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ABSTRACT OF THE DISSERTATION 

Genetic and Cellular Studies of the Podocyte in Focal Segmental Glomerulosclerosis 

by 

Haiyang Yu 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular and Cellular Biology 

Washington University in St. Louis, 2015 

Professor Andrey Shaw, Chair 

The podocyte forms the outer layer of the filtration barrier in the glomerulus to prevent albumin 

leakage. Podocyte damage leads to focal segmental glomerulosclerosis (FSGS), a leading 

cause of chronic kidney disease. The cause of the majority of FSGS cases is unknown and 

referred to as sporadic FSGS. Genetic studies have identified genes as monogenic causes of 

FSGS in patients with a strong family history, but these cases account for only a small proportion 

of the FSGS population. Whether genetic susceptibility contributes to sporadic FSGS and which 

cellular process in the podocyte initiates the pathogenesis of FSGS are important questions that 

remain to be elucidated. To answer these questions, my research followed two different lines of 

inquiry. I performed a genetic analysis of both familial and sporadic FSGS patients, and I 

investigated the role of the actin cytoskeleton in podocytes. Based on expression analysis, we 

identified a new FSGS susceptibility gene, ARHGAP24, and showed that it was mutated in a 

family with FSGS. Since ARHGAP24 functions to maintain high Rho and low Rac levels, my 

work suggested that this balance might be important in FSGS. Using an inducible transgenic 



 x 

mouse model and multi-photon intravital microscopy, we validated that high activity of Rac1, one 

of the Rho family GTPases, is responsible for podocyte foot process effacement, increased 

membrane dynamics, and podocyte shedding into the urine, three important processes that lead 

to proteinuria and FSGS. By sequencing a large cohort of sporadic FSGS patients, I identified 16 

potential FSGS susceptibility genes that were novel.  Using a novel podocyte-specific indicible 

RNAi mouse model that I developed, four of these genes were validated. Some of these genes 

function as regulators of the actin cytoskeleton. Our genetic study further reinforces the role of 

actin cytoskeletal regulation in the pathogenesis of FSGS.
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Chapter 1. Introduction 

 

1.1 Podocytes form the outer layer of the kideny filtration barrier 

The kidney is the organ where the urine forms. In adults, each kidney has 0.33~1.4 million 

glomeruli [1]. The primary function of the glomerulus is to filter small solutes in the blood and to 

generate the primary urine. During the filtration process, the blood flows into a tuft of capillaries 

from the afferent arteriole. Molecules that are smaller than 40 kilodaltons (kD), including glucose, 

urea, inorganic ions and water, pass through the filtration barrier, and enter the Bowman’s space 

(Figure 1.1A). The filtration barrier is a three-layer structure: the inner layer is the fenestrated 

endothelium; the middle layer is glomerular basement membrane (GBM), which is formed by 

negative-charged and glycosylated extracellular matrix proteins; the outer layer is formed by a 

kind of visceral epithelial cells, the podocycte (Figure 1.1B) [2]. 

Podocytes are unique-shaped epithelial cells that wrap around the glomerular capillaries. 

They extend major (primary and secondary) processes from the cell body. The tertiary processes 

(foot processes) interdigitate with those from neighboring podocytes to form a mesh-like network 

(Figure 1.1B and 1.2A). The foot processes are connected by an electron-dense, ~40nm-wide 

structure, the slit diaphragm, which composed of many adhesion proteins such as nephrin, 

NEPH1, P-cadherin, and FAT (Figure 1.2B). As terminal-differentiated cells, podocytes rarely 

proliferate post developmental period.  

Pathological changes usually cause foot processes and the slit diaphragm to disappear. 
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The interface between two neighboring podocytes is flattened (Figure 1.3). This morphological 

abnormality is usually referred to as “foot process effacement”. The loss of the organized foot 

process–slit diaphragm meshwork is accompanied by the loss of the barrier function, and thus 

large size proteins in plasma could leak into the Bowman’s space, which further results in 

proteinuria. Albumin (MW ~70kD) leakage is measured as an indicator for the barrier function.  

 

1.2 Focal Segmental Glomerulosclerosis 

Focal Segmental Glomerulosclerosis (FSGS) is a glomerular disease that causes end stage 

renal disease. As one of the leading causes, FSGS accounts for about 4% of the patients who 

developed ESRD, and 40% of adult patients with nephrotic syndrome [3]. About ninety years ago, 

Theodor Fahr, a German pathologist, published the first drawing of FSGS glomerulus with great 

details [4]. Later, in 1957, A. Rich described that the cardinal characteristic of FSGS is 

progressive scaring in some glomeruli [5]. In the early stage of this disease, sclerotic tissue (scar) 

is found in a portion of the glomerulus (segmental), which only occurs in a subset of glomeruli 

(focal) (Figure 1.4). The scarred glomerulus often exhibits other pathological features such as 

mesangial hypercellularity and accumulation of foam cells in the capillaries [6]. Global sclerosis 

can be diagnosed as FSGS progresses [7]. Recent studies suggest that the incidence of FSGS 

has been increasing since the first clinical-pathological study in 1970s [3]. The major cell type 

that is affected in this disease is the podocyte. At electron microscopic level, the cardinal feature 

of FSGS is the effacement of podocyte foot processes. FSGS can be classified into familial 

FSGS and sporadic FSGS base on the patient family history of this disease. Sporadic FSGS is 
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more common in the patient population. 

Although the details of the pathogenesis of FSGS are not fully uncovered, genetic studies of 

familial FSGS and animal models show that both genetic and environmental factors are 

important in this disease. Genetic approaches have identified 8 genes, which are all specifically 

expressed in the podocytes, as FSGS susceptibility genes: ACTN4 [8], ANLN [9], CD2AP [10–

12], INF2 [13], MYH9 [14, 15], NPHS2 [16], and TRPC6 [17, 18]. In African Amercian population, 

APOL1-G1 and -G2 alleles cause susceptibility to HIV-associated FSGS and 

hypertension-associated kidney disease [19, 20]. The combined heterozygosity of Cd2ap and 

Synpo induces FSGS in mice with incomplete penetrance: in 25% of the mice after 6 months of 

age [21]. This result suggests that genetic background could contribute to the susceptibility to 

FSGS. A nephrotoxic drug-induced FSGS model also supports this hypothesis. Adriamycin 

induces severe glomerular injury and FSGS in BALB/cJ, 129X1/SvJ and 129SvImJ mouse 

strains, but C57BL/6J strain is relatively resistant to this drug [22]. Recently Papeta et al 

discovered the genetic cause of this phenomenon, C6418T SNP in Prkdc gene, by meiotic 

mapping and genome sequencing [23]. This variant protects podocyte from mitochondria DNA 

depletion during Adriamycin treatment. Thus, there could be other triggers, like drug treatment or 

virus infection, which initiate the pathogenesis of FSGS.  

Aging is also an important factor that contributes to the susceptibility of FSGS. Since 

podocytes are terminal differentiated and they do not undergo mitosis to generate new 

podocytes, the capacity of healthy podocytes to cover extra space is limited [24]. Each day, 

hundreds of podocytes are shed into the urine, and capillary surface left will be covered by the 
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remaining healthy podocytes through a process called podocyte hypertrophy [25]. Diseases and 

environmental factors that dramatically reduce podocyte number will be an important aspect of 

FSGS pathogenesis, because when the capillary surface exceeds the capacity of the remaining 

podocytes, the barrier system is permanently damaged and the damaged glomerulus will under 

go sclerosis. Studies that use diphtheria toxin induced podocyte depletion in transgenic rats 

show that >40% of podocyte depletion induces segmental to global glomerulosclerosis [26]. 

 

1.3 The actin cytoskeleton supports the morphology and function of 

podocytes 

Actin cytoskeleton is a dynamic cytoskeleton network in all eukaryotic cells. The 

polymerization and depolymerization of actin filament networks allow the cell to form dynamic 

structures that facilitate migration, cytokinesis, endocytosis, and other biological processes that 

are essential to maintain the normal functions of a cell. Actin filaments can also form stable 

bundles, which are named stress fibers, to facilitate the adhesion between cells and the extra 

cellular matrix. Actin network is responsible for generating and transmitting force. Transverse 

arches and dorsal stress fibers are the structures that are involved in generating force on the cell 

body and transmit them to stress fibers and branched actin networks [27].  

The fine structure of podocyte foot processes is supported by actin cytoskeleton network 

[28]. Transmission Electron Microscopy (TEM) shows that there electron dense actin bundles are 

enriched in the center of the foot processes, which are surrounded by loose cortical actin 

networks (Figure 1.5A,B). These actin bundles initiate from the major processes. Curved actin 
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bundles connect the straight bundles of two neighbor foot processes that initiate from the same 

major process [29] (Figure 1.5C). Details about how these structures form during podocyte 

differentiation are still not known. The actin cytoskeleton network in the foot processes connects 

the adhesive complex in the slit diaphragm, the focal contacts near the basement membrane, 

and the apical cell membrane of the foot processes. 

Slit diaphragm is an adhesive complex that maintains interaction between adjacent 

podocytes. It connects to the actin cytoskeleton network inside the foot processes [30] (Figure 

1.2B). Nephrin and Neph1 are transmembrane proteins that form the “zipper” like structure in the 

slit diaphragm. They have large extracellular domains that bind to another Nephrin or Neph1 

molecules from the adjacent podocyte. Nephrin has a small intracellular domain that binds to 

several other cytoplasmic proteins like CD2AP and Nck [31–33]. Cd2ap directly bind to actin 

filaments, cortactin, and capping proteins [34–37]. Nck recruit WASp, another nucleation factor 

of actin filaments [38]. These proteins regulate branched actin network, and are believed to form 

a signal hub that maintains the normal morphology of foot processes.  

Other actin-associated proteins also play important roles in podocytes. Alpha-actinin4 

(encoded by ACTN4) connects between actin fibers to form stable bundles [39]. INF2 (Inverted 

formin 2) antagonizes the Rho-activated formin mediated actin polymerization and also the 

localization of formin in cultured podoytes [40]. Non-muscle myosin IIA is responsible for tension 

generation in response to the upstream signling on the actin bundles, and regulates podocyte 

adhesion and migration [41]. Synaptopodin also functions to facilitate the polymerization of 

G-actin [42]. It rescues the tropomyosin defects in drosophila and human cells [43].  
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The focal complexes that mediate the podocyte-GBM interaction also connect to actin 

network in the foot processes. Focal complexes transmit the force that is generated by the 

cytoskeleton networks inside the cell to the extracellular matrix. They also can sense the force 

change outside the cell and convert it into intracellular signals. Integrin complexes are the 

transmembrane proteins mediating the inside-out and outside-in signals [44]. In podocytes, the 

most common integrin isoforms are α3β1 and αvβ3 [45, 46]. The extracellular domain of α3β1 

and αvβ3 recognize laminin and collagen. The intracellular domains of multiple integrin 

heterodimers assemble the platform of the focal complexes. Focal adhesion molecules, including 

talin, zxyin, paxilin and vinculin form layers and connect to actin stress fibers. Kinases such as 

FAK, SRC and ILK are regulated by the focal complex proteins and regulate the actin 

cytoskeleton structure in vivo [47]. 

 

1.4 Rho Family GTPases are the main regulators of Actin cytoskeleton 

Rho family guanosine triphosphatases (hereafter called Rho GTPases) are a family of 

molecular switches that mainly regulate actin cytoskeleton structures [48]. The most studied 

members are Rac1, RhoA and Cdc42. Rho GTPases cycles between GTP-bound, active 

conformation and GDP-bound, inactive conformation. GTP-bound Rho GTPases activate the 

downstream pathway by interacting with their effector molecules (Figure 1.6A). The C-terminus 

of most Rho GTPases is modified by farnesyl or geranylgeranyl isoprenoid lipid, which is 

required for membrane targeting. Active Rac1 recruits WAVE complex to the plasma membrane 

and induces actin polymerization into branched network. Cells with high Rac activity forms large 
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lamellipodia (Figure 1.6B,C). GTP-bound RhoA, on the other hand, activates formin mediated 

actin polymerization, resulting in long linear actin fibers and bundles (Figure 1.6B,C). Active 

RhoA induces the assembly of stress fibers. Active Cdc42 induces finger-like extensions through 

recruiting Wiskott–Aldrich Syndrome protein (WASp) to the plasma membrane and release its 

auto-inhibitory conformation (Figure 1.6B,C). WASp further recruits Arp2/3 complex and 

assembles thin, linear actin filaments, which protrude from the plasma membrane, and form 

finger-like structures. 

Direct modulation of the activity of Rho GTPases affects podocyte morphology and function 

[49–51]. Podocyte-specific expression of CA-RhoA induced late onset of proteinuria and FSGS 

[49]. Podocyte specific deletion of Cdc42 in mice causes congenital nephrotic syndrome and foot 

process effacement [50]. However, deletion of either Rac1 or RhoA in podocytes does not induce 

any defects in mice. Podocyte specific deletion of Rac1 in mice causes resistance to protamine 

sulfate perfusion-mediated transient podocyte damage and foot process effacement, but 

susceptibility to a chronic model of podocyte injury in UNX/DOCA-salt-hypertensive mouse 

model [52]. 

 

1.5 Regulators of Rho GTPases 

Three families of regulators mainly control the activity of Rho GTPases. Two classes of Rho 

GTPase regulators control the processes of cycling between GTP- and GDP-bound states: 

Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) (Figure 

1.6A) [53]. The Rho GTPases are slow GTPases by themselves. The exchange between 
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GDP-bound and GTP-bound forms is also ineffective. GEFs facilitate GTP loading, and increase 

the level of active Rho GTPases. GAPs enhance the catalytic activity of Rho GTPases, 

converting the active Rho family GTPases to the inactive state. A third family of regulatory 

proteins are the guanine nucleotide dissociation inhibitors (RhoGDIs) (Figure 1.6A), which 

sequester Rho GTPases at GDP-bound state, and pull it out of the cycling pool. RhoGDIs are 

shown as “chaperones” for small GTPases because they stabilize GDP-bound state, and also 

mediate the translocation of Rho GTPases between different membrane compartments [54, 55].  

Although the exact physiological function of the Rho GTPase regulators has not been 

extensively studied in podocytes, several studies indicate their crucial roles in regulating 

podocyte morphology and function. RhoGDI-alpha knockout mice (Arhgdia-/-) exhibit congenital 

nephrotic syndrome, and the knockout mice have high Rac activity in the kidney [56]. Tyrosine 

phosphorylation on nephrin endoplasmic tail could also regulate p190RhoGAP through Rac [57]. 

Human protein atlas project has also identified GAPs and GEFs that are highly expressed in 

podocytes, including ARHGAP12, ARHGAP28, ARHGAP35, SRGAP2, ARHGEF11, and 

ARHGEF12 [58]. 

Some podocyte specific and/or FSGS susceptibility genes also regulate the activity of Rho 

GTPases. Nephrin controls the Rac activity through PI3K-p85 signaling pathway [57]. 

Synaptopodin, another podocyte-specific protein, protects Rho from degradation by 

Smurf-mediated ubiquitination, and inhibit the Cdc42-IRSp53 interaction [59, 60]. Mutations in 

TRPC6, encoding a calcium channel, are associated with familial FSGS [17, 18]. Recently 

studies showed that TRPC6 forms complex with RhoA, and TRPC5 forms complex with Rac1 
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[61]. Calcium influx through TRPC6 increases active RhoA, while through TRPC5 increases 

active Rac1. PLCE1, a risk gene for steroid resistant nephrotic syndrome and FSGS, is 

responsible for efficient activation of Rac1 [62].  

 

1.6 Large-scale genetic studies discover FSGS susceptibility genes 

Next-generation sequencing (NGS) technologies, revolutionary sequencing methods 

developed in early 2000s, allow researchers to access to personal genome in a faster and more 

economic than traditional sanger sequencing method [63]. These methods read millions of 

sequencing reactions simultaneously by high throughput monitoring approaches [64]. Using 

NGS methods, researchers can identify specific genetic variants in a large cohort of patients. 

These methods have been applied to investigate cancer genomes [65], to identify susceptibility 

variants that associate with diseases such as autism and diabetes [66, 67], and to map the 

epigenetic modification loci in the genome. Since the cost of whole genome sequencing for each 

patient is still high, Hildebrandt’s group combines linkage analysis of familial nephrotic syndrome 

with NGS recently identified several new genes that could cause FSGS, including ADCK4 [68], 

ARHGDIA [69], and EMP2 [70].   

Genome-wide association studies (GWAS) have been widely used to identify the linkage 

between common variants that associate with diseases before NGS technologies became 

popular. This method scan hundreds of thousands common DNA variant in human. Several 

GWAS have identified 24 susceptible loci for chronic kidney disease, including SHROOM3, 

UMOD, and DACH1 [71, 72]. GWAS method was also applied to study HIV-associated FSGS in 
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African American population, and identified genetic locus between APOL1 and MYH9 that are 

strongly associated with HIV-associated FSGS [14]. G1 and G2 variants of APOL1 are the 

coding variants for FSGS susceptibility [19, 20].  

 

1.7 Current mouse genetic models of podocyte diseases 

Using in vitro models such as podocyte cell culture to study the function of podocytes is 

limited since cultured podocytes do not generate foot processes. Thus in vivo models are 

necessary to investigate and truly understand podocyte functions. Currently, transgenic and 

knockout mouse models are the most widely used in vivo models for podocyte diseases. Rat 

models are also commonly used and they are more susceptible to kidney damage than mouse 

models. However, rats require more space and longer breeding period, and also the 

transgenic/knockout tools in rat models are not as efficient as in mouse models. Knockout mouse 

models have shown that many podocyte-specific genes and FSGS disease genes are essential 

for maintaining the podocyte foot process structure in vivo, including Nphs1 [73], Nphs2 [74], 

Neph1 [75], Actn4 [76], and Cd2ap [77]. Loss of function of some other genes in mice does not 

cause any podocyte dysfunction, but increases the susceptibility to artificial kidney injury models, 

such as Synpo [21], Trpc6 [78], and Myh9 [79]. The combinations of heterozygosity in 

Cd2ap/Synpo and Cd2ap/Fyn also induce proteinuria and podocyte foot process effacement, the 

early signs of FSGS in aged mice, indicating there could be genetic complexity in FSGS patients 

[21]. 
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1.8 Intravital imaging by multi-photon microscopy 

Since podocyte cell culture cannot recapitulate the foot process architecture in petri dishes, 

intravital imaging is the only option to investigate the podocyte cell dynamics at the physiological 

conditions. Currently multi-photon microscopy (MPM) is the best method to perform non-invasive 

live imaging in vivo. This method based on a theory that multiple low-energy, long wavelength 

photons can excite a fluorophore simultaneously (Figure 1.7A). The interaction between multiple 

photons and the fluorophore will induce sequential electronic transition that equals to a single 

high-energy photon [80]. The first MPM microscope was invented by Denk et al in 1990 [81]. 

