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Preface

Computer vision is the enterprise of automating and integrating a wide range of pro-

cesses and representations used for vision perception. It includes many techniques that

are useful by themselves, such as image processing (transforming, encoding, and trans-

mitting images) and statistical pattern classification (statistical decision theory applied

to general patterns, visual or otherwise). Moreover, it also includes techniques for ge-

ometric modeling and cognitive processing. The field of computer vision may be best

understood by considering different types of applications. Many of these applications

involve tasks that require either work in a hostile environment, a high rate of processing,

access and use of large databases of information, or are tedious for people to perform.

Computer vision systems are used in many and various types of environments - from

manufacturing plants, to hospital surgical suits, and to the surface of Mars. For exam-

ple, in manufacturing systems, computer vision is often used for quality control. In this

application, the computer vision system scans manufactured items for defects and pro-

vides control signals to a robotic manipulator to remove defective parts automatically.

Current examples of medical systems being developed include: systems to diagnose skin

tumors automatically, systems to aid neurosurgeons during brain surgery, systems to

perform clinical tests automatically, etc. The field of law enforcement and security is

also an active area for computer vision system development with applications ranging

from automatic identification of fingerprints to DNA analysis.

In a standard approach, statistical techniques in computer vision applications must

estimate accurate model parameters despite small-scale noise in the data, occasional

large-scale measurement errors (outliers), and measurements from multiple populations

in the same data set. Increasingly, robust estimation techniques from statistics are be-

ing used to solve these parameter estimation problems. Ideally, these techniques should

effectively ignore the outliers when estimating the parameters of a single population. In

our approach, we consider applications that involve similarity where the ground truth

is provided. The goal is to find the probability density function which maximizes the

VII



VIII Preface

similarity probability. Furthermore, we derive the corresponding metric from the prob-

ability density function by using the maximum likelihood paradigm and we use it in the

experiments.

The goal of this book is to describe and illuminate some fundamental principles

of robust approaches. Consequently, the intention is to introduce basic concepts and

techniques of a robust approach and to develop a foundation, which can be used in

a wide variety of computer vision algorithms. Chapter 1 introduces the reader to the

paradigms, issues, and important applications involving visual similarity, followed by an

in-depth chapter (Chapter 2) which discusses the most influential robust framework -

maximum likelihood.

In recent years, the vision community has generalized beyond grayscale algorithms

toward color techniques which prompts the third chapter on color based retrieval of

images and objects. The other primary features which are frequently discussed in the

vision literature are texture and shape which are covered in the fourth chapter and in

the fifth chapter, respectively.

Beyond classification algorithms, the computer vision area has been interested in

finding correspondences between pairs of images which have been taken from different

spatial positions (stereo matching) or different moments in time (motion tracking). Our

analysis extends to both of these with respect to recent developments in robust techniques

in Chapter 5.

Images containing faces are essential to intelligent vision-based human computer in-

teraction. The rapidly expanding research in face processing is based on the premise

that information about the user’s identity, state, and intent can be extracted from im-

ages and that computers can then react accordingly, e.g., by observing a person’s facial

expression. The area of facial emotion recognition is covered in Chapter 7.

In each of the chapters we show how the literature has introduced robust techniques

into the particular topic area, discuss comparative experiments made by us, and con-

clude with comments and recommendations. Furthermore, we survey the topic area and

describe the representative work done.
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Chapter 1

Introduction

The field of computer vision has grown rapidly within the past decade, producing tools

that enable the understanding of visual information, especially for scenes with no accom-

panying structural, administrative, or descriptive text information. The Internet, more

specifically the Web, has become a common channel for the transmission of graphical

information, thus moving visual information retrieval rapidly from stand-alone worksta-

tions and databases into a networked environment. Practicality has begun to dictate

that the indexing of huge collections of images by hand is a task that is both labor inten-

sive and expensive - in many cases more than can be afforded to provide some method of

intellectual access to digital image collections. In the world of text retrieval, text “speaks

for itself” whereas image analysis requires a combination of high-level concept creation as

well as the processing and interpretation of inherent visual features. Examples of visual

features include color, texture, shape, motion, etc. In the area of intellectual access to

visual information, the interplay between human and machine image indexing methods

has begun to influence the development of computer vision systems. Research and ap-

plication by the image understanding (IU) community suggests that the most fruitful

approaches to IU involve analysis of the type of information being sought, the domain

in which it will be used, and systematic testing to identify optimal methods.

The field of computer vision may be best understood by considering different types of

applications. Many of these applications involve tasks that either are tedious for people

to perform, require work in a hostile environment, require a high rate of processing, or

require access and use of large databases of information. Computer vision systems are

used in many and various types of environments - from manufacturing plants, to hospi-

tal surgical suits, and to the surface of Mars. For example, in manufacturing systems,
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2 CHAPTER 1. INTRODUCTION

computer vision is often used for quality control. There, the computer vision system will

scan manufactured items for defects and provide control signals to a robotic manipula-

tor to remove defective parts automatically. Current examples of medical systems being

developed include: systems to diagnose skin tumors automatically, systems to aid neuro-

surgeons during brain surgery, systems to perform clinical tests automatically, etc. The

field of law enforcement and security is also an active area for computer vision system

development with applications ranging from automatic identification of fingerprints to

DNA analysis.

1.1 Visual Similarity

Similarity has been a research topic in the psychology field for decades, for example,

early researchers were Wallach [Wal58], and Tversky and Krantz [TK77]. Recently there

has been a huge resurgence in the topic. Similarity judgments are considered to be a

valuable tool in the study of human perception and cognition, and play a central role

in theories of human knowledge representation, behavior, and problem solving. Tversky

[Tve77] describes the similarity concept as “an organizing principle by which individuals

classify objects, form concepts, and make generalizations.”

Retrieval of images by similarity, i.e. retrieving images which are similar to an al-

ready retrieved image (retrieval by example) or to a model or schema, is a relatively

old idea. Some might date it to antiquity, but more seriously it appeared in specialized

geographical information systems databases around 1980, in particular in the Query by

Pictorial Example system of IMAID [CF80]. From the start it was clear that retrieval by

similarity called for specific definitions of what it means to be similar. In the mapping

system, a satellite image was matched to existing map images from the point of view

of similarity of road and river networks, easily extracted from images by edge detec-

tion. Apart from theoretical models [Aig87], it was only in the beginning of the 90s

that researchers started to look at retrieval by similarity in large sets of heterogeneous

images with no specific model of their semantic contents. The prototype systems of Kato

[Kat92], followed by the availability of the QBIC commercial system using several types

of similarities [FSN+95], contributed to making this idea more and more popular.

Typically, a system for retrieval by similarity rest on three components:

• Extraction of features or image signatures from the images, and an efficient repre-

sentation and storage strategy for this precomputed data.
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• A set of similarity measures, each of which captures some perceptively meaningful

definition of similarity, and which should be efficiently computable when matching

an example with the whole database.

• A user interface for the choice of which definition of similarity should be applied for

retrieval, presentation of retrieved images, and for supporting relevance feedback.

The research in the area has made evident that:

• A large number of meaningful types of similarity can be defined. Only part of

these definitions are associated with efficient feature extraction mechanisms and

(dis)similarity measures.

• Since there are many definitions of similarity and the discriminating power of each

of the measures is likely to degrade significantly for large image databases, the user

interaction and the feature storage strategy components of the systems will play

an important role.

• Visual content based retrieval is best used when combined with the traditional

search, both at user interface and at the system level. The basic reason for this

is that content based retrieval is not seen as a replacement of parametric (SQL),

text, and keywords search. The key is to apply content based retrieval where

appropriate, which is typically where the use of text and keywords is suboptimal.

Examples of such applications are where visual appearance (e.g. color, texture,

motion) is the primary attribute as in stock photo/video, art, etc.

A concept of similarity is inherently present in stereo matching. In a stereo match-

ing setup, shots of a given static scene are captured from different viewpoints and the

resulting images differ slightly due to the effect of perspective projection. Features that

distinguish stereo matching from image matching in general are the following:

• The important differences in the stereo images result from the different viewpoints,

and not, for example from changes in the scene. We therefore seek a match between

two images, as opposed to a match between an image and an abstract model

(although the latter may be an important step in determining the former).

• Most of the significant changes will occur in the appearance of nearby objects

and in occlusions. Additional changes in both geometry and photometry can be

introduced in the film development and scanning steps, but can usually be avoided
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by careful processing. If the images are recorded at very different times, there may

by significant lighting effects.

• Modeling based on stereo matching generally requires that, ultimately, dense grids

of points are matched.

Ideally, we would like to find the correspondences (i.e., matched locations) of every

individual pixel in both images of a stereo pair. However, it is obvious that the informa-

tion content in the intensity value of a single pixel is too low for unambiguous matching.

In practice, therefore, coherent collections of pixels are matched.

Matching is complicated by several factors related to the geometry of the stereo

images. Some areas that are visible in one image may be occluded in the other, for

instance, and this can lead to incorrect matches. Periodic structures in the scene can

cause a stereo matcher to confuse a feature in one image with features from nearby parts

of the structure in the other image, especially if the image features generated by these

structures are close together compared with the disparity of the features. If there is a

large amount of relief in the scene (e.g., a vertical obstruction that projects above the

ground plane in an aerial view), the corresponding features may be reversed in their

positions in the two stereo images.

Similarity is also present in a video sequence where motion is the main characterizing

element. Here the frames differ slightly due to a change in the relative position of spatial

entities in the sequence or to a camera movement. Methods that compute an approximate

estimation of motion follow two approaches. One method takes into account temporal

changes of gray level primitives, from one frame to the following one, and computes a

dense flow usually at every pixel of the image. The other one is based on the extraction

of a set of sparse characteristic features of the objects, such as corners or salient points,

and their tracking in subsequent frames. Once interframe correspondence is established,

and constraints are formulated on object rigidity, motion components are obtained by

solving a set of non-linear equations [AN88].

Gudivada [GR95] has listed different possible types of similarity for retrieval: color

similarity, texture similarity, shape similarity, spatial similarity, etc. Some of these types

can be considered in all or only part of one image, can be considered independently of

scale or angle or not, depending on whether one is interested in the scene represented by

the image or in the image itself.

