
Comparison of Approaches to Service Deployment

Vanish Talwar, Qinyi Wu†, Calton Pu,†

Wenchang Yan†, Gueyoung Jung†, Dejan Milojicic

HP Labs, Georgia Tech
†

[vata, dejan]@hpl.hp.com, [qxw, calton, wyan, helcyon1]@cc.gatech.edu,†

Abstract

IT today is driven by the trend of increasing scale and

complexity. Utility and Grid computing models, PlanetLab,

and traditional data centers, are reaching the scale of thou-

sands of computers. Installed software consists of dozens of

interdependent applications and services. As the complexity

and scale of these systems continues to grow, it becomes

increasingly difficult to administer and manage them. At the

same time, the service deployment technologies are still based

on scripts and configuration files with minimal ability to

express dependencies, to document and to verify configura-

tions. This results in hard-to-use and erroneous system config-

urations. Language- and model-based tools, such as

SmartFrog and Radia, are proposed for addressing these

deployment challenges, but it is unclear whether they are ben-

eficial over traditional solutions.

In this paper, we quantitatively compare manual, script-,

language-, and model-based deployment solutions as a func-

tion of scale, complexity, and susceptibility to change. We also

qualitatively compare them in terms of expressiveness and

barrier to first use. We demonstrate that script-based solutions

are well matched for large scale deployments, language-based

for services of large complexity, and model-based for dynamic

changes to the design. Finally, we offer a table summarizing

rules of thumb regarding which solution to use in which case,

subject to deployment needs.

1 Introduction

The scale and complexity of today’s IT systems and ser-

vices makes them increasingly difficult and expensive to

administer and deploy. We define a service broadly as a

standalone software component that encapsulates and

presents useful functionality, is installed in a computing

environment, and can be composed into an overall sys-

tem or application. Services in this broad sense include

business services as well as modules such as transaction

services or databases. They can be realized as Web or

Grid services or even as component services in an oper-

ating system. This shift points to a general view of ser-

vice-oriented computing. By deployment, we mean an

action to download, configure, activate, and maintain

the life cycle (e.g., react to failures, terminate, and

restart) of services.

A system update at a moderately-sized data center may

require changes to a thousand machines. In addition,

there may be interdependencies among the applications

installed on these machines. For example, a typical

Web-based e-commerce application consists of a three-

tier system, comprising the database, application, and

Web server tiers. The application tier further consists of

the application server, the application in question, and

other services on which the application depends. Large

scale data centers in companies such as Yahoo and Goo-

gle can be significantly larger in size with significantly

more complex services.

New computing models, such as Utility Computing [1,

2] and Grid Computing [3] grow even more signifi-

cantly in scale. Utility computing requires rapid rede-

ployment of software for changing users of computer

fabrics. Grid computing poses similar requirements for

the Grid services. In practice, the IT service companies

(e.g., those handling the outsourced data processing

tasks) managing a large number of installations around

the world have the same requirements of Utility Com-

puting and Grid Computing. Recent studies show that

management of software deployments dominates system

administration costs [6], and that configuration is a

major source of errors in system deployment [7].

A concrete example of serious challenges in system

configuration is the long-lived and evolving nature of

large-scale services and applications in these environ-

ments, which makes the management of dependency

among service components critical. The changes on a

service component need to be propagated or contained

as appropriate, so the services and applications that use

the component may continue to function correctly. In

addition to planned changes, the unplanned changes

such as failures also need to address dependencies. Spe-

cifically, if some services are dependent on a failed ser-

vice, then these services may also need to be restarted.

Today's deployment tools provide varying levels of

automation, classified into manual, script- language-,

and model-based (see Table 1 for the deployment tasks

executed by these approaches). Automation of service

deployment is beneficial for improved correctness (by

reducing human errors), speed (parallelizing long-run-

ning installations), as well as for improved documenta-

tion. However, automation is achieved at an increased

cost at the development time and an increase in the

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

2

learning curve for administrators. This initial cost and

overhead may be acceptable if the overall gains are sig-

nificant and worthwhile. The question facing IT manag-

ers today is: which of these deployment approaches

should they adopt (and when) for the IT infrastructure

and services to achieve overall gains?

In this paper, we quantitatively and qualitatively com-

pare the approaches to service deployment in terms of

scalability, complexity, and susceptibility to change. We

identify cases where each approach is best suited. Our

hypotheses are summarized in Figure 1. First, manual

deployment is likely to be well suited for simple, small

scale deployments because it has small barrier to

entrance. Second, for larger scale, yet still simple

deployments, script-based deployment should present

advantages over the manual approach, even though

scripts may require learning the scripting language and

then the development and maintenance of scripts. Third,

for large scale, complex deployments, a language-based

approach such as SmartFrog [5] should be the best. It

requires some additional investment in understanding

the complexity of the framework and developing the

template and configuration descriptions consisting of

dependencies. Finally, the environments involving a lot

of dynamic, run-time changes are best suited for model-

based deployment.