Since low-energy, long-wave length photon is the source of excitation, MPM achieves three 

following advantages: first, it penetrates tissue up to several hundred micrometers, which is 

much deeper than another microscopy system; second, it reduces phototoxicity and bleaching of 

the fluorophores; third, it reduces out-of-focus background signal because fluorophores are 

excited only at the laser beam focus (Figure 1.7B) [82, 83]. Since the excitation is not linear, 

second harmonic signal can be generated to visualize membrane structures like kidney capsule 

and fascia by visualize their native fluorescence [84]. 

All the features make MPM an excellent approach to track podocytes in vivo. Using MPM, 

Hackl et al showed podocyte migration in response to kidney injuries in podocin-GFP and 

podocin-CRE confetti mice [85]. Endlich et al observed podocyte migration during the 

development of zebrafish glomeruli. They also observed that zebra fish podocytes and their 
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branch patterns are stationary at physiological conditions [86]. Peti-Peterdi’s group also reported 

increased calcium waves in podocyte during unilateral ureteral obstruction induced kidney injury 

by using podocyte specific GCaMP mice [87].  

 

1.9 Conclusions 

The cell body of podocytes and the slit diaphragm between the interdigitating foot processes 

from adjacent podocytes form the outer layer of the filtration barrier to prevent albumin leakage 

into the primary urine. The organized structures of foot process and the slit diaphragm are the 

indicators of the intact barrier function. In podocyte diseases, the effacement of foot processes 

and the loss of slit diaphragm are often observed. These pathological changes are also 

correlated with albuminuria. Actin network is the major cytoskeleton structure inside the foot 

processes. Cortical Actin network connects the cell-cell adhesion of adjacent podocytes (slit 

diaphragm) to the actin bundles in the center of the foot processes, which is thought to be the 

cytoskeletal support of the foot process. Actin bundles are also connected to the focal complexes 

that mediate the interaction between the podocytes and GBM. As the major regulators of actin 

cytoskeleton, Rho family small GTPases are very important in maintaining foot processes and 

slit diaphragm. Previous studies have indicated that dysregulation of the activities of Rho 

GTPases could cause foot process effacement and glomerulosclerosis. However, it is not fully 

understood about which small GTPase play the most important role in the podocyte damage.  

FSGS, a leading cause of end stage renal failure, is one of the diseases that caused by 

podocyte damage. It remains unknown about how much genetic risk causes susceptibility to 
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FSGS. FSGS can be classified as familial FSGS and sporadic FSGS based on whether another 

family member is diagnosed with the same disease or not. Genetic studies of familial FSGS 

cases have identified many FSGS causing genes, most of which are components of the slit 

diaphragm, and/or regulate the actin cytoskeleton structure. Gain or loss of function mutations of 

FSGS genes could cause actin cytoskeleton remodeling in the podocytes, which could be the 

reason of foot process effacement. However, FSGS genes do not explain the sporadic form of 

this disease, because they are rarely mutated in sporadic cases. Whether there is a genetic 

factor and how much of the genetic risk is in the sporadic FSGS remain to be investigated.  
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1.10 Figures 

 
Figure 1.1 The structure of the glomerulus 

(A) The image showed the composition of the glomerulus. Afferent arteriole branched into 
capillaries ball inside the Bowman’s capsule. During the filtration process, water and small 
solutes can penetrate through the filtration barrier and become the glomerular ultrafiltrate. The 
rest of the blood including blood cells and proteins remain in the capillary loops, which combine 
to form the efferent arteriole. (B) The structure of the filration barrier. The capillaries inside the 
Bowman’s capsule are fenestrated. They are covered by podocytes. Between foot processes of 
the podocyte, big transmembrane proteins form an adhesive structure called slit diaphragm 
(filtration slits). (Adjusted from Human Physiology, Chapter 12, 
https://humanphysiology2011.wikispaces.com/12.+Urology, by Rausch A and Kortleever C)  
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Figure 1.2 The podocyte and the slit diaphragm 

(A) Scanning microscopy of the podocyte. FP: foot processes; P: primary processes. (B) A 
cartoon of the cross-section view of foot processes and slit diaphragm. Important proteins and 
their locations are also shown [88, 89]. 

 

 

 

 

Figure 1.3 Foot process effacement 
(A) A cartoon showed the effaced podocytes loose their foot processes. The effaced area looks 
like lamellipodia. (B) Transmission electron microscopy shows normal and effaced foot 
processes.  
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Figure 1.4 Histology of FSGS  

The upper glomerulus shows features of glomerulosclerosis on the left lobe. The lower 
glomerulus is normal. The red-staining area on the left lobe of the upper glomerulus shows sign 
of scarring (scleosis). (A mouse kidney was stained by a method called periodic acid-Schiff stain) 

 

 
Figure 1.5 The actin cytoskeleton in the podocyte foot processes 

(A) An cross-section image of a foot process imaged by transmission electron microscopy. The 
arrow showed the actin bundle in the center of the foot processes, the star showed the loose 
actin network at the bottom of the foot processes and surrounding the actin bundle. The 
arrowheads show the slit diaphragm. (B) A cartoon of a foot process. AB: Actin bundles, CAN: 
cortical actin network, SD: slit diaphragm, GBM: glomerular basement membrane, and En: 
endothelial cells. (C) A bird view image of foot processes. The open arrow shows curved actin 
bundles that connects adjacent foot processes extended from the same podocyte; the closed 
arrows show the straight actin bundles inside the foot processes. This figure is adapted from 
Sakai et al [29]. 



 17 

 

 
Figure 1.6 Rho Family GTPases: regulation and function 

(A) The regulated catalytic cycle of Rho family GTpases. Lipid modification allows Rho GTPases 
attach to the membrane structures in the cell. GEFs facilitate the exchange of GDP to GTP and 
convert GDP-bound Rho GTPases to GTP-bound form. GTP-bound Rho GTPases activate the 
downstream effectors through allosteric mechanisms. GAPs stimulate the GTPase activity of 
Rho family GTPases and convert the GDP-bound form to GDP bound form. RhoGDI proteins 
bind the GDP-bound form, and pull it our from the membrane structure. (B, C) Active Rho 
stimulates stress fiber formation through mDia, activate Rac stimulates lamellipodia formation 
through WAVE complexes, and active Cdc42 stimulates filopodia formation through WASP. This 
figure is adapted from Tubulewicz et al [90] and 
http://www.mechanobio.info/modules/go-0051893 
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Figure 1.7 The mechanism and advantage of multi-photon microscopy (MPM) 

MPM reduces the fluorescent background compare to single photon microscopy. This figure is 
adapted from 
http://cleoqels2010.blogspot.com/2010/05/expo-idea-generation-and-multiphoton.html 
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Chapter 2. Arhgap24 Inactivates Rac1 In mouse Podocytes, and A mutant Form is 

Associated with Familial Focal Segmental Glomerulosclerosis 

 

2.1 Abstract 

Podocyte has a complex actin-based cytoskeleton that maintains efficient barrier function of 

glomeruli. Disruption of components of the actin cytoskeleton results in podocyte damage and 

cell loss, which may lead to a prototypic injury response called focal segmental 

glomerulosclerosis (FSGS). From genes that are highly expressed in mouse podocytes, we 

identified a RhoA-activated Rac1 GTPase-activating protein, Arhgap24, which was upregulated 

in podocytes as they differentiated, both in vitro and in vivo. Decreased Arhgap24 expression 

results in high level of active Rac1 and Cdc42, which influenced the cell shape and membrane 

dynamics. Consistent with a role for Arhgap24 in maintaining normal podocyte functions in vivo, 

we identified a mutation in Arhgap24 that impaired its Rac1-GAP activity by sequencing FSGS 

patients and that was associated with disease in a family. Thus, Arhgap24 contributes to the 

careful balancing of RhoA and Rac1 signaling in podocytes, the disruption of which may lead to 

kidney disease. 

 

2.2 Introduction 

The kidney filters plasma and reabsorb salts and nutrients to maintain the appropriate 

extracellular environment. The proximal component of the nephron, the glomerulus, is the 

primary filtration barrier that prevents the loss of serum proteins into the primary filtrate. The 
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glomerular filtration barrier consists of fenestrated endothelial cells, a thick glomerular basement 

membrane (GBM), and specialized epithelial cells (podocytes) arranged in series. Diseases 

affecting the filtration barrier, especially of the GBM or the podocyte, result in the leakage of 

serum proteins into the urine, progressive damage to the glomerulus, and loss in renal function 

[91]. 

The podocyte has a complex cellular architecture composed of an octopus-like cell body 

that attaches to the GBM through actin-based foot processes [88]. In kidney diseases that are 

associated with proteinuria, such as focal segmental glomerulosclerosis (FSGS) and minimal 

change disease, podocytes rearrange their actin cytoskeleton network, which results in retraction 

or effacement of foot processes [92]. While it is unclear how this change leads to the leakage of 

serum proteins, foot process effacement appears to be a key step in the breakdown of the 

filtration barrier. Studies to understand the molecular basis of foot process effacement in vitro 

have shown that, in response to stress, podocytes switch from a RhoA-dependent stationary 

state to a Cdc42- and Rac1-dependent migratory state [28, 93]. These studies suggest the 

intriguing possibility that altered membrane dynamics and increased cell motility are the 

mechanisms underlying foot process effacement in vivo. 

Since podocyte membrane reorganization is a common feature of proteinuric kidney 

diseases, we sought to understand the regulation of membrane dynamics of these cells. Using 

an in vitro model of podocyte differentiation, we found that podocytes reduced their membrane 

ruffling activity as they were differentiated. We found that decreased membrane ruffling in 

differentiated podocytes was dependent on the presence of a GTPase-activating protein (GAP), 
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Arhgap24. Previous works from Stossel and colleagues have shown that Arhgap24 (also known 

as Filamin A-binding RhoGAP [FilGAP]) is a GAP for Rac1, and it binds to branched actin 

network and suppresses lamellipodia formation and cell spreading downstream of RhoA 

signaling [94]. Their work also shows that the highest level of Arhgap24 transcript is in the kidney. 

Here we show that Arhgap24 was specifically expressed in podocytes in the kidney. Its 

expression increased as these cells differentiate in vivo. The ARHGAP24 gene is highly 

conserved, implying an important role for the gene product. We sequenced the DNA from 

patients with FSGS, and identified a loss-of-function mutation in the ARHGAP24 gene in kindred 

with familial kidney disease. Taken together, these results suggest that Arhgap24 controls the 

RhoA-Rac1 signaling balance in podocytes that could be dysregulated in proteinuric kidney 

diseases, such as FSGS. 

 

2.3 Methods 

2.3.1 Podocyte cell culture 

Generation and propagation of conditionally immortalized murine podocyte cell lines has 

been described previously [95, 96]. Briefly, podocytes were propagated on collagen I–coated 

dishes at 33°C (permissive temperature) in RPMI supplemented with 10% fetal bovine serum 

(FBS) and 10 U/ml of recombinant mouse interferon-γ (IFN-γ, a gift from Robert Schreiber, 

Washington University School of Medicine). To induce differentiation, the medium was changed 

to RPMI with 5% FBS without IFN-γ, and the cells were shifted to 37°C (nonpermissive 

temperature) for 7 to 14 days. Under these conditions, cells underwent growth arrest, increased 
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in size, and developed elongated cell processes. 

For live cell imaging experiments, podocytes were stably transduced with YFP-actin by 

lentivirus transduction, and purified by automated cell sorting. Control and knockdown cell lines 

were generated using a bicistronic lentiviral vector incorporating the targeting shRNA and 

YFP-actin expressed downstream of an internal ribosomal entry site. The control knockdown 

sequence targeted the firefly luciferase gene (Fluc). The 2 Arghap24 knockdown constructs 

targeted the sequences 5′-TTAAGGAGCTAATGAAACA-3′ (line 451) and 

5′-TAACGATGGTCATAAGAAA-3′ (line 756), respectively. Stably transduced cell lines were 

generated by automated cell sorting for YFP expression. 

2.3.2 RNA isolation 

Isolation of primary mouse podocytes using Dynabead perfusion and flow cytometric cell 

sorting has been described previously [97, 98]. RNA was extracted from 6,000 primary 

podocytes and from cultured podocytes grown at the permissive or nonpermissive temperatures 

using an RNeasy Kit (Qiagen) following the manufacturer’s protocol. RNA quality was verified by 

gel electrophoresis and to ensure that the 260/280 nm absorbance ratio was greater than 1.8.  

2.3.3 Arhgap24 antiserum production 

Amino acids 390–604 of isoform 1 (NCBI accession no. NP_083546) of mouse Arhgap24 

were cloned downstream of glutathione-S-transferase (GST) in the pGEX4T-1 expression vector. 

This portion of Arhgap24 is well conserved across species and lies downstream of the GAP 

domain in both isoforms of Arhgap24. GST-tagged Arhgap24 was expressed in BL21 (DE3) 

pLysS E. coli. After induction with IPTG and sonication of bacteria, soluble GST-Arhgap24 was 
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batch purified using glutathione-agarose beads. GST-Arhgap24 was eluted with reduced 

glutathione and dialyzed against PBS to remove excess glutathione. This antigen was emulsified 

in complete Freund’s adjuvant (Sigma-Aldrich) and was used to immunize rabbits and Armenian 

hamsters. Hamster handling and immunization were performed by the Washington University 

School of Medicine Hybridoma Center. Specificity for Arhgap24 was confirmed by 

immunoblotting FLAG-tagged Arhgap24 transfected into HEK293 cells. Specific signal in 

immunoblotting and staining experiments was confirmed by quenching of signal with antiserum 

preincubated with antigen. 

2.3.4 Confocal imaging 

Podocytes grown on sterilized collagen I–coated coverslips at 33°C or 37°C were fixed with 

4% PFA in PBS for 10 minutes. Cells were then blocked and permeabilized for 1 hour with PBS 

with 2.5% FBS and 0.1% saponin. Primary rabbit anti-Arhgap24 antiserum (1:300) in blocking 

buffer was applied to the cells for 1 hour at room temperature. After four 5-minute washes with 

blocking buffer, coverslips were mounted using ProLong Antifade mounting medium (Invitrogen) 

according to the manufacturer’s protocol. Images were captured with confocal settings using an 

Olympus FluoView FV1000 microscope. A similar protocol was used to stain Arhgap24 in 

formalin-fixed paraffin-embedded mouse kidney after antigen retrieval. Podocytes were stained 

using a mouse anti-synaptopodin monoclonal antibody (a gift from Peter Mundel, Massachusetts 

General Hospital, Boston, Massachusetts, USA) [99]. For wound healing experiments, 

differentiated knockdown podocytes were plated to confluence on collagen I–coated coverslips. 

A scratch was created using a sterile 200 µl pipette tip. Loosely adherent cells were washed 
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away by 3 vigorous washes with PBS. The cells were transferred to culture medium, and, at 

various time points, coverslips were harvested and fixed in 4% PFA in PBS. Cells were identified 

by nuclear staining with DAPI (4',6-diamidino-2-phenylindole). 

2.3.5 Tissue isolation and immunoblotting 

Whole mouse tissues (~200 mg) were snap frozen on dry ice and homogenized in cold 

lysis buffer containing 1% NP-40 and protease inhibitors using a dounce homogenizer. Post 

nuclear supernatants were loaded to equalize actin levels by immunoblotting. Glomerular 

isolation/enrichment experiments using magnetic particles were performed as described 

previously [97]. 

2.3.6 Live cell imaging and kymograph analysis 

Podocytes that were lentivirally transduced with YFP-actin were cultured in glass bottom 

dishes at 33°C or differentiated at 37°C (nonpermissive condition) for 7 to 14 days and then 

imaged. Similarly, YFP-actin transduced Arhgap24 knockdown (lines 451 and 756) and control 

knockdown (Fluc) cell lines were differentiated on glass bottom dishes for 7 to 14 days before 

imaging experiments. Sequential images were captured every 15 seconds for a 20-minute 

duration using an Olympus FluoView FV1000 microscope. Movies were assembled using 

Olympus Fluoview software. The Multiple Kymograph plug-in of ImageJ ( http://rsbweb.nih.gov/ij/) 

was used to generate kymographs at 3 different locations of maximal membrane ruffling for each 

cell imaged [100]. For each kymograph, up to 13 actin spikes were measured, and the average 

length was computed as described previously [101]. A value of 1 was assigned to kymographs 

without a measurable actin spike. Ruffling movies were generated by H. Suleiman, and the 
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kymographic analysis was performed in a blinded fashion by S. Akilesh. Images were assembled 

in Adobe Photoshop. 

2.3.7 Sequencing 

DNA was obtained from affected (n = 310) and control (n = 180) individuals. DNA from 96 

of the control individuals was purchased from the Coriell Institute. PCR primer pairs were 

designed to completely sequence exons and exon-intron junctions of ARHGAP24. Bidirectional 

sequencing using ABI Big Dye 3.1 sequencing chemistry on an ABI PRISM 3730 sequencing 

platform (Applied Biosystems) was performed. Sequences were aligned using Sequencher 

software (Gene Codes) and manually verified. The Q158R variation was determined by A.S. 

Shaw’s laboratory and verified by M.P. Winn’s laboratory. In addition, the exon incorporating this 

variation was sequenced in an additional 554 control chromosomes to rule out the possibility that 

it represented a low-frequency noncausal variation. 

2.3.8 Haplotype analysis 

MSM primer sequences for markers D4S1538, D4S1534, D4S2409, and D4S2460 were 

obtained from UniSTS (http://www.ncbi.nlm.nih.gov/unists) or designed with Primer3 software 

(http://frodo.wi.mit.edu/primer3/). Carboxyfluorescein succinimidyl ester–labeled (FAM-labeled) 

oligonucleotides were synthesized by Invitrogen Life Technologies and were run on the 3730 

DNA Analyzer (Applied Biosystems) and analyzed using GeneMapper Software v4.0 (Applied 

Biosystems). The analysis was carried out by visual inspection, assigning the most likely linkage 

phase by minimizing the number of recombinants in the pedigree. 

2.3.9 Arhgap24 dimerization assay 
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FLAG- or GFP-tagged wild type or Q156R Arhgap24 were cotransfected into HEK293 cells. 

Cell lysates were immunoprecipitated with M2 mouse anti-FLAG antibody (Sigma-Aldrich) with 

protein A conjugated to sepharose beads. The immunoprecipitates were resolved by SDS-PAGE 

and then immunoblotted with JL-8 mouse anti-GFP antibody (Invitrogen). 

2.3.10 Rac1, Cdc42, and RhoA pull-down assays 

The GST-tagged Pak1-PBD used for the pull-down assays was expressed in BL21(DE3) E. 

coli. The recombinant protein was bound to glutathione-agarose beads stored at –80°C until use. 

