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Optimizing Motion Compensated Prediction
for Error Resilient Video Coding

Hua Yang, Member, IEEE, and Kenneth Rose, Fellow, IEEE

Abstract—This paper is concerned with optimization of the
motion compensated prediction framework to improve the error
resilience of video coding for transmission over lossy networks.
First, accurate end-to-end distortion estimation is employed to
optimize both motion estimation and prediction within an overall
rate-distortion framework. Low complexity practical variants are
proposed: a method to approximate the optimal motion via simple
distortion and source coding rate models, and a source-channel
prediction method that uses the expected decoder reference frame
for prediction. Second, reference frame generation is revisited as
a problem of filter design to optimize the error resilience versus
coding efficiency tradeoff. The special cases of leaky prediction
and weighted prediction (i.e., finite impulse response filtering),
are analyzed. A novel reference frame generation approach,
called ‘‘generalized source-channel prediction”, is proposed,
which involves infinite impulse response filtering. Experimental
results show significant performance gains and substantiate the
effectiveness of the proposed encoder optimization approaches.

Index Terms—Error resilience, motion compensation, pre-
diction, rate-distortion, source-channel prediction, weighted
prediction.

1. INTRODUCTION

critical concern in the design of video-over-network
A systems is how to effectively account for and mitigate the
impact of packet loss on the overall video quality. An important
aspect of the problem is that of redesigning the various video
coding components such that they are optimized for both the
source and network parameters. Of particular interest to us
here is motion compensated prediction (MCP). Video coding
standards generally adopt the classical predictive quantization
framework, which uses past encoder-reconstructed frames
for prediction. This conventional framework was primarily
designed to improve source coding efficiency. However, in the
case of lossy communications, encoder and decoder mismatch
is inevitable, and a revised paradigm is needed. This paper
considers the fundamental problem of achieving optimal MCP
for video transmission over lossy networks.
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Fig. 1. Video encoder models optimized by the proposed method.

In video networking, system performance is determined by
the ultimate playback video quality at the decoder, which is
quantitatively measured as the overall end-to-end distortion.
The fundamental performance tradeoff is of distortion versus
rate, or the rate-distortion (RD) problem. Hence, the general
framework employed for error-resilient video networking is
that of end-to-end distortion-based rate-distortion optimization
(ED-RDQO). In the scenario of precompressed video streaming
(e.g., video-on-demand) this framework can be applied to the
video transport module to optimize the packetization scheme
[1] or the packet delivery policy [2], [3]. In this paper, we focus
on the scenario of live video streaming (e.g., video confer-
encing/telephony) where ED-RDO can further be applied to
optimize the source coding modules and options. For example,
at the macro-block (MB) level, optimization may involve
various coding modes or parameters including: intra/intramode
[4], [5], quantization step size [4], prediction reference frame
[6], [7], coding modes associated with layered coding [8], [9]
or multiple description coding [10], [11], etc.

Fig. 1 depicts a standard video encoder and identifies the mod-
ules targeted for improved optimization by this work. Herein, f;,,
fn, and f,, denote the original input, the prediction, and the re-
construction of frame n, respectively. The prediction residue and
its reconstruction are denoted by e,, and é,,, respectively. The
prediction reference frame f,,_; is used for predicting frame 7.
Note that, for simplicity, a single reference frame is shown. The
first part of this paper extends the applicability of the ED-RDO
framework to optimize motion estimation (ME) or motion com-
pensation, and prediction, and proposes new methods within
this framework. The second part revisits the design of reference
frame generation (RFG) so as to directly optimize the error re-
silience versus coding efficiency tradeoff.
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A. Rate-Distortion Optimized Motion Estimation

Conventional ME techniques improve performance in terms
of source coding efficiency without explicit accounting for error
robustness considerations in video streaming applications, e.g.,
various rate-constrained ME techniques [12]-[14], or RD-opti-
mized ME [7], [15], [16]. Since motion vectors (MVs) are di-
rectly and critically involved in the error propagation mecha-
nism encountered in transmission over lossy packet networks,
ME may have a considerable impact on error resilience. Conse-
quently, one objective of this work is to explore the potential of
MV optimization for improving error resilience. Relevant ear-
lier work appeared in [17] and [18], where the emphasis was
mainly on error resilience advantages of using multiple frames
in MCP. In [17], an error resilient variant of rate constrained ME
was proposed, which incorporates a heuristic and rough estimate
of the decoder prediction error within the Lagrangian cost. The
current paper subsumes our early work [21], which was the first
to propose a basic approach to high accuracy ED-RDO based on
extensions to the recursive optimal per-pixel estimate (ROPE)
method of [4]. Similar schemes employing ROPE were later
proposed in [19] and [20] (the latter also included a higher ac-
curacy rate model).

We hence propose ED-RDO-based ME using exhaustive
coding to achieve the operational RD bound, and a low com-
plexity variant based on simple quadratic RD modeling. This
provides useful lower and upper bounds on the gains achievable
by such a technique. To simplify and clarify both the derivation
and the evaluation, we apply ROPE in its ideal setting, in partic-
ular assuming no modeling mismatches due to pixel averaging
operations such as in sub-pixel motion compensation. Effective
solutions to extend ROPE to mitigate mismatch issues are pro-
vided in [37] (and references therein), but are not incorporated
here so as to avoid diluting the focus. In contrast, [17] uses
heuristic distortion estimation while [20] applies ROPE in a
practical setting of sub-pixel prediction and in-loop filtering
but without mitigating the modeling mismatches, both of which
significantly compromise the distortion estimation accuracy.
We re-emphasize that our objective here is to bound the range
of complexity-precision tradeoff by providing the two extremes
of accurate RD modeling via exhaustive encoding, versus low
complexity quadratic RD modeling. The approach in [20] uses
an advanced heuristic rate model, which is expected to yield
performance somewhere within our benchmarked performance
range.