The main technical contribution of the paper is an

experimental confirmation of the above hypotheses

described in Section 4. In analogy to experimental eval-

uation of program complexity and quality of service, we

define manageability as an ability to manage a system

component. We define Quality of Manageability (QoM)

as a measure of manageability. QoM has qualitative and

quantitative measures. Quantitative QoM includes:

• number of lines of code (loc) written for deployment;

• number of steps involved to deploy;

• loc to express configuration changes; and

• time to develop, deploy, and make a change.

LOC are a relevant metrics because of the maintainabil-

ity of configuration, which is inversely proportional to

the number of LOC. The smaller and more expressive a

configuration, the easier it is for a system administrator

to install, configure, and maintain. Similarly, number of

steps is proportional to the time and cost of engagement

of a human operator.

We also use the following Qualitative QoM:

• ability to automate the management process, including

adaptability to changes (e.g., failures, load);

• robustness, expressed in terms of misconfigurations;

Figure 1. Hypothesis: the level of automation of a tool, pushes

the cost earlier in the development cycle in order to benefit

from the repeated deployment. Developing the tools, learning

them, and creating templates come at an initial cost. The cost

will pay off in complex or scaled (repeated) deployments.

dependencies

human investment (time) over the

manual
script-based

model-based

language-based

scale & complexity

lifetime of package deployment

Table 1. Comparison of Deployment Approaches. Darker shading means more automated, no shading implies manual steps.

Deployment

phases

Deployment Approaches

manual script-based language-based model-based

Development none

1. develop tools (workflow execution
scripts, distribution, verification)

2. develop installation and startup
script templates (per application)

1. develop configuration language, parser
2. develop tools (engine, distribution)
3. develop configuration, installation spec-

ification templates expressed in the lan-
guage templates (per application)

1. develop schemas for models: package,
best practices, SW dependency/inven-
tory, HW resources, interoperability

2. develop tools for: model lifecycle mgmt,
dependency analys., distribution, engine

3. create instances of models: package (per
app); best practices (per customer)

4. update SW dependency model & create
resource models (per node)

Design none

1. populate application templates
with customer-specific attributes

2. construct workflow scripts (per
application)

1. populate application templates with cus-
tomer-specific attributes

2. construct workflow components (per
application)

1. based on customer, select package mod-
els from best practices model (per app)

2. dependency analysis (app per node),
order of (re-)install, activate, terminate

Operational

1. distribute packages to repository
2. login to each target node
3. download binaries, configure SW

installation, install apps (per node)
4. configure SW activation and manu-

ally activate (per node)
5. check deployment status and applica-

tion state

1. invoke distribution module
2. invoke installation and ignition

workflow scripts
3. invoke verification scripts

1. invoke the distribution module
2. invoke installation and ignition work-

flow components
3. verify notification events

1. update unified interoperability model
2. invoke distribution module
3. invoke installation and ignition work-

flow components
4. verify notification events

Change

1. manually detect changes
2. manually repeat any or all of the

above phases to adapt to change.

1. discover change (manual, ad-hoc)
2. react to change (ad-hoc process),

repeat some/all of above phases

1. discover changes (ad-hoc)
2. react to change, load pre-determined

component

1. automatically discover/react to change;
reflect on model; activate adaptation &
execution modules

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

3

• expressiveness of management (e.g., ability to express

constraints, dependencies, and models); and

• barrier to first use of the deployment tool.

In order to compare deployment approaches, we lever-

age the methodologies used for comparing program-

ming languages, domain specific languages, databases,

and software engineering in general. The programming

language community typically compares programming

languages in terms of execution time, ease of use, lines

of code, length, amount of commenting, etc. [8]. Our

work is also related to domain specific languages, such

as the application of compiler extensions to identify

errors in systems programming [9, 10]. A comparison

between the manageability of the Oracle 9i and Oracle

10g databases motivated us to use number of steps as a

metric [11]. Itzfeldt classifies maintainability into mod-

ularity and complexity, testability, understandability,

and modifiability. He derives the following quality met-

rics for software management: size, control structures,

data structure and flow [12].

A framework for software deployment technologies pro-

posed by Carzaniga et al. [13] characterizes product,

site, and policy models. In our classification, the script-

based approach supports site model; language-based

approach supports product and site model; and model-

based approach supports all three models.

Our work differs from the related work in many ways.

First, nobody has characterized a spectrum of deploy-

ment automation options from manual to model-based.

Second, there is no previous quantitative comparison of

deployment solutions (Carzaniga et al. offer qualitative

comparison [13]). Third, we formulate a set of metrics

for comparison of QoM for deployment approaches.

The remainder of the paper is organized in the following

manner. Section 2 presents a use case scenario justifying

the need for deployment automation. Section 3 provides

background information on the deployment of computer

systems. In Section 4 and Section 5 we perform quanti-

tative and qualitative comparison of deployment

approaches. Section 6 presents a summary of the paper

and of future work.

2 Use Case Scenario

There are many scenarios that lend themselves to analy-

sis of deployment tools. In this section, we describe a

real-life scenario emphasizing the problems with depen-

dencies, failures, and the need to document changes.