For the active Rac1 pull-down assay, HEK293T cells were seeded in 6-cm dishes and 

transfected at 80%–90% confluence using Lipofectamine 2000 reagent according to the 

manufacturer’s protocol (GIBCO BRL). Cells were transfected with FLAG-tagged wild-type or 

mutant Q156R Arhgap24 or a titration of the 2 constructs, keeping the total DNA transfected 

constant. Twenty-four hours after transfection, the cells were lysed, and a sample of the lysate 

was retained for measurement of total Rac1 and FLAG-Arhgap24 levels. Equal volumes of the 

remaining lysates were incubated with GST-PBD bound to glutathione-agarose beads. 

Rac1-GTP bound to the beads (active Rac1) was eluted with Laemmli sample buffer and 

separated on a 12% polyacrylamide gel. After transfer to a nitrocellulose membrane, active and 

total Rac1 were detected with the 23A8 mouse anti-Rac1 monoclonal antibody (Upstate 

Biotechnology). FLAG-tagged Arhgap24 was detected with the M2 mouse anti-FLAG antibody. 

For Cdc42 activity assays, active Cdc42 was immunoprecipitated with GST-PBD bound to 

glutathione-agarose beads and detected with B-8 mouse anti-Cdc42 (Santa Cruz Biotechnology 

Inc.). For RhoA activity assays, active RhoA was immunoprecipitated with GST-Rhotekin bound 
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to glutathione-agarose beads and detected with 26C4 mouse anti-RhoA (Santa Cruz 

Biotechnology Inc.). The immunoblot signal was detected using a LI-COR Odyssey Imaging 

System using their infrared dye-labeled secondary reagents. Data are representative of at least 3 

independent experiments. 

2.3.11 Statistics  

Data are represented as mean ± SD. In all cases, group differences were assessed by 

ANOVA with post-test correction (Bonferroni-Holm). A P value of less than 0.05 was considered 

significant. 

2.3.12 Study approval 

Patient and control DNA samples were obtained after written informed consent and with 

local Institutional Review Board approval (Washington University School of Medicine, Duke 

University Medical Center, Université René Descartes, Brigham and Women’s Hospital, and the 

NIDDK). All animal experiments were conducted with approval of the Washington University 

Animal Care and Use Committee 

 

2.4 Results 

2.4.1 Differentiated podocytes reduce ruffling of their cell membranes 

Podocytes can be propagated in vitro by conditional expression of a temperature-sensitive 

SV40 large T antigen at the permissive temperature of 33°C. Shifting the cells to the 

nonpermissive temperature (37°C) induces destabilization of the large T antigen, growth arrest, 

and morphologic changes that mimic podocyte differentiation in vivo [95]. During development, 
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podocytes reorganize their cell membranes from broad sheets into sieve-like foot processes [88]. 

Conversely, in proteinuric diseases, podocytes lose this membrane complexity and exhibit 

effacement of their foot processes [92]. Therefore, we hypothesized that the membrane 

dynamics of podocytes would be regulated in this in vitro model of cell differentiation. When 

undifferentiated podocytes were cultured at the permissive temperature, they exhibited highly 

ruffled plasma membranes (Figure 2.1A). In contrast, the plasma membranes of the 

differentiated podocytes had a very smooth, flat appearance. In order to quantitate these 

membrane dynamics, we performed time-lapse imaging of live podocytes transduced with yellow 

fluorescent protein–actin (YFP-actin). While undifferentiated podocytes rapidly ruffled their 

membranes, differentiated podocytes had reduced membrane motility, correlating with the 

reduced frequency of ruffled cell membranes (Supplemental Videos 1 and 2; supplemental 

material available online with this article; doi: 10.1172/JCI46458DS1). This difference is also 

apparent by kymographic analysis (Figure 2.1A and 2.1B). 

2.4.2 Podocytes upregulate Arhgap24 when they differentiate 

Next, we evaluated the expression of the small G proteins and their regulators that might 

control membrane motility in this in vitro model of podocyte differentiation. We isolated RNA from 

undifferentiated and differentiated mouse podocytes and performed gene expression analysis 

using microarrays. Our cultured podocytes expressed genes for several known podocyte-specific 

proteins, such as Wilms tumor protein 1 (Wt1), podocin (Nphs2), CD2-associated protein 

(Cd2ap), podocalyxin (Podxl), synaptopodin (Synpo), α-actinin-4 (Actn4), and to a lower extent 

nephrin (Nphs1). We focused our analysis on the expression patterns of known regulators of the 
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actin cytoskeleton and membrane dynamics, such as GAPs and guanine nucleotide exchange 

factors (GEFs) for Rac1, RhoA, and Cdc42 (a list of these genes is available as a supplemental 

data table in the Gene Expression Omnibus (GEO) database, series 

GSE23856; http://www.ncbi.nlm.nih.gov/gds/). Of these known GAPs and GEFs, the message 

for Arhgap24 was highly upregulated when podocytes were differentiated in vitro. Arhgap24 was 

an intriguing gene, because previous work from Stossel and colleagues had shown high 

transcript levels in the kidney [94]. However, the cell expressing Arhgap24 within the kidney was 

unknown. We found that RNA from in vivo–isolated podocytes also had a high level 

of Arhgap24 transcript [96]. Next, we examined Arhgap24 gene expression in publicly available 

microarray data (the GenitoUrinary Molecular Anatomy Project; www.gudmap.org) generated 

from microdissected glomeruli isolated at various stages of kidney development. The 

Arhgap24 message was upregulated as glomeruli progressed from the E12.5 renal vesicle stage 

to the E15.5 S-shaped body to the almost mature E15.5 renal corpuscle (Figure 2.2A).  

We confirmed the microarray results by quantitative RT-PCR. Arhgap24transcript levels 

increased ~70 fold when podocytes were differentiated (Figure 2.2B). To confirm upregulation at 

the protein level, we generated Arhgap24-specific antiserum in Armenian hamsters and rabbits. 

Preabsorption of these antisera with Arhgap24 antigen abolished specific signal (Supplemental 

Figure 2.1). Podocytes upregulated a 95-kDa band corresponding to the Arhgap24 protein when 

they were differentiated in vitro (Figure 2.2C). The lower band seen in the undifferentiated 

podocytes (at approximately 50 kDa) did not correspond to the predicted molecular weight of 

known splice isoforms of Arhgap24. This 50kDa bind likely represents a specific degradation 
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product of Arhgap24, perhaps due to increased turnover of the protein in undifferentiated 

podocytes. Confocal imaging of podocytes showed that Arhgap24 was enriched in structures at 

the base of the cell, and the staining intensity at these sites increased with differentiation 

(Figure 2.2D). Since Arhgap24 has been described to localize to focal adhesions [94], we 

verified that these structures were in fact focal adhesions by co-labeling with vinculin 

(Figure 2.2E). These experiments showed that Arhgap24 is highly expressed in the focal 

adhesions of cultured podocytes and is upregulated as these cells are differentiated. 

2.4.3 Arhgap24 is expressed in kidney podocytes in vivo 

Next, we tested Arhgap24 expression and localization in murine tissues and its specific 

localization within the kidney. Immunoblotting of lysates from several tissues showed that the 

highest level of full-length Arhgap24 protein (95-kDa band) was in the kidney. Again, the 

approximately 50-kDa putative breakdown product was seen in lysates from the brain, kidney, 

and liver. We then evaluated whether Arhgap24 was expressed in the glomeruli of the kidney. 

We trapped magnetic particles within the glomeruli by beating heart perfusion and then used 

magnetic separation to isolate whole glomeruli to more than 95% purity (Figure 2.3B). Arhgap24 

was enriched in the glomerular fraction (verified by podocin immunoblotting) compared with the 

flow through fraction that contained mostly tubule fragments (Figure 2.3C). Next, we stained 

sections of mouse kidney and detected the greatest signal within glomeruli (Figure 2.3D). This 

signal was specific since it was completely abolished by preabsorption of the antiserum with 

Arhgap24 antigen (Data not shown). Within the glomeruli, the Arhgap24 signal colocalized with 

the podocyte marker synaptopodin, confirming that Arhgap24 is expressed in podocytes in vivo 
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(Figure 2.3E).  

2.4.4 Arhgap24 knockdown restores membrane ruffling in differentiated podocytes 

Having established that Arhgap24 is expressed in podocytes in vitro and in vivo, we next 

asked whether it was responsible for the dramatic decrease in membrane ruffling that we 

observed in differentiated podocytes (Figure 2.1). Membrane ruffling is dependent on the activity 

of the small G protein Rac1 [102]. Rac1 cycles between an active, GTP-bound state and an 

inactive, GDP-bound state. When activated by GEFs, Rac1 interacts with multiple downstream 

effectors to stimulate actin nucleation and branching required for lamellipodia formation and 

membrane ruffling. Subsequently, Rac1 can be inactivated by GAPs that stimulate the intrinsic 

GTPase activity of Rac1, resulting in the hydrolysis of GTP to GDP. Previous work has shown 

that Arhgap24 is a GAP protein that inactivates Rac1 [94]. Since Arhgap24 is upregulated in 

podocytes as they differentiate, it was a logical candidate to inactivate Rac1 and thereby slow 

membrane ruffling in differentiated podocytes. 

We investigated whether Arhgap24 upregulation was responsible for the reduced Rac1 

activity and membrane motility of differentiated podocytes. We generated podocyte cell lines 

(lines 451 and 756) with 2 different Arhgap24 lentiviral knockdown constructs that coexpressed 

the YFP-actin reporter. Compared with that of the control vector (Fluc), the podocyte cell lines 

transduced with the 2 knockdown constructs resulted in approximately 85% (line 451) or 60% 

(line 756) downregulation of the Arhgap24 protein in differentiated podocytes (Figure 2.4A). After 

differentiation, the control and 2 Arhgap24 knockdown cell lines were assayed for their 

membrane motility as before. Compared with that of the control knockdown, Arhgap24 



 32 

knockdown resulted in increased membrane motility in differentiated podocytes (Figure 2.4B and 

Supplemental Videos 3–5). Kymograph analysis showed that Arhgap24 knockdown significantly 

increased membrane motility (Figure 2.4C). 

Since Arhgap24 inhibits Rac1 and Cdc42 activity, we asked whether Arhgap24 knockdown 

resulted in increased levels of active Rac1 and Cdc42 in differentiated podocytes. We measured 

active Rac1, Cdc42, and RhoA by standard pull-down assays and found that the Arhgap24 

knockdown cell lines had higher levels of active Rac1 and Cdc42 compared with those of the 

control knockdown cell line (Figure 2.5A). Interestingly, Arhgap24 knockdown did not affect 

RhoA activity. Another assay of Rac1 activity is epithelial monolayer wound closure. When a 

confluent monolayer of differentiated control knockdown podocytes was scratched/wounded, the 

cells migrated into the gap but did not completely close the wound in 24 hours. In contrast, both 

Arhgap24 knockdown cell lines showed accelerated wound closure kinetics, consistent with 

higher Rac1 activity (Figure 2.5B). Thus, Arhgap24 knockdown increases levels of active Rac1 

and Cdc42. Two measures of increased Rac1 activity, membrane ruffling and epithelial wound 

closure, are enhanced when Arhgap24 levels are reduced in podocytes, consistent with its 

function as a Rac1-GAP. 

2.4.5 Sequencing ARHGAP24 in patients with FSGS identifies several nonsynonymous changes 

in a highly conserved gene 

Given the podocyte-specific pattern of expression of Arhgap24 and its effects on 

membrane dynamics and epithelial wound healing, we next asked whether variations 

in ARHGAP24 were associated with kidney disease. The ARHGAP24 gene consists of at least 8 
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exons (depending on the splice isoform) that span approximately 500 kilobases on the long arm 

of human chromosome 4. Complete exon sequencing of the ARHGAP24 gene in 310 patients 

(620 chromosomes) with biopsy-proven FSGS and 180 controls (360 chromosomes) identified 

13 nonsynonymous sequence variations in the 2 main splice isoforms of Arhgap24 (Table 2.1). 

Two of these (P417A and F539L) were found in both patients and controls and also in the 1000 

genomes database (www.1000genomes.org) (Table 2.2). However, seven of the 

nonsynonymous changes were only found in patients and not in any of the controls. These 

results suggest that variation in the ARHGAP24 gene may be linked with susceptibility to FSGS. 

2.4.6 Identification of an ARHGAP24 variation in familial FSGS 

Most of the nonsynonymous changes that we detected in patients with FSGS were in the 

uncharacterized portions of the Arhgap24 protein. However, 1 of the sequence variations 

(Q158R) is located in the GAP domain of Arhgap24 close to the catalytic arginine (residue 175). 

This variation is predicted to result in a coding change that would substitute a positively charged 

arginine for a neutral polar glutamine at position 158 (isoform 1; NCBI accession no. 

NP_001020787) or position 65 (isoform 2; NCBI accession no. NP_112595). Remarkably, this 

residue is conserved in the ARHGAP24 gene across several model organisms that have been 

sequenced (Table 2.3). Of the other 2 nonsynonymous variations for which pedigree DNA was 

available (T97I and P417A), neither variation reliably correlated with disease status (Figure 2.6).  

We first identified the Q158R variation in a Hispanic proband and explored the association 

of this variation with kidney disease in his family (Figure 2.7). The proband (patient number 1) 

had elevated serum creatinine levels (16 mg/dl), and a biopsy that was performed at age 20 that 
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showed FSGS. His sister (patient number 101) also had biopsy-proven FSGS that had 

progressed to end-stage kidney disease by age 12. The mother (patient number 1001) 

presented at a late stage and died at age 29 of renal failure. Sequencing showed that the 

patient’s affected sister and his mother both had the Q158R variation in theARHGAP24 gene. In 

contrast, the proband’s 2 other siblings did not possess this variation. The brother (patient 

number 100) remains healthy, but the sister (patient number 102) had pregnancy-related 

proteinuria and hypertension. A biopsy was not performed on this individual, and she was lost to 

follow-up. However, an extended haplotype consisting of 4 flanking microsatellite markers 

(MSMs) showed that the haplotype of this sister was similar to that of the unaffected brother, 

making a disease-contributing rearrangement in this region of the genome unlikely (Figure 2.7). 

In addition, the exon incorporating this variation was sequenced in an additional 554 

control chromosomes (for a total of 914 control chromosomes) to decrease the probability that it 

represented a low-frequency noncausal variation. Altogether, we had sequenced over 900 

control chromosomes across this span and did not detect the Q158R change. We also 

sequenced members of the affected kindred for mutations in genes known to cause hereditary 

FSGS and nephrotic syndrome, such as NPHS1, NPHS2, ACTN4, transient receptor potential 

cation channel, subfamily C, member 6 (TRPC6), phospholipase C, e1 (PLCE1), 

and WT1 (exons 8 and 9) and inverted formin, FH2 and WH2 domain containing (INF2) (data not 

shown). There were no suggestive mutations in any of these genes, ruling out known monogenic 

causes of FSGS in this family. Therefore, in kindred with familial FSGS, the Q158R variation of 

the ARHGAP24 gene tracked with severe, early-onset kidney disease. 
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2.4.7 Arhgap24 Q158R has reduced Rac1-GAP activity  

Another possibility was that a cosegregating mutation closely linked to 

the ARHGAP24 gene was responsible for early-onset kidney disease. We therefore tested 

whether the Q158R variation produced a defective form of the Arhgap24 protein. The Q158R 

variation is located close to the catalytically active site arginine residue of the GAP domain, and 

so we evaluated whether this change affected the Rac1-GAP activity of Arhgap24. For these 

experiments, we used the mouse Q156R protein, which corresponds to Q158R in human 

Arhgap24. As expected, wild type Arhgap24 reduced the level of active Rac1 in cell lysates, 

showing again that it has GAP activity against Rac1 (Figure 2.8A). In contrast, transfection of the 

Q156R-mutated Arhgap24 resulted in a marked increase in the level of active Rac1. Titrating 

increasing levels of Q156R Arhgap24 against the wild-type protein confirmed that the Q156R 

mutation impairs the GAP activity of Arhgap24. Next, we tested whether the Q156R variant 

Arhgap24 could homodimerize and/or heterodimerize with the wild-type protein. FLAG- and 

GFP-tagged wild-type and Q156R versions of murine Arhgap24 were cotransfected into HEK293 

cells. In bidirectional pull-down assays, we detected that both wild type and Q156R Arhgap24 

homodimerized and heterodimerized (Figure 2.8B). These experiments showed that the Q158R 

mutation reduces the enzymatic activity Arhgap24. The fact that Arhgap24 dimerizes may 

explain the observed dominant effect of this mutation in our family with inherited kidney disease. 

 

2.5 Discussions 

Arhgap24, also known as FilGAP and p73RhoGAP, is the protein product of a highly 
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conserved gene encoded on human chromosome 4. The longer isoform of Arhgap24, which we 

have used exclusively in this report, is highly expressed in the kidney [94]. GAPs such as 

Arhgap24 and GEFs for small G proteins comprise a large family of proteins that have diverse 

patterns of spatial and temporal expression [103]. Such a restricted pattern of expression may 

allow GAPs and GEFs to behave as cell-type specific effectors for ubiquitously expressed actin 

regulatory proteins. Here, we show that Arhgap24 is one such candidate for cytoskeletal 

regulation of the kidney podocyte. 

The small G proteins, Rac1, Cdc42, and RhoA, control cell shape and motility through their 

effects on the actin cytoskeleton. In many systems, RhoA and Rac1 are mutually antagonistic 

[104, 105]. However, the molecular basis of this counterregulation had been unclear until the 

discovery of Arhgap24. Stossel and colleagues showed that, in response to RhoA activation, 

Arhgap24 is phosphorylated by the RhoA effector kinase, ROCK, and this modification 

stimulates its GAP activity for Rac1 and Cdc42 [94]. By catalyzing the conversion of Rac1 and 

Cdc42 to their inactive GDP-bound state, Arhgap24 inhibits cell spreading and cell motility. 

Recently, a similar mechanism was demonstrated for the closely related family member, 

Arhgap22, in melanoma cells [106]. The diversity of GAPs likely ensures that specific ones may 

play a role in Rac1-RhoA counterregulation in different cell types and tissues. 

Recent work from several groups has shown that the balance of RhoA and Rac1 signaling 

is carefully regulated in podocytes. Normally, the podocyte appears to be a stationary cell with 

predominantly active RhoA signaling. The podocyte-enriched adaptor protein synaptopodin 

controls a signaling module that promotes RhoA activity via 2 different mechanisms. 
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Synaptopodin blocks Smurf1-mediated ubiquitination and subsequent proteasomal degradation 

of RhoA [59]. Synaptopodin also disrupts IRSp53 binding to the Cdc42-Mena complex, 

interrupting Cdc42 signaling that opposes RhoA-mediated stress fiber formation [60]. 

Synaptopodin itself is phosphorylated and protected from degradation by binding to 14-3-3 [107]. 