B. Rate-Distortion Optimized Prediction

The second contribution of this work concerns the problem
of prediction optimization. So far, many techniques have been
proposed to modify the prediction mechanism with an eye to-
wards error resilience, such as independent slice coding, video
redundancy coding [22], multiple frame motion compensation
[7], [17], [18], and reference picture selection [6], [23]. A
common feature these methods share with conventional tech-
niques is that prediction is based on past encoder-reconstructed
frames. This predictive framework was originally designed for
error-free transmission scenarios, where closed-loop prediction
ensures no mismatch between the encoder and the decoder.
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However, in practical networking applications, encoder and
decoder mismatch (or drift) is largely inevitable, motivating a
reformulation of the optimal prediction problem for the setting
of lossy transmission.

Here, too, we appeal to the general ED-RDO framework and
hence define optimal prediction as the one that yields the best
overall end-to-end RD tradeoff. An effective hybrid search algo-
rithm is developed to solve the problem in the context of H.264.
To reduce the optimization complexity, we also propose an effi-
cient scheme source-channel prediction (SCP), which employs
the expected decoder reference frame for prediction. Our pre-
liminary SCP approach appeared first in [24]. A later publica-
tion proposing a similar SCP scheme appeared in [25], appar-
ently independently of [24].

We note in passing that the problem of prediction optimiza-
tion has a long history already within the pure source coding
setting, motivated by the fact that optimal prediction and quan-
tization are effectively inseparable. In [26], the problem was
formulated as “optimal quantization” and was investigated for
improving the coding efficiency of H.263, where a trellis-based
search algorithm was developed to find the globally optimal
solution. Trellis-based quantization is now available in the JM
reference encoder of H.264/AVC. Nevertheless, such tech-
niques implicitly assume error-free transmission. In this paper,
we focus on the optimization problem in the context of error
resilience and lossy transmission.

C. Optimized Reference Frame Generation

So far, we have considered the problem of optimizing the en-
coder MCP decisions subject to the given (and fixed) decoder
MCP mechanism. We next extend the scope, and attack the more
general problem of optimizing the overall performance given
the freedom to redesign the prediction mechanism at both en-
coder and decoder. In particular, we focus on the RFG module,
see Fig. 1, where it is explicitly shown to be decoupled from
motion compensation. Such RFG-MCP decoupling is impor-
tant, as it enables consideration of infinite impulse response
(IIR) filtering architectures for RFG. Specifically, we investi-
gate the error resilience versus coding efficiency performance
of candidate RFG architectures under various scenarios (e.g.,
with or without ED-RDO optimized intra-updates). We consider
a broad “spectrum” of filter design, including the conventional
“complete” prediction, leaky or “partial” prediction, weighted
or finite impulse response (FIR) prediction, and the newly pro-
posed “generalized source-channel” prediction (GSCP) which
employs IIR filtering.

To the best of our knowledge, most if not all past research
efforts on error-resilient prediction architectures focused on
either leaky prediction or weighted prediction (also known as
“multihypothesis” MCP [27]). Specifically, no prior work taps
the potential of IIR filtering architectures. Moreover, leaky
prediction efforts were largely focused on layered, or scalable,
video coding [28]-[30] under the assumption of perfectly
reliable base layer, while weighted prediction was applied
within MCP [27], [31], [32]. Their applicability to RFG (i.e.,
decoupled from motion compensation) for basic son-scalable
video coding has largely been ignored. Our work on optimal
RFG in this paper attempts to fill these gaps.
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D. Additional Comments

We emphasize that accurate distortion estimation itself is
a critical underlying problem that impacts the ultimate per-
formance of the proposed error resilient ME and prediction
schemes. Herein, we build on the ROPE method [4], which
has been widely adopted in a variety of error resilient video
coding schemes [7], [9], [10], [33]-[36]. Recent advances in
ROPE further expand its capability to accommodate useful
practical application scenarios, such as sub-pixel prediction
[37], more complicated error concealment [37], bursty packet
loss [34], or more practical packetization schemes [38]. In this
paper we mainly focus on characterizing the performance gains
achievable by the proposed approaches. To avoid dilution of
the focus with (potentially significant but) “fuzzifying” consid-
erations, we make some simplifying assumptions that ensure
the accuracy of the adopted ROPE. For example, we employ
H.264 with full-pixel prediction, assume one-frame-per-packet
packetization, an independent random packet loss model, and
frame-copy error concealment. All these assumptions can be
removed by appealing to the above ROPE extensions, but doing
so here would compromise the focus. Similarly, simulations
assume no mismatch in packet loss rate and decoder error con-
cealment, and disable in-loop filtering. We reported on a study
on the impacts of such mismatch in [39], where it was noted
that performance degradation was similar to that of existing
conventional techniques, and that the gains were, therefore,
largely maintained.

The rest of the paper is organized as follows. In Section II,
preliminaries for ED-RDO and the basic ROPE method are pro-
vided to facilitate discussion of the proposed RD optimal ME
and prediction schemes. Section III contains the detailed for-
mulation and analysis of our ED-RDO ME, and its low com-
plexity approximation. Optimal encoder-based prediction, its
low complexity version of SCP and our proposed search algo-
rithm are discussed in Section IV. We introduce the proposed
GSCP framework along with the other RFG candidate designs in
Section V. Section VI provides simulation results and analysis.

II. PRELIMINARIES AND THE BASIC ROPE APPROACH

Practical RD optimization problems can be equivalently for-
mulated as minimization of the appropriate Lagrangian cost

J = E{D}+ AR (1)

where ) is the Lagrangian multiplier, F{D} and R denote the
expected distortion and coding rate cost, respectively. To accu-
rately estimate the end-to-end distortion, we adopted the ROPE
approach as proposed in [4], which is defined as follows. Let
fi denote the original value of pixel i in frame 7, and let f;l
and f; denote its encoder and decoder reconstructiop, respec-
tively. Due to possible packet loss in the channel, f! is con-
sidered a random variable at the encoder. The overall expected
mean-squared-error (MSE) distortion of a pixel is

p{a}y=p{(r-1)}
= (1) 2B {fi} + E{(f:;)g} @
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which is clearly determined by the first and second moments
of the decoder reconstruction. ROPE consists of an optimal re-
cursive algorithm to accurately calculate these two moments for
each pixel of a frame [4].