Sarah has installed Java PetStore on a three node Win-

dows-based cluster. She manages it with a remote tool,

so she’s configured it to be part of a remote domain. It

took her a few days to install all the required packages,

applications, and tools; because she had specific

requirements, she had to make certain changes in sev-

eral steps of the configuration and deployment. Each

part of the installation had its own instructions, so she

documented everything in a notebook. Because the

application had so many dependencies, she had to man-

ually configure packages with the configuration parame-

ter values from other packages — for example, for node

names and IP addresses. She repeatedly had to enter

these values in different places, so she occasionally

entered them incorrectly. After Sarah used PetStore for

several days, an application on the remote system reboo-

ted all her systems because several Windows updates

needed to be applied. Unfortunately, this action errone-

ously reimaged some of her systems, and Sarah had to

reinstall everything from scratch.

In this scenario, a more sophisticated deployment tool

would have benefited Sarah in many ways. First, she

wouldn’t have had to do the installation manually each

time. A carefully drafted template describing the steps

and tools would have helped during the first deployment

and even more so during subsequent deployments. Next,

the dependencies between certain components could

have been instantiated in one spot with variable names

used at other areas, reducing the need to make changes

and the likelihood of making errors. Moreover, the

deployment tool could have evaluated many values at

the time the components were started, eliminating the

need for manual initiation altogether. The remote con-

figuration tool that caused the incident could also have

been part of the configuration, which would have auto-

mated changes in interdependent systems. Finally, the

system’s documentation would have been very coherent

and consistent, reduced to a single configuration file,

documenting an absolute minimum number of parame-

ters and making subsequent changes easy.

3 Background

In this section we describe Nixes, SmartFrog, and

Radia, as examples for the script-, language, and model-

based deployment approaches respectively. In Figure

2(a-d), we illustrate deployment steps for each of

approaches. There are many other deployment tools,

such as those described in [14-17] and a number of other

tools surveyed by Anderson et al. [18]. Their description

and comparison is beyond the scope of this paper.

Nixes is a tool used to install, maintain, control, and

monitor applications on PlanetLab [19]. Nixes consists

of a set of bash scripts, a configuration file, and a Web

repository, and can automatically resolve the dependen-

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

4

cies among RPM packages. For small-scale systems,

Nixes is easy to use: users simply create the configura-

tion file for each application and modify scripts to

deploy on the target nodes. But for large and compli-

cated systems, Nixes is not as effective, because it does

not provide any automated workflow mechanism.

SmartFrog (SF) is a framework for service configura-

tion, description, deployment, and life-cycle manage-

ment [5, 20, 21]. SF consists of a declarative language,

the engines that run on remote nodes and execute tem-

plates written in the SF language, and a component

model comprising a wrapper around the deployed ser-

vices. The SF language supports encapsulation a la

classes in Python as well as inheritance and composition

to allow configurations to be customized and combined.

It enables static and dynamic bindings between compo-

nents to support different ways of connecting compo-

nents at deployment time. The SF component model

enforces life-cycle management by transitioning compo-

nents through five states: installed, initiated, started, ter-

minated, and failed. This allows the SF engine to

automatically redeploy components in case of failure.

Radia [4], a change-and-configuration management

tool, employs a model-based approach. For each man-

aged device, administrators define a desired state, which

is maintained as a model in a central repository. Clients

on the managed devices synchronize to this desired

state, which triggers deployment actions. We also con-

sider a hypothetical model-based deployment solu-

tion that uses the following six models: package

(configuration, installation, registry entries, binaries,

and such); best practices (matching the needs of specific

customers); software dependency (deployment relation-

ship with other software components, operating sys-

tems, and hardware); infrastructure (servers, storage,

and network elements); a software inventory (currently

installed software); and interoperability among manage-

ment services models.

4 Quantitative Evaluation

We present in this section a quantitative comparison of

the deployment approaches introduced in Section 3. We

conducted three sets of experiments.

The first set of experiments is for the deployment of n-

tier testbeds. We chose a three-tier testbed for the exper-

iment that can exemplify the system administrator’s

work. The testbed consists of a web server, an applica-

tion server, and a database. The system is complex

enough to have numerous dependencies among various

components across the different tiers. The system can

also be configured in different scales. For example, one

could introduce multiple instances of the web server or

multiple instances of the application server. We compare

bash script- with SmartFrog language-based approach.

The second set of experiments is for MySQL configura-

tion parameters. We chose an application with an inter-

Figure 2(b) Illustration of a bash script for installing Apache.