Conversely, when it is dephosphorylated by calcineurin, synaptopodin is degraded by cathepsin 

L [107]. The net result is that reduced synaptopodin levels lead to decreased RhoA levels and 

activity [59]. 

The RhoA-Rac1 signaling balance in podocytes is also responsive to hormonal stimulation. 

Binding of the vasoactive hormone angiotensin II to its receptor, angiotensin receptor type I 

(AT1R), leads to a calcium flux through the channels Trpc5 and Trpc6. Recent work by Tian et al. 

has shown that Trpc5 associates with Rac1 in membrane microdomains, while Trpc6 has a 

separate association with RhoA [61]. In response to AT1R stimulation, Trpc5 activation leads to 

Rac1 activation and RhoA inactivation. Triggering Trpc6 has the opposite response, with 

increased RhoA activity and reduced Rac1 activity. Of note, mutations in the TRPC6 gene have 

already been associated with human FSGS [17]. Therefore, this recent study by Tian et al. 

provides new insights into how signaling events downstream of the angiotensin receptor may 

lead to dynamic cytoskeletal reorganization in podocytes via selective modulation of RhoA and 

Rac1 activity through calcium signaling. 

Decreased RhoA activity and increased Rac1 activity is associated with proteinuric kidney 

disease, consistent with the idea that an imbalance in the RhoA-Rac1 signaling balance is 

harmful to the podocyte. HIV infects podocytes and modulates the cytoskeleton of the cell such 
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that patients with HIV are susceptible to collapsing FSGS [108]. In podocytes, the HIV adaptor 

protein nef interacts with p190RhoGAP that then inactivates RhoA [109]. In addition, nef binds to 

diaphanous interacting protein and the Rac1-GEF vav2, resulting in Rac1 activation [110]. Nef 

also downregulates synaptopodin expression [111] and may further destabilize RhoA signaling 

via the synaptopodin pathway outlined above. The net effect of HIV infection is a downregulation 

of RhoA signaling activity and a shift toward Rac1 signaling with consequent podocyte injury. 

There is further evidence from mouse models that disrupting the RhoA-Rac1 signaling 

balance in podocytes can cause kidney disease. Studies on mice deficient for the Rho-guanine 

nucleotide dissociation inhibitor, RhoGDIα (Arhgdia), demonstrate that Rac1 activation in 

podocytes is harmful. RhoGDIα binds to and stabilizes Rac1 and RhoA, and, in its absence, 

levels of these small G proteins and their activity levels are dysregulated [112]. In particular, 

Rac1 is relatively overactivated, leading to podocyte foot process effacement and proteinuria [56, 

113]. Interestingly, treatment with a Rac1 inhibitor reduced proteinuria and the severity of the 

kidney damage in this model. 

Taken together, these studies highlight that the careful control of relative RhoA and Rac1 

activity is critical for the proper functioning of podocytes. However, we believe that until this 

report a direct regulator of Rac1 activity in response to RhoA signaling had not been described in 

podocytes. Here, we show that Arhgap24 is highly expressed in podocytes and inhibits 

Rac1-dependent membrane ruffling and epithelial wound healing. Our work predicts that 

Arhgap24 would enforce the normal RhoA-dependent nonmotile podocyte phenotype by 

inactivating Rac1. Consistent with a role for Arhgap24 in vivo, we identified a mutation in the 
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GAP domain of Arhgap24 in kindred with familial FSGS. This mutation reduces the Rac1-GAP 

activity of Arhgap24. We also show that Arhgap24 dimerizes, and this may explain the dominant 

pattern of inheritance of the Q158R mutation [114, 115]. Our studies show that Arhgap24 is a 

potential candidate gene to explain a subset of inherited FSGS. Perhaps, more informatively, 

Arhgap24 adds to the emerging model that aberrant Rac1 activation is a key step in podocyte 

dysfunction, leading to proteinuric kidney disease. Since Arhgap24 is selectively expressed in 

podocytes, modulating its function can alter relative RhoA/Rac1 activity, with potentially minimal 

systemic side effects, and provides an intriguing pathway for the therapy of proteinuric kidney 

disease. 
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2.6 Tables and Figures 
Table 2.1 Incidence of ARHGAP24 nonsynonymous sequence variations in patients with 
biopsy-proven FSGS (n=310) and controls (n=180)  
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Table 2.2 Non-synonymous SNPs in ARHGAP24 
Non-synonymous SNPs identified in the transcript of isoform 1 of ARHGAP24 from over 1000 
human genomes sequenced. (www.1000genomes.org) SNPs in bold are known polymorphisms 
in the gene. 

 

 

 

Table 2.3 Q158 is a conserved residue 
Sequence alignment of the Arhgap24 protein across various species in the region of the patient 
variation (Q158) shows complete conservation of the glutamine residue.  
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Figure 2.1 Differentiated podocytes show reduced membrane ruffling 

(A) YFP-actin–transduced podocytes were cultured at the permissive temperature (33°C) or 
differentiated for 7 to 14 days at the nonpermissive temperature (37°C). Kymographs (insets) 
obtained at the sites of active ruffling (hatched boxes) show prominent ruffling at 33°C that is 
reduced at 37°C (also see Supplemental Videos 1 and 2). DIC, differential interference contrast. 
Original magnification, ×400; approximately ×1,000 (insets and time-lapse panels). (B) 
Quantification of actin spike lengths in kymographs shows that differentiated podocytes (n = 11) 
have a significant decrease in ruffling activity compared with that of undifferentiated podocytes 
(n = 15). Individual symbols represent data from individual podocytes. P = 3.29 × 10–6 by ANOVA 
with post-test correction. 
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Figure 2.2 Arhgap24 transcript and Arhgap24 protein are specifically expressed in 

podocytes 
(A) MBEI values for microarray data for in vitro–cultured podocytes (33°C, 37°C), ex vivo–
isolated podocytes (E13.5, E15.5, and adult), and laser-capture-microdissected glomeruli (E12.5 
renal vesicle, E15.5 S-shaped body, and E15.5 renal corpuscle) show an increase in 
the Arhgap24 transcript with differentiation in vitro and in vivo. (B) By quantitative RT-PCR, 
differentiated podocytes have higher Arhgap24 mRNA levels compared with those of 
undifferentiated podocytes, after normalization to 18S rRNA. (C) Immunoblotting shows that 
differentiated podocytes have higher levels of Arhgap24 protein than undifferentiated podocytes. 
(D) Confocal imaging of cultured podocytes also shows an increase in levels of Arhgap24 in 
differentiated podocytes, concentrated in punctate structures at the base of the cell. (E) 
Arhgap24 colocalizes with the focal adhesion marker vinculin at the tips of actin stress fibers. 
Original magnification, ×600 (D and E). 
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Figure 2.3 Arhgap24 is expressed in kidney podocytes in vivo 
(A) Immunoblotting of tissue lysates shows that Arhgap24 is expressed in the kidney (expected 
size ~95 kD). Smaller bands likely represent specific degradation products. The positive control 
(+) is a lysate from HEK293 cells transfected with FLAG-tagged Arhgap24. The negative control 
(–) is HEK293 cell lysate. Brn, brain; Kid, kidney; Liv, liver; Lng, lung; Spl, spleen. (B) Magnetic 
separation of glomeruli after beating heart perfusion of mice with magnetic beads results in more 
than 95% pure isolated glomeruli (top). The flow through consists of tubule fragments (bottom). 
Original magnification, ×100. (C) Arhgap24 is enriched in the glomerular (Glom) fraction that also 
contains the podocyte protein, podocin. Tub, tubule. (D) A low-magnification view (original 
magnification, ×200) of a mouse kidney stained for Arhgap24 shows that the highest signal is 
detected in the glomeruli. (E) Within mouse glomeruli, the Arhgap24 signal colocalizes with that 
of the podocyte marker synaptopodin. Original magnification, ×600. 
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Figure 2.4 Arhgap24 knockdown in differentiated podocytes increases membrane ruffling 
(A) Two lentivirally transduced cell lines targeting different portions of the Arhgap24 transcript 
show marked reduction of Arhgap24 protein compared with that of an irrelevant knockdown (Fluc, 
100%; line 451, 15%; line 756, 40%). Results are representative of at least 3 independent 
experiments. (B) Representative images of the 3 knockdown cell lines after differentiation at 
37°C for 7 to 10 days. Kymographs (insets) generated from the hatched box area and time-lapse 
sequences show that the 2 knockdown cell lines have increased membrane ruffling compared 
with that of the control (also see Supplemental Videos 3–5). Original magnification, ×400; 
approximately ×1,000 (insets and time-lapse panels). (C) Quantitation of actin spikes in 
kymographs shows that both the 451 (n = 19) and 756 (n = 11) Arhgap24 cell lines have 
significantly greater membrane ruffling activity compared with that of the control knockdown Fluc 
cell line (n = 18) (*P < 0.00001). The ruffling activity is not significantly different between the 2 
knockdown cell lines (P = 0.57). Group differences were analyzed by ANOVA with post-test 
correction. 
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Figure 2.5 Arhgap24 knockdown in differentiated podocytes increases active Rac1 and 

Cdc42 levels and accelerates epithelial monolayer wound closure 
(A) Pull down of active (GTP-bound) Rac1, Cdc42, and RhoA shows that the Arhgap24 
knockdown cell lines (lines 451 and 756) have increased levels of active Rac1 and Cdc42 
compared with those of the control (Fluc). However, active RhoA levels are similar across all 3 
cell lines. Results are representative of 3 independent experiments. (B) Arhgap24 knockdown 
cells migrate and close a scratch made in a confluent monolayer faster than the control 
knockdown cell line. Cell nuclei were stained with Hoechst dye. Original magnification ×100. 
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Figure 2.6 Pedigree information for T97I and P417A variations 

DNAs from one family for the T97I variation and three families for the P417A variation were 
available for sequence analysis. The presence of kidney disease (clinical and/or biopsy proven) 
is denoted by the filled-in symbols. If DNA was analyzed for sequence variation, the result of a 
non-synonymous variation is denoted within the individual symbol (Wt =wildtype; Ht = 
heterozygous). The reference protein sequence (NP_001020787) was considered wildtype. In 
no instance did the variation consistently correlate with kidney disease. 
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Figure 2.7 Individuals with end-stage kidney disease are denoted by black symbols  

Deceased family members are represented by diagonal lines. Flanking MSM analysis shows that 
the unaffected siblings have a distinct haplotype that is different from that of the affected 
individuals. The columns of numbers and letters under each symbol refer to the alleles that 
individual carries at the given genetic markers. Where these numbers are within brackets, the 
haplotype is inferred. The solid black rectangle beneath individuals 1, 101, and 1001 represents 
the inherited disease haplotype. 
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Figure 2.8 Arhgap24 Q158R has defective Rac1-GAP activity and dimerizes with the 

wild-type protein 
(A) Wild-type FLAG-tagged Arhgap24 (first lane) transfected into HEK293 cells reduces active 
Rac1 levels compared with Q156R Arhgap24 (last lane). Titration of increasing proportions of 
Q156R Arhgap24 produces increased levels of active Rac1 (middle lanes). Total Rac1 and 
FLAG-Arhgap24 protein levels are similar across all lanes. Results are representative of 3 
different experiments. (B) FLAG- or GFP-tagged wild-type (W) or Q158R Arhgap24 (Q) 
constructs were cotransfected into HEK293 cells. Cell lysates were immunoprecipitated with 
anti-FLAG antibody and then immunoblotted for GFP-tagged Arhgap24 to assess for protein 
dimerization. Whole cell lysates (WCLs) were immunoblotted for GFP and FLAG to ensure 
protein expression. 
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Chapter 3. Rac1 Activation in Podocytes Induces Rapid Foot Process Effacement 

and Proteinuria 

 

3.1 Abstract 

The kidney’s vital filtration function depends on the structural integrity of the glomerulus, 

the proximal portion of the nephron. Within the glomerulus, the architecturally complex podocyte 

forms the final cellular barrier to filtration. Injury to the podocyte results in a morphologic change 

called foot process effacement and this is a ubiquitous feature of proteinuria. The exact nature of 

foot process effacement is not known but recently it has been proposed that this might reflect 

activation of the Rac1 GTPase. To test this hypothesis, we generated a podocyte specific, 

inducible transgenic mouse line that expressed constitutively active Rac1. We observed a rapid 

onset of proteinuria that began to remit spontaneously in one week. Using super resolution 

imaging, we verified that the induced transgene was expressed in damaged podocytes. The 

kinetics of this podocyte injury model differs from previously reported studies and highlights the 

complex balance of Rho-GTPase signaling that is required for proper regulation of the podocyte 

cytoskeleton.  

 

3.2 Introduction 

The structural integrity of the proximal portion of the nephron, the glomerulus, is vital to the 

kidney’s filtration function. Within the glomerular capillary tuft, the kidney’s filtration barrier is a 

biomechanical composite of fenestrated endothelial cells, a thick glomerular basement 



 52 

membrane and complex visceral epithelial cells called podocytes. Podocytes lie on the outer 

aspect of glomerular capillaries and extend cytoplasmic processes (foot processes) that 

interdigitate with those from neighboring podocytes to form a mesh-like network that forms the 

final barrier to filtration. Podocyte foot processes are built around highly organized actin bundles 

that are reorganized during injury with flattening and simplification (“effacement”) of foot 

processes leading to spillage of serum proteins into the urine (proteinuria). Defects in actin 

regulatory proteins lead to irreversible podocyte injury and focal and segmental 

glomerulosclerosis (FSGS) in humans and in animal models [2]. 

Recent studies show that rather than being a static filter, the cytoskeleton and therefore the 

shape of the podocyte are both tightly regulated and dynamic [52]. Small GTPases of the Rho 

family (exemplified by RhoA, Cdc42, Rac1) are the central organizers of the actin cytoskeleton 

[48]. After receiving diverse signaling inputs, the Rho-family of small GTPases act through their 

effectors to polymerize and organize actin filaments into various configurations that deform the 

cell membrane and change cell shape. Of the three major Rho-family GTPases, Cdc42 has been 

shown to be critical for podocyte development, while both RhoA and Rac1 seem dispensable in 

early stages [28].  

After this initial phase, RhoA and Rac1 seem to play more important roles in podocyte cell 

biology. In many biological systems, including podocytes, RhoA and Rac1 antagonize each 

other’s activation and function [50, 116]. Recent studies have shown that constitutive activation 

of RhoA causes podocyte foot process effacement and proteinuria after several weeks [49, 117], 

suggesting that inappropriate RhoA activation is pathogenic to podocytes. This is surprising 
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given that 1) activation of Rho family GTPases causes rapid cytoskeletal rearrangement in vitro 

[118, 119]; and 2) introduction of dominant-negative RhoA produces a similar phenotype [49].  

On the other hand, it has been proposed that excessive Rac1 activation or inhibition of Rho 

activity might be the key step in podocyte injury. Synaptopodin, a podocyte actin-binding protein, 

reinforces RhoA signaling and suppresses Cdc42 signaling to promote proper cytoskeletal 

architecture [59, 120]. Genetic ablation of synaptopodin in mice results in increased susceptibility 

to proteinuria [60, 121]. Deletion of RhoGDI (a negative regulator of Rho-family GTPases) in 

mice results in foot process effacement and proteinuria that correlates with increased Rac1 

activity [56]. Mutations in the GTPase activating protein Arhgap24 result in increased Rac1 

activation in vitro and are correlated with podocyte injury and FSGS in patients [122]. 

The effects of Rac1 activation in podocytes have only been studied indirectly through the 

manipulation of upstream regulatory proteins [21, 56, 122, 123]. To test directly whether Rac 

activation induces podocyte foot process effacement, we generated a double transgenic system 

in mice in which GFP-tagged constitutively active Rac1 (Rac1Q61L) is expressed in podocytes 

after doxycycline (DOX) induction. We observed rapid onset of proteinuria within 2 days of DOX 

induction. The degree of proteinuria correlated with the levels of active Rac1 expression. 

However, proteinuria in this system was not durable and gradually decreased over the course of 

a month despite continuous exposure to DOX. Thus, activation of Rac1 in podocytes rapidly 

causes foot process effacement and proteinuria in vivo. These results are distinct from the 

effects of RhoA activation in podocytes and emphasize the complex interplay of small GTPase 

signaling in the regulation of podocyte shape and function. 
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3.3 Methods 

3.3.1 Generation of EGFP_CA-Rac1 knock-in transgenic mice 

We chose the X-linked Hprt1 locus for targeting because it is a nonessential housekeeping 

gene that encodes a selectable marker [124, 125]. The pHPRT targeting vector was generated 

on a pBluescript SKII(-) backbone by PCR amplifying the left arm (5.1 kb fragment upstream of 

Exon 1) and right arm (2.1 kb fragment downstream of Exon 1) of the Hprt1 gene from a bacterial 

artificial chromosome (RP24-335G16). The tetracycline responsive promoter element (TRE), 

EGFP, Rac1Q61L, and bovine growth hormone polyadenylation signal (bGH-polyA) sequences 

were amplified by PCR, and inserted sequentially into the pHPRT targeting vector. The KH2 ES 

cell line harboring the Rosa26-M2rtTA insertion was used for transfection. Cells with homologous 

recombination of the transgene into the Hprt1 locus were selected based on their growth in the 

presence of 6-thioguanine, which is toxic to cells expressing functional Hprt1. Appropriate single 

copy insertion of the EGFP_CA-Rac1 transgene into the Hprt1 locus was confirmed by PCR. 

Targeted ES cells were injected into blastocysts to generate chimeric mice. EGFP genotyping 

primers (a protocol from The Jackson Laboratory) were used for genotyping 

(Forward_oIMR0872 5’-AAGTTCATCTGCACCACCG-3’, Reverse_oIMR1416 

5’-TCCTTGAAGAAGATGGTGCG-3’; internal positive control Forward_oIMR7338 

5’-CTAGGCCACAGAATTGAAAGATCT-3’, Reverse_oIMR7339 

5’-GTAGGTGGAAATTCTAGCATCATCC-3’). All animal experiments were conducted with 

approval of the Washington University Animal Studies Committee. 
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3.3.2 Mouse strains and transgene induction 

The Rosa26-rtTA mouse strain was purchased from The Jackson Laboratory (#006965). 

The NPHS2-rtTA strain was obtained from Dr. Jeffrey Kopp at the NIH. The Nphs1-rtTA-3G 

strain will be described in detail elsewhere [126]. All mice used in this study were male and 

therefore carried a single copy of the EGFP_CA-Rac1 transgene. To induce transgene 

expression, regular chow was substituted with DOX-supplemented chow (2000ppm, TestDiet) 

for the indicated time periods. 

3.3.3 Cell culture and cell based assays 

Immortalized murine podocytes were maintained and differentiated as described 

previously [122]. For live cell imaging assays, podocytes were infected with lentiviral vectors 

encoding N-terminal EGFP tagged CA-Rac1 and CA-RhoA. An EGFP empty vector was used as 

control.  