Let us assume for simplicity that packet loss events are in-
dependent, the packet loss rate p is available at the encoder,
each frame is transmitted in one packet, error concealment at the
decoder copies reconstructed pixels from the previous frame,
and prediction at the encoder only employs the previous recon-
structed frame. Note that all these assumptions can be discarded
(and, in particular, expressions are trivially extendible to cover
multiple frame motion compensation). The recursion formulae
of ROPE are as follows.

 Pixel in an intracoded MB

E{fi}=a-pfi+rE{fi} 3)

E{(ﬂi)z} =(1-p) (ﬁi)2 +pE{(f,gl)2}, @)

¢ Pixel in an intercoded MB

B{ji} =0 -p) (6 + 2 {7}
+pE{fi 1} )

p{ (1)} =0 -n (@) +2m {7}
o))
w{(y)

where intercoded pixel ¢ is predicted from pixel ¢ + mwv in
the previous frame. The prediction error, e}, is quantized to

the value ¢/, which is conveyed together with the MVs to the
decoder.

III. RD OPTIMIZED MOTION COMPENSATION FOR ERROR
RESILIENT VIDEO CODING

A. Motion Compensation for Error-Free Transmission

Motion compensation was generally studied in the context of
error-free transmission, where the MV is selected so as to min-
imize a measure of the encoder prediction error, for example,
MSE

2
min Dprp = min 3 (i - fitr) ™
ieBIk
where Blk denotes a block in the current frame. In H.264, the
block size could be 16 x 16, 16 x 8, 8 x 16, 8 x 8, 8§ x 4,
4 x 8, or 4 x 4 [40]. Dppp 1is the (squared) displaced frame
difference, and mw is a particular MV candidate.

In the case of low bit-rate video coding, the MVs represent a
significant portion of the total bit budget, leading to the proposal
of rate constrained ME (RCME) [12]-[14]. Let R,,, denote the
MYV coding rate. The problem is to minimize the Lagrangian

nr}]Hl{JBlk = Dprp + AR }- (8)
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Finally, the ultimate optimal ME solution (still assuming
error-free transmission) is to minimize the overall source
coding RD cost, as suggested in [15] and [16], where RD
optimization was carried out independently for each block to
avoid the complexity of joint optimization accounting for MV
coding dependencies. It is also assumed that for each MB, the
quantization step size is specified before ME, as is the case in
the JM9.0 reference model of H.264. Hence, the source coding
RD Lagrangian is

JBlk =D+ )\(Rres + Rmm) (9)

where

. A\ 2

D=3 (fi-fi) (10)
i€Blk

and R,.s denotes the coding rate of the quantized prediction

residue, which of course depends on mwv. Note that we neglect

the header bits, as they do not depend significantly on mwv. Ig-

noring clipping effects, D reduces to the quantization distor-

tion D¢
DQ = Z (e; — é;)z
i€BIk

Y

B. Proposed End-to-End RD Optimal Motion Compensation

We extend the above approach to the case of video transmis-
sion over lossy channels by replacing the source-coding distor-
tion D with the expectation E{D}, which accounts for the im-
pact of packet loss

JBlk = E{D} + /\(Rres + Rmv) (12)

where

o) = 3 p{(ri- i+ - 72)}

1€Blk

2. [(ff; i) +E{(f:; - f,’i)QH (14)

13)

1

1€BIk
s ~. 2
—Dg+(1-n) ¥ B{ (i - fir)')
1€BIk
NN
+p Y E{(f;; ~ i) } (1s)
1€Blk

=Dq + (1 =p)Dep + pDec- (16)

The approximation in (14) assumes that decoder drift is zero-
mean, and (15) is obtained by noting that both encoder and de-
coder reconstructions employ the same residual when the packet
isreceived. We use intuitive names for the three distortion terms:
the familiar quantization distortion Dgq, the error propagation
distortion Dgp, and the error concealment distortion Dgc.

We observe that (12) does not account for error propagation to
future frames, which compromises the ME optimality. To com-
pensate for potential future error propagation, the proposed La-
grangian is redefined as

JBlk :E{D} + /BE{(frzz - ffz)Q} + /\(Rros + Rmv)

where [ is a positive constant. From (15), we see that Dgp at

ritmu _

frame n can be expressed in terms of frame n—1as E{(f, ]

fitmv)21 Likewise, the contribution of frame 7 to future error
propagation is captured by E{(f¢ — fi)2}. Hence, the weight
(3 is applied to this term only. Similar to the derivation of (16),
this term can be expressed in terms of Dgp and Dgc, and as
DEgc does not depend on mw, it is omitted leading to (17). As in
[17], we treat (3 as a free parameter whose value is exhaustively
optimized and fixed per sequence. In [17], it was observed that
[ could be determined adaptively per MB or even per pixel, see,
e.g., [41]. We do not pursue this option here.

C. Low Complexity Approximation

Aspresented, the above scheme assumes actual coding per MV
candidate to calculate rate and distortion. To reduce complexity,
a common practice is to e,ploy source coding RD models to
efficiently predict R,s and D¢ in (17) [20]. Many RD models
have been proposed, e.g., [42]-[46]. Here, we employ simple
RD models, and derive an approximation to the optimal motion
compensation scheme at very low computation complexity.
The rationale is that by investigating the two extremes of the
accuracy-complexity tradeoff, namely, exhaustive encoding
versus simple quadratic RD modeling, we effectively bound the
performance range. Clearly, any advanced and particularly more
accurate RD models (e.g., see [20]) is expected to yield perfor-
mance somewhere within the “benchmarked range” we provide.