WEB_SERVER=poseidon.cc.gatech.edu #Web
repository
APACHE_ARCHIVE=httpd-2.0.49.tar.gz #Binary
Archives
DIR=/usr/local #Installation Directory
cd $DIR
if [[! -d $APACHE_HOME]]; then
wget
$WEB_SERVER:$WEB_PORT/$WEB_DIR/$APACHE_ARCHIV
E
tar -xzf $APACHE_ARCHIVE
cd $APACHE_INSTALL_HOME
./configure
make > /dev/null
make install > /dev/null
fi

ApacheInstaller extends GenericInstaller
webServerHost;
tarLocation “<location>”; // eg. /apache.tar
installLocation “<location>”; // eg. /
file “<file>”; // eg. apache.tar
name “<name>”; // eg. apache
installScript extends vector
— ATTRIB cdApacheHome;
— ATTRIB configureScript;
— ATTRIB makeScript;
cdApacheHome extends concat
— “cd “;
— ATTRIB home;
configureScript “<script>”; // eg.
./configure
makeScript “<script>”; // eg. make install
sfConfig extends ApacheInstaller;

Figure 2(c) Illustration of SF language for installing Apache.

1. Propagate packages to web repository
1. Login to web server host
2. unpackage Apache
3. build & install Apache
4. edit httpd.conf
5. start Apache
6. Inspect Apache process list
7. Login out of web server host

Figure 2(a) Steps for installing Apache manually.

Server Rack

Properties:

Height = 42

Id = 3-tier_Rack

Compute Node

Properties:
NumberOfProcessors = 8

ProcessorSpeed=875

Model=RP8400

Id=Htx693

Compute Node

Properties:
NumberOfProcessors =4

ProcessorSpeed=875

Model=RP8400

Id=Htx694

Virtual Node

Properties:

Id=AppServer_Vn1

Virtual Node

Properties:

Id=WebServer_Vn1

Virtual Node

Properties:

Id=DatabaseServer_Vn1

Tomcat

Properties:

Version=1.0

Java

Properties:

Version=1.2

Apache

Properties:

Version=3.0

MySQL

Properties:

Version=2.0

JDBC Driver

Properties:

Version=1.0

Java

Properties:

Version=1.3

Figure 2(d) Visual form of the system model.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

5

esting set of configuration parameters that need to be

tuned for different system setups. MySQL is a well-

known open source database software that has a set of

tunable configuration parameters for setting up the data-

base under small, medium, large, and very large setups.

Here we compare native MySQL configuration files

(corresponding to script-based approach) and Smart-

Frog.

The third set of experiments compare the installation

time when deploying a 2-tier testbed using Nixes (a

script-based deployment tool), and SmartFrog. We

describe these experiments below.

4.1 N-Tier Testbed Deployment

Experimental Setup. Experiments for the deployment

of n-tier testbeds were conducted using SmartFrog 3.0, a

web server (Apache 2.0.49), an application server (Tom-

cat 5.0.19), a database server (MySQL 4.0.18), and the

PetStore (iBATIS JPetStore 4) & Guest Book applica-

tions. The testbed was setup on a Linux environment.

The components of the n-tier testbed were deployed on

separate nodes. Each of the components had native con-

figuration files: httpd.conf for Apache; server.xml for

Tomcat; web.xml for web applications using Tomcat;

and my-*.cnf for MySQL. We wrote bash scripts and

SmartFrog components for the installation, and ignition

phases of the components in the system.

Experiment Description. The goal of the experiments

is to quantitatively compare the quality of manageability

for different deployment approaches. The metrics we

choose for this measurement are number of steps, and

number of lines of code. The measurements are done by

varying the scale and complexity of the n-tier testbed.

The scale is measured by the number of nodes. The

complexity is defined as a function of the number of

deployment dependencies, and the number of software

components. The deployment dependencies we consider

for our experiments are installation dependencies, con-

figuration dependencies, and ignition dependencies. We

define various levels of complexity of the testbed (see

Figure 3). The scale of the system is varied through hor-

izontal scaling of the tiers. In our experiments, we per-

formed simultaneous horizontal scaling of the web

server and application server tiers. The ratio of the

Apache web server to Tomcat application servers for the

purpose of horizontal scaling are 1:2, 2:4, and 4:8.

Test Workload. We identified a test workload consist-

ing of a set of tasks to be performed by an end-adminis-

trator for the deployment of the testbed. The test

workload covers the installation and ignition of the test-

bed. The following tasks are included:

1. Create the specifications for configuration, installa-

tion, and ignition of the software by filling in appro-

priate values in the specification templates.

2. Create workflow descriptions for the deployment

tasks of installation and ignition of the applications.

3. Distribute the binaries, specifications, and workflow

descriptions to all of the nodes.

4. Execute the installation workflow descriptions to

install the testbed.

5. Execute the ignition workflow descriptions to acti-

vate the testbed.

6. Verify if the installation and ignition completed suc-

cessfully.

Results.The results obtained represent the deployment

effort for an end-administrator, and reflect the cost of

deployment incurred beyond initial development.