3.3.4 Antibodies 

Antibodies for immunostaining included rabbit anti-podocin (Sigma Aldrich P0372, 1:400 dilution), 

goat anti-nephrin (R&D Systems AF3159, 1:100 dilution), rabbit anti-laminin β2 (20) (1:1500 

dilution) and chicken anti-GFP (Invitrogen A10262, 1:500 dilution). Antibodies used for 

immunoblotting were mouse anti-GFP (Clontech 632381, 1:10000 dilution), rabbit anti-ERK2 

(Santa Cruz Biotechnology sc-154, 1:5000 dilution) and rabbit anti-podocin (Sigma-Aldrich 

P0372, 1:500 dilution). Fluorescently-conjugated secondary antibodies were purchased from 

Jackson Immunoresearch, and the STORM antibodies were conjugated as described [127].  

3.3.5 Immunofluorescence assays 
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Fresh kidney tissue was embedded in OCT compound and snap frozen on dry ice. 8 µm 

cryosections were applied to charged slides. Cultured podocytes were seeded onto collagen I 

coated coverslips. For immunofluorescence assays, the tissue sections or coverslips containing 

podocytes were fixed with 1% PFA in PBS for 5 minutes followed by blocking and 

permeabilization with 2% FBS in PBS with 0.1% saponin. Primary antibodies at the indicated 

dilutions were applied for 1 hour at room temperature. After extensive washes, fluorescently 

conjugated secondary antibodies were applied at 1:500 dilution for another hour at room 

temperature. After washing, the prepared slides were imaged on a Olympus FV-1000 spinning 

disc confocal microscope. 

3.3.6 Albumin/creatinine assay 

Mouse urine samples were collected at the indicated time points and urinary albumin 

(Bethyl, E90-134) and creatinine (BioAssay Systems, DICT-500) were quantified by ELISA 

according to the manufacturers’ protocols. 

3.3.7Transmission Electron Microscopy 

Portions of kidney cortex were fixed with 2% paraformaldehyde and 2% glutaraldehyde 

and processed for electron microscopy. Ultrathin sections were prepared and imaged by the 

Electron Microscopy Core Facility at Washington University.  

3.3.8 STORM imaging and STORM-SEM correlation 

Kidney tissues were fixed in 4% paraformaldehyde and cryoprotected in 30% sucrose. 

Tissues were then embedded in OCT compound and semi-thin sectioned at 100-200 nm 

thickness using an ultra cryomicrotome. These tissue sections were collected on a 
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carbon-coated #1 coverslip and fixed and stained as described previously [127]. Using a custom 

STORM microscope, 20,000 imaging cycles were collected and the resulting images were 

compiled to generate a composite multi-channel image as described earlier [128]. After STORM 

imaging, the coverslip was floated off and the sample was fixed with 2% glutaraldehyde. This 

sample was then processed for scanning electron microscopy (SEM). The images obtained from 

STORM and SEM were superimposed using Photoshop CS5.1.    

3.3.9 Live cell imaging and kymograph analysis 

Undifferentiated murine podocytes were transiently transfected using Amaxa Nucleofection 

(Lonza, Allendale, NJ) with plasmids encoding for constitutively active Rac1 or RhoA. 

Transfected podocytes were cultured on collagen I-coated glass-bottomed dishes overnight, and 

serum starved for 6 hours to arrest baseline membrane ruffling. Rac1 transfected podocytes 

were imaged in the serum starved state, while Rho transfected podocytes were imaged following 

the addition of 10% FBS 10 minutes prior to imaging to induce membrane ruffling. Sequential 

images were obtained by an Olympus FluoView FV1000 microscope every 10 seconds for a 

20-minute duration, and movies assembled using Olympus Fluoview software. The ImageJ 

plug-in, Multiple Kymograph (http://rsbweb.nih.gov/ij), was used to generate kymographs at 5 

different locations of maximum membrane ruffling for each imaged cell [100]. 10 actin spikes 

were measured for each kymograph, and average length (ruffling index) was determined as 

previously described [100]. 

3.3.10 Rac1 pull-down assay 

The GST-tagged Pak1-PBD was expressed in BL21(DE3) E. coli and purified using 



 58 

glutathione-agarose beads. For the active Rac1 pull-down assay, whole kidney lysates were 

generated by homogenizing the kidneys in cell lysis buffer (50mM Tris-HCl, pH7.5, 150mM NaCl, 

5mM MgCl2, 10% Glycerol, 1% NP-40, 1mM DTT, 1mM PMSF, 10µg aprotinin, 10µg leupeptin; 

aprotinin, leupeptin, DTT and PMSF are fresh added), and isolating the supernatant. Equal 

volumes of the lysates were incubated with GST-PBD beads. Rac1-GTP bound to the beads 

(active Rac1) was eluted with Laemmli sample buffer and examined by western blot. 

 

3.4 Results 

3.4.1 Rho family GTPases induce distinct effects on the actin cytoskeleton in cultured murine 

podocytes 

A network of highly organized actin cytoskeleton structures forms the structure of podocyte 

foot processes. During podocyte foot process effacement, these actin bundles are reorganized 

into broad membrane sheets that resemble lamellipodia seen in cultured cells. Numerous cell 

culture systems point to a critical role for Rho family GTPases in actin cytoskeleton remodeling 

with RhoA activation inducing actin bundling and Rac1 activation inducing lamellipodia [48]. 

Therefore, we hypothesized that the remodeling of the podocyte actin cytoskeleton seen during 

the process of effacement may represent an alteration in the balance between Rac1 and RhoA 

activities [122].  

To test the effects of Rho GTPase activation on the podocyte actin cytoskeleton in vitro, we 

first transfected a murine immortalized podocyte cell line with enhanced green fluorescent 

protein (EGFP) fused to constitutively active versions of Rac1 (EGFP_CA-Rac1) and RhoA 



 59 

(EGFP_CA-RhoA). Actin fibers and focal adhesions were visualized with phalloidin and vinculin 

respectively. Constitutively active Rho (CA-Rho) increased the number of stress fibers and focal 

adhesions in podocytes (Figure 3.1A). In contrast, CA-Rac1 expression in podocytes induced 

membrane spreading and lamellipodia formation resulting in large, round and flattened cells 

(Figure 3.1A). 

Since foot process effacement might be an expression of podocyte motility [93], we next 

asked if these changes in cell morphology correlated with changes in podocyte membrane 

dynamics. Using live cell imaging, we quantitated membrane motility using kymograph analysis 

as described previously [122]. Podocytes expressing CA-Rac1 show increased membrane 

ruffling compared with wild type cells after serum starvation (Figure 3.1B, and Videos S1 and S2). 

Addition of serum induced membrane ruffling in wild type cells, and this was largely suppressed 

in podocytes expressing CA-RhoA (Figure 3.1C, and Videos S3 and S4). These experiments 

confirmed that activation of Rac1 and RhoA produce marked changes in the podocyte actin 

cytoskeleton and on membrane dynamics. Active Rac1 induced lamellipodia formation and 

increased membrane motility in podocytes, while active RhoA stabilized the cytoskeleton and 

suppressed membrane motility. 

3.4.2 Generation of inducible EGFP_CA-Rac1 transgenic mice 

Our in vitro results suggested that Rac1 activation might have significant effects on 

podocyte morphology. This is in contrast to recent studies that showed RhoA activation could 

play a pathogenic role in podocytes in vivo [49, 117]. To test the effects of Rac1 activation in 

podocytes in vivo, we generated a transgenic mouse model that would allow for inducible 
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expression of EGFP_CA-Rac1. Using homologous recombination, we targeted the 

EGFP_CA-Rac1 transgene into the Hprt1 locus in ES cells [124, 125] (Figure 3.2A) containing 

the tetracycline inducible transactivator (rtTA) inserted into the Rosa26 locus (Rosa-rtTA) [129]. 

Cells with successful homologous recombination of the transgene for the Hprt1 locus were 

selected based on their growth in the presence of 6-thioguanine, which is toxic to cells harboring 

a functional Hprt1 allele. Targeted gene insertion was confirmed by PCR (Figs. 2 B and C) and 

recombinant ES cells were microinjected into blastocysts to generate chimeric mice.  

To test inducible expression of the EGFP_CA-Rac1 transgene, mice were fed doxycycline 

(DOX) for one week, and multiple tissues were harvested and examined for EGFP expression by 

fluorescence microscopy (Figure 3-S1). DOX induced strong transgene expression in multiple 

tissues. However, we could not detect EGFP expression in podocytes by fluorescence 

microscopy. These experiments revealed that the Rosa26-rtTA allele was ineffective at driving 

efficient transgene expression in podocytes. 

3.4.3 EGFP_CA-Rac1 expression in podocytes causes rapid onset but transient proteinuria 

To induce podocyte-specific expression of the CA-Rac1 transgene, we crossed our mice 

with transgenic mice with the rtTA driven by the human podocin promoter (NPHS2-rtTA) [130]. In 

double transgenic mice (PODxRac1) fed DOX, EGFP expression was detectable as early as 4 

days after induction. To validate the functionality of the CA-Rac1 transgene product, we used the 

p21 binding domain of PAK1 (PBD) to precipitate CA-Rac1 from whole kidney lysates of 

DOX-treated double transgenic mice (Figure 3.2D). EGFP_CA-Rac1 protein was easily 

detectable in the DOX-treated mice but was undetectable in the absence of DOX. Expression of 
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the transgene was barely detectable in the whole kidney lysate, which was not surprising given 

that podocytes constitute only a small fraction of cells in the kidney. Expression of the CA-Rac1 

transgene in podocytes was confirmed by colocalization with the podocyte-specific marker 

(podocin) by immunofluorescence microscopy (Figure 3.3A). Surprisingly, the CA-Rac1 

transgene was expressed in only a small fraction of podocytes, and this expression was variable 

between glomeruli and between mice. 

After 2 days of induction with DOX, however, PODxRac1 mice developed significant 

proteinuria compared to single transgenic control mice. Proteinuria reached its peak on day 4 

and then began to abate around 1 week post-induction (Figure 3.3B, and 3-S2). DOX treatment 

for up to one month did not result in progressive renal dysfunction or significant histologic 

alterations. Given the variable expression of the transgene, we assessed whether the level of 

proteinuria correlated with the level of expression (Figure 3.3C). The magnitude of proteinuria 

positively correlated with the frequency of EGFP-positive glomeruli. The kinetics of proteinuria, 

however, were similar among all PODxRac1 mice beginning around day 2 and abating after day 

7 (Figure 3-S2). These experiments showed that podocyte-specific expression of CA-Rac1 

induces rapid and transient proteinuria that correlated with the level of transgene expression. 

3.4.4 Nphs1-rtTA-driven EGFP_CA-Rac1 expression in podocytes results in higher transgene 

expression and more severe proteinuria 

We considered that the patchy and uneven expression of CA-Rac1 might be due to issues 

with silencing of the NPHS2-rtTA transgene. To circumvent this problem, a new transgenic 

mouse line (NEF) expressing a modified rtTA (rtTA-3G) under the control of the mouse nephrin 
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(Nphs1) promoter was generated [126] and bred to our CA-Rac1 mice. Examination of kidneys 

from double transgenic (NEFxRac1) mice after four days of DOX treatment showed a greater 

proportion of glomeruli and higher numbers of podocytes expressing the transgene compared to 

the PODxRac1 mice. Yet, the expression in podocytes was still not 100% (Figure 3.4A). This 

increased expression and distribution of the CA-Rac1 transgene correlated with a faster onset 

and higher levels of proteinuria (Figure 3.4B). In contrast to PODxRac1 mice, the proteinuria in 

NEFxRac1 mice persisted after one week of DOX treatment (Figure 3.4C, 3-S2). However, 

similar to PODxRac1 mice, proteinuria peaked at day 4 and gradually decreased over time 

(Figure 3.4C). After exposure to DOX for 28 days, we could not detect any EGFP expressing 

podocytes in kidney sections suggesting that the transgene-positive podocytes had been lost 

(Figure 3.5B). 

3.4.5 EGFP_CA-Rac1 induces foot process effacement, but without other histological changes in 

the glomerulus 

The morphology of podocytes expressing CA-Rac1 was assessed by both light and 

electron microscopy. Glomeruli from DOX-induced Rac1 single transgenic mice and NEFxRac1 

mice were unremarkable by light microscopy (Figure 3.5A). No obvious abnormalities were 

detected even after 1 month of continuous DOX induction. Transmission electron microscopy 

showed segmental effacement of podocyte foot processes in PODxRac1 glomeruli (Figure 3.6A) 

consistent with variable transgene expression. To test this, we used a super resolution 

fluorescence imaging method, Stochastic Optical Reconstruction Microscopy (STORM). STORM 

allows nanometer resolution of fluorescently tagged molecules such as labeled antibodies by 
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capturing thousands of sequential images of a specimen illuminated with a very low energy 

excitation source [127]. Sections of kidney tissue from NEFxRac1 mice on day 4 after DOX 

induction was stained with fluorescently tagged antibodies for EGFP (to localize CA-Rac1) and 

laminin β2 (to detect the glomerular basement membrane) and examined by STORM. After 

STORM imaging, the same tissue sample was processed for freeze etch electron microscopy 

and the images were correlated (Figure 3.6 B and C). This showed that only the EGFP_CA-Rac1 

expressing podocytes had effaced foot processes, while adjacent non-expressing podocytes had 

intact foot processes (Figure 3.6C). These studies provide an explanation for the segmental foot 

process effacement seen by TEM.  

3.4.6 CA-Rac1 decreases podocin and nephrin levels via proteasomal degradation 

During our examination of the kidney with immunofluorescence microcsopy, we noted that 

in both PODxRac1 and NEFxRac1 mice CA-Rac1 expression was inversely correlated with 

podocin and nephrin level (Figure 3.7 A and B). Quantitative correlation of EGFP pixel intensity 

with that of podocin and nephrin showed a significant negative correlation (Figure 3.7 C, D, E 

and F). To test whether Rac1 activation cause a direct downregulation of podocin expression, 

cultured podocytes were transiently transfected with empty vector, EGFP_CA-Rac1 and 

EGFP_CA-RhoA, and podocin levels were analyzed by immunoblotting. Compared with the 

vector control, CA-Rac1 diminished podocin levels by about 50%, while CA-RhoA had no effect 

(Figure 3.7G). We measured the levels of podocin mRNA in these podocytes by quantitative 

PCR and found no significant difference, which suggested that the podocin decrease was not 

mediated by transcriptional downregulation (Figure 3-S3). The decrease in podocin levels could 
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be blocked by the proteasome inhibitor MG132, suggesting that Rac1 activation induces podocin 

degradation via a proteasomal pathway (Figure 3.7H). 

3.4.7 CA-Rac1 expression stimulate membrane dynamics in podocytes in vivo 

To further investigate that CA-Rac1 expressing podocytes in vivo, we used multiphoton 

intravital imaging (MPM) technique to directly assess podocyte membrane dynamics in live mice. 

Since CA-Rac1 is tagged with EGFP at the N-terminus and only some of the podocytes 

expressed this transgene after DOX induction, we could directly observe EGFP+ podocyte 

membrane dynamics. Dylight594-labeled lectin molecules were injected intravenously before 

imaging. Endothelial cells and Tubular epithelial cells can absorb lectin and be labeled in the red 

channel. During the imaging process, each frame was taken at 30-second time interval by using 

resonance scanner. We observed dramatic membrane dynamics in EGFP_CA-Rac1+ podocytes 

(Figure 3.8). Our result suggests that CA-Rac1 induce membrane ruffling in podocytes in vivo. 

The membrane ruffling is likely caused by actin cytoskeleton rearrangement induced by high Rac 

activity. 

3.4.8 The shattered podocytes could from new interaction with the interstitial endothelium in the 

renal tubules 

In our intravital imaging experiments, we observed EGFP+ cells that formed stable 

interaction with the renal tubules (Figure 3.9). Because the expression of rtTA transgene is 

restricted to podocytes [126], these cells could be podocytes that shattered from the glomerulus. 

Surprisingly, 3D images of these cells showed that they establish stable interactions with the 

epithelial cells in the tubules (Figure 3.9). Some of these cells extended protrusions that crossed 
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the basement membrane of the tubular epithelium and formed new interactions with the 

endothelial cells of the interstitial capillaries. This result suggests that high Rac activity could 

cause podocyte shattering from the glomerulus. However, shattered podocytes could form new 

connections with other endothelial cells outside the glomerulus. 

 

3.5 Discussions 

The structural integrity of the glomerular filtration barrier is essential for selective excretion 

of waste products and the retention of cells and large serum proteins within the circulation. The 

glomerular podocyte, with its arbor of interdigitating foot processes, is the critical final component 

of the kidney’s filtration barrier. The elaborate actin-based cytoskeleton of the podocyte’s foot 

process is simplified in many diseases in which serum proteins are lost into the urine. Since actin 

reorganization mediated by Rho family GTPases is a well-established mechanism for cell shape 

change, we and others have attempted to directly ask how specific Rho GTPase activation 

regulates podocyte morphology in vivo.  

Previous studies used an approach similar to ours to study the role of RhoA in podocytes. 

Both constitutively active and dominant negative (DN) inducible RhoA transgenic mouse lines 

were generated [49, 118]. While both approaches resulted in podocyte dysfunction, the changes 

detected occurred relatively slowly, over weeks to months. Given how rapidly Rho family 

GTPases induce actin cytoskeletal changes in vitro, it raises the possibility that proteinuria in 

those systems is due to indirect effects of transgene expression in podocytes and not due to a 

direct signaling effect of RhoA. In addition, the mechanism of foot process effacement directed 
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by RhoA activation was not directly addressed in these studies.   

In our mouse, expression of constitutively active Rac1 (CA-Rac1) produced rapid onset (~48 

hours) proteinuria that correlated with the degree of transgene expression. While the Nphs1-rtTA 

transgene was expressed in a larger percentage of podocytes than the NPHS2-rtTA transgene, 

neither driver promoted expression in all of the cells. This was supported by our finding of 

segmental foot process effacement detected by electron microscopy. Using STORM imaging 

and freeze-etch electron microscopy correlation techniques, we confirmed that effaced foot 

processes correlated with GFP positive cells, while the foot processes of podocytes not 

expressing the transgene remained intact [128]. The rapid onset and dose-responsive nature of 

proteinuria induced by CA-Rac1 expression provides strong evidence for a direct signaling role 

for Rac1 activation in generating foot process effacement. This in vivo biologic correlate further 

supports the use of the membrane-ruffling assay in cultured podocytes as a useful reporter of 

podocyte injury in vitro. Our results demonstrate for the first time that Rac1 activation in 

podocytes can directly cause foot process effacement and proteinuria. 