A simple RD model is defined as follows:

K

chs = @DDFD (18)

L 2
Dg = 12(2 . (19)
Here, () denotes the quantization step size, and K is a constant
model parameter. The rate model of (18) is consistent with the
simple intuition that a larger frame difference or smaller values
of ) generally yield a higher coding bit rate. This is in fact
the basic observation underlying most existing source coding
rate models [42]-[44]. Since we are concerned with intracoded
blocks and the residual is approximately zero mean, then Dprp
approximates the variance. The distortion model of (19) fol-
lows from the assumption the quantization error is uniformly
distributed.
Combining (17) with (16) and then inserting (18) and (19),
we obtain

Jeik ~ Dprp + (1 4+ 8)(1 — p)Dep + AR (20)
where
_ @
A== @1)

As shown in (16), D g does not depend on mwv and has already
been discarded. The optimal value of K has to be found experi-
mentally. In [47], such experiments have been conducted to con-
clude that for the MSE metric, the choice A = 0.85 - Q? yields
good coding performance, which we adopted here. Note that the
Lagrangian of (20) is an error resilient extension of RCME of
(8). An additional term of properly weighted error propagated
distortion is introduced in (20), which captures the impact of
packet loss and future error propagation.
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IV. RD OPTIMIZED PREDICTION FOR ERROR RESILIENT
VIDEO CODING

The conventional prediction mechanism uses past encoder-
reconstructed frames for prediction. The typical predictor is
given by

= Fam
where, f{ denotes the prediction for pixel 7 of frame n. This pre-
dictive coding framework implicitly assumes lossless transmis-
sion, and is designed in “closed loop” to prevent encoder and de-
coder mismatch due to quantization loss [48]. However, in video
networking applications, encoder and decoder prediction mis-
match is generally unavoidable due to packet loss during trans-
mission. This observation motivates us to revisit the problem of
the optimal prediction scheme for this scenario.

Let us start with the expression for E{D} in (16). Since we
now focus on the impact of the prediction values, we omit ex-
plicit reference to mv for notational simplicity and conciseness.
Prediction only affects the error propagation term Dgp, which
can be re-written in terms of a general predictor fi as

(22)

Dgp = Z E{(f;l - f£+Tv)2}
ieBlk
Y [ e}y o ()
ieBlk

= Dpp + 0%p. (23)

Here, o2 denotes the variance of the designated decoder recon-
struction. Dgp is the portion of Dgp that is affected by the
prediction fi. From (23), it is easy to see that the optimal pre-
diction that minimizes the end-to-end distortion is determined
by the expected decoder reconstruction in the previous frame.
We call this prediction source-channel prediction (SCP), as it
accounts for not only the source coding quantization loss, but
also for loss in the channel. As will be shown by the simulation
results, SCP proves to be a fairly good low complexity substitute
for the more complicated overall RD optimal prediction. SCP is
defined as
fflscp = arg Irj%inE {d;} = E{ :ﬁ_’{“’} . (24)
Next, we observe that the truly optimal prediction will be de-
termined within the RD framework, as prediction affects not
only the distortion, but also the rate cost for transmitting the pre-
diction error (or residual), i.e., R,es. In other words, in predictive
coding, the efficiency of the prediction is ultimately measured
by the RD cost incurred by the quantized prediction residual.
The bottom line observation is: given a fixed decoder predic-
tion procedure, the ultimate quantity that the encoder must op-
timize is the value of quantized residue to convey to the decoder.
Therefore, in the sequel we adopt an overall quantization view
of the problem and show that it leads to an effective optimiza-
tion algorithm. Note that the search for the optimal quantized
residual will be performed in the transform domain.
Employing the RDO formulation with 3 as in (17), the op-
timal quantized values of the prediction residue are

Enic = {€1 },epye = min [E{D} + BpDpc + ARwes] (25)
Epik
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where Blk refers to the basic transform coding block; In H.263
or MPEG4 it is an 8 X 8 block [23], [49], but in H.264 the block
size is 4 x 4 [40]. Note that as the resulting R,.s is determined
by the entire block of quantized prediction residue (due to the
run-length coding for the quantized coefficients), quantizations
for all the transform coefficients should be jointly optimized as
well and we hence consider the vector of all the quantized co-
efficients, denoted by EBik. Similarly as in (17), we apply 3 on
E{(fi — f1)2} to compensate for future error propagation im-
pacts of frame n. Herein, optimizing quantization will only af-
fect the D g term, but not the D g p term. (Note that while error
concealment does not depend on the quantized residual, the con-
cealment distortion does). Therefore, 3(1 — p)Dgp is omitted
in (25).

Moreover, instead of trellis-based optimal search [26], we
propose a novel hybrid search algorithm, which effectively com-
bines exhaustive search (where computationally cost-effective)
and heuristic search, and achieves close to optimal performance
at reduced computation complexity.

The proposed hybrid search algorithm is as follows.

e Step 1. The initial quantization levels: Xscp = {z;}15,=

Zigzag(Quant(DCT ({ei scrtienik))). Herein,

{ei scp}tieBik is the resultant prediction residue from

SCP.

The total number of level combinations: A = H,}il (Jai| +

1).

e Step2.If A < N, exhaustively search over all the possible
combinations to find the optimal solution, and then, stop.
Otherwise, continue to Step 3.

» Step 3. Search over heuristically selected combination can-
didates. Find the optimum, and then, stop. The searching
candidates are selected as follows.

—The first candidate is Xgcp. Then, sort all the
nonzero elements of Xgcp in ascending order, and
get {index(z’)}flel. Herein, Tindex(1) < Tindex(2) <

< Tindex(n'), and N ’ denotes the number of
nonzero elements of Xgcp.

— Initialize X': X’ = {«/}N', = {xindex(i)}f\ll.

— Decrease the magnitude of each of the first M consec-
utive elements in X’ by 1, and get a new X'. Here, the
constant M/ = max{1, Round(z,}il |z;|/N)}. Then,
update X with X' via Tipgex(iy = 2; (i = 1,..., N’
The new X is taken as a new candidate.

— Repeat the above step for the next M consecutive ele-
ments in X', get another new candidate, and so on. The
selection of M consecutive elements of X’ is conducted
in a round-robin fashion, i.e., whenever it reaches the
end of X', the selection resumes from the beginning.
Also, whenever z/ is reduced to zero, it is removed from
X', and N' = N’ — 1.