Figure 4 shows the comparison of the number of steps

that an end-administrator performs as a function of scale

and complexity. The graph shows that as the complexity

of the system increases, the difference in the number of

steps to be performed by an end-administrator widens

for a manual approach in comparison to either a script-

based approach or a SmartFrog-based approach. Com-

paring results for SmartFrog with the script based

approach, one sees a constant difference in the number

of steps to be performed. For the manual approach, the

number of steps is linear to the number of nodes because

the administrator needs to repeat the same steps for each

node. However, the steps for the script and SmartFrog

cases remain the same with increasing scale. The reason

Figure 3. Complexity definitions (a) Simple: 1-tier testbed, (b)

Medium: 2-tier testbed with simple application, (c) Complex:

3-tier testbed with Guestbook application, (d) Very complex: 3-

tier testbed with PetStore application.

Installation dependencies

Configuration dependencies

Ignition dependencies

Apache
Static web

pages

Tomcat

Apache

Page Counter

App

(precompiled)

JVM

MySQL

Tomcat

Apache

JVM Guest
Book

Application

MySQL

Tomcat

Apache

JDBC
driver

JPetStore

Struts

SQL
Map

DAO

JVM

(a) (b)

(c)

(d)

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

6

is that both can manage the scale by reusing the previ-

ous code. The administrator only needs to add extra

lines of code at each step. In comparison to the manual,

script, and SmartFrog based approaches, the (hypotheti-

cal) model-based approach provides the advantage of a

constant number of steps to be performed by the end-

administrator with varying scale and complexity.

Figure 5 shows the comparison of the number of lines of

code that an end-administrator writes as a function of

scale and complexity. The graph shows that as the com-

plexity of the system increases, the difference in the

number of lines of code to be written by an end-admin-

istrator widens for a script-based approach in compari-

son to a SmartFrog based approach. When the system

scales on Apache and Tomcat, the dependencies

between different components increase in proportion to

the number of Apache and Tomcat servers. The new

lines of code to be written with a script-based approach

is where n is the number of Apache servers and

m is the number of Tomcat servers. By comparison,

SmartFrog only needs to specify the configuration value

for Apache and Tomcat servers once; one can use its

link reference facility to capture these dependencies. As

a result, SmartFrog can capture the dependencies linear

to the number of Tomcat and Apache servers. Further-

more, SmartFrog saves lines of code for software distri-

bution and verification of successful installation and

activation of testbed. This is result of the underlying

transport built into the SmartFrog engine and the provi-

sion of the SmartFrog event framework. These features

could have also been built into a script-based solution

but it would involve much more development effort and

it has not been done in our experiments.

SmartFrog benefits in terms of reduction in number of

steps and lines of code through automation, workflows,

and the ability to handle added dependencies through

the link reference feature of SmartFrog language. (See

Table 1 for details on the automation of language- and

script-based deployment solutions.) Furthermore, the

SmartFrog language provides rich facilities to specify

the sequencing relationships between different software

components through workflows. One can also create

workflows composed of sub-workflows. For example

the workflow in the 3-tier application shown in Figure 6

can be easily captured by Sequence and Parallel compo-

nents in SmartFrog.

4.2 MySQL Deployment

Experimental Setup. The experiments are conducted

with the configuration file for MySQL version 4.0.18.

The configuration files used in the experiment are my-

[small, medium, large, huge].conf. We represented the

configuration information using the SmartFrog language

and applied the inheritance and link reference features

of SmartFrog.

Experiment Description. The goal of this experiment

is to quantitatively compare the quality of manageability

for maintaining the configuration of MySQL using the

various deployment approaches. The metrics we choose

for this measurement are lines of configuration code to

maintain, and number of configuration values to be

edited in response to changes in the system. The config-

uration values under consideration are the performance

tuning parameters for MySQL. These parameters can be

broadly classified under port number parameters, key

and sort buffer sizes, read and write buffer sizes. The

evaluation in the experiment is to vary the complexity of

Figure 4. Number of steps as a function of scale and complex-

ity. The results shown for bash and SmartFrog are from real

systems. The results for the model-based approach are esti-

mated based on our definition of the hypothetical model-based

solution. It is represented as a flat plane in the graph.

O n m

Figure 5. Lines of code as a function of scale and complexity.

We present only results for bash and SmartFrog; lines of code

make no sense for manual approach and for model-based we

do not have an accurate estimate.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

7

the MySQL setup from small to medium to large to very

large. Small refers to a setup serving a small number of

clients (10-100), being used infrequently and consuming

few resources. Medium refers to a setup that serves

more clients (100-1000), and is used together with other

programs (like a web server). Large refers to a MySQL

setup serving an even greater number of clients (1000-

5000), with the system running mainly MySQL. Very

Large refers to a MySQL setup serving a huge number

of clients (>5000), the system running mainly MySQL,

and having a large available memory space (>10GB).

The deployment approaches considered are a language-

based approach to represent configuration information,

specifically, SmartFrog language, and a non-language

based approach, specifically, the MySQL default config-

uration files. Figure 7 provides examples of code repre-

senting MySQL configuration information using the

two approaches.