While onset of proteinuria in the CA-Rac1 expressing mice was rapid, the proteinuria 

induced was only transient. As GFP could not be detected in kidneys of mice treated long-term 

with DOX, we suspect that chronic Rac1 activation is toxic to podocytes. The efficiency of 

CA-Rac1 transgene expression differed between the two different rtTA driver lines and therefore 

incomplete CA-Rac1 expression is related in part to the efficiency of the promoter driving rtTA 

expression. It is well-known that epigenetic silencing can suppress transgene expression over 

time [131]. It is also possible that the incomplete expression of our CA-Rac1 transgene may be 
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related to other epigenetic factors that can affect expression of both the driver and CA-Rac1 

transgenes.   

We did not observe any progressive renal dysfunction or focal and segmental 

glomerulosclerosis (FSGS) in the CA-Rac1 expressing mice after prolonged DOX treatment, in 

contrast to the CA-RhoA transgenic mice [118]. This may be attributed to the low frequency of 

EGFP_CA-Rac1-expressing podocytes in our systems, since in a rat model of tunable podocyte 

loss, approximately 20 to 40% podocyte depletion was required before FSGS was consistently 

observed [26]. 

The presence of CA-Rac1 reduced podocin protein expression both in vivo and in cultured 

podocytes. This was mediated, at least in part, by proteasomal degradation as it could be 

blocked in vitro with proteasome inhibitors. Because we could not detect CA-Rac1-positive cells 

after extended DOX treatment, we suspect that the expressing podocytes were eliminated and 

replaced either by remaining podocytes or by a progenitor population [126, 132]. These 

compensatory mechanisms might explain the resolution of proteinuria over time in the CA-Rac1 

expressing mice. Therefore, future studies should focus on the development of tools to detect 

activation of endogenous Rac1 and RhoA in podocytes. The balance and localization of the 

activity of these GTPases is likely to be tightly and dynamically regulated for proper podocyte 

function. 
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3.6 Figures 

 
Figure 3.1 Constitutively active Rho family GTPases exert opposing effects on the actin 

cytoskeleton of podocytes 
(A) Immunofluorescence imaging was performed on differentiated mouse podocytes that were 
stably transduced with EGFP_CA-Rac1 or EGFP_CA-RhoA (green). The filamentous actin 
network was delineated with phalloidin (red) and focal adhesions and contacts were identified 
with vinculin (blue). Compared to control, untransduced cells, EGFP_CA-Rac1 induced flattening 
of the cell and lamellipodia formation while EGFP_CA-RhoA induced numerous stress fibers and 
cell contraction. (B) EGFP_CA-RhoA suppresses serum-induced membrane ruffling in 
podocytes. Left panel, using kymographic analysis, under conditions of serum starvation, 
podocytes exhibit minimal membrane ruffling activity. Introduction of EGFP_CA-Rac1 
significantly increases membrane dynamics and ruffling (*** P< 0.0001 by unpaired T-test). Right 
panel, exposing starved cells to serum also induces membrane ruffling which is suppressed by 
introduction of EGFP_CA-RhoA (*** P< 0.0001 by unpaired T-test). 
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Figure 3.2 Generation of inducible EGFP_CA-Rac1 transgenic mice 

(A) Strategy for targeted insertion of an inducible EGFP_CA-Rac1 into Exon 1 of the murine 
Hprt1 locus on chromosome X. The tetracycline response element (TRE) allows for DOX 
inducible EGFP_CA-Rac1 expression when crossed to lineage-specific rtTA-transgenic mouse 
lines. (B) Confirmation of targeted insertion and verification of EGFP_CA-Rac1 activity in 
transgenic mice. Long genomic PCR for the 5’ and 3’ insertion sites confirmed homologous 
recombination in ES cell clone 36 (parental KH2 ES cells are used as the negative control). 
Lanes 1 and 3: Primer1 (in 5’ EGFP transgene sequence) and Primer3 (400bp down stream of 
the 3’ arm). Lanes 2 and 4: genomic PCR by Primer2 (in Rac1 transgene sequence) and Primer3. 
(C) XbaI digestion produced specific digestion bands (400bp and 600bp) that confirmed the 
specificity of the 5’ and 3’ targeted locus PCR products from Figure 3.2B. Two replicates are 
shown. (D) Transgenically expressed EGFP_CA-Rac1 is functionally active. EGFP_CA-Rac1 
transgenic mice were crossed to NPHS2-rtTA inducer mice to generate PODxRac1 mice. 
EGFP_CA-Rac1 transgene was induced by feeding DOX to the mice. Transgenically expressed 
EGFP_CA-Rac1 binds to GST-PBD, which specifically recognizes the active conformation of 
Rac1. Transgenic EGFP_CA-Rac1 is not induced and is not present to bind to GST-PBD without 
DOX induction. Representative data from two induced and non-induced PODxRac1 mice are 
shown. 
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Figure 3.3 Podocyte specific expression of CA-Rac1 causes proteinuria 
(A) Upper panels, without DOX induction, EGFP_CA-Rac1 is not expressed in PODxRac1 mice. 
Lower panels, after a 4-day DOX induction, EGFP_CA-Rac1 transgene (green) is specifically 
expressed in glomerular podocytes, confirmed by immunofluorescence colocalization with the 
podocyte marker, podocin (red). (B) DOX treatment induced fast onset of proteinuria in 
PODxRac1 mice. Urine samples were collected at the indicated timepoints from the single 
transgenic EGFP_CA-Rac1 and DOX induced double transgenic PODxRac1 mice at the 
indicated timepoints. Proteinuria was quantitated by measuring the albumin/Creatinine ratio 
(Al/Cr) for each sample. Each point represents the Al/Cr ratio from a single mouse measured at 
the indicated timepoints. (C) The frequency of EGFP+ glomeruli correlated positively with the 
level of proteinuria (Al/Cr ratio) (Pearson’s r=0.8831, P< 0.0001).  
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Figure 3.4 EGFP_ CA-Rac1 expression driven by Nphs1-rtTA induces more robust 

transgene expression and transient proteinuria  
(A) Nphs1-rtTA mice were generated and crossed to EGFP_ CA-Rac1 transgenic mice to 
generate NEFxRac1 mice. After 4 days of DOX treatment, there was robust expression of the 
EGFP_CA-Rac1 transgene (green) in podocytes, labeled with the podocyte marker, podocin 
(red). (B) As before, NEFxRac1 mice were treated with DOX for various time periods and 
proteinuria was measured in the collected urine samples. Compared to the single transgenic 
(EGFP_CA-Rac1 only) control, NEFxRac1 mice exhibit significant proteinuria as early as 2 days 
after induction. Each point represents the Al/Cr ratio from a single mouse measured at the 
indicated timepoints. (C) Similar to PODxRac1 mice, the proteinuria in NEFxRac1 mice peaks 
around day 4 and then returns to baseline in 28 days. Each point represents the Al/Cr ratio from 
a single mouse measured at the indicated time points. 
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Figure 3.5 No obvious pathological changes were detected in histological analysis, and 
the transgene positive podocytes were lost after prolonged DOX treatment 

(A) hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) stained kidney sections from 
NEFxRac1 mice induced with DOX for 4 days. The control kidney samples are shown on the left, 
and the NEFxRac1 tissues are shown on the right. (B) The kidney samples were harvested from 
3 NEFxRac1 treated by DOX for 4 days or 28 days. For each kidney sections, the percentage of 
EGFP+ positive glomeruli was counted. 
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Figure 3.6 EGFP_CA-Rac1 expression in podocytes is associated with foot process 

effacement in vivo 
(A) Left panel, examination of kidney tissues from DOX treated PODxRac1 mice by transmission 
electron microscopy demonstrates segmental effacement (E) of podocyte foot processes while 
the foot processes of neighboring podocytes are intact and appear normal (N). The panels on the 
right demonstrate the same areas at higher magnification. (B) Scanning electron microscopy 
(SEM, left panel) and STORM (right panel) imaging techniques were performed on the same 
glomerulus from a NEFxRac1 mouse treated with DOX for 4 days. For STORM imaging, the 
sample was stained for laminin β2 (red) and EGFP (green) to label EGFP_CA-Rac1 expressing 
podocytes. The boxed area is examined in detail in Figure 3.4C. (C) Correlation of STORM and 
SEM images identifies that EGFP-CA-Rac1 expressing podocyte have effaced foot processes 
while neighboring, non-transgene expressing podocytes retain intact foot processes. The left 
panel shows capillary loops with effaced foot processes (arrowheads) and intact foot processes 
(arrows). The middle panel presents the STORM imaging of the same area with laminin β2 (red) 
and EGFP (green). The right panel shows a schematized representation of the STORM data 
overlaid on the SEM image. The glomerular basement membrane marked by laminin 2 is 
outlined in red. The EGFP_CA-Rac1 podocyte with its effaced foot processes is outlined in green. 
The intact foot processes of non-transgene expressing podocytes are outlined in blue. 
(M-mesangial cell, En-endothelial cell) 
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Figure 3.7 EGFP_CA-Rac1 expression correlates with reduced expression of podocin and 

nephrin  
A NEFxRac1 mouse was induced with DOX for 4 days and glomeruli were stained for nephrin (A) 
and podocin (C), both shown in red. There is decreased expression of nephrin and podocin in 
podocytes expressing the EGFP_CA-Rac1 transgene. Quantitation of pixel intensity across the 
glomerulus demonstrates separation of nephrin (B, Pearson’s r= -0.3840, P< 0.0001) and 
podocin (D, Pearson’s r= -0.1432 P< 0.0001) signals compared to EGFP_CA-Rac1 signals.  
Additional measurement of three other glomeruli are shown in (E, nephrin) and (F, podocin). (G) 
EGFP_CA-Rac1, but not EGFP_CA-RhoA expression in cultured podocytes reduces podocin 
protein levels. Left panel, cultured podocytes were electroporated with EGFP_CA-Rac1 or 
EGFP_CA-RhoA expression plasmids. Protein lysates were immunoblotted for podocin, Erk2 
and EGFP. Compared to the empty vector control and EGFP_CA-RhoA, EGFP_CA-Rac1 
reduced podocin protein levels. Right panel, densitometric quantitation of three independent 
experiments normalized to Erk2 levels. * P< 0.05 by unpaired t-test. (H) The reduction of podocin 
levels can be rescued by treatment with the proteasomal inhibitor MG132, but not with vehicle 
(DMSO) alone. 
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Figure 3.8 Time-lapse intravital MPM imaging of DOX induced NEFxRac1 mice 

Here shows nine images of the same glomerulus in 32 minutes of intravital MPM imaging 
experiment. The green channel is EGFP_CA-Rac1 positive podocytes. The red channel shows 
the capillaries in the glomerulus. The blue channel shows second harmonic signal from collagen 
matrix. The white arrow shows the membrane dynamics of the podocytes over time.  
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Figure 3.9 Z-stack images of EGFP_CA-Rac1+ podocyte that attach to the epithelium of 
the renal tubules 

The green channel is EGFP_CA-Rac1 positive podocytes. The red channel shows the tubular 
epithelium and interstitial capillaries that obsorbed Dylight594-labelled lectin. The images were 
generated from a 3D image file. 
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Figure 3.10 EGFP_CA-Rac1+ podyctes extended protrusions that penetrates the tubular 

epithelium and touched the basal side of the interstitial endothelial cells 
The green channel is EGFP_CA-Rac1 positive podocytes. The red channel shows the tubular 
epithelium and interstitial capillaries that obsorbed Dylight594-labelled lectin. The arrows show 
an interstitial capillary. L: the lumen of a renal tubule. P: podocytes that express 
EGFP_CA-Rac1. 
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Chapter 4. A Role for Genetic Susceptibility in Sporadic Focal Segmental 

Glomerulosclerosis 

 

4.1 Abstract 

Focal segmental glomerulosclerosis (FSGS), a disease of kidney podocytes is a significant 

cause of chronic kidney disease. FSGS can be caused by multiple factors including genetics, 

medication toxicity, obesity, inflammation and viral infection. In the fraction of FSGS subjects with 

a family history, highly penetrant disease genes have been identified. The identification of 

APOL1 as a susceptibility factor for FSGS in African Americans with HIV suggests that genetic 

factors may play a broader role in enhancing susceptibility to FSGS. Here we used sequencing 

to investigate whether genetics plays a role in the majority of FSGS cases called primary or 

sporadic FSGS where medications and viruses have been ruled out as causes. We identified 16 

potential new FSGS genes and found that over 46% of FSGS subjects may carry susceptibility 

genetic variants. Using a novel mouse method based on the manipulation of a murine embryonic 

stem cell line with a genetic background susceptible to FSGS, we validated three of the top four 

FSGS candidate genes. Our work supports the feasibility of studying the role of genetic 

background in the susceptibility to disease in humans.   
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4.2 Introduction 

The glomerulus of the kidney is a specialized capillary bed that generates an ultrafiltrate 

that after modification by the kidney tubule system becomes urine. Diseases of the glomerulus 

often lead to chronic kidney disease, a major health care problem affecting between 5-10% of the 

adult population in developed countries [3]. Treatment options are limited, in part owing to the 

poor understanding of the pathogenesis of disease. Better insights into the root cause of disease 

offer hope for eventual improvement of this situation.  

One of the most common glomerular syndromes is focal segmental glomerulosclerosis 

(FSGS). The pathologic change of FSGS is a scar that develops focally (in some but not all 

glomeruli) and segmentally (in only part of a glomerulus). While originally considered a disease, 

FSGS is now thought to consist of a variety of different syndromes. These include primary 

(idiopathic) FSGS that is thought to be caused by a circulating factor and secondary FSGS, 

which may be caused by viruses, medications and genetic mutations. The most common form of 

secondary FSGS follows glomerular hyperfiltration arising from mismatch between metabolic 

load and glomerular capacity, associated with obesity, low birth weight, reduced renal mass as 

well other causes. Genetic mutations can be sufficient by themselves to cause disease 

(Mendelian), or can increase susceptibility to FSGS by potentiating the effects of environmental 

factors.  

The glomerulus is composed of three different cell types: endothelial cells, mesangial cells 

and epithelial cells known as podocytes. The podocyte is an unusual cell that covers the outside 

of the capillary wall and interdigitates with other podocytes to create small slits that allow the 
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passage of fluid and small solutes into urinary space. It is now clear that podocyte dysfunction is 

responsible for FSGS as well as other glomerular diseases such as minimal change disease, 

membranous glomerulopathy and congenital nephrotic syndrome. Current models suggest that 

increased podocyte loss is the primary lesion in FSGS [24, 26, 133, 134].  

Over the last 10 years, highly penetrant disease genes has been identified in the fraction of 

FSGS subjects with a family history [135–137]. However, they do not explain the majority of the 

disease population, which are non-familial. In terms of number of people affected, the most 

significant genetic contributor to FSGS susceptibility identified to date is APOL1. FSGS 

associated alleles of APOL1, called G1 and G2, are common in West African populations, 

possibly as a consequence of providing resistance to trypanosomiasis [19, 138, 139]. The 

presence of two variant alleles significantly increases the risk of arterionephrosclerosis 

(hypertensive nephropathy) (Odds Ratio (OR) = 7), FSGS (OR = 17) or HIV associated 

nephropathy (OR = 29) in African [19, 20]. Approximately 13% of African Americans carry two 

variant alleles and are at increased risk for chronic kidney disease. As these variants are absent 

from individuals lacking any African ancestry, they are not documented to play a role in FSGS 

susceptibility in other ancestries, and by themselves largely explain the increased frequency of 

FSGS among African-Americans. Despite this, mechanisms by which APOL1 variants cause or 

predispose to glomerular damage remain unknown. 

Here, we used high-throughput sequencing of FSGS subjects to investigate whether 

genetics plays a broader role in the majority of FSGS cases that cannot be explained by the 

familial FSGS genes. Since FSGS is considered to be a disease of podocytes, we focused our 
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sequencing analysis on 2500 genes that are highly and/or specifically expressed in podocytes. 

DNA from 214 FSGS subjects including 192 sporadic cases and 22 familial cases were 

sequenced (Table 4.1). DNA samples of FSGS subjects were mostly from a multi-center NIH 

study of biopsy-confirmed FSGS [20], but also included some subjects diagnosed with FSGS by 

kidney biopsy at Washington University. All subjects provided informed consent for genetic 

studies. Control subjects sequenced for an autism study were used as controls [66]. Because the 

controls were of European ancestry, we focused on FSGS subjects of similar genetic ancestry. 

A major challenge of large scale sequencing studies will be to develop strategies that will 

allow for candidate susceptibility genes identified through association studies to be 

experimentally validated as functionally relevant to disease. Since there is no in vitro assay for 

podocyte injury leading to FSGS, validating candidate genes here requires the use of an animal 

model. We developed a system based on embryonic stem (ES) cells from a susceptible 

background for FSGS that allows for efficient method for targeted delivery of shRNAs, and that 

uses a method to generate mice that are close to 100% derived from the ES cells eliminating the 

need for breeding. Scaling up our system will allow for large numbers of candidate genes 

constituting the network of FSGS genes to be validated which will provide critical insight into the 

pathogenesis of this disease syndrome.  In addition, our experimental approach should be 

broadly applicable to studying other oligogenic diseases. 

 

4.3 Methods 

4.3.1 Exon capture and sequencing 
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Sample preparation and sequencing were carried out using standard protocols for targeted 

capture and Illumina sequencing. In brief, genomic DNA was fragmented to 150-200bp using a 

Covaris E220 focused ultra-sonicator. The ends of the fragmented DNA were repaired using a 

mixture of T4 DNA polymerase, Klenow polymerase and T4 polynucleotide kinase. Subsequently, 

adapters for Illumina sequencing were ligated onto the fragments. These libraries were then 

hybridized to biotinylated DNA probes from regions of interest (manufactured by MyGenostics, 

Baltimore, MD). After washing away DNA libraries that bound non-specifically to the probes, 

DNA of interest was recovered using Dynabeads® MyOne™ Streptavidin T1 (Life Technologies). 

Resulting DNA libraries were amplified, if needed, to provide enough products for sequencing on 

an Illumina HiSeq 2500. 

4.3.2 Variant calling and data quality control 

We performed alignment of the raw sequencing data and variant calling according to GATK 

best practices with BWA/Picard/GATK software pipeline of the Broad Institute. To insure that we 

are working with equally well-covered loci in both cases and controls we have performed a QC 

separately on cases and controls genotypes applying following filters: (1) Keep only SNPs; (2) 

Keep variants that PASS all GATK quality filters; (3) Keep genotypes with DP>10,GQ>30,AB for 

hets 0.3<AB<0.7, for homozygous alternative AB<0.3; (4) Keep variants with less than 5% of 

missing genotypes. After applying these filters we have combined variants from cases and 

controls keeping only those variants with less than 5% of missing genotypes in both cases and 

controls. Our final dataset contained 16108 SNPs in 1874 genes. 