Representation of features of images - like color, texture, shape, motion, etc. -

is a fundamental problem in visual information retrieval. Image analysis and pattern
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recognition algorithms provide the means to extract numeric descriptors which give a

quantitative measure of these features. Computer vision enables object and motion

identification by comparing extracted patterns with predefined models. In this section we

discuss specific issues regarding the representation of the visual content in applications

involving color, texture, shape, stereo matching, motion tracking, and facial emotion

recognition. A more elaborate discussion is presented in Chapters 3, 4, 5, 6, and 7.

1.1.1 Color

Color is an important attribute of visual information. Not only does color add beauty to

objects but it also gives information about objects as well. Furthermore, color informa-

tion facilitates our daily life, e.g. in traffic when reading a stop light or in identification of

a favorite team in a sport event. Color is related to chromatic attributes of images. Hu-

man color perception is concerned with physical phenomena, neurophysiological effects,

and psychological behavior [Boy90].

Color distribution similarity has been one of the first choices for retrieval because if

one chooses a proper representation and measure, it can be reliable even in the pres-

ence of changes in lighting, view angle, and scale. However, the recorded color varies

considerably with the surface orientation, position and spectrum of the illuminant, the

viewpoint of the camera. Moreover, the human perception of color is an intricate problem

and many attempts have been made to capture color perceptual similarity.

From the physical point of view, color perception derives from the spectral energy

distribution of the electromagnetic radiation that strikes the retina. This is usually

expressed as a function of wavelength E(λ) in the visible range of 380-780nm. Spectral

energy distribution can be expressed as:

E(λ) = S(λ)R(λ) (1.1)

where S(λ) is the spectral distribution of the light source when light strikes the observed

object and R(λ) is the spectral reflectance characteristics of the object surface.

The response of the human visual system to differences in E(λ) originates from three

distinct types of photoreceptor cells in the retina, called cones, which have long, medium,

and short wavelength sensitivity Si(λ).

Spectral energy distribution of a colored light C(λ) produces signals which are de-
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scribed by a spectral response αi(C)

αi(C) =

∫ λmax

λmin

Si(λ)C(λ)dλ i = 1, 2, 3 (1.2)

These signals are transformed in order to produce output signals that provoke color

sensation in the brain.

On the other hand, from the psychological point of view, perception of a color is

related to several factors including color attributes (brightness, chromaticity, and satu-

ration), surrounding colors, color spatial organization, the observer’s memory, knowledge,

or experience.

Color indexing is one of the most prevalent retrieval methods in content based im-

age retrieval. Given a query image, the goal is to retrieve all the images whose color

compositions are similar to the color composition of the query image. Typically, the

color content is described using a histogram [SB91]. A color histogram is obtained by

discretizing image colors and counting how many pixels belong to each color. The fun-

damental elements of the color histogram based approach include the selection of a color

feature space [SL00a] together with the associated quantization scheme [SL00b], and the

histogram distance metric [SL01a].

There has been no consensus about which color feature space is most suitable for

color histogram based image retrieval. The problem is a result of the fact that there

does not exist a universally accepted color space, and color perception is significantly

subjective [WS82]. As a consequence, a large variety of color spaces is used in practice.

RGB representations are widely used [FSN+95][JV96], however, the RGB color rep-

resentation is a good choice only when there is no variation in recording or in the per-

ception because this representation was designed to match the input channel of the eye.

An image expressed in RGB makes most sense when it is recorded in frontal view under

standard conditions.

A significant improvement over the RGB can be obtained if the brightness infor-

mation is separated from the chrominance. A solution is to use the opponent color

representation which uses the opponent color axes R−G, 2B−R−G, R+G+B [SB91].

With this solution, the first two chromaticity axes can be down-sampled as humans

are more sensitive to brightness than they are to chroma. This color representation is

invariant to changes in illumination intensity and shadows.

The HSV representation is also often selected for its invariant properties [SO95].

The hue is invariant under the orientation of the object with respect to the illumination
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and camera direction and hence is more suited for object retrieval [GS99].

Other approaches use the Munsell or the L∗a∗b∗ color spaces [SL99a] because of

their relative perceptual uniformity. The L∗a∗b∗ representation is designed so that the

Euclidean distance between two colors models the human perception of color differences.

A wide variety of photometric color invariants for object retrieval were derived in [GS00]

from an analysis of Schafer’s model of object reflection.

Typically a histogram intersection criterion is used to compare color histograms.

Different approaches introduced sophisticated methods of comparing histograms which

more correspond to human judgment of color similarity [SH94][HSE+95]. Hafner, et

al. [HSE+95] suggest the usage of a quadratic form of distance measure which tries to

capture the perceptual similarity between any two colors. Observing the fact that the

color histograms lack information about how color is spatially distributed, Huang, et al.

[HRKM+97] introduced the color correlogram as a color feature for image retrieval. This

feature characterizes how the spatial correlation of pairs of color changes with distance

in an image.

In all of these works, most of the attention has been focused on the color models

as well as on finding better features. However, little or no consideration was paid for

investigating the noise models and finding better metrics. Even when different metrics

were presented as in [KCH95] and [KCB96], there was no discussion how and why these

metrics influence the retrieval results.

Color representations and color based retrieval are addressed in detail in Chapter 3.

1.1.2 Texture

Texture is a broad term used in pattern recognition to identify image patches (of any

size) that are characterized by differences in brightness. Generally speaking, a texture

has to do with repeated patterns in the image. Smoothed images are usually not con-

sidered as textured images. The size of the image patch, the number of distinguishable

gray levels primitives, and the spatial relationship between these primitives, are all in-

terrelated elements which characterize a texture [Bro66]. A scale of reference must be

decided in order to analyze a texture. It is conventional in the texture analysis lit-

erature to investigate texture at the pixel resolution scale; that is, the texture which

has significant variation at the pixel level of resolution, but which is homogeneous at a

level of resolution about an order of magnitude coarser. From the psychological point

of view, texture features that strike the human observer are granularity, directionality,
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and repetitiveness [TMY78][LP96].

Interest in visual texture was triggered by the phenomenon of texture discrimination

which occurs when a shape is defined purely by its texture, with no associated change

in color or brightness: color alone cannot distinguish between tigers and cheetahs! This

phenomenon gives clear justification for texture features to be used in content based

retrieval together with color and shape. Several systems have been developed to search

through image databases using a combination of texture, color, and shape attributes

(QBIC [FSN+95], Photobook [PPS96], Chabot [OS95], VisualSEEk [SC96], etc.). How-

ever, texture alone can be used for content based retrieval [MM98][RCZS99][SC94].

In practice, there are two different approaches in which texture is used as the main fea-

ture for content based retrieval. In the first approach, texture features are extracted from

the images and then are used for finding similar images in the database [MM98][GP94]

[SC94]. Texture queries can be formulated in a similar manner to color queries by se-

lecting examples of desired textures from a palette, or by supplying an example query

image. The system then retrieves images with texture measures most similar in value to

the query. The systems using this approach may use previously segmented textures as in

the applications with Brodatz database [PKL93], or they first have a segmentation stage

after which the extracted features in different regions are used as queries [MM98]. The

segmentation algorithm used in this case may be crucial for the content based retrieval.

In the second approach, texture is used for annotating the image [PM95]. Here, vision

based annotation assists the user in attaching descriptions to large sets of images. The

user is asked to label a piece of an image and a texture model can be used to propagate

this label to other visually similar regions.

The method of texture analysis chosen for feature extraction is critical to the success

of the texture classification. However, the metric used in comparing the feature vectors is

also clearly critical. Many methods have been proposed to extract texture features either

directly from the image statistics, e.g. co-occurrence matrix [HSD73], or from the spatial

frequency domain [VGDO85]. Ohanian and Dubes [OD92] studied the performance of

four types of features: Markov Random Fields parameters, Gabor multi-channel features,

fractal based features, and co-occurrence features. Comparative studies to evaluate the

performance of some texture features were made in [RDB93], [OPH96], [SL00d], and

[SL00c].

Recently multiscale approaches applied to the texture problem have received wide

attention. Wavelets have often been considered for their locality and compression effi-

ciency. Smith and Chang [SC94] used the statistics (mean and variance) extracted from
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the wavelet subbands as the texture representation. To explore the middle-band charac-

teristics, tree-structured wavelet transform was used by Chang and Kuo [CK93]. Ma and

Manjunath [MM95] evaluated the texture image annotation by various wavelet trans-

form representations, including the orthogonal and bi-orthogonal wavelet transforms,

the tree-structured wavelet transform, and the Gabor wavelet transform (GWT). They

found out that the Gabor transform was the best among the tested candidates, which

matched the human vision study results [BSI87].

A texture is usually represented through a numerical vector, holding measures of

texture features. Image processing operators, operating in either the space or frequency

domain, are used to derive measures of texture features [SL01b][TJ98]. A texture is

therefore modeled as a point in a suitable multidimensional feature space. Standard

mathematical distances like L2 or L1 are used to measure the distance between two

points in the texture feature space. Most of the previous studies have focused on the

features, but not on the metric, nor on modeling the similarity distribution.

Texture modeling and retrieval by texture similarity are discussed in detail in Chap-

ter 4.

1.1.3 Shape

Shape is a concept which is widely understood yet difficult to define formally. For human

beings perception of shape is a high-level concept whereas mathematical definitions tend

to describe shape with low-level attributes. Therefore, there exists no uniform theory

of shape. However, the word shape can be defined in some specific frameworks. For

object recognition purposes Marshall [Mar89] defined shape as a function of position

and direction of a simply connected curve within a two-dimensional field. Clearly, this

definition is not general, nor even sufficient for general pattern recognition.

In pattern recognition, the definition suggested by Marshall [Mar89] is suitable for

two dimensional image objects whose boundaries or pixels inside the boundaries can be

identified. It must be pointed out that this kind of definition requires that there are

some objects in the image and, in order to code or describe the shape, the objects must

be identified by segmentation. Therefore, either manual or automatic segmentation is

usually performed before shape description.