Results. Figure 8 shows the comparison of the cumula-

tive number of lines of code that a MySQL administra-

tor has to maintain as we increase the complexity of the

system from simple to very large. A MySQL adminis-

trator maintaining configurations for only small setups

maintains the same lines of code with a language and

non-language based approaches. When the administra-

tor is asked to maintain a medium setup, the cumulative

number of lines of code that need to be maintained dou-

bles with a non-language based approach. With a lan-

guage based approach (e.g., SmartFrog), we need to

introduce fewer lines of code that are either specific to a

medium setup, or for tuning parameters whose values

for a medium setup are different than those for a small

setup. The rest of the configuration can be inherited

from the small setup. Similar reasoning holds true as we

move to introducing large and very large systems. As

seen in the figure, the difference in the cumulative lines

of code for maintaining up to a very large system using a

language- and a non-language-based approach is quite

significant.

Figure 9 shows the comparison of the number of config-

uration values to be edited in response to changes in the

system. The changes introduced are port number

changes, key/sort buffer size changes, read/write buffer

size changes. In this comparison, we assume that the

MySQL administrator is maintaining configurations for

all the four kind of setups—simple, medium, large, and

very large. The changes introduced therefore cause the

administrator to edit configuration values across all four

kind of setups. Without a language-based approach, the

number of values to be edited would be equal to the

number of places where the changed configuration

parameter appears in the configuration files. With a lan-

guage based approach, we use link references to link

together related parameters. This feature of link refer-

ences together with the ability to inherit values across

the setups helps us to reduce the actual number of con-

figuration values to be edited by the MySQL adminis-

trator in response to changes in the system. Since there

are fewer values to modify, there are fewer opportunities

for errors to be introduced into the system.

MySQL is simple compared to more complicated soft-

ware systems, such as a supply chain. We believe that

latter systems even more favor deployments at the

higher level of abstraction (language- and model-based

approaches).

Figure 6. Workflow of the installation of the 3-tier testbed with

PetStore application.

Install Apache Install Mysql Install AntInstall Tomcat Install Java

Configure
Apache

Configure Mysql
Install Mysql

JDBC
Install Jpetstore

Install Dao Install Struts Install Sqlmap

Starting Point

Configure
Jpetstore

[client]port= 3306
[client]socket= /tmp/mysql.sock
[server]port= 3306
[server]socket= /tmp/

....
key_buffer = 16K
.
[isamchk]key_buffer = 8M
[isamchk]sort_buffer_size = 8M
[myisamchk]key_buffer = 8M
[myisamchk]sort_buffer_size = 8M

MySQL-small extends Prim {
client:port "3306";
client:socket "/tmp/mysql.sock";
server:port ATTRIB client:port;
server:socket ATTRIB client:socket;

....
key_buffer "16K";

....
isamchk:key_buffer "8M";
isamchk:sort_buffer_size ATTRIB

isamchk:key_buffer;
myisamchk:key_buffer ATTRIB

isamchk:key_buffer
myisamchk:sort_buffer_size AT-

TRIB

Figure 7. Snippet of MySQL original configuration and SF one.

Figure 8. Number of cumulative lines of code to maintain as a

function of complexity of deployed service.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

8

4.3 Deployment and Installation Time

Figure 10(a) compares the results of overall time to

deploy a 2-tier testbed using a language-based solution

(SmartFrog 3.0) and a script-based solution (Nixes 0.3).

The testbed consists of a Guestbook web application

using JBoss 3.2.3 and PostgreSQL 7.4.1. The overall

time can be decomposed into two parts. The first part is

the environment setup time. For the script-based case,

the environment setup time was the time required to

install a JVM; for the language-based scenario, it also

includes the SmartFrog daemon setup time. The second

part, Figure 10(b), compares the application installation

and ignition time. In this experiment we scaled the ratio

of database to application servers from 1:1 up to 2:8.

In Figure 10(a), SmartFrog took more time compared to

to Nixes tool. We attribute this to the additional setup

time associated with starting the SmartFrog daemon.

The daemon implements additional functionality needed

to support a language-based solution, which is not

needed for a script-based solution. This is a trade-off

between increasing the level of automation which

reduces administrator effort, and a more complex imple-

mentation leading to initial performance penalties.

However, if we measured the time for application instal-

lation and ignition only, SF turned out to take less time

than script. SmartFrog scales better than Nixes tool. The

reason is that SmartFrog is able to exploit the maximum

concurrency between different workflows. By compari-

son, Nixes does not provide an automatic workflow

mechanism like SmartFrog. Users must manually con-

trol the order of installing and controlling applications.

5 Qualitative Evaluation

Table 2 provides a qualitative comparison between man-

ual, script-, language-, and model-based deployment

solutions in terms of automation, expressiveness, self-

management, and barrier to first use.

Automation (self-management). Scripts are the first

level that introduces automation of deployment through

their ability to repeat a set of steps specified in a file and

to form closed-closed control loops through events.

Language-based solutions extend this by introducing

lifecycle management through the use of dependencies

(e.g., ordering of deployment and redeployment upon

failures). Model-based solutions extend automation to

the design-time, by enabling the use of models for the

creation of deployment instantiations.