— This candidate searching process ends when X is all-
Zero.

Basically, Xscp and the “all-zero” X represent two extreme
RD points (i.e., minimizing E{D} and R, respectively), and
our proposed algorithm actually sweeps over all the selected in-
termediate RD points in between. This explains why the total
number of level combinations is H}il(|xz| + 1). Here, N is
a threshold to switch between exhaustive search and heuristic

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 28, 2009 at 18:51 from |IEEE Xplore. Restrictions apply.



YANG AND ROSE: OPTIMIZING MOTION COMPENSATED PREDICTION

search. In experiments, we set N = 10 and found that in this
case over 80% of total searching operations will be exhaustive
search. Despite the fact that less than 20% of the blocks employ
heuristic search, the computational savings are tremendous. As
an illustrative example, let a block be represented by a coef-
ficient magnitude vector of {7,4,2,2,3,1,3,1,2,1,0,...,0},
the sum of magnitudes is 26 (greater than N = 10). The com-
putational savings due to using heuristic rather than exhaustive
search here, with 10 versus 138240 operations, yielding a ratio
of 4 x 10~2. On the other hand, since optimal exhaustive search
is conducted for more than 80% of the blocks, where it is not
very costly, the resulting overall performance may still closely
approach that of the optimal trellis search.

V. REFERENCE FRAME GENERATION

So far, we derived MC and prediction schemes that optimize
the MCP decisions at the encoder, given a standard MCP pro-
cedure employed by the decoder. Now, we expand the scope
and consider re-design of the entire MCP mechanism at both
encoder and decoder, so as to improve the overall system per-
formance. Particularly, we focus on the RFG module of Fig. 1.
As explained in Section I-C, the RFG-MCP decoupling results
in “MC-free” RFG, which allows us to consider a broad range of
filter paradigms and identify a better RFG architecture. Specif-
ically, besides the conventional complete prediction, we also
consider leaky prediction (i.e., partial prediction), FIR-based
weighted prediction, and a proposed novel IIR-based prediction
called GSCP.

The conventional practice of directly using reconstructed past
frames as reference frames for predictive coding, may result in
substantial error propagation due to packet loss. One strategy to
reduce error propagation is to employ leaky prediction, which
scales down reconstructed frames to generate reference frames
that yields exponential decay of propagated errors

fa=a fi+(l-a)-C (26)
where f! is a reference frame pixel, fjl is the reconstructed
pixel, « is the leak factor, and C' is an appropriate constant.
Leaky prediction, or leaky integration, has a long history in gen-
eral signal compression, as well as in video coding in particular.
It has been most widely used for enhancement layer drift control
in layered video coding [28]-[30], where a no drift (i.e., no error
propagated) base-layer reconstruction of a frame is available,
can be used as substitute for C in (26) for improved coding effi-
ciency. However, in the case of single layer coding, such an op-
tion is not available and one must default to constant C, whose
value is typically the mid-range signal level of 128 as in [50],
and at significant impact to coding efficiency.

An alternative prediction approach that offers error resilience
advantages is weighted prediction, which is already part of the
H.264/AVC standard [51]. In practice, weighted prediction is
usually applied along with MC, where two versions of motion
compensated predictions from two individual past coded frames
are weighted and combined together to predict the current frame
[27], [31], [32]. In contrast, in our RFG formulation, no MC is
involved. Applying weighted prediction in this case, we get

fiza fi+@1-a) fi_,. 27)
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In this paper, we propose a new IIR-based RFG scheme,
called generalized source-channel prediction (GSCP) defined
as

fao=a fi+(l-a) fi .

Comparing (26), (27), and (28), it is easy to see that the only
difference lies in their second term, weighted by (1 — «), for
which C, f; _,.and f? _, are used, respectively. We emphasize
that this difference is fundamental and impacts performance in
terms of coding efficiency and error control.

First, considering leaky prediction, although it yields the
fastest exponential error decay among the three, it also causes
serious coding efficiency degradation. On the other hand,
either weighted prediction or GSCP yields much better coding
efficiency than leaky prediction, while still achieving effective
error propagation control. (Discussion of error control effec-
tiveness of weighted prediction can be found in [27].) As will
be shown in Section VI-C, when compared with weighted
prediction and GSCP, its coding efficiency loss, more often
than not outweighs its error control gain, which, thus, leads
to the worst overall performance among the three. Sometimes
its performance may be even worse than that of conventional
prediction.

Considering weighted prediction and GSCP, it is easy to see
from (27) and (28) that, in essence, they represent FIR filtering
and IIR filtering, respectively. Given the same «, but with ffl_l
involved, GSCP implies stronger filtering than weighted pre-
diction. Intuitively, reference frames generated with heavier fil-
tering will be more robust to error propagation, but less cor-
related with the original frame, which generally impacts pre-
diction and hence coding efficiency. Note that unlike their per-
formance gains over leaky prediction, the performance com-
parison between weighted prediction and GSCP is much more
subtle. As will be shown in the simulation results, weighted pre-
diction achieves the best overall coding performance whenever
highly efficient ED-RDO-based intra-update is employed, while
GSCP outperforms all methods in conjunction with the “stan-
dard” random intra-update.

We note that (28) can be viewed as a generalization from the
SCP scheme of (24) which subsumes the ROPE update of (5),
and hence, the name of GSCP. In SCP, one uses & = (1 — p)
(where p is packet loss rate) so that the prediction becomes
the expected reconstructed frame at the decoder. Note further
that SCP employs this modified prediction only at the encoder.
GSCP, on the other hand, offers a more flexible weighting of the
two terms and modifies both the encoder and decoder. To inves-
tigate performance bounds, similarly as for 3 in ED-RDO for
ME and prediction, « is treated as a free parameter, optimized
and fixed for each sequence.