To humans, a few selected signs are not only sufficient for identification but also

determine the impression of a complete and real representation of the object. On the

other hand, computer vision research has provided many different solutions for shape
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representation and measurement of the difference of two shapes. For the purposes of

retrieval by shape similarity, representations are preferred such that the salient percep-

tual aspects of a shape are captured and the human notion of closeness between shapes

corresponds to the topological closeness in the representation space.

A proper definition of shape similarity calls for the distinctions between shape simi-

larity in images (similarity between actual geometrical shapes appearing in the images)

and shape similarity between the objects depicted by the images, i.e. similarity modulo

a number of geometrical transformations corresponding to changes in view angle, optical

parameters, and scale. In some cases, one wants to include even deformation of non-rigid

bodies. The first type of similarity has attracted research work only for calibrated image

databases of special types of objects, such as ceramic plates. Even, in this case, the re-

searchers have tried to define shape representations which are scale independent, resting

on curvature, angle statistics, and contour complexity. Systems such as QBIC [FSN+95]

use circularity, eccentricity, major axis orientation (not angle-independent), and alge-

braic moment. It should be noted that in some cases the user of a retrieval system will

want a definition of shape similarity which is dependent on view angle (for instance will

want to retrieve trapezoids with an horizontal basis and not the other trapezoids).

In the general case, a promising approach has been proposed by Sclaroff and Pent-

land [SP95] in which shapes are represented as canonical deformations of prototype

objects. In this approach, a “physical” model of the 2D-shape is built using a new form

of Galerkin’s interpolation method (finite-element discretization). The possible deforma-

tion modes are analyzed using the Karhunen-Loeve transform. This yields an ordered

list of deformation modes corresponding to rigid body modes (translation, rotation),

low-frequency non-rigid modes associated to global deformations, and higher-frequency

modes associated to localized deformations.

As for color and texture, the present schemes for shape similarity modeling are faced

with serious difficulties when images include several objects or background. A prelim-

inary segmentation as well as modeling of spatial relationships between shapes is then

necessary (are we interested in finding images where one region represent a shape similar

to a given prototype or to some spatial organization of several shapes?).

A promising approach toward shape segmentation is using active contours. Active

contours were first introduced by Kass, et al. [KWT88], and were termed snakes by the

nature of their movement. They are a sophisticated approach to contour extraction and

image interpretation. Active contours are defined as energy-minimizing splines under

the influence of internal and external forces. The internal forces of the active contour
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serve as a smoothness constraint designed to hold the active contour together (elasticity

forces) and to keep it from bending too much (bending forces). The external forces

guide the active contour towards image features such as high intensity gradients. The

optimal contour position is computed such that the total energy is minimized. The

contour can hence be viewed as a reasonable balance between geometrical smoothness

properties and local correspondence with the intensity function of the reference image.

The principal advantage of using an active contour approach is that the image data, the

initial estimate, the desired contour properties, and the knowledge-based constraints are

integrated into a single extraction process.

Perhaps the most popular method for shape description is the use of invariant mo-

ments [Hu62] which are invariant to affine transformations. When gross structural fea-

tures are characterized by the invariant moments, the global (region) properties provide

a firm common base for similarity measure between shapes silhouettes. In the cases

where there is no occlusion, the invariance to position, size, and orientation, and the

low dimensionality of the feature vector represent good reasons for using the invariant

moments in matching shapes.

Shape based retrieval issues are discussed in detail in Chapter 5.

1.1.4 Stereo

Because our eyes are placed some distance apart, they do not see the exact same image.

However, the two different impressions on the retina are united in one single image

representation in the brain. Although the eyes actually record two images, we have the

sensation of viewing the scene from one spot, as if we had only one eye in the center of the

forehead. The process is called stereopsis, and we talk of the stereoscopic or cyclopean

image. Recognition of this surprising fact is the starting point in stereoscopy.

More generally, stereopsis refers to the capability of determining the depth of a three-

dimensional point by observing the point on two perspective projection images taken

from different positions. The common area appearing in both images of the stereo pair

is usually 40% to 80% of the total image area.

Stereo imaging offers an intuitive way to reconstruct the lost depth information. It

relies on one fundamental finding: if two shots of a given scene are captured from two

different viewpoints, then the resulting images will differ slightly due to the effect of

perspective projection. Stereo matching implies finding correspondences between these

images. If the correspondences can be found accurately and the camera geometry is
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known, then a 3D model of the environment can be reconstructed [MP79][BF82]. Stated

more simply, stereo matching is the process of finding a pair of image points produced

by the same object point in a stereo arrangement. The distance that one of the points

has shifted with respect to the second one - relative to its local coordinate system - is

termed disparity and is the fundamental measure required to reconstruct a scene.

Several algorithms have been developed to compute the disparity between images,

e.g. the correlation based methods [LM90] or feature based methods [Gri85].

In correlation based stereo [LM90][MKA73][KO94] disparity is computed by fixing

a small window around a pixel in the left image, then measuring the Sum-of-Squared-

difference (SSD) error between intensities in that window and those in similar windows

placed at different locations in the right image. The placement that yields the lowest

error gives the disparity estimate. However, as Barnard and Fischler [BF87] pointed out,

“a problem with correlation (or SSD) matching is that the patch (window) size should

be large enough to include enough intensity variation for matching but small enough to

avoid the effects of projective distortion.” If the window is too small and does not cover

enough intensity variation, it gives poor disparity estimate, because the signal (intensity

variation) to noise ratio is low. If, on the other hand, the window is too large and covers

a region in which the depth of scene points (i.e., disparity) varies, then the position

of maximum correlation or minimum SSD may not represent correct matching due to

different projective distortions in the left and right images. For this reason, a window size

should be selected adaptively depending on local variations of intensity and disparity.

For doing this a statistical model of the disparity distribution within the window is

proposed by Kanade and Okutomi [KO94]. Another solution is given by Fusiello, et al.

[FRT97]. They implemented an algorithm that is the extension of the simple SSD match

in the sense that nine windows were used instead of one. The reference and matching

image points were placed at pre-defined locations within the windows in order to find

the best area-correlation amongst them.

In feature based stereo [Gri85][Mat89] semantic features (with known physical prop-

erties and/or spatial geometry) or intensity anomaly features (isolated anomalous inten-

sity patterns not necessarily having any physical significance) are the basic units that

are matched. Semantic features of the generic types include occlusion edges, vertices

of linear structures, and prominent surface markings; domain specific semantic features

may include such features as the corner or peak of a building, or a road surface marking.

Intensity anomaly features include zero crossings or salient points [STL+00]. Methods

used for feature matching often include symbolic classification techniques, as well as
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correlation.

Cox, et al. [CHR96] presented a stereo algorithm that performs matching on the

individual pixel intensity, instead of using an adaptive window as in the correlation based

methods. Their algorithm optimizes a maximum likelihood cost function which assumes

that corresponding features in the left and right images are normally distributed about a

common true value. However, the authors [CHR96] noticed that the normal distribution

assumption used to compare corresponding intensity values is violated for some of their

test sets and therefore they decided to alter the stereo pair so that the noise distribution

would be closer to a Gaussian.

Most of the efforts mentioned above were concentrated on finding a better algorithm

or feature that can provide a more accurate and dense disparity map. Some of them

use a simple SSD (L2) or SAD (L1) metric in matching correspondences or make as-

sumptions about the corresponding features in the left and right stereo images. Recent

research by Bhat and Nayar [BN98] concluded that the SSD used in a stereo matching

procedure is sensitive to outliers and therefore robust M-estimators should be used for

stereo matching. However, the authors [BN98] did not consider metrics based on simi-

larity distributions. They considered ordinal metrics, where an ordinal metric is based

on relative ordering of intensity values in windows - rank permutations.

1.1.5 Motion

Motion is the main characterizing element in a sequence of frames. It is directly related

to a change in the relative position of spatial entities or to a camera movement. The mea-

surement of object or camera motion from video sequences is an important component in

many applications. For example, in computer vision systems it enables the identification

and tracking of the objects that make up a scene; while in video data compression it

provides a means of reducing redundancy - knowing the motion of an object allows its

position in successive frames to be predicted, removing the need to retransmit identical

frame data and leading to a reduction in the bit rate required to transmit the video.

Other applications include the generation of high resolution and panoramic images from

video and the automated building of virtual reality environments. In the case of video

sequences the differences in two images result mainly from the changes in scene and not

from the different viewpoint positions as in stereo matching.

An important issue is to track moving feature points on human faces in order to

analyze human facial movement. The motion parameters of these feature points can be



14 CHAPTER 1. INTRODUCTION

used to reconstruct the original motion (e.g., human expression synthesis [TH94]) or for

further analysis (e.g., computerized lipreading [BMHW93] and expression recognition

[BY95, CSGH03]).

There are two classical methods for tracking feature points, namely optical flow and

block correlation (template matching). The former method tries to find the correspon-

dence between two images by calculating the velocity (displacement vector) at which a

point in the first image has moved in the second image [BFB94]. The latter tracks a

specific point by finding the maximum similarity between two pixel patterns of images

containing this point [TKC+94]. This approach is very similar to the correlation based

approach in stereo matching.

Stereo matching and motion tracking issues are addressed in detail in Chapter 6.

1.1.6 Facial expression

Human face-to-face communication is an ideal model for designing a multi-modal/media

human-computer interface. The terms “face-to-face” and “interface” indicate that the

face plays an essential role in interpersonal communication. The face is used to iden-

tify other people, to interpret what has been said by the means of lipreading, and to

understand someone’s emotional state and intentions on the basis of the shown facial

expression. Personality, attractiveness, age, and gender can also be seen from some-

one’s face. Considerable research in social psychology has also shown that facial expres-

sions help coordinate conversation [BAN94, SAR76] and have considerably more effect

on whether a listener feels liked or disliked than the speaker’s spoken words [Meh68].

Mehrabian [Meh68] indicated that the verbal part (i.e., spoken words) of a message con-

tributes only for 7 percent to the effect of the message as a whole, the vocal part (e.g.,

voice intonation) contributes for 38 percent, while facial expression of the speaker con-

tributes for 55 percent to the effect of the spoken message. This implies that the facial

expressions form the major modality in human communication.

Recent advances in image analysis and pattern recognition open up the possibility

of automatic detection and classification of emotional and conversational facial signals.