Self-healing. As an extension of self-management, self-

healing enables a system to react to failures. Scripting

has some ability to react to events and trigger handlers.

Language based-solutions build on this by exploring

dependencies (see the discussion on expressiveness) and

can handle redeployment in a more sophisticated way.

Finally, model-based solutions can change the deployed

system design as a reaction to the failure.

Expressiveness (and ease of use). Language-based

approaches introduce benefits of inheritance, scopes of

naming, and lazy evaluation for easier (re)configuration.

This is of particular interest in deploying large scale,

complex systems. Model-based approach contributes

additional aspects of (meta-)model- and policy-based

Figure 9. Number of changed configuration variables for

changes in three different types of parameters.

Figure 10. Deployment (a) and installation time (b) as a function of the scale (different ratio of DB and Application servers).

(a) (b)

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

9

support that better captures run-time state and best prac-

tices. As a result, from manual to model-based, there is

increasing level of re-use, correctness, and maintenance.

See Table 3 for more details.

Barrier to First Use (time to learn, comprehend, etc.).

The system administrator is the main user of deploy-

ment tools. Manual deployment usually requires no or

minimal a priori knowledge. Scripts are relatively

straightforward and require relatively low effort to start

using them, although some of the script programs can

become quite sophisticated. Language-based

approaches requires a certain amount of education

before one can use them. Developing encoding wrap-

pers for the lifecycle management of services adds addi-

tional challenges. Finally, development of models

introduces the largest barrier to the model-based

approach. Front-end tools can somewhat alleviate the

problem.

6 Summary and Future Work

We have compared manual, script-, language-, and

model-based deployment solutions in a qualitative and a

quantitative manner. Our results indicate that the num-

ber of steps and the number of lines of code are reduced

with the introduction of more sophisticated deployment

tools. Maintainability and documentability are propor-

tional to the number of lines of code. Manageability is

proportional to the number of the lines of code modified

and number of steps added in response to changes in

system configuration.

Table 4 illustrates the advantages and disadvantages of

the spectrum of deployment approaches. The shaded

regions denote the advantages. Ultimately, no univer-

sally optimal solution exists - the best approach is the

one that closest matches the deployment need. When the

number of deployed systems is small or systems’ con-

figurations rarely change, a manual solution is the most

reasonable approach. For services with more compre-

hensive configuration changes, a script-based deploy-

ment strategy offers several benefits. In larger

environments in which changes involve dependencies,

language-based solutions are likely a better choice. If

the changes also involve significant perturbations to the

underlying service’s design, the model-based approach

is probably ideal. From the perspective of document-

ability, manual deployment offers poor support; scripts

offer minimal support for the deploy-time changes; lan-

guage-based approaches support incremental document-

ability based on inheritance and composition; and

model-based approaches add runtime documenting by

virtue of capturing all the changes in the deployed ser-

vice’s lifetime.

We would like to point out that there is no clear winner

among the approaches to deployment—a best approach

is the one that matches the deployment need closest. The

four approaches are different in their nature, yet syner-

gisestic. The manual approach is imperative; the script-

based is automated imperative; the language based is

declarative; the model-based is goal-driven. All four

approaches are synergistic in the way that they increase

the level of abstraction from manual to model-driven,

yet they can each be accomplished in terms of predeces-

sors. Any language-based feature can be accomplished

by script-based solutions and any model can also be

expressed in terms of languages. It is the ease of use and

barrier to first use that determines the optimal choice.

Complexity, dependencies, configuration space, and

requirements for performance, availability, and scalabil-

ity of services are dimensions that have a bearing on our

results. The simpler the service configuration the more it

lends itself to manual or script-based deployment. More

complex services, with more requirements, are better

suited for model-based deployment.

Table 2. High Level Comparison of Deployment Approaches

characteristics
Deployment Approaches

manual script-based language-based model-based

solution based on human language configuration. files, scripts declarative language models & policies
automation no event-based closed-loops +life cycle mgmt +automated design
self-healing no minimal redeployment + dependencies +change design
expressiveness (see also Table 3) no partial significant complete
barrier to first use none low high very high

Table 3. Expressiveness of Deployment Approaches

characteristics
Deployment Approaches

manual script- language- model-based

dependencies no yes workflow-
component (meta-)models- &

policy-based
constraints no yes language
inheritance no no static +dynamic
lazy evaluation no no yes arbitrary binding
re-use no some significant +best practices
correctness poor some pre-deploy +run-time
maintenance poor some good excellent

Table 4. Applicability of Deployment Approaches. Shaded area

represent preferable choice

IT infrastructure

characteristics

Deployment Approaches

manual script- language- model-based

change simple config dependency design
repeat/scale rare/small many/large many/large many/large
complexity simple simple complex complex
documentability none deploy-time +incremental +run-time

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

10

We have not presented a rigorous evaluation of the

model-based approach (prototyping or experimentation)

as we have for the other deployment approaches. How-

ever, our qualitative comparison is useful, because it is

based on our practical experience in using models. Sim-

ilarly, we have omitted some other aspects of deploy-

ment, such as exceptions, without losing the generality

of our conclusions. Exceptions are an important topic

for the deployment, but addressing exceptions is either

orthogonal to the comparison we make or well aligned

with our results. For example, moving to the higher lev-

els of abstraction may make it harder to understand

some of the errors that have occurred at the lower levels

of abstraction. However, similarly to the handling of

network protocol stacks, failures should be analyzed at

an appropriate level of abstraction and dealt with

accordingly.

