partially observable 
environments, where the agent does not have 
complete knowledge of the underlying state. 
POMDPs are an approach to extending the 
MDP model to modeling incomplete 
perceptions, as well as to naturally treat 
actions that change the state as well as collect 
information (Kaelbling et al., 1998). Here, in 
addition to states and actions, there is a finite 
set of observations O (much smaller than the 
set of states), where an individual observation 
may be a stochastic function of the underlying 
state. POMDPs can be viewed as MDPs over a 
much larger set of belief states, which are a 
vector of estimates of the probability that the 
agent is in each of the underlying real states. 
Given a belief state, the agent can update the 
belief state on the basis of new observations 
and actions in a purely local manner. However, 
finding optimal policies in a known POMDP 
model is intractable, even for problems with as 
few as 30 states (Littman, 1996). The ultimate 
goal of our work is to determine how humans 
are able to solve POMDPs in restricted 
situations, such as face recognition, by 
exploiting particular properties of the image 
(e.g. faces are symmetric, and the main 
features of a face remain invariant over age or 
ethnicity). We assume that careful 
investigations of human gaze control will 
provide insights into how artificial gaze 
control systems can meet these challenges. 
These insights will not only lead to a better 
theoretical understanding of gaze control in 
humans and machines, but also result in 
practical algorithms for robots. 

 
Conclusion 

 
The ability to control the direction of gaze in 
order to properly orient the fovea to important 
regions of the external world is important for 
all mammals, including humans. This ability is 

especially critical in the case of face 
perception, where the need to quickly 
determine the identity, kinship, intention, and 
emotional state of another is central to all 
social interaction and presumably, to survival. 
In human vision, evidence suggests that the 
ability to learn and recognize faces uses 
dedicated neural and cognitive systems that 
have evolved to support it. In machine vision, 
face perception is an important test-bed for 
computational theories of vision, is necessary 
for constructing robotic systems that can 
interact socially with humans, and has 
important practical applications in the 
construction of computer security systems that 
operate via person identification. The promise 
of foveated vision systems with appropriate 
gaze control for artificial vision is in its 
infancy, but holds great promise. 
Our current work is designed to extend our 
study of gaze control during face learning and 
recognition. We are particularly interested in 
finding answers to three specific questions: 
First, how are potential fixation targets 
selected by human observers, what stimulus 
factors determine which target is fixated next, 
and what advantages are conferred by 
choosing these fixation sites over others? 
Second, to what degree is the specific ordinal 
sequence of fixations important in the 
perceptual learning and recognition of faces? 
Third, to what degree is the ordinal fixation 
sequence over faces affected by factors such as 
the viewing task and the stimulus set? We are 
addressing these questions by using 
converging methods from behavioral studies of 
human gaze control and MDP studies using 
computational modeling and implementation 
of artificial gaze control. 
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