Automatic facial expression analysis could bring facial expressions into man-machine

interaction as a new modality and could make the interaction tighter and more efficient.

Such a system could also make classification of facial expressions widely accessible as a

tool for research in behavioral science and medicine.

Ekman and Friesen [EF78] developed the Facial Action Coding System (FACS) to
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code facial expressions where movements on the face are described by a set of action units

(AUs) (each AU has some related muscular basis). This system has been developed to

facilitate objective measurement of facial activity for behavioral science investigations

of the face. Most of the studies on automated expression analysis perform an emotional

classification. The most commonly used study on emotional classification of facial ex-

pressions is the cross-cultural study on existence of “universal categories of emotional

expressions.” Ekman [Ekm94] defined six such categories, referred to as the basic emo-

tions: happiness, sadness, surprise, fear, anger, and disgust. He described each basic

emotion in terms of a facial expression that uniquely characterizes that emotion. In the

past years, many questions arose around this study. Are the basic emotional expressions

indeed universal [Ekm82, Ekm94], or are they merely a stressing of the verbal com-

munication and have no relation with an actual emotional state [Fri91, Rus94]? Also,

it is not at all certain that each facial expression that is displayed on the face can be

classified under the six basic emotion categories. Nevertheless, most of the studies on

vision-based facial expression analysis rely on Ekman’s emotional characterization of

facial expressions.

An important step in facial expression analysis is to classify (interpret, identify) the

facial display conveyed by the face. Therefore, the design of the classifiers used for

emotion recognition is of crucial importance. There are basically, two types of settings

for emotion classification from video sequences: dynamic and static classification.

The ’static’ classifiers classify a frame in the video to one of the facial expression cat-

egories based on the tracking results of that frame. The most commonly used classifiers

for this approach are the Bayesian network classifiers [SCG+02, CSG+02]. Typically,

Bayesian network classifiers are learned with a fixed structure – the paradigmatic exam-

ple is the Naive Bayes classifier. More flexible learning methods allow Bayesian network

classifiers to be selected from a small subset of possible structures – for example, the

Tree-Augmented-Naive-Bayes structures [FGG97]. After a structure is selected, the pa-

rameters of the classifier are usually learned using maximum likelihood estimation.

Dynamic classifiers take into account the temporal pattern in displaying facial ex-

pression. Hidden Markov model (HMM) based classifiers are commonly used in this

case [OO97a, OPB97, Lie98]. One possibility is to use a multi-level HMM classifier

[CSGH03]. In this case, combining the temporal information allows not only to perform

the classification of a video segment to the corresponding facial expression, as in the pre-

vious works on HMM based classifiers, but also to automatically segment an arbitrary

long video sequence to the different expressions segments without resorting to heuristic



16 CHAPTER 1. INTRODUCTION

methods of segmentation.

An important aspect is that while the static classifiers are easier to train and imple-

ment, the dynamic classifiers require more training samples and many more parameters

to learn.

Details on facial expression recognition studies and experiments are given in Chap-

ter 7.

1.1.7 Summary

In conclusion, several major problems need to be addressed for the visual similarity

techniques:

• Study of the distribution of measures for various feature spaces on large real-world

sets of image. In particular, how well is the perceptive similarity order preserved

by the measure when the number of images/videos grows?

• Study of ranking visual items that correspond to human perception.

• Definition of methods for the segmentation of images in homogeneous regions for

various feature spaces, and definition of models of this spatial organization which

could be robustly combined with the similarity of the local features.

• Detection of salient features to a type of images or objects, so that to free the user

from specifying a particular set of features in query process.

• Combination of multiple visual features in image query and search.

• Developing efficient indexing schemes based on image similarity features for man-

aging large databases. It has been shown that traditional database indexing tech-

niques such as using R-trees fail in the context of content based image search.

Therefore, ideas from statistical clustering, multi-dimensional indexing, and di-

mensionality reduction are extremely useful in this area.

Apart from these issues, extraction and matching of higher (semantic) level im-

age/video attributes (such as recognition of object, human faces, and actions) are perhaps

the most challenging tasks. Only when the features extracted at both these levels are

combined, can similarity-based indexes be built.

In addition, to the success of the field, formalization of the whole paradigm of visual

similarity is essential. Without this formalism it will be hard to develop sufficient reliable
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and mission critical applications that are easy to program and evaluate. Some early

applications may be implemented without such a rigorous formalism, but the progress

in the field will require full understanding of the basic requirements in visual similarity.

1.2 Evaluation of Computer Vision Algorithms

Most of the research in the computer vision and pattern recognition community is fo-

cussed on developing solutions to vision problems. With three decades of research behind

current efforts and the availability of powerful and inexpensive computers, there is a com-

mon belief that computer vision is poised to deliver reliable solutions. Unfortunately,

for some applications there are no methods available to test whether computer vision

algorithms can live up to their claims. Nor is there any way to measure performance

among algorithms, or to reliably determine the state-of-the-art of solutions to a particular

problem.

How do you evaluate the work of others when you do not have their programs? What

does it mean when a reimplementation does not work? Who failed, the algorithm or the

implementation? How do you compare results? These problems are nicely presented

by Price in his article “Anything You Can Do, I Can Do Better (No You Can’t)...”

[Pri86]: “A graduate student determines that an operator, called the Homer Operator

(HO for short), can be used to determine stereo disparities. She writes her thesis and

publishes several papers with all the details that seem relevant ... A professor tells

a new graduate student to reimplement the algorithm described in the original thesis

and papers. Disparities which seem reasonable, are generated by the program, and the

student proceeds with research in motion, forgetting stereo. Eventually, another student

tries the programs on completely new data and the programs fail to produce meaningful

results. This student, being adept of symbolic computation, discovers that the original

algorithm works properly only under extremely specific conditions, which were never

explicitly discussed, but which often occur in practice.”

The evaluation work can be divided in three basic categories. As is the risk with

any classification, the categories will not necessarily be clean divisions. Evaluation work

could fit into more than one category, or not neatly fit into any category.

The first category is evaluations that are independently administered. In the proto-

typical independent evaluation, one group collects a set of images, designs the evaluation

protocol, provides images to the users, and evaluates the test results. This method allows

for a high degree of standardization in the evaluation, since all algorithms are tested on
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the same images and scored by the same method. Thus, independent evaluations usu-

ally allow for a direct comparison between competing approaches to a problem. The

competing approaches are usually state-of-the-art algorithms and the individual com-

petitors are often the original developers of the algorithms. Independent evaluation by a

non-competitor gives a greater sense of impartiality and objectivity to the results. The

major drawback to this form of evaluation is the level of ongoing effort required by the

group administering the evaluation. Ideally, the evaluation mechanism needs to evolve

and be refined over time.

The second category is evaluations of a set of classification algorithms by one group.

The group wanting to do the evaluation will often not be able to get access to original

implementations of all of the algorithms of interest, and so will have to implement some

of the algorithms based on information in the literature. This introduces the possibility

that the version of the algorithm evaluated will not be identical to that used by the

original developers of the algorithm. However, implementation and evaluation of a set

algorithms by one group can at least establish performance for baseline algorithms.

An important theoretical aspect of the first two categories is that ground truth is

not fuzzy and can be determined accurately. Classification problems often exhibit this

property. For example, the identity of a person in a face image is not fuzzy, and the

particular character that is written in a certain location is known. As long as provision

for recording ground truth is made at data collection time, it should be possible to get

reliable and accurate ground truth. However, in practice things are sometimes not so

simple.

The third category is problems where the ground truth is not self evident and a

major component of the evaluation process is to develop a method of obtaining the

ground truth.

Our effort fits best in the second category. We implemented several sophisticated

algorithms from the computer vision literature and evaluated their results in the presence

of ground truth [SLH98][SLH00][LSH00]. For some of the algorithms we used the original

source code (when it was available) and we modified only the part of the code where the

information given by the ground truth was used. For our image retrieval experiments

we considered the applications of printer-scanner copy location and object recognition

by color invariance. In the printer-scanner application, an image was printed to paper

and then scanned back into the computer. This task involved noise due to the dithering

patterns of the printer and scanner noise. In object recognition, multiple pictures were

taken of a single object at different orientations. In these applications, the correct match
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(ground truth) for an image was known at the moment of the creation of the database.

In our texture classification experiments the ground truth was implicitly given from

the procedure the texture database was created. We considered the Brodatz texture

database [Bro66] and random samples from the original textures were extracted and

stored in the database. When presenting a texture sample as query, the goal was to

retrieve as many as possible samples from the same original texture. Also, in the case

of shape retrieval the ground truth was obtained from the procedure the database was

created. We used the Coil-20 database [MN95] which consists of 1,440 images of common

household objects. Each object was placed on a turntable and photographed every 5◦

for a total of 72 views per object. In stereo matching and motion tracking, the ground

truth is typically generated manually. A set of reference points are defined in the images

and then a person finds the correspondences for the stereo pair or video sequence. In

our experiments the ground truth was provided by the laboratories where the images

were taken. For the facial expression recognition experiments we used two databases

of subjects that were instructed to display facial expressions corresponding to different

emotions. In this case, the ground truth was consisted of the known labeled emotions.

As noted before, the presence of ground truth is very important in the evaluation

and comparison of different algorithms. Additionally, the ground truth may also provide

some extra information for improving the results of an algorithm. How can one use the

information provided by the ground truth? This is exactly one of the questions we try to

answer in this book. Typically, in a computer vision application involving similarity, fea-

ture vectors are extracted from the images and a comparison metric is used to compare

these feature vectors. The ground truth contains the definition of similarity for that par-

ticular application. In an ideal case, the similar images (or features) would be identical

and then the retrieval or matching would be an easy problem to solve. However, in real

cases, the similar images are not identical and therefore when comparing these images

a certain distortion between them, called similarity noise, will be present. If one can

accurately model the similarity noise distribution, then the retrieval or matching results

can be significantly improved by using a suitable metric. The link between the similarity

noise distribution and the comparison metric is given by the maximum likelihood the-

ory. For example, according to the maximum likelihood theory, if the similarity noise

distribution is Gaussian then the corresponding comparison metric is L2. In summary,

having the ground truth in an application involving similarity, our goal is to find the

probability density function which maximizes the similarity probability. Furthermore,

applying the maximum likelihood procedure we determine the corresponding metric and
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use it in the experiments.