There is an opportunity to develop more elaborate quan-

titative comparison, potentially based on software met-

rics, such as those in software engineering [12]. We plan

to pursue some of these approaches in the future.

Although such techniques will increase our evaluation’s

precision, we expect the general conclusions to remain

unchanged. We intend to continue using models to

extensively automate the deployment and adaptation

within complex systems and to increase scalability and

ease of use. Integration with development tools, such as

Eclipse will improve the ease of use, and decrease the

barrier to first use. We also plan further examination of

deployment in different underlying environments, such

as PlanetLab, Grid, and Enterprise.

Acknowledgments

We thank the ICDCS reviewers and track vice-chair,

Munindar P. Singh, for their insightful comments. We

are also indebted to Paul Anderson, Martin Arlitt, Jamie

Beckett, Patrick Goldsack, Michael Huhns, Steve

Loughran, Jim Rowson, and Carol Thompson for

reviewing the paper. Their comments improved contents

and presentation. The scenario was offered by Julie

Symons.

References

[1] Wilkes, J., Mogul, J., Suermondt, J., “Utilification,” Proc.

ACM European SIGOPS Workshop, September 2004.

[2] “Utility Computing,” IBM Systems Journal special issue

43(1), 2004.

[3] Foster, I. et al., “The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Inte-

gration.“

[4] www.novadigm.com.

[5] www.smartfrog.org, Open source directory.

[6] Humphreys, J. et al., “Service-Centric Computing: An In-

frastructure Perspective, Outlook and Analysis,” IDC

#28934, March 2003.

[7] The Berkeley/Stanford Recovery-Oriented Computing

(ROC) Project, roc.cs.berkeley.edu.

[8] Prechelt, L., “An Empirical Comparison of Seven Pro-

gramming Languages,” IEEE Computer, vol 33, no 10,

October 2000, pp 23-29.

[9] Engler, D., et al., “Checking System Rules Using System-

Specific Programmer-Written Compiler Extensions,” pp

1-16, Proc 4th USENIX OSDI, Oct 2000, San Diego, CA.

[10] Mèrillon, F., et al., “Devil: An IDL for Hardware Pro-

gramming,” Proc. 4th USENIX OSDI, pp 17-30, Oct

2000, San Diego, CA.

[11] Oracle Database 10g and Oracle 9i Database Manageabil-

ity Comparison. Oracle Technic al Report. http://www.ora-

cle.com/technology/products/manageability/database/pdf/

twp03/oracle10g-oracle9i_manageability_comparison.pdf.

[12] Itzfeldt, W.D., “Quality Metrics for Software Manage-

ment and Engineering,” in Mitchell, R.J. (editor), “Man-

aging Complexity in Software Engineering,” IEE

Computing Series 17, 1990, Short Run Press, Ltd., Exiter.

[13] Carzaniga, A., et al., “A Characterization Framework for

Software Deployment Technologies,” TR CU-CS-857-98,

University of Colorado, Boulder, April 1998.

[14] Oppenheim, K., and MCormick, P., “Deployme: Tellme’s

Package Management and Deployment System,” Pro-

ceedings of the Usenix IVth LISA Conference, December

2000, New Orleans, pp187-196.

[15] www.cfengine.org.

[16] Sapuntzakis, C., et al., Virtual Appliances for Deploying

and Maintaining Software,”, Proc. USENIX LISA’03

Conference, pp 181-1194, October 2003, San Diego, CA.

[17] Wang, Y.M., et al., “STRIDER: A Black-box, State-based

Approach to Change and Configuration Management and

Support,” Proc. of the USENIX LISA’03, pp 159-172, Oc-

tober 2003, San Diego, CA. .

[18] Anderson, et al., “Technologies for Large-Scale Configu-

ration Management,” GridWeaver Technical Report, http:/

/www.gridweaver.org/WP1/report1.pdf.

[19] http://www.aqualab.cs.northwestern.edu/nixes.html

[20] Goldsack, P., et al., “Configuration and Automatic Igni-

tion of Distributed Applications”, 2003 HP Openview

University Association conference.

[21] Anderson, P., et al., “SmartFrog Meets LCFG: Autono-

mous Reconfiguration with Central Policy Control,” Proc.

USENIX LISA’03 pp 173-180, Oct 2003, San Diego, CA.

[22] Peterson, L, et al., “A Blueprint for Introducing Disruptive

Technology, “PlanetLab Tech Note, PDN-02-001, July

2002.

[23] CDDLM Charter Document, https://forge.gridforum.org/

projects/cddlm-wg

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