4.3.3 Principle component analysis and case-control matching 
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PCA was performed with Eigenstrat software on the common (MAF>5%) variants found in 

autosomes only. We computed a Euclidian distance from each point on the PCA plot to the origin 

and plotted distributions of this parameter for both cases and controls. Using 3-sigma rule to 

remove the samples that appeared to be outlying from the distribution. This resulted in 30 

samples of mixed Hispanic ancestry to be removed from initial data. 

Sample statistics and case-control matching metrics were computed using Plink-seq. We 

have used number of variants called per sample, number of heterozygous genotypes per sample 

and number of genotypes with minor allele per sample as a metrics representing genetic 

background of the cohort. We established similarity between the genetic background of cases 

and controls by matching mean and variance of case and control distributions for every metric. 

We tested the validity of this approach by running Fisher’s exact test on the common variation 

and QQ-plot of the p-values showed no inflation confirming absence of the population 

stratification in the case-control dataset (Supplementary Figure 4.1).  

4.3.4 Mouse strains and antibodies 

Cd2ap+/- mice were generated in our previous study [77]. Synpo-/- mice were obtained from 

Peter Mundel’s laboratory [140]. The Nphs1-rtTA3G (NEFTA) strain was a gift from Dr. Jeffrey 

Miner’s laboratory [126]. Dlg5+/- strain was a gift from Dr. Valori Vasiokin’s lab [141]. All mouse 

strains were genotyped by published protocol. All animal experiments were conducted with the 

approval of the Washington University Animal Studies Committee.The antibodies used for 

immunoblotting were mouse anti-XFP (632381; dilution, 1:10,000; Clontech), rabbit anti-ERK2 
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(sc-154; dilution, 1:5,000; Santa Cruz Biotechnology), mouse anti-β-actin (A2228; dilution, 

1:10000, Sigma), and rabbit anti-CD2AP (generated in our previous study, dilution, 1:10000) 

4.3.5 Generation of a male Cd2ap+/-,Synpo+/-, NEFTA+ ES cell line 

To generate a male ES cell line that was sensitized to FSGS, we bred Cd2ap+/-, Synpo-/- 

males with NEFTA+ females. The females were superovulated using standard methods. After 

mating, the embryos were isolated at the eight-cell stage (morulae), and cultured overnight in 

KSOM (Millipore MR-121-D) micro-drops overlaid with mineral oil at 5% CO2 and 37C. 

Blastocysts were transferred one per well, into 48 well plates with gamma-irradiated MEF 

feeders and standard ESC Medium that contains 15% ES qualified fetal bovine serum 

(SH30070.03E, Hyclone). The inner cell mass (ICM) was allowed to grow out. The ICM 

outgrowth was trypsinized after 5-7 days depends on the size and shape of the outgrowth, and 

cultured until ES colonies were identified. The colonies were expanded, frozen back and 

genotyped by using standard methods. 

4.3.6 Generation of miR30-shRNA knock-in transgenic mice 

In our previous studies, we developed a method to integrate a single copy of transgene into 

Hprt1 locus, and use 6-thioguanine to select for ES clones with homologous recombination [142]. 

Based on this method, we further developed a double selection method, which significantly 

improve the chance of obtaining a positive ES clone.  

A PGK-Puro cassette was inserted between the left and right arm of the pHPRT targeting 

vector. The miR30-based shRNA-expressing transgene that was driven by the 

tetracycline-responsive promoter (TRE) was inserted between the left arm and the PGK-Puro 
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cassette. Linearized targeting vector was transfected into ES cells that were growing at 

extension phase. At 24 hours post transfection, the ES cells were treated by 1µg/mL puromycin 

for 48 hours. Then the survived ES cells were passaged once. After 48 hours, the ES cells were 

treated by 6-thioguanine for 48 hours. Survived ES cell colonies were picked, expanded, and 

examined by genomic PCR across the right arm (Forward primer: 

5’-CAAGCCCGGTGCCTGATCTAGATCATAATC-3’; Reverse primer: 

5'-CTGTAAAGGTCTCTGAACTACCAATTGCAC-3’). Positive ES cells were then stocked for 

injection.  

4.3.7 Laser assisted microinjection 

The ES cells were maintained at extension phase before the injection. Eight ES cells were 

injected into a recipient embryo at eight-cell stage by following a standard protocol published 

previously [143]. Since the ES cell line produces mice with agouti coat color, albino B6 

(C57BL/6J-Tyrc-2J) mice were used as host embryos for direct evaluation of chimerism by coat 

color.  

4.3.8 Cell culture and lentivirus infection 

Immortalized murine podocytes were maintained and differentiated as described 

previously [122]. To examine the knockdown efficiency of Cd2ap-sh877, podocytes were 

infected with lentiviral vectors encoding miR30-sh877. A control lentiviral vector encoding 

miR30-FF3 that targets fire fly luciferase cDNA was used as a control. The CD2AP expression 

was examined by immunoblotting of the whole cell lysates. 

4.3.9 Design and validation of the miR30-shRNA constructs for genes of interest 
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The shRNA oligo sequences were picked using an online algorism 

(http://katahdin.cshl.org/siRNA/RNAi.cgi?type=shRNA) as described [144]. The miR30-shRNA 

backbone was sub-cloned by PCR from pPRIME-CMV-GFP-FF3 

(https://www.addgene.org/11663/) and inserted into pcDNA3.1-Zeo(+) vector to generate pcMIR 

vector. To examine the knockdown efficiency, the miR30-shRNA construct and its artificial target 

(Figure 4-S3B) were co-transfected into HEK293T cells at molar ratio 5:1. The expression of 

EGFP in whole cell lysates was examined by immunoblotting.    

4.3.10 Albumin-creatinine assay 

Mouse urine samples were collected at the time points indicated in the figures, and urinary 

albumin (E90-134; Bethyl) and creatinine (DICT-500; BioAssay Systems) were quantified by 

enzyme-linked immunosorbent assays (ELISA) according to the manufacturers' protocols. 

4.3.11 Transmission electron microscopy 

Portions of kidney cortex were fixed with 2% paraformaldehyde and 2% glutaraldehyde. 

Specimen processing, ultrathin sectioning, and imaging were performed by the Electron 

Microscopy (EM) Core Facility at Washington University. 

 

4.4 Results 

4.4.1 Identification of podocyte genes for sequencing 

To identify susceptibility genes for FSGS, we designed a custom exome capture reagent 

that focused on genes that were highly expressed in podocytes and/or previously implicated in 

FSGS. We began with five genes reported in OMIM in which heterozygous mutation confers risk 
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to idiopathic FSGS: TRPC6 [17, 145], , INF2 [13], APOL1 [19], ACTN4 [8], and CD2AP (Kim et 

al., 2003). Pathway analysis was performed to identify ~200 genes that are functionally linked to 

known FSGS genes and other syndromic or recessive genes. 677 genes were added based on 

their high expression in microdissected human glomeruli [147] and 1600 were the human 

orthologs of the most highly expressed genes identified by DNA microarrays in mouse podocytes 

[122, 148, 149]. Our total capture, which we term the “podocyte exome”, included about 2500 

genes comprising a total of 7Mb. (Figure 4.1A). 

4.4.2 Variant association analysis of FSGS patients of European ancestry using Next Generation 

sequencing 

DNA from 225 biopsy confirmed FSGS patients that were of European ancestry was 

sequenced. Patient DNA samples were mostly from a multi-center NIH study of FSGS [150], but 

also included some FSGS patients diagnosed at Washington University; all subjects provided 

informed consent for genetic testing. The patient population included mostly sporadic but also 

some cases of familial FSGS patients. Patients sequenced for an autism study, lacking 

evaluation for kidney phenotypes were used as controls [66]. Because the controls were of 

European ancestry, our plan was to focus on FSGS patients of similar genetic ancestry.  The 

podocyte exome was captured from the FSGS patients and sequenced using standard 

technologies with an average coverage of 200X.  

Since the FSGS patient sequences were generated using a different platform and 

sequenced at a different institution than were the controls, we needed to validate that the two 

data sets were comparable as this is critical for unbiased analysis. After eliminating two case 
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samples with <20x average coverage, data from all case and control samples were processed in 

a single batch with raw data was aligned to the human genome using the BWA/Picard pipeline at 

the Broad Institute and subsequent variant calling was performed using GATK Unified Genotyper 

(Figure. 4.1B) [64, 151, 152]. 

The depth of coverage of protein coding exons targeted by both capture reagents was 

compared between cases and controls; only those exons covered adequately (>20X) in both 

cases and controls were advanced into the analysis stage. In summary, 16784 exons and 

2769942 base pairs were confidently covered in both case and control cohorts, resulting in 

16,008 SNPs and 1724 genes analyzed in the final dataset. The SNP calls were equally 

represented in cases and controls (GQ>30 and rate of missing genotypes less than 5% in each 

cohort) (Figure 4.1C). 

Next, principal component analysis (PCA) was performed to define an appropriately 

ancestry matched case-control sample set (Figure 4.2A,B). Thirty patient samples were removed 

because a mixture of Hispanic ancestry was detected. Three more samples were removed 

because the call-rate of SNPs was less than 95%. The number of SNPs, heterozygous 

genotypes, and genotypes containing an alternative allele per sample were similar between 

cases and controls. This reassured us that we could move forward with association analysis 

(Figure 4.2C,D,E). Our final dataset contained 179 cases and 378 controls of 

European-American ancestry as determined by PCA (Table 4.1). Accuracy of this analysis 

strategy was further confirmed by resequencing key SNPs using Sanger sequencing. 

4.4.3 Identification of new candidate genes by testing single variant associations 
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An association test examining single variants (minor allele frequency (MAF) >1%) was 

performed using Fisher’s exact test. Ten common variants from nine different genes were 

significantly enriched in cases versus controls with p-value < 0.001 and odds ratios > 4 (Table 

4.2). These variants were found only in the sporadic cases and the controls. No common variant 

was identified in the familial cases. Four cases carried a single copy of the APOL1 G1 variant 

(G1); this allele is present in 29% of African Americans but only 0.03% of European Americans 

and confers FSGS susceptibility when two APOL1 risk alleles are present [150]. A search of the 

NHLBI-Exome Sequencing Project database showed that four other single variants enriched in 

our cohort (WNK4, KANK1, IL36G, ARHGEF17) had MAFs that were more common in African 

Americans. These variants were distributed across many patients, and no variant was linked to 

other common African SNPs. The specific enrichment for African SNPs in some of our European 

ancestry patients largely explains the high odds ratios that were calculated for these variants and 

suggest that some of the risk variants could be ancestral variants.  

4.4.4 Identification of new candidate genes by rare variant analysis 

Rare variants (MAF < 1%) were analyzed by using tests that compare the total numbers of 

rare variants between cases and controls. We used three such tests: the burden test [153], the 

variable threshold test [154] and the C-alpha test [155]. Because the effect sizes of genetic 

variants differ, the accuracy of each method can vary depending on the specific situation. Using 

a p-value < 0.001 as a cutoff, we identified 11 genes as potential FSGS susceptibility genes 

(Table 4.3): WNK4, APOL1, DLG5, GCC1, XYLT1, KAT2B, BPTF, COL4A4, NID1, EPHX1 and 

EPHB6. Two of these genes, WNK4 and APOL1 were also identified by common variant analysis. 
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In support of our approach, COL4A4, identified by rare variant analysis, was recently identified 

as an FSGS susceptibility gene [156]. With the exception of APOL1 and COL4A4, none of the 

identified genes has been previously identified as FSGS susceptibility genes. Thus, we identified 

16 potential new FSGS genes. 

4.4.5 Analysis of known familial FSGS genes 

Family studies have identified about 20 genes as the cause of familial FSGS [157, 158]. To 

determine, whether these genes are also involved in sporadic FSGS, we assessed the 

frequencies of rare deleterious (missense/nonsense) coding variants in 20 of these genes in 

cases and controls (Table 4.4). Among cases, 46/179 subjects (32%) had at least one rare 

variant in these genes compared to 13/378 controls (3.4%, p value = 4.7e-14) (Table 4.1 and 4.5). 

The distribution of variants between familial and sporadic cases was similar and consistent with 

previous studies that about 30% of steroid resistant nephrotic syndrome cases have a variant in 

a known disease gene [159]. There was also a difference in the total number of unique rare 

variants identified in cases (59 variants in 179 cases) versus controls (15 variants in 378 

controls). The significance of this finding was tested using a permutation analysis of groups of 20 

genes randomly chosen from our dataset. This showed, however, that 27% of random sets of 20 

genes had a p-value that was similar to or below 4.7e-14, suggesting the presence of novel 

FSGS genes with strong genetic effects in our dataset. 

4.4.6 Development of a sensitized mouse system to identify potential FSGS disease causing 

genes 

The FSGS syndrome likely involves diverse injury pathways and so no single in vitro 
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system is available to test whether a particular gene variant might induce FSGS. We therefore 

developed a genetic system in mouse, to examine the function of candidate genes in vivo in the 

kidney. Our strategy involved knocking down the expression of candidate genes in a mouse 

genetic background that is prone to develop FSGS. Previously, we showed that mice that are 

heterozygous for two podocyte genes, Cd2ap and Synpo (encoding synaptopodin), developed 

FSGS with an incomplete penetrance (~25%), with albuminuria, a sign of podocyte dysfunction 

not apparent until animals are about six months of age [21]. We reasoned that if impairing the 

function of a candidate gene worsened the phenotype on this transgenic background, by either 

enhancing the penetrance or leading to an earlier onset of disease, it would validate the specific 

candidate gene. 

We generated ES cells from mice that were Cd2ap+/- Synpo+/- using standard methods 

(Figure 4.3A). To induce RNAi expression in a podocyte specific fashion, the ES cells also 

express a podocyte-specific and doxycycline-inducible trans-activator (Nphs1-rtTA3G) [126]. The 

rtTA3G is a synthetic transcription factor that binds and transactivates promoters that contain the 

bacterial tet-operator equence [160]. After confirming the genotype of the ES cells (Figure 4.3B), 

we confirmed that the ES cells could generate mice with high-level chimerism using the 

traditional method of blastocyst injection. Using the method of laser-assisted microinjection into 

8-cell embryos [143], we also validated that these ES cells could generate mice that were close 

to 100% derived from the ES cells as assessed by coat color (Figure 4.3C). As expected based 

on the genotype (Huber et al., 2006), about 50% of the mice generated from these ES cells 

developed mild proteinuria after three to four months of age (Figure 4.3D). 
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We then used homologous recombination to integrate a single copy of the RNAi transgene 

into the mouse Hprt1 locus to eliminate variability that could result from the random integration of 

an RNAi transgene [142]. The Hprt1 locus is on the X chromosome and because the ES cells 

were male, targeting of the transgene results in complete loss of the Hprt1 gene resulting in 

resistance to 6-thioguanine (6-TG) toxicity (Figure 4.4A). This method was efficient as over 90% 

of the ES cell colonies that survived selection had a correctly targeted recombination event (data 

not shown).    

      We validated the system by testing an RNAi for Cd2ap. Mice that are Cd2ap+/- exhibit 

normal renal function and have normal lifespans, but mice that completely lack Cd2ap 

expression develop severe proteinuria shortly after birth [77]. To control shRNA expression by 

doxycycline, shRNA oligos were embedded into the miR30 backbone that allows for RNA 

polymerase II transcription [161]. We tested multiple Cd2ap specific RNAi’s in vitro for their ability 

to inhibit Cd2ap expression (Figure 4.4B and 4.5A) and the best one (sh877) was targeted into 

the Hprt1 locus of our ES cell line (Figure 4.5B). An RNAi targeting the firefly luciferase gene was 

used as a control. Laser-assisted microinjection generated 16 animals that were nearly 100% 

derived from the ES cell based on the completely agouti coat-color.    

When the chimeric mice were two weeks of age, half were given doxycycline (DOX) in the 

drinking water to induce shRNA transgene expression. Four weeks later, oodocyte function was 

assessed by monitoring albumin leakage into the urine by measuring the ratio of albumin to 

creatinine ratio. All of the DOX treated mice developed proteinuria with an average 

albumin/creatinine ratio that was almost 150 fold higher than in the control animals  (1.5 x 105 
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compared to 1.0 x 103) (Figure 4.4C). The proteinuria was sustained during eight weeks of DOX 

treatment and was reversible, as proteinuria abated when DOX was removed (Figure 4.5D). 

Histological analysis also confirmed the presence of proteinuria, as protein casts were 

consistently present in tubules (Figure 4.4D). Electron microscopic examination of the kidney 

showed widespread foot process effacement, another marker of proteinuria (Figure 4.4E). 

Control RNAi mice targeting firefly luciferase showed no proteinuria after DOX treatment (Figure 

4.4F). This verified that our RNAi strategy could be used to test candidate FSGS genes. 

4.4.7 Testing candidate FSGS genes using the novel mouse genetic system 

To validate our system, we chose four genes, WNK4, DLG5, ARHGEF17 and KANK1. 

WNK4 was chosen as it was identified by single variant analysis and by all three rare variant 

tests. ARHGEF17 and KANK1 were identified by single variant analysis but not by rare variant 

analysis. DLG5 was identified by all three rare variant tests but not by single variant analysis. 

Because the mouse ortholog for human KANK1 is unclear, we targeted Kank2 in addition to 

Kank1. 

Multiple shRNAs were generated for all five candidate genes and their efficacy was first 

tested in vitro (Figure 4.6A, and 4.7A,B). Validated shRNAs were then ligated into targeting 

constructs that were transfected into ES cells. After selection for loss of Hprt1, mice were 

genotyped by PCR to confirm homologous recombination. Two independent clones for each 

candidate gene were selected for microinjection and 15-30 mice were generated by 

laser-assisted injection for each clone. Coat color verified that the chimerism for each animal was 

close to 100%.  
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At two weeks of age, half of each cohort was given DOX in the drinking water to induce 

expression of the transgene. Proteinuria was assessed at four weeks and eight weeks after DOX 

treatment, at which time mice were sacrificed for histological and electron microscopic 

examination (Figure 4.6B~F). Induction of both the Wnk4, Arhgef17 and Kank2 RNAi transgenes 

induced substantial proteinuria four weeks after induction with doxycycline with a level of 

proteinuria that was between 150-200 fold higher than the controls. For both lines of mice, 

proteinuria was attenuated after eight weeks (Figure 4.6B, D, E). The Kank1 RNAi mice showed 

only modest proteinuria at the four-week time point but proteinuria increased significantly after 

that (Figure 4.6C). 

In contrast, Dlg5 RNAi mice did not develop significant proteinuria at any time up to 12 

weeks after induction (Figure 4.6G and 4.7C). We validated this result by breeding Dlg5+/-mice to 

our sensitized background (Cd2ap+/-, Synpo+/-). Up to six months of age, no significant difference 

was detected between triple heterozygous mice (Dlg5+/-Cd2ap+/-, Synpo+/-) and double 

heterozygous (Cd2ap+/-, Synpo+/-) littermates (Figure 4.6F). This suggested that Dlg5 is not an 

FSGS susceptibility gene or that it may not be epistatic with Cd2ap and Synpo in podocytes. As 

expected, electron microscopic examination of the kidneys showed podocyte foot process 

effacement from Arhgef17 Kank1, Kank2 and Wnk4 RNAi mice, but not in Dlg5 RNAi mice 

(Figure 4.7D). 