There were some efforts in the literature to model the noise that appears in the

images. Boie and Cox [BC92] model the noise that appears in the images due to the

cameras used to record the images. Machine vision cameras rely on the correspondence

between the optical intensity distribution that is imaged on a sensor surface and the

photoionization distribution produced in the sensor. Photoelectric effect devices were

used, but the majority of modern cameras are based on internal ionization sensors such

as silicon target vidicons and charge coupled devices (CCD’s). The conversion of optical

photons to electrical signal charge is a Poisson process in all cases, and, hence, introduces

a probabilistic measurement error due to the statistics of the process. Second, these

sensors are capacitive sources of signal charge and, hence, are limited by two important

electronic noise sources. Third, the serial method of sensor “readout” produces direction-

dependent correlations in the electronic noises. Summarizing, camera noise is comprised

of stationary direction-dependent electronic noises combined with fluctuations due to

signal statistics. These fluctuations enter as a multiplicative noise and are non-stationary

and vary over the scene. The authors [BC92] show that a substantial simplification

appears if the noise is modeled as Gaussian distributed and stationary.

This work is complementary to ours. They try to model the imaging noise. We try

to model the noise between two images which are different due to varying orientation,

random sampling, motion, or printer noise.

1.3 Overview of the Book

We introduce and expose a maximum likelihood framework to be used in computer vision

applications when ground truth is available. Chapter 2 describes the mathematical sup-

port for the maximum likelihood approach, together with the setup of our experiments.

In Chapter 3 we apply the theoretical results from Chapter 2 to determine the influ-

ence of the similarity noise model on the accuracy of retrieval methods in color image

databases. Maximum likelihood framework in texture classification and retrieval is ad-

dressed in Chapter 4. Shape-based retrieval issues are presented in Chapter 5. In Chap-

ter 6 we study the similarity noise model to be chosen in stereo matching applications.

The same approach is then applied on a video sequence. Finally, a classification-based

framework for facial expression recognition is discussed in detail in Chapter 7.

Chapter 2 formulates a framework for a maximum likelihood approach in computer

vision applications. It begins by introducing the robust estimation procedure together
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with some historical examples where this procedure was applied (Section 2.1). In Sec-

tion 2.2, we provide basic information regarding the statistical distributions that are

used across the book. We consider the Gaussian distribution (Section 2.2.1), the expo-

nential and the double exponential distributions (Section 2.2.2), and finally the Cauchy

distribution (Section 2.2.3). Further, we introduce the basic concepts from robust statis-

tics including the outliers generation mechanisms (Section 2.3) and the classical robust

estimation procedure (Section 2.4) with an emphasis on Hampel’s approach [HRRS86]

based on influence functions. The maximum likelihood relation with other approaches

is investigated in Section 2.5. We draw on the ideas of robust estimation and influence

functions in formulating problems in which similarity is provided by a ground truth.

Furthermore, in Section 2.6 we illustrate our approach based on maximum likelihood

which consists of finding the best metric to be used in an application when the ground

truth is provided. The experimental setup is presented in Section 2.7.

Color based retrieval issues are discussed in Chapter 3. The chapter starts with a his-

torical introduction regarding the first color experiments, including the famous debate

between Newton and Goethe about the physical and perceptual color analysis (Sec-

tion 3.1). Physical aspects of light and color formation are presented in Section 3.2.

Color models are discussed in Section 3.3, with details regarding two of the most com-

monly used color models in content based retrieval (RGB and HSV ) and a color model

introduced by Gevers and Smeulders [GS99] suitable for object retrieval and recogni-

tion applications. Color based retrieval principles and applications are investigated in

Section 3.4. Color histograms and the metrics used in color indexing are presented in Sec-

tion 3.4.1. We examine two applications from computer vision which involve distortions

derived from changes in viewpoint and the process of printing and scanning. The first

application was finding copies of images which had been printed and then scanned. For

this application we used the Corel stock photo database and a color histogram method

for finding the copies (Section 3.5). The second application (Section 3.6) dealt with

finding all images of an object in a database where the images were taken from different

viewpoints. Both the ground truth and the algorithm came from the work by Gev-

ers and Smeulders [GS99]. Furthermore, for both applications, we implemented Hafner’s

quadratic perceptual similarity measure [HSE+95] and Huang’s correlogram [HRKM+97]

as benchmarks (introduced in Section 3.4.1).

Texture classification and retrieval from a maximum likelihood perspective are pre-

sented in Chapter 4. Section 4.1 suggests some of the possible definitions that can be

applied for texture. It emphasizes the fact that texture should always be defined rela-
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tive to a scale of reference. Human perception of texture is investigated in Section 4.2.

It presents the pioneering work of Julesz [JGSF73, Jul75] regarding the texture per-

ception in the context of texture discrimination. We also present some psychophysical

experiments that suggest the brain performs a multi-channel, frequency, and orientation

analysis of the visual image formed on the retina. The approaches in which texture is

used as a main feature for content based retrieval are presented in Section 4.3. Addi-

tionally, different texture features presented in the literature are discussed. We focus

on texture distribution models (Section 4.3.1) and on multi-scale texture representa-

tions using Gabor and Wavelet texture models (Section 4.3.2). In the first experiments

(Section 4.4) nine classes of texture taken from the Brodatz’s album [Bro66] were used.

There were random samples extracted from each original texture (class) and the classi-

fication of a sample was based on comparing the sample distribution of feature values

to several pre-defined model distributions of feature values with known true-class labels.

The samples were assigned the label of the model that was found to be more similar. In

the last experiments (Section 4.5) all the 112 Brodatz textures were used in a texture

retrieval application. Random samples were extracted from the original textures and the

goal was to retrieve as many samples as possible from the same original texture as the

query sample.

Shape based retrieval issues are addressed in Chapter 5. Section 5.1 covers the ba-

sic aspects regarding shape characterization and analysis. Research in shape analysis

have been motivated by studies on human perception of visual form. These are briefly

presented in Section 5.2. In this chapter the problem of image retrieval using shape is ap-

proached by active contours for shape segmentation (Section 5.3) and invariant moments

for shape measure (Section 5.4). We discuss the traditional active contours and mention

their fundamental limitations in Section 5.3.1. Based on the generalized force balance

equations (Section 5.3.2) we present a method introduced by Xu and Prince [XP97]

which uses the gradient vector flow (Section 5.3.3). In our experiments (Section 5.5) we

compare the traditional active contour results with the ones obtained with the method

proposed by Xu and Prince [XP97] using the COIL-20 database [MN95].

Stereo matching and motion tracking applications are presented in Chapter 6. Early

stereo attempts including the experiments conducted by Wheatstone and Brewster are

discussed in Section 6.1. Stereo matching basic principles and problems are presented

in Section 6.2. Different stereo matching algorithms from the literature are reviewed in

Section 6.2.1. The stereo matching algorithms that were used in the experiments are pre-

sented in Section 6.3. We implemented a template matching algorithm (Section 6.3.1), an
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adaptive, multi-window algorithm by Fusiello, et al. [FRT97] (Section 6.3.2), and a max-

imum likelihood method using pixel intensities by Cox, et al. [CHR96] (Section 6.3.3). In

our experiments (Section 6.4), we used international stereo data sets from Carnegie Mel-

lon University (Castle and Tower), University of Illinois at Urbana-Champaign (Robots),

and University of Stuttgart (Flat and Suburb). For the stereo pairs and the algorithms

in our experiments, the maximum likelihood approach allowed us to consistently im-

prove the accuracy of finding the correspondences in the stereo images. We also discuss

about the two possible approaches of applying maximum likelihood toward improving

the accuracy of matching algorithms in stereo matching. The first method recommends

altering the images so that the measured noise distribution is closer to the Gaussian and

then using the SSD. The second method proposed by us is to find a metric which has a

distribution which is close to the real noise distribution. Motion tracking issues and ex-

periments are presented in Section 6.5. We implemented a template matching algorithm

to track pixels on a moving object in a video sequence. The idea is to trace moving facial

expressions such as lips and eyes which are moving through the video sequence. In our

experiments we also examine adjacent and nonadjacent frames from the video sequence.

Facial expression recognition application is presented in Chapter 7. We first discuss

the importance of facial expressions in everyday interactions with others and the desire

to augment the computer with the ability to interact naturally with the human, similar

to the way human-human interactions take place (Section 7.1). Further, we present the

emotion recognition studies (Section 7.2) with an emphasis on the studies on human

facial expressions performed by Ekman and his colleagues [Ekm82, Ekm94]. We intro-

duce the Facial Action Coding System and we present the six “universal categories of

emotional expressions” referred to as the basic emotions: happiness, sadness, surprise,

fear, anger, and disgust. We also present the facial expression recognition state-of-the-

art (Section 7.2.2). In Section 7.3 we briefly describe a real-time face tracking system

developed at University of Illinois at Urbana-Champaign and the features extracted for

classification of facial expressions. The design of the classifiers is of crucial importance.

We present two types of settings: dynamic and static classification. Section 7.4 describes

the static setting in which Bayesian network classifiers are used for classifying frames

in the video sequence to the different expressions. We focus on distribution assump-

tions and feature dependency structures. In particular we use Naive Bayes classifiers

(Section 7.4.1) and change the distribution from Gaussian to Cauchy. Observing that

the features independence assumption used by the Naive Bayes classifiers may be in-

appropriate we use Gaussian Tree-Augmented Naive Bayes (TAN) classifiers to learn
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the dependencies among different facial motion features (Section 7.4.2). In Section 7.5

we describe HMM based classifiers for facial expression recognition from presegmented

video sequences (Section 7.5.1) and introduce the multi-level HMM classifier for both

recognizing facial expression sequences (Section 7.5.2) and automatically segmenting the

video sequence (Section 7.5.3). In our experiments (Section 7.6), we explore both person-

dependent and person-independent recognition of expressions and compare the different

methods using two databases. The first is a database of subjects displaying facial ex-

pressions collected by Chen [Che00]. The second is the Cohn-Kanade database [KCT00].