(28)

VI. SIMULATION RESULTS

Our simulation setting builds on the JM9.0 H.264 codec [52].
We used constrained intraprediction and CAVLC for entropy
coding. We adopted rate control from the JM codec and set one
common quantization scale to all the MBs of one row. For each
sequence, only the first frame was coded as I-frame, and the rest
were coded as P-frames. To simulate the channel, at each packet
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TABLE I

PERFORMANCE OF OPTIMIZED MOTION COMPENSATION WITH OPTIMAL INTRA-UPDATING. CARPHONE, MOBILE: QCIF, 10 f/s, 200 kb/s.
FOREMAN, TEMPETE: CIF, 30 f/s, 800 kb/s. WHEN VARYING PACKET LOSS RATE, NUMBER OF REFERENCE FRAMES IS 3.

WHEN VARYING NUMBER OF REFERENCE FRAMES, PACKET LOSS RATE IS 5%

Packet Loss Rate (%) Number of Reference Frames

PSNR or APSNR (dB) ] I 5 | 5 | 0 T | 3 | G | 0
Conv. 39.22 | 38.12 | 36.07 | 33.95 || 3598 | 36.07 | 36.08 | 36.08
Carphone EOMC +0.26 | +0.20 | +0.1T | +0.06 [[ +0.01 | +0.1T | +0.20 | +0.25
LCMC +0.12 | +0.13 | +0.06 | +0.06 -0.01 | +0.06 | +0.12 | +0.12
Conv. 29.80 | 29.06 | 27.69 | 26.29 || 27.26 | 27.69 | 27.85 | 27.87
Mobile EOMC +0.17 | +0.16 | +0.16 | +0.13 -0.01 | +0.16 | +0.28 | +0.46
LCMC +0.08 | +0.13 | +0.13 | +0.11 |[ +0.00 | +0.13 | +0.26 | +0.37
Conv. 3545 | 3476 | 33.47 | 32.05 || 33.13 | 33.47 | 33.69 | 33.86
Foreman EOMC +0.12 | +0.11 | +0.13 | +0.18 || +0.05 | +0.13 | +0.25 | +0.29
LCMC +0.08 [ +0.10 | +0.12 | +0.16 || +0.04 | +0.12 | +0.23 | +0.26
Conv. 2827 | 2798 | 27.31 | 2648 || 26.35 | 27.31 | 27.94 | 28.27
Tempete EOMC +0.09 | +0.09 | +0.12 | +0.21 || +0.03 | +0.12 | +0.23 | +0.27
LCMC +0.05 | +0.04 | +0.1T | +0.10 [[ +0.00 | +0.1T | +0.18 | +0.19

loss rate, 300 packet loss patterns were randomly generated, and
the average luminance PSNR at the decoder was computed to
measure the system performance. Only the first 100 frames of
each testing sequence are used for encoding. As discussed in
Section III-B, this is to constrain the possible optimality loss due
to sequence-wise free parameter optimization for 3 in ED-RDO
ME and prediction, and « in GSCP. The best (3 value is exhaus-
tively selected from {0, 0.5, 1.0, 1.5, 2.0}, the « value is selected
from {0.9, 0.8, 0.6, 0.4} for weighted prediction and GSCP, and
from {0.95, 0.9, 0.8} for leaky prediction. In practice, we found
that o values below the above ranges lead to perceptually an-
noying coding artifacts.

The methods were tested under two extreme intra-updating
scenarios: random intra-updating and optimal intra-updating. In
random intra-updating, given packet loss rate p, a fraction p of
MBs in each frame are selected for intracoding. (The intra-MBs
are selected according to the implementation in the JM9.0 en-
coder.) In optimal intra-updating, the coding mode is optimally
selected per MB from all the available coding mode options, via
the ED-RDO framework. The Lagrange multiplier is handled as
in the JM codec implementation, and the distortion is estimated
by ROPE of [4].

A. Optimized Motion Vector Selection

We tested the proposed ED-RDO motion compensation
schemes with RD values that are either exhaustively calculated
via actual encoding (denoted “EOMC” for “exhaustively opti-
mized motion compensation”), or calculated at low complexity
via simple RD modeling (denoted as “LCMC”). We compare
their performance with that of the conventional RCME (denoted
as “Conv.”), which is the scheme adopted by the JMO reference
codec.

The results for the cases of random and optimal intra-up-
dating are shown in Fig. 2 and Table I, respectively. From Fig. 2,
it is easy to see that in the case of random intra-updating, both
EOMC and LCMC yield significant performance gains over the
conventional scheme, e.g., up to 5.08 and 2.95 dB, respectively.
This shows the effectiveness of the proposed schemes. Another
observation is that a large performance gap may still exist be-
tween EOMC and LCMC, due to the simplicity of the assumed
RD models. On the other hand, Table I shows that the perfor-
mance gains are substantially reduced when optimal intra-up-
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Fig. 2. Performance of optimized motion compensation with random intra-up-

dating. Three reference frames. (a), (b) QCIF, 10 f/s, 200 kb/s. (c), (d) CIF,
30 f/s, 800 kb/s. (a) Carphone; (b) Mobile; (c) Foreman; (d) Tempete.

dating is used. This result mainly speaks to the effectiveness of
ED-RDO optimal intra-updating, which considerably mitigates
the error propagation effect, and leaves a largely reduced scope
for further performance enhancement. In this case, up to 0.46
and 0.37 dB gain can still be achieved by EOMC and LCMC,
respectively, when a large number of reference frames (e.g., 10)
is employed. Employing more reference frames for MCP tends
to increase the gains due to the proposed optimization schemes.
Also, note that in this case, LCMC closely approaches the per-
formance of EOMC (with a performance gap less than 0.1 dB).

B. Optimized Prediction

We then move on to examine the performance of optimized
prediction. Note that RCME is always used here for MV se-
lection, and competing schemes differ only in the way they de-
termine the prediction values. The conventional encoder recon-
struction-based prediction solution is denoted as “Conv.”, while
our proposed RD optimal prediction and SCP schemes are de-
noted as “OPred” and “SCP”, respectively.