 

4.5 Discussions  

We added KANK1, WNK4 and ARHGEF17 to the list of 20 known FSGS genes and 
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reanalyzed the differences between cases and controls. Addition of these three genes increased 

the p-value to 1.6e-23. Testing random sets of 23 genes by permutation analysis in cases and 

controls showed that only 0.04% of random sets equaled or matched the p-value for these 23 

genes. This supports the idea that genetic variants in a specific subset of genes may function 

more broadly to create a susceptible background for the development of sporadic FSGS. 

 The role of genetics in the pathogenesis of FSGS was thought to be restricted to those with 

a family history. Familial studies have identified ~20 FSGS disease genes with specific variants 

that are highly penetrant in these families. The identification of APOL1 as a sensitizing factor for 

FSGS in African Americans with HIV demonstrated that genetic factors may also play a role in 

enhancing susceptibility to FSGS by environmental factors [19, 20]. Here we found that DNA 

variants in a set of 23 or more genes may play a role in over 46% of non-familial FSGS cases 

presumably by enhancing podocyte susceptibility to injury. The role of genetics in sporadic cases 

is likely much weaker than in the familial cases. Common variants were found exclusively in the 

sporadic cases and in addition, a significant fraction of sporadic cases had more than one variant, 

a feature that was not seen in any of the controls or the familial cases. Our analysis was likely 

facilitated by our focus on podocyte-specific genes that we reasoned would have a higher 

likelihood to be involved in FSGS and by our RNAi mouse model that allowed us to begin 

validating these genes. Since oligogenic genetic effects and environmental factors are likely to 

be broadly involved in disease susceptibility, our methods could be widely applicable to the study 

of other rare and common diseases. 
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4.6 Tables and Figures 
Table 4.1 Distribution of single and rare variants in FSGS subjects and controls 

A total of 192 sporadic and 22 familial FSGS cases were sequenced. 157 sporadic and 22 
familial FSGS cases remained after quality control and were compared to 378 controls. The 
number of subjects with predicted deleterious variants in 20 known FSGS genes, single variants 
in the top 9 genes from the common variant analysis and the top 11 genes from rare variant 
analyses. The total number of subjects with variants in 20 known FSGS genes + the three genes 
that were validated are also shown. 
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Table 4.2 Potential FSGS susceptibility genes identified by common variant analyses 
15 potential susceptibility genes identified by common variant analysis.The frequency of 
common variants (MAF > 1%) was assessed in cases versus controls and high scoring variants 
with odds ratios greater than 2.5 are shown here ranked by p value. For each common variant, 
the chromosome position, gene name, reference and alternative base pair, overall mean allele 
frequency, number of alternative alleles in cases versus controls, total number of genotypes in 
cases, the allele frequency in European vs African Americans from the ESP database, the p 
value and the odds ratio and the Polyphen prediction score are shown. 

 

  



 99 

Table 4.3 Potential FSGS susceptibility genes identified by rare variant analyses 
11 genes identified by rare variant analyses. Rare missense, and nonsense variants (MAF < 1%) 
were pooled together for rare variant analysis using the burden, variable threshold and C-alpha 
tests. The top genes (p-value < 0.001) identified for each test are shown ordered by p value. 
Genes that were also identified by single gene analysis using Fisher’s exact test are shown in 
bold. 

 

 

 
 

Table 4.4 The list of 20 known FSGS genes 
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Table 4.5 The list of rare deleterious variants identified in 20 known FSGS genes in the 
FSGS subjects that we sequenced 
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Figure 4.1 Comparability of variant calls between cases and controls 

(A) Principal component analysis (PCA) of variants between cases (+) and controls (x) shows 
close similarity of ancestry. (B) The PCA data shown in A is depicted as distance from the origin. 
The 30 case sample with a distance of greater than 0.09 from the origin, suggesting substantial 
admixture with non-European populations, were removed from further analysis. (C) The number 
of total variants per sample were similar between cases and controls. (D) The number of 
heterozygous (HET) genotypes was similar between cases and controls. (E) The number of 
heterozygous or homozygous genotypes containing an alternative allele was similar between 
cases and controls. 
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Figure 4.2 Supplementary figure for Figure 4.1  
(A) 2500 genes were clustered and defined as “podocyte exome”. (B) Average sequencing 
coverage for all patients in FSGS cases. Each bar represents the coverage of a patient DNA 
sample we sequenced. (C)PCA Plot. (D) Dapple analysis for the interaction network of all gene 
identified by common and rare analyses. 
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Figure 4.3 Generating an ES cell line with an FSGS susceptibility genetic background 

(A) Male Synpo-/-, Cd2ap+/- and female Nphs1-rtTA3G mice were bred together to isolate 
blastocyst. ES cell lines were derived from these blastocysts. The chance of deriving a male ES 
cell line that is Synpo+/-, Cd2ap+/-, Nphs1-rtTA3G is 1/16. (B) Genomic PCR confirms B12 ES cell 
line is male, Cd2ap+/- and Nphs1-rtTA3G. Synpo +/- was also confirmed (data not shown). (C) 
Mice were generated using laser assisted injection from B12 ES cell line were monitored for the 
development of proteinuria by measuring the urine albumin/creatinine ratio. Approximately 50% 
of mice generated from these ES cells treated with or without doxycycline (administered from 2 
weeks of age) slowly developed proteinuria over a period of 3-5 months. 
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Figure 4.4 Generating a system to validate candidate FSGS genes 

(A) The targeting strategy used to integrate a miR30-shRNA transgene into Hprt1 locus is shown. 
A targeting vector with the miR30 transgene and a PGK-puromycin cassette was generated with 
left and right homology arms containing sequences that flank exon1 of the Hprt1 gene on the X 
chromosome. Primers (P1, P2, and P3) for PCR validation of homologous recombination are 
shown. (B) The knockdown efficiency of a miR30 shRNA for Cd2ap (sh877) is shown. A 
podocyte cell line was transduced with a lentivirus containing the Cd2ap shRNA was blotted for 
Cd2ap expression. Erk2 was used as a protein loading control. Transduction with an shRNA 
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targetting firefly luciferase (FF3) serves as a negative control. (C) Mice generated with ES cells 
with the Cd2ap shRNA recombined in the Hprt1 locus were treated with and without doxycycline 
for four or eight weeks and urine was analyzed by measuring the urine albumin/creatinine ratio. 
(D) By light microscopy, Doxycycline treated Cd2ap-RNAi mice manifested proteinaceous 
tubular casts (asterisks). (E) By electron microscopy, doxycycline dependent foot process 
effacement was present in Cd2ap-RNAi mice, while podocyte cytoarchitecture is preserved in 
control mice. (F) Control FF3-RNAi mice were treated with and without doxycycline for four and 
eight weeks and urine analyzed by measuring the albumin/creatinine ratio. 
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Figure 4.5 Supplemental figure for Figure 4.4 
(A) The efficiency of 3 miR30-shRNAs that targets Cd2ap. A mouse CD2AP-EGFP construct 
was co-expressed with different miR30-shRNA constructs in HEK293 cells. The expression level 
of CD2AP-EGFP was detected by immunoblotting. Actin immunobltting was used as loading 
control. FF3, A miR30-shRNA that targets fire fly luciferase was used as control. The design of 
genomic PCR and the example of results that validate homologous recombination in ES clones. 
Forward primer (P1: 5’-CAAGCCCGGTGCCTGATCTAG ATCATAATC-3’) was designed at the 
end of puromycin resistant cassette. Two reverse primers were designed out side the Right Arm. 
(P2: 5'-CTGTAAAGGTCTCTGAACTACCAATTGCAC-3', and P3: 
5'-GAGACTAAGGCAGGAGGATTCCAGGTTTG -3'). (B) PCR validation of homologus 
recombination. The arrows points the specific PCR products for the PCR reactions by using 
P1+P2 and P1+P3, and the PCR products were confirmed by restriction digestion with desired 
sizes of digested DNA fragements. (C) The system of podocyte-specific, DOX-inducible RNAi. (D) 
Cd2ap-RNAi mice showed DOX-dependent proteinuria. The DOX treatment was stopped after 8 
weeks. The urine samples were collected at 4, 8, 12 and 16-week time points. Albumin/creatinine 
ratio was measured and plotted. (E) Untreated Cd2ap-RNAi mice showed normal foot 
processes. 
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Figure 4.6 Validation of five FSGS candidate disease genes 
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(A) To select the best shRNA construct, multiple shRNAs were tested for Arhgef17, Dlg5, Kank1, 
Kank2 and Wnk4 by inhibiting expression of a construct containing the GFP-tagged target 
sequence in 293 cells (Figure 4-S3A). GFP immunoblotting was used to determine the best 
shRNA for each gene. (B-E) Mice were generated by laser-assisted microinjection of ES cells 
with the specific shRNAs for the indicated genes. After treatment with or without doxycycline to 
induce expression of the transgene, urine albumin/creatinine ratio was measured after 4 and 8 
weeks. As shown, shRNA knockdown of Arhgef17, Kank1, Kank2, and Wnk4 increased 
proteinuria at 4 and 8 weeks, (F-G) By contrast, neither Dlg5 shRNA knockdown nor a 
Dlg5+/-mouse on a susceptible genetic background (Cdap+/- and Synpo+/-) increased albuminuria. 
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Figure 4.7 Supplemental figure for Figure 4.6 

(A) The system was developed to test the RNAi efficiency of a given miR30-shRNA. The ExonX 
targeted by the shRNA is amplified by genomic PCR and inserted to the 3’ end of EGFP 
sequence of pEGFP-C1 vector. The pEGFP-C1-ExonX became an artificial target for the shRNA. 
The pEGFP-C1-ExonX and miR30-shRNA constructs were co-expressed in 293 cells, and the 
expression level of EGFP was detected by immuneblotting. (B) Immunoblotting results for each 
miR30-shRNA oligo designed for the candidate genes. The FF3 miR30-shRNA was used as 
control for each miR30-shRNA oligos. Actin immunoblotting was used as loading control. The 
expression of EGFP was used as an indicator of the RNAi efficiency, the miR30-shRNA oligo 
that had the best RNAi efficiency was inserted into pHPRT vector to generate RNAi ES cells and 
mice. (C) Dlg5-RNAi mice showed no proteinuria after 12 weeks of DOX treatment. (D) Electron 
microscopy of each RNAi mice showed the foot process effacement. 
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Chapter 5. Conclusions and Future Directions 

 

5.1 Conclusions 

5.1.1 The balance between Rho and Rac activity maintains the morphology and function of the 

podocyte. 

To form properly interdigitated foot processes, podocytes established organized actin 

cytoskeleton. In the foot processes, actin polymerize into at least two different structures that are 

observed by transmission electron microscopy, the dense actin bundle and the loose cortical 

actin network. In vitro, active Rho promotes the actin bundle formation, while active Rac 

promotes the branched actin network. Podocytes regulate the spatial balance of Rac and Rho 

activities. The active Rho could maintain the thick actin bundles along with other actin bundling 

proteins such as alpha-actinin4 and INF2, while active Rac could keep the actin network next to 

the silt diaphragm. 

Over-active Rac or Rho in podocytes could cause transient or permanent damages. 

Transgenic mice that express the constitutively active mutant of either Rac (CA-Rac) or Rho 

(CA-Rho) are lethal in embryonic stage, which indicates the high toxicity of both constitutively 

active mutants [162]. Inducible expression of CA-Rho in podocytes cause slow onset of 

proteinuria and permanent FSGS [49]. In contrast, our research showed that inducible 

expression of CA-Rac1 caused much faster onset of proteinuria, which can be detected as early 

as 2 days post doxycycline treatment. This observation supports the hypothesis that foot process 



 111 

effacement is analogous to lamellipodia. Our result also supports that loss of podocyte foot 

processes is a direct cause of albumin leakage. Long-term expression of CA-Rac1 could lead to 

chronic damage such as glomerulosclerosis. 

Podocytes express high level of ARHGAP24, a Rho-activated Rac/Cdc42 GAP. We 

identified this gene initially by comparing expression profiles of differentiated versus 

undifferentiated mouse podocytes, and later we found mutations of this gene associated with 

familial FSGS. This protein is also called “FilGAP”, because it binds to filamin A, a protein that 

dimerizes and binds to branched actin filaments [94, 114]. Thus, ARHGAP24 could work as a 

barrier between the cortical actin network and the actin bundles to keep the active Rac from the 

center of the foot processes. 

5.1.2 The genetic susceptibility could explain over 46% of the non-familial FSGS subjects. 

Our genetic study and podocyte-specific RNAi mouse model identified and validated 

genetic susceptibility to FSGS in non-familial FSGS cases. FSGS was thought mainly caused by 

environmental factors such as virus infection, and chemical toxins [3]. Studies of familial FSGS 

cases have identified about 20 FSGS susceptibility genes, but only a few of them were recently 

found mutated in non-familial cases. Here we identified another 16 genes that could potentially 

involve in the susceptibility of non-familial FSGS. We validated 4 genes in our podocyte-specific 

RNAi mouse model, ARHGEF17, KANK1, KANK2 and WNK4. We also observe that variants of 

different genes presents in the same non-familial FSGS subjects but not in familial FSGS 

subjects. This observation suggests that a combination of low penetrant genetic risks could 

cause susceptibility to FSGS, which was first shown by our bigenic mouse models [21]. The 
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oligogenic genetic factors of non-familial FSGS was not considered as important risk factors 

before, but our research suggests that non-familial FSGS could caused by oligogenic genetic 

factors plus an environmental trigger, such as virus infection, chemical toxicity, and a circulating 

factor in the serum.  

5.1.3 Actin Cytoskeleton pathway is the major pathway of susceptibility to FSGS. 

Among the known FSGS genes and the susceptibility genes that we identified from our 

sequencing approach, we found that a large proportion of these gene are involved in regulation 

of actin cytoskeleton. In the 20 known FSGS genes (Table 4.4), 9 genes either directly interact 

with actin filaments (INF2, ACTN4, MYO1E and CD2AP), or regulate the activity of Rho family 

GTPases (ARHGAP24, ECT2, NPHS1, NPHS2, and TRPC6). 3 genes (COL4A3, COL4A4, and 

LAMB2) are extracellular matrix genes that connect to intracellular actin network through 

intergrins and focal complexes. Thus over half of the familial FSGS genes influence the actin 

cytoskeleton. The secretion of extracellular matrix proteins is also regulated by actin 

cytoskeleton. In the susceptibility genes we validated, 3 out of 4 regulate the actin through Rho 

family GTPases, KANK1 [163], KANK2 [164] and ARHGEF17 [165]. The enrichment of mutants 

in actin-associated and actin-regulatory genes in FSGS patients support the hypothesis the 

natural susceptibility to FSGS comes from a weakly organized actin cytoskeleton in the 

podocytes. Previous mouse model and human genetic studies also support this hypothesis. 

Cd2ap deficient mice develop normal foot processes in the beginning and do not have any 

protein leakge before 14 days of age. However, after 14 days post natal, Cd2ap deficient mice 

start to exhibit foot process effacement and proteinuria. In children, NPHS2 mutations account 
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for about 30% of steroid-resistant nephrotic syndrome [159], which also have proteinuria and foot 

process effacement. These patients have normal kidney function and foot processes before the 

syndrome starts. Thus the genetic lesion of NPHS2 might also lead to an actin network that is 

susceptible to damage. Minimal change disease and steroid-sensitive nephrotic syndrome, 

however, show transient proteinuria and foot process effacement, because the actin structure in 

the podocytes could recover from the diseases to regenerate foot processes. 

5.1.4 Elevated Rac signal could cause podocyte shattering and shattered podocytes could still 

be functional to certain extent. 

We detected EGFP_CA-Rac1+ podocytes in the urine of DOX induced NEFxRac1 mice. 

Using intravital multi-photon microscopy (MPM), we observed that EGFP_CA-Rac1+ podocytes 

enhanced membrane ruffling in the glomerulus and that some EGFP_CA-Rac1+ podocytes 

attached to the renal tubules. These results indicate that abnormal activation of Rac in podocytes 

could lead to increased membrane activity, deceased adherence, and podocyte loss. 

Pathological changes that lead to Rac activation in podocytes could also initiate similar response. 

At physiological condition, the crosstalk between podocytes and glomerular endothelial cells 

could suppress the Rac activity, and could also maintain the normal foot process structure and 

adherence. It is well studied that VEGF secreted by podocytes play an important role in 

maintaining the endothelium, but which cytokine is maintaining low Rac in podocytes is still not 

known. Damaging factors that increase Rac activity could compensate this physiological signal, 

and could cause podocyte shattering into the urine.  

The process that shattered podocyte established new interaction with the renal tubules 
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after was overlooked before, because this event is very rare, and hard to detect by conventional 

histological techniques. We uncovered this process by intravital MPM experiments. This 

observation suggests that the defects caused by high Rac activity can be compensated and that 

shattered podocytes are at least partially functional. How the Rac phenotype is compromised 

and whether this process has physiological or pathological contribution are interesting questions 

to answer. 

 

5.2 Future Directions 

5.2.1 The temporal change of Rho GTPase activity during podocyte damage. 

Given the central role of Rho GTPase signaling in maintaining the normal actin 

cytoskeleton structure in the podocyte, it is intriguing to know how small GTPases are activated 

in different podocyte damage models. Do they share similar mechanism? Which GTPase 

contribute the most to podocyte damage? Intravital imaging is a good approach to investigate 

these questions. However, new mouse models with novel Rho GTPase sensors are required. 

The bioluminence resonance energy transfer is a promising candidate sensor technique to 

investigate dynamic singaling of small GTPases in vivo. 

5.2.2 The function of ARHGEF17, KANK1, KANK2 and WNK4 in maintaining podocyte function. 

In our sequencing study, we identified multiple candidate genes that could be potential 

susceptibility gene and validated that decreased expression of ARHGEF17, KANK1, KANK2 and 

WNK4 in podocytes could cause proteinuria in Cd2ap/Synpo double heterozygous background. 

It remains unknown how these genes maintain normal podocyte function. Loss of function of 
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these risk genes might not directly cause podocyte damage, and which environmental factor 

trigger FSGS under these susceptible background is also an open question. 

5.2.4 Can podocytes de-differentiate and become other cell types after they leave the 

glomerulus? 

Using intravital MPM imaging, we observed that podocytes could interact with other cells 

outside the glomerulus. Is this phenomenon common in other models of podocyte damage? Are 

these interactions transient? Can podocytes pass the tubular epithelium and enter the interstitial 

space? Can they de-differentiate into mesenchymal cells? To answer these questions, 

lineage-tracing experiments are required. 
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