Chapter 2

Maximum Likelihood Framework

This chapter formulates a framework for a maximum likelihood approach in computer vi-

sion applications. It begins by introducing basic concepts from robust statistics including

the outliers generation mechanisms. Further, we present the classical robust estimation

procedure with an emphasis on Hampel’s approach [HRRS86] based on influence func-

tions. The maximum likelihood relation with other approaches is also investigated. We

draw on the ideas of robust estimation and influence functions in formulating problems

in which similarity is provided by a ground truth. Our goal is to find the probability

density function which maximizes the similarity probability. Furthermore, we illustrate

our approach based on maximum likelihood which consists of finding the best metric to

be used in an application when the ground truth is provided.

2.1 Introduction

The term ”robustness” does not lend itself to a clear-cut statistical definition. It seems

to have been introduced by G.E.P. Box in 1953 [Box53] to cover a rather vague concept

described in the following way by Kendall and Buckland [KB81]. Their dictionary states:

Robustness. Many test procedures involving probability levels depend

for their exactitude on assumptions concerning the generating mechanism,

e.g. that the parent variation is Normal (Gaussian). If the inferences are

little affected by departure from those assumptions, e.g. if the significance

points of a test vary little if the population departs quite substantially from

the Normality, the test on the inferences is said to be robust. In a rather

25
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more general sense, a statistical procedure is described as robust if it is not

very sensitive to departure from the assumptions on which it depends.

This quotation clearly associates robustness with applicability of the various statisti-

cal procedures. The two complementary questions that come to mind can be expressed

as follows: first, how should we design a statistical procedure to be robust or, in other

terms, to remain reliable in spite of possible uncertainty in the available information?

Second, how wide is the field of application of a given statistical procedure or, equiv-

alently, is it robust against some small departures from the assumptions? The word

”small” can have two different interpretations, both important: either fractionally small

departures for all data points, or else fractionally large departures for a small number

of data points. It is the latter interpretation, leading to the notion of outliers, that is

generally the most challenging for statistical procedures.

With the appearance of involved analytical as well as computational facilities, the field

of robustness has received increased attention in the past fifty years. Mainly, progresses

in non-linear mathematics and in iterative algorithms have permitted new developments.

However, robustness has roots in many old studies. For instance, a mode can be looked

upon as a robust estimate of location, as it also was some twenty four centuries ago.

Thucydides [Thu72] relates:

During the same winter (428 B.C.) the Plataeans... and the Athenians, who

were besieged with them, planned to leave the city and climb over the enemy’s

walls in the hope that they might be able to force a passage...

They made ladders equal in height to the enemy’s wall, getting the measure

by counting the layers of bricks at a point where the enemy’s wall on the

side facing Plataea happened to have been whitewashed. Many counted the

layers at the same time, and while some where sure to make a mistake, the

majority were likely to hit the true count, especially since they counted time

and again, and, besides, were at no great distance, and the part of the wall

they wished to see was easily visible. In this way, the measurement of the

ladders was reckoned from the thickness of the bricks.

Similar behavior can be met when fitting a line to data in the presence of outliers as

is illustrated in Figure 2.1. One can see that the average effect of all points (least-squares

fit) (Figure 2.1(a)) is skewed in the direction of the outliers (the points on the right).

The fit recovered in Figure 2.1(b) is robust in the sense that it rejects the outliers and

recovers a ”better” fit to the majority of data.
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y

Are these points special ?

x
(a) Least-squares fit: average opinion of all points.

What story do these
points tell ?

y

x
(b) Highly robust fit: clear opinion of majority of points.

Figure 2.1: Which fit do we want? When all points are used in estimation, using a
least-square fit as in (a), the line fitting the data is skewed in the direction of the outliers
(the points on the right). The points from above (marked as ”special”) suggest that a
”better” fit can be recovered so that the outliers are rejected (b).

2.2 Statistical Distributions

The aim of this section is to provide the basic information regarding the statistical

distributions that are going to be used later in this chapter. We consider here the

Gaussian distribution, the exponential and the double exponential distributions, and

finally the Cauchy distribution. We present their probability distributions together with

the corresponding cumulative distribution functions, their characteristic functions, and
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where applicable the way their moments are calculated. We also show the relation

between the Gaussian distribution and the Cauchy distribution.

2.2.1 Gaussian Distribution

The Gaussian probability distribution with mean µ and standard deviation σ is a nor-

malized Gaussian function of the form:

P (x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
(2.1)

where P (x)dx gives the probability that a variate with a Gaussian distribution takes on

a value in the range [x, x+ dx]. Statisticians commonly call this distribution the normal

distribution and, because of its curved flaring shape, social scientists refer to it as the

”bell curve.” The distribution P (x) is properly normalized for x ∈ (−∞,∞) since∫ ∞

−∞
P (x)dx = 1. (2.2)

The cumulative distribution function, which gives the probability that a variate will

assume a value ≤ x, is then the integral of the Gaussian function,

D(x) =

∫ x

−∞
P (x)dx

=
1

σ
√

2π

∫ x

−∞
exp

[
−(x′ − µ)2

2σ2

]
dx′

=
1

2

[
1 + erf

(
x− µ

σ
√

2

)]
(2.3)

where erf(·) is the so-called error function.

The Gaussian distribution and its cumulative distribution function are plotted in

Figure 2.2.

Gaussian distributions have many convenient properties, hence, random variates with

unknown distributions are often assumed to be Gaussian, especially in physics and as-

tronomy. Although this can be a dangerous assumption, it is often a good approximation

due to a surprising result known as the central limit theorem (see the boxed text). This

theorem states that the mean of any set of variates with any distribution having a finite

mean and variance approaches the Gaussian distribution. Many common attributes such

as test scores, height, etc., follow roughly Gaussian distributions, with few members at
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P(x)
D(x)

Figure 2.2: The Gaussian probability distribution and its cumulative distribution func-
tion

the high and low ends and many in the middle.

Because they occur so frequently, there is an unfortunate tendency to invoke Gaus-

sian distributions in situations where they may not be applicable. As Lippmann

stated [WR67]: ”Everybody believes in the exponential law of errors: the experimenters,

because they think it can be proved by mathematics; and the mathematicians, because

they believe it has been established by observation.”

Making the transformation

z ≡ x− µ

σ
, (2.14)

so that dz = dx/σ, gives a variate with variance σ2 = 1 and mean µ = 0, transforming

P (x)dx into

P (z)dz =
1√
2π
e−z2/2dz (2.15)

The distribution having this probability function is known as a standard normal distri-

bution, and z defined in this way is known as a z-score.

The normal distribution function Φ(z) gives the probability that a standard normal

variate assumes a value in the interval [0, z],

Φ(z) ≡ 1√
2π

∫ z

0

e−x2/2dx =
1

2
erf

(
z√
2

)
(2.16)

where erf(·) is the error function. Neither Φ(z) nor erf(·) can be expressed in terms of

finite additions, subtractions, multiplications, and root extractions, and so both must

be either computed numerically or otherwise approximated. The value of a for which

P (x) falls within the interval [−a, a] with a given probability P is called the P confidence

interval.

The Gaussian distribution is also a special case of the Chi-squared distribution, since
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Central Limit Theorem

Let x1, x2, . . . , xN be a set of N independent random variates and each xi have an
arbitrary probability distribution P (x1, x2, . . . , xN) with mean µi and a finite
variance σ2

i . Then the normal form variate

Xnorm ≡
∑N

i=1(xi − µi)√∑N
i=1 σ

2
i

(2.4)

has a limiting cumulative distribution function which approaches a normal
distribution. Under additional conditions on the distribution of the addend, the
probability density itself is also normal with mean µ = 0 and variance σ2 = 1. If
conversion to normal form is not performed, then the variate X ≡ 1

N

∑N
i=1 xi is

normally distributed with µX = µx and σX = σ/
√
N .

Consider the inverse Fourier transform of PX(f):

F−1[PX(f)] ≡
∫ ∞

−∞
e2πifXP (X)dX =

∫ ∞

−∞

∞∑
n=0

(2πifX)n

n!
P (X)dX

=
∞∑

n=0

(2πif)n

n!

∫ ∞

−∞
XnP (X)dX =

∞∑
n=0

(2πif)n

n!
〈Xn〉 (2.5)

Now write

〈Xn〉 = 〈N−n(x1+ · · ·+xN )n〉 =
∫ ∞

−∞
N−n(x1+ · · ·+xN )nP (x1) · · ·P (xN )dx1 · · · dxN , (2.6)

hence, we have

F−1[PX(f)] =
∞∑

n=0

(2πif)n

n!

∫ ∞

−∞
N−n(x1 + · · ·+ xN )nP (x1) · · ·P (xN )dx1 · · · dxN

=
∞∑

n=0

∫ ∞

−∞

[
2πif(x1 + · · ·+ xN )

N

]n 1
n!

P (x1) · · ·P (xN )dx1 · · · dxN

=
∫ ∞

−∞
e2πif(x1+···+xN )/NP (x1) · · ·P (xN )dx1 · · · dxN

=
[∫ ∞

−∞
e2πifx/NP (x)dx

]N

=

{∫ ∞

−∞

[
1 +

(
2πif

N

)
x +

1
2

(
2πif

N

)2

x2 + · · ·

]
P (x)dx

}N
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=
[∫ ∞

−∞
P (x)dx +

2πif

N

∫ ∞

−∞
xP (x)dx− (2πf)2

2N2

∫ ∞

−∞
x2P (x)dx +O(N−3)

]N

=
[
1 +

2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉+O(N−3)

]N

= exp
{

N ln
[
1 +

2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉+O(N−3)

]}
(2.7)

Now expand

ln(1 + x) = x− 1
2
x2 +

1
3
x3 + · · · , (2.8)

hence,

F−1[PX(f)] ≈ exp
{

N

[
2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉+

1
2

(2πf)2

N2
〈x〉2 +O(N−3)

]}
= exp

[
2πif〈x〉 − (2πf)2(〈x2〉 − 〈x〉2)

2N
+O(N−2)

]
≈ exp

[
2πifµx −

(2πf)2σ2
x

2N

]
(2.9)

since µx = 〈x〉, and σ2
x = 〈x2〉 − 〈x〉2.