Fig. 3 and Table II show the result with random and optimal
intra-updating, respectively. From Fig. 3, it is clearly seen that
either “OPred” or “SCP” may achieve significant performance
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Fig.3. Performance of optimized prediction with random intra-updating. Three
reference frames. (a), (b) QCIF, 10 f/s, 200 kb/s. (c), (d) CIF, 30 f/s, 800 kb/s.
(a) Carphone; (b) Mobile; (c) Foreman; (d) Tempete.

TABLE II
PERFORMANCE OF OPTIMIZED PREDICTION WITH OPTIMAL INTRA-UPDATING.
CARPHONE, MOBILE: QCIF, 10 f/s, 200 kb/s. FOREMAN, TEMPETE:
CIF, 30 f/s, 800 kb/s. WHEN VARYING PACKET LOSS RATE,
NUMBER OF REFERENCE FRAMES IS 3

Packet Loss Rate (%)

PSNR or APSNR (dB) T 2 [ 5 ] 10
Conv. 39.22 | 38.12 | 36.07 | 33.95
Carphone OPred +0.12 | +0.09 | +0.01 | +0.00
SCP +0.11 | +0.08 | -0.01 -0.02
Conv. 29.80 | 29.06 | 27.69 | 26.29
Mobile OPred +0.17 [ +0.1T | +0.10 | +0.03
SCP +0.11 | +0.07 | +0.03 | -0.01
Conv. 3545 | 3476 | 3347 | 32.05

Foreman OPred +0.30 | +0.14 | +0.03 -0.01
SCP +0.24 | +0.12 | -0.01 -0.07
Conv. 2827 | 2798 | 27.31 | 26.48
Tempete OPred +0.47 | +0.35 | +0.12 | -0.06
SCP +0.36 | +0.26 | +0.04 | -0.20

gain over “Conv.” (i.e., up to 1.95 and 1.93 dB, respectively).
Furthermore, the low complexity SCP scheme achieves perfor-
mance that is quite similar to that of the more complex optimal
prediction (with a performance gap less than 0.16 dB). In fact, it
is observed in experiments that over 80% prediction optimiza-
tion operations end up with SCP as their final optimal choice.
This result shows that SCP can be used as a fairly good substi-
tute for the overall RD optimal prediction scheme in practice.
On the other hand, similarly as in the case of optimized motion
compensation, in conjunction with optimal intra-updating, the
gain from “OPred” and “SCP” also greatly decreases, as shown
in Table II. In spite of that, up to 0.47 and 0.36 dB gain can
still be achieved by “OPred” and “SCP”, respectively, when the
packet loss rate is low (e.g., less than 2%).

C. Reference Frame Generation

We compare the performance of the conventional complete
prediction (“Conv.”) with our proposed GSCP (“GSCP”),
weighted prediction (“Weighted”) and leaky prediction
(“Leaky”). The optimization of « is as specified in the
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Fig. 4. PSNR versus packet loss rate performance of various reference frame
generation schemes with random intra-updating. Three reference frames.
(a), (b) QCIF, 10 f/s, 200 kb/s. (c), (d) CIF, 30 f/s, 800 kb/s. (a) Carphone;
(b) Mobile; (c) Foreman; (d) Tempete.
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Fig. 5. PSNR versus total bit rate performance of various reference frame gen-
eration schemes with random intra-updating. Packet loss rate: 5%. 3 reference
frames. (a), (b) QCIF, 10 f/s. (c¢), (d) CIF, 30 f/s. (a) Carphone; (b) Mobile;
(c) Foreman; (d) Tempete.

beginning of this section. Note that ROPE is modified to ac-
commodate nonconventional RFG architectures. We assume
that when the current frame data is lost, f}L in (26), (27), and
(28) will be simply concealed by f};_l. Also, cross correlation
terms will be estimated using the linear signal model outlined
in [37].

Let us first look at results obtained in conjunction with
random intra-updating, Figs. 4 and 5. None of the RFG ar-
chitectures consistently outperforms the others. For example,
leaky prediction outperforms conventional complete prediction
most of the time (e.g., for Carphone, Mobile, and Foreman), but
not always (e.g., for Tempete). Similar observations are made
for GSCP and weighted prediction. The above observations
reinforce the understanding that these approaches represent
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Fig. 6. Performance of various reference frame generation schemes with
optimal intra-updating. Three reference frames. (a), (b) QCIF, 10 f/s, 200 kb/s.
(c), (d) CIF, 30 f/s, 800 kb/s. (a) Carphone; (b) Mobile; (c¢) Foreman;
(d) Tempete.

different levels of tradeoff between error control and coding
efficiency. Hence, a different scheme may be the performance
leader depending on the circumstances. Nevertheless, GSCP
emerges as the overall better scheme in the case of random
intra-updating. GSCP and weighted prediction always sig-
nificantly outperform conventional prediction, while leaky
prediction may perform significantly worse than the conven-
tional scheme (e.g., for Foreman and Tempete). Even in the
extreme case of 1 Mb/s in Fig. 5(b), its gain over GSCP is
only 0.17 dB. We found that GSCP significantly outperforms
weighted prediction (with up to 1.99 dB gain) for high motion
video (e.g., for Carphone and News) or high bit rate coding
[e.g., for 500 kb/s and 1 Mb/s in Fig. 4(b) and 2 Mb/s in
Fig. 4(c)]. Otherwise, weighted prediction may only outper-
form GSCP with marginal gains (no more than 0.33 dB). This
is mainly because in the case of random intra-updating, error
control dominates coding efficiency in impact on the overall
performance. As analyzed in Section V, in general, GSCP
offers better error control but somewhat compromised coding
efficiency relative to weighted prediction. In the case of high
motion video or high bit rate coding, the error control advan-
tage of GSCP outweighs its coding efficiency disadvantage,
thereby leading to significantly improved overall performance.
Therefore, GSCP is the best RFG scheme in the case of random
intra-updating. Up to 6.60 dB gain can be achieved over the
conventional scheme.