Taking the Fourier transform,

PX ≡
∫ ∞

−∞
e−2πifxF−1[PX(f)]df =

∫ ∞

−∞
e2πif(µx−x)−(2πf)2σ2

x/(2N)df (2.10)

But, from Abramowitz and Stegun [AS72],∫ ∞

−∞
eiaf−bf2

df =
√

π

b
e−a2/(4b) (2.11)

Therefore, if a ≡ 2π(µx − x) and b ≡ (2πσx)
2/(2N), then:

PX =
√

π
(2πσx)2

2N

exp

{
−[2π(µx − x)]2

4 (2πσx)2

2N

}
=

√
N

σx

√
2π

e−(x−µx)2N/(2σ2
x) (2.12)

But σX = σx/
√
N and µX = µx , hence

PX =
1

σX

√
2π

e−(µX−x)2/(2σ2
X) (2.13)

The ”fuzzy” central limit theorem says that data which are influenced by many small
and unrelated random effects are approximately normally distributed.
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making the substitution
1

2
z ≡ (x− µ)2

2σ2
(2.17)

gives

d

(
1

2
z

)
=

(x− µ)2

2σ2
dx =

√
z

σ
dx. (2.18)

Now, the real line x ∈ (−∞,∞) is mapped onto the half-infinite interval z ∈ [0,∞)

by this transformation, so an extra factor of 2 must be added to d(z/2), transforming

P (x)dx into:

P (z)dz =
1

σ
√

2π
e−z/2 σ√

z
2

(
1

2
dz

)
=
e−z/2z−1/2

21/2Γ
(

1
2

) dz (2.19)

where we used the identity Γ(1/2) =
√
π.

Taking into account that the probability density function of the Chi-squared distri-

bution with r degrees of freedom is

Pr(z) =
e−z/2zr/2−1

2r/2Γ
(

r
2

) (2.20)

then, Equation (2.19) is a Chi-squared distribution with r = 1.

The ratio of independent Gaussian-distributed variates with zero mean is distributed

with a Cauchy distribution. This can be seen as follows. Let X and Y both have mean

0 and standard deviations of σx and σy, respectively, then the joint probability density

function is the bivariate normal distribution (see boxed text) with ρ = 0,

f(x, y) =
1

2πσxσy

e−[x2/(2σ2
x)+y2/(2σ2

y)] (2.21)

From ratio distribution (see the boxed text), the distribution of U = Y/X is

P (u) =

∫ ∞

−∞
|x|f(x, ux)dx =

1

2πσxσy

∫ ∞

−∞
|x|e−[x2/(2σ2

x)+u2x2/(2σ2
y)]dx

=
1

πσxσy

∫ ∞

0

x exp

[
−x2

(
1

2σ2
x

+
u2

2σ2
y

)]
dx (2.30)

But ∫ ∞

0

xe−ax2

dx =

[
− 1

2a
e−ax2

]∞
0

=
1

2a
(2.31)
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Bivariate Normal Distribution
The bivariate normal distribution is given by

P (x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp
[
− z

2(1− ρ2)

]
(2.22)

where

z ≡ (x1 − µ1)2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)
σ1σ2

+
(x2 − µ2)2

σ2
2

(2.23)

and
ρ ≡ cor(x1, x2) =

σ12

σ1σ2
(2.24)

is the correlation of x1 and x2.
The marginal probabilities are then

p(xi) =
∫ ∞

−∞
P (xi, xj)dxj =

1
σi

√
2π

e−(xi−µi)
2/(2σ2

i ) with i, j ∈ {1, 2}, i 6= j (2.25)

Ratio Distribution
Given two distributions Y and X with joint probability density function f(x, y), let
U = Y/X be the ratio distribution. Then the distribution function of u is

D(u) = P (U ≤ u) = P (Y ≤ uX|X > 0) + P (Y ≥ uX|X < 0)

=
∫ ∞

0

∫ ux

0
f(x, y)dydx +

∫ 0

−∞

∫ 0

ux
f(x, y)dydx (2.26)

The probability function is then

P (u) = D′(u) =
∫ ∞

0
xf(x, ux)dx−

∫ 0

−∞
xf(x, ux)dx =

∫ ∞

−∞
|x|f(x, ux)dx (2.27)

For variates with a standard normal distribution, the ratio distribution is a Cauchy
distribution. For a uniform distribution

f(x, y) =
{

1 for x, y ∈ [0, 1]
0 otherwise

(2.28)

the probability function is

P (u) =


0 for u < 0∫ 1
0 xdx = 1

2 for 0 ≤ u ≤ 1∫ 1/u
0 xdx = 1

2u2 for u > 1
(2.29)
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hence,

P (u) =
1

πσxσy

1

2
(

1
2σ2

x
+ u2

2σ2
y

) =
1

π

σy

σx

u2 +
(

σy

σx

)2 (2.32)

which is a Cauchy distribution with median µ = 0 and full width a = σy/σx.

The characteristic function (defined as the Fourier transform of the probability den-

sity function) for the Gaussian distribution is

φ(t) = eiµt−σ2t2/2 (2.33)

and the moment-generating function is

M(t) = 〈etx〉 =

∫ ∞

−∞

etx

σ
√

2π
e−(x−µ)2/(2σ2)dx

=
1

σ
√

2π

∫ ∞

−∞
exp

{
− 1

2σ2
[x2 − 2(µ+ σ2t)x+ µ2]

}
dx (2.34)

Completing the square in the exponent,

1

2σ2
[x2 − 2(µ+ σ2t)x+ µ2] =

1

2σ2
{[x− (µ+ σ2t)]2 + [µ2 − (µ+ σ2t)2]} (2.35)

and considering y ≡ x− (µ+ σ2t) and a ≡ 1/(2σ2), the integral becomes

M(t) =
1

σ
√

2π

∫ ∞

−∞
exp

[
−ay2 +

2µσ2t+ σ4t2

2σ2

]
dy

=
1

σ
√

2π
eµt+σ2t2/2

∫ ∞

−∞
e−ay2

dy

=
1

σ
√

2π

√
π

a
eµt+σ2t2/2 = eµt+σ2t2/2 (2.36)

hence,

M ′(t) = (µ+ σ2t)eµt+σ2t2/2 (2.37)

M ′′(t) = σ2eµt+σ2t2/2 + eµt+σ2t2/2(µ+ tσ2)2 (2.38)



2.2. STATISTICAL DISTRIBUTIONS 35

and

µ = M ′(0) = µ (2.39)

σ2 = M ′′(0)− [M ′(0)]2 = (σ2 + µ2)− µ2 = σ2 (2.40)

These can also be computed using

R(t) = ln[M(t)] = µt+
1

2
σ2t2 (2.41)

R′(t) = µ+ σ2t (2.42)

R′′(t) = σ2 (2.43)

yielding as before,

µ = R′(0) = µ (2.44)

σ2 = R′′(0) = σ2 (2.45)

The raw moments can also be computed directly by computing the moments about the

origin µ′n ≡ 〈xn〉,

µ′n =
1

σ
√

2π

∫ ∞

−∞
xne−(x−µ)2/(2σ2)dx (2.46)

Now let

u ≡ x− µ√
2σ

, (2.47)

hence

du =
dx√
2σ

(2.48)

x = σu
√

2 + µ. (2.49)

Giving the raw moments in terms of Gaussian integrals yields,

µ′n =

√
2σ

σ
√

2π

∫ ∞

−∞
xne−u2

du =
1√
π

∫ ∞

−∞
xne−u2

du (2.50)
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Evaluating these integrals gives

µ′0 = 1 (2.51)

µ′1 = µ (2.52)

µ′2 = µ2 + σ2 (2.53)

µ′3 = µ(µ2 + 3σ2) (2.54)

µ′4 = µ4 + 6µ2σ2 + 3σ4 (2.55)

Now find the moments about the mean (the central moments) µn ≡ 〈(x− µ)n〉,

µ1 = 0 (2.56)

µ2 = σ2 (2.57)

µ3 = 0 (2.58)

µ4 = 3σ4 (2.59)

so the variance, skewness, and kurtosis are given by

var(x) = σ2 (2.60)

γ1 =
µ3

σ3
= 0 (2.61)

γ2 =
µ4

σ4
− 3 = 0 (2.62)

Cramer showed in 1936 that if X and Y are independent variates and X + Y has a

Gaussian distribution, then both X and Y must be Gaussian (Cramer’s theorem). An

easier result states that the sum of n variates each with is Gaussian distribution also has

a Gaussian distribution. This follows from the result

Pn(x) = F−1{[φ(t)]n} =
e−(x−nµ)2/(2nσ2)

σ
√

2πn
(2.63)

where φ(t) is the characteristic function and F−1[f ] is the inverse Fourier transform.

If P(x) is a Gaussian distribution, then

D(x) =
1

2

[
1 + erf

(
x− µ

σ
√

2

)]
(2.64)

hence variates xi with a Gaussian distribution can be generated from variates yi having
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a uniform distribution in (0, 1) via

xi = σ
√

2erf−1(2yi − 1) + µ (2.65)

However, a simpler way to obtain numbers with a Gaussian distribution is to use the

Box-Muller transformation (see the boxed text).

Box-Muller Transformation
A transformation which transforms from a two-dimensional continuous uniform
distribution to a two-dimensional bivariate normal distribution. If x1 and x2 are
uniformly and independently distributed between 0 and 1, then z1 and z2 as defined
below have a normal distribution with mean µ = 0 and variance σ2 = 1.

z1 =
√
−2 ln x1 cos(2πx2) (2.66)

z2 =
√
−2 ln x1 sin(2πx2) (2.67)

This can be verified by solving for x1 and x2,

x1 = e−(z2
1+z2

2)/2 (2.68)

x2 =
1
2π

tan−1

(
z2

z1

)
(2.69)

Taking the Jacobian yields,

∂(x1, x2)

∂(z1, z2)
=

∣∣∣∣ ∂x1

∂z1

∂x1

∂z2
∂x2

∂z1

∂x2

∂z2

∣∣∣∣ = −
[

1√
2π
e−z2

1/2

] [
1√
2π
e−z2

2/2

]
(2.70)

The differential equation having a Gaussian distribution as its solution is

dy

dx
=
y(µ− x)

σ2
(2.71)

since

dy

y
=

µ− x

σ2
dx

ln

(
y

y0

)
= − 1

2σ2
(µ− x)2

y = y0e
−(x−µ)2/(2σ2) (2.72)
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This equation has been generalized to yield more complicated distributions which are

named using the so-called Pearson system (see the boxed text).