Fig. 6 shows the performance with optimal intra-updating. It
is easy to see that unlike the results with random intra-updating,
when applied together with optimal intra-updating, weighted
prediction always performs best among all the candidate
schemes. Its gain over the conventional scheme may reach
1.3 dB. Due to the effective error resilience clearly achieved
by optimal intra-updating, the error control benefits of GSCP
are not as important as in the case of random intra-updating.
Overall, weighted prediction renders a better coding efficiency
and error control tradeoff in this case than GSCP (with gains
up to 0.40 dB).
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Fig. 7. Performance of the overall improved video codec with optimal intra-
updating. (a), (b) QCIF, 10 f/s, 200 kb/s, three reference frames. (c)—(f) CIF,
30 f/s. (c), (d) 800 kb/s, three reference frames. (e) 800 kb/s, packet loss rate:
5%. (f) Three reference frames, packet loss rate: 5%. (a) Carphone; (b) Mobile;
(c) Foreman; (d) Tempete; (e) Foreman; (f) Foreman.

D. Overall Improved Video Codec

In fact, the proposed various encoder optimizations are
complementary, and hence can be combined to maximize
the overall performance improvement. Note that with the
accurate distortion estimate available, optimal intra-updating
will naturally be adopted in the video coding and streaming
system. Therefore, in this subsection, we investigate the per-
formance of the video codec resulting from the combination
of the proposed various encoder optimizations in conjunction
with optimal intra-updating. The conventional video codec
coupled with ED-RDO optimal intra-updating is denoted as
“Opt. Intra”, while the overall improved video codec incor-
porating the proposed optimizations of motion compensation,
source-channel prediction and reference frame generation (in
this case, weighted prediction) is denoted as “Opt. Intra &
Opt. MCP”. The overall improved video codec represents a
comprehensive solution for optimizing and modifying MCP for
error resilience, while maintaining low complexity.

Fig. 7 summarizes the performance results. It is obvious that
the improved codec with optimized MCP and intra-updating
significantly outperforms the conventional codec coupled with
optimal intra-updating in all the testing cases, i.e., for all the
tested packet loss rates, numbers of reference frames, and
coding bit rates with up to 1.24 dB performance gain achieved.
This result substantiates the effectiveness of the proposed
encoder optimizations.
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Note that the overall improved codec involves both a and
[ optimizations. In simulation, we tested whether a more in-
volved two-pass search to optimize o and (3 provides bene-
fits. We found that a single pass produced results of similar
overall coding performance (the performance gap always less
than 0.1 dB). This suggests that one may simply optimize a and
[ independently at considerably lower complexity, and at neg-
ligible sacrifice in performance relative to joint optimization.

E. Complexity Issues

In order to characterize the best achievable performance
of the proposed optimal motion compensation and prediction
schemes, all RD data used in ED-RDO are calculated after
performing actual encoding operations, despite the prohibitive
complexity. The complexity is substantially reduced by the
proposed low complexity variants, LCMC and SCP. In com-
parison with conventional RCME, we note that LCMC only
involves an additional distortion term that accounts for error
propagation, as is explicit in (20). Given the availability of first
and second moments that are already calculated by ROPE, the
computation of the additional term only incurs complexity sim-
ilar to that of the squared difference calculation in RCME. The
other low-complexity scheme, SCP, exploits the first moment
provided by ROPE, and introduces no further computation
complexity relative to conventional prediction.

RFG with the proposed GSCP involves separate construc-
tion of prediction reference frames. We note that a conventional
codec needs to record the reconstruction of each frame so it can
serve as prediction reference for the following frames. Compare
this with the GSCP codec where, rather than directly store the
reconstruction as reference, we first perform the additional cal-
culation specified in (28) per pixel, to obtain the GSCP refer-
ence. This implies that no additional storage cost is incurred by
GSCP. The additional computation of (28) consists of two mul-
tiplications and one addition per pixel. This clearly translates
into very marginal computational complexity cost, relative to
the computationally significant modules of a conventional coder
such as ME and transformation. Similar analysis also holds true
for weighted prediction-based RFG.

Experimental evaluation of the computational complexity of
the overall improved ROPE method, has been performed on a
computer with Pentium IV 3.0-GHz CPU and 504-MB RAM. It
shows overall increase in total encoding time (relative to a con-
ventional coder) by about 130%~160%. For a more detailed
report see [37]. In terms of storage/memory consumption, for
each pixel, the standard coded integer pixel costs 1 byte, while
ROPE needs additional 4 x 2 = 8 bytes to store the first and
second moments in floating point representation. Given the cur-
rent trend in processing and storage capabilities and cost, the
complexity required by ROPE is modest and poses no serious
problems in practice.

VII. CONCLUSION

This paper is concerned with the optimization and modifica-
tion of the fundamental MCP framework to improve the error re-
silience of video coding. While most of the existing end-to-end
RD-based error resilient video coding techniques focus on intra/
intramode selection, a novelty of this work lies in its particular
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focus on the potential of optimizing and modifying the basic un-
derlying MCP framework for error resilience, and thereby en-
hancing the overall RD performance from the intercoded MBs.

First, we extend the existing ED-RDO framework to opti-
mize ME and prediction. The proposed schemes also account
for the impact of future error propagation for enhanced opti-
mality. A novel hybrid search algorithm is developed to solve
the optimal prediction problem in the context of H.264. Low
complexity practical variants are also proposed for optimal ME
and prediction, respectively. Second, we investigate RFG de-
sign optimization in terms of error resilience and coding effi-
ciency tradeoffs. For this purpose, we consider a broad spectrum
of filter paradigms, including not only leaky prediction, FIR-
based weighted prediction, but also the newly proposed IIR-
based GSCP scheme. Note that the introduction of the IIR filter-
based RFG design would not be possible without decoupling
RFG from MCP. This decoupling formulation opens the door
to further error resilience improvement. While weighted predic-
tion can be applied with motion compensation in the “conven-
tional” way, both weighted prediction and GSCP can be applied
in conjunction with RFG to enhance error resilience and thereby
the overall system performance. We conducted experiments to
investigate the achievable performance gains due to the pro-
posed encoder optimizations. The significant performance gains
observed in simulations justify their effectiveness.
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