Pearson System
A system of equation types obtained by generalizing the differential equation for the
normal distribution

dy

dx
=

y(m− x)
a

(2.73)

which has solution
y = Ce(2m−x)x/(2a) (2.74)

to
dy

dx
=

y(m− x)
a + bx + cx2

(2.75)

which has solution

y = C(a + bx + cx2)−1/(2c) exp

(b + 2cm) tan−1
(

b+2cx√
4ac−b2

)
c
√

4ac− b2

 (2.76)

Let c1, c2 be the roots of a+ bx+ cx2. Then the possible types of curves are

0. b = c = 0, a > 0. E.g., normal distribution.

I. b2/4ac < 0, c1 ≤ x ≤ c2. E.g., beta distribution.

II. b2/4ac = 0, c < 0, −c1 ≤ x ≤ c1 where c1 ≡
√
−c/a.

III. b2/4ac = ∞, c = 0, c1 ≤ x <∞ where c1 ≡ −a/b. E.g., gamma distribution.
This case is intermediate to cases I and VI.

IV. 0 < b2/4ac < 1, −∞ < x <∞.

V. b2/4ac = 1, c1 ≤ x <∞ where c1 ≡ −b/2a. Intermediate to cases IV and VI.

VI. b2/4ac > 1, c1 ≤ x <∞ where c1 is the larger root. E.g., beta prime distribution.

VII. b2/4ac = 0, c > 0, −∞ < x <∞. E.g., Student’s t-distribution.
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2.2.2 Exponential Distribution

Given a Poisson distribution with rate of change λ, the distribution of waiting times

between successive changes (with k = 0) is

D(x) ≡ P (X ≤ x) = 1− P (X > x) = 1− (λx)0e−λx

0!
= 1− e−λx (2.77)

and

P (x) = D′(x) = λe−λx (2.78)

which is normalized since∫ ∞

0

P (x)dx = λ

∫ ∞

0

e−λxdx = −
[
e−λx

]∞
0

= 1 (2.79)

This is the only memoryless random distribution. A variable x is memoryless with

respect to t if, for all s with t 6= 0,

P (x > s+ t|x > t) = P (x > s) (2.80)

Equivalently,

P (x > s+ t, x > t)

P (x > t)
= P (x > s)

P (x > s+ t) = P (x > s)P (x > t) (2.81)

The exponential distribution satisfies

P (x > t) = e−λt

P (x > s+ t) = e−λ(s+t) (2.82)

and therefore

P (x > s+ t) = e−λ(s+t) = P (x > s)P (x > t). (2.83)

Define the mean waiting time between successive changes as θ ≡ λ−1. Then

P (x) =

{
1
θ
e−x/θ x ≥ 0

0 x < 0
(2.84)
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The moment-generating function is

M(t) =

∫ ∞

0

etx

(
1

θ

)
e−x/θdx =

1

θ

∫ ∞

0

e−(1−θt)x/θdx =
1

1− θt
(2.85)

M ′(t) =
θ

(1− θt)2
(2.86)

M ′′(t) =
2θ2

(1− θt)3
(2.87)

hence,

R(t) ≡ lnM(t) = − ln(1− θt) (2.88)

R′(t) =
θ

1− θt
(2.89)

R′′(t) =
θ2

(1− θt)2
(2.90)

µ = R′(0) = θ (2.91)

σ2 = R′′(0) = θ2 (2.92)

The characteristic function is

φ(t) = F
{
λe−λx

[
1

2
(1 + sgnx)

]}
=

iλ

t+ iλ
(2.93)

where F [f ] is the Fourier transform.

The skewness and kurtosis are given by

γ1 = 2 (2.94)

γ2 = 6 (2.95)

The mean and variance can also be computed directly

〈x〉 ≡
∫ ∞

0

xP (x)dx =
1

θ

∫ ∞

0

xe−x/θdx (2.96)

Use the integral ∫
xeaxdx =

eax

a2
(ax− 1) (2.97)

to obtain

〈x〉 = −θ
[
e−x/θ

(
1 +

x

θ

)]∞
0

= θ (2.98)
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Now, to find

〈x2〉 =
1

θ

∫ ∞

0

x2e−x/θdx (2.99)

use the integral ∫
x2eaxdx =

eax

a3
(2− 2ax+ a2x2) (2.100)

to obtain

〈x2〉 = 2θ2 (2.101)

giving

σ2 ≡ 〈x2〉 − 〈x〉2 = θ2 (2.102)

If a generalized exponential probability function is defined by

P(α,β)(x) =
1

β
e−(x−α)/β (2.103)

for x ≥ α, then the characteristic function is

φ(t) =
eiαt

1− iβt
(2.104)

and the mean, variance, skewness, and kurtosis are

µ = α+ β (2.105)

σ2 = β2 (2.106)

γ1 = 2 (2.107)

γ2 = 6 (2.108)

Consider now the distribution of differences between two independent variates with iden-

tical exponential distributions. This will yield the double exponential distribution:

P (x) =
1

2b
e−|x−µ|/b (2.109)

D(x) =
1

2

[
1 + sgn(x− µ)

(
1− e−|x−µ|/b

)]
(2.110)

The double exponential distribution and its cumulative distribution function are plotted

in Figure 2.3.
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P(x)
D(x)

Figure 2.3: The double exponential probability distribution and its cumulative distribu-
tion function

The moments can be computed using the characteristic function,

φ(t) ≡
∫ ∞

−∞
eitxP (x)dx =

1

2b

∫ ∞

−∞
eitxe−|x−µ|/bdx (2.111)

Using the Fourier transform of the exponential function

F
[
e2πk0|x|

]
=

1

π

k0

k2 + k2
0

(2.112)

gives

φ(t) =
eiµt

1 + b2t2
(2.113)

The moments are therefore

µn = (−i)nφ(0) = (−i)n

[
dnφ

dtn

]
t

= 0 (2.114)

The mean, variance, skewness, and kurtosis are

µ = µ (2.115)

σ2 = 2b2 (2.116)

γ1 = 0 (2.117)

γ2 = 3 (2.118)

2.2.3 Cauchy Distribution

The Cauchy distribution, also called the Lorentzian distribution, is a continuous dis-

tribution describing resonance behavior. It also describes the distribution of horizontal
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a

x

θ

Figure 2.4: The Cauchy distribution describes the distribution of horizontal distances at
which a line segment tilted at a random angle θ cuts the x-axis.

distances at which a line segment tilted at a random angle cuts the x-axis. Let θ repre-

sent the angle that a line, with fixed point of rotation, makes with the vertical axis, as

shown in Figure 2.4. Then

tan θ =
x

a
(2.119)

θ = tan−1
(x
a

)
(2.120)

dθ = − 1

1 + x2

a2

dx

a
= − a dx

a2 + x2
(2.121)

so the distribution of angle θ is given by

dθ

π
= − 1

π

a dx

a2 + x2
(2.122)

This is normalized over all angles, since∫ π/2

−π/2

dθ

π
= 1 (2.123)

and

−
∫ ∞

−∞

1

π

a dx

a2 + x2
=

1

π

[
tan−1

(x
a

)]∞
−∞

= 1 (2.124)
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P(x)
D(x)

Figure 2.5: The Cauchy probability distribution and its cumulative distribution function

The general Cauchy distribution and its cumulative distribution function (see Figure 2.5)

can be written as

P (x) =
1

π

a

a2 + (x− µ)2
(2.125)

D(x) =
1

2
+

1

π
arctan

(
x− µ

a

)
(2.126)

where a is the full width and µ is the median (µ = 0 in the above example).

The characteristic function is

φ(t) =
1

π

∫ ∞

−∞
eitx a

a2 + (x− µ)2
dx = eimt−a|t| (2.127)

The moments µn of the distribution are undefined since the integrals

µn =

∫ ∞

−∞

a

π

xn

a2 + (x− µ)2
dx (2.128)

diverge for n ≥ 1.

If X and Y are variates with a normal distribution, then Z ≡ X/Y has a Cauchy

distribution with median µ = 0 and full width a = σy/σx.

The sum of n variates each from a Cauchy distribution has itself a Cauchy distribu-

tion, as can be seen from

Pn(x) = F−1{[φ(t)]n} =
1

π

an

(an)2 + (x− nµ)2
(2.129)

where φ(t) is the characteristic function and F−1[f ] is the inverse Fourier transform.
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2.3 Robust Statistics

Statistical inferences are based in part upon the observations. An equally important base

is formed by prior assumptions about the underlying situations. Even in the simplest

cases, there are explicit or implicit assumptions about randomness and independence,

about distributional models, perhaps prior distributions for some unknown parameters,

and so on. In this context, robust statistics, in a loose, nontechnical sense, is concerned

with the fact that many assumptions (such as normality, linearity, independence) are, at

most, approximations to reality.

These assumptions are not supposed to be exactly true – they are mathematically

convenient rationalizations of an often fuzzy knowledge or belief. As in every other

branch of applied mathematics, such rationalizations or simplifications are vital, and

one justifies their use by appealing to a vague continuity or stability principle: a minor

error in the mathematical model should cause only a small error in the final conclusions.

Unfortunately, this does not always hold. During the past decades people have be-

come increasingly aware that some of the common statistical procedures (in particular,

those optimized for an underlying normal distribution) are excessively sensitive to seem-

ingly minor deviations from the assumptions, and a number of alternative ”robust”

procedures have been proposed [HRRS86][Rey83].

The field of robust statistics [Hub81] [HRRS86] [RL87] has developed to address the

fact that the parametric models of classical statistics are often approximations of the

phenomena being modeled. In particular, the field addresses how to handle outliers,

or gross errors, which do not conform to the assumptions. While most of the work

in computer vision has focused on developing optimal strategies for exact parametric

models, there is a growing realization that we must be able to cope with situations for

which our models were not designed.1

As identified by Hampel [HRRS86] the main goals of robust statistics are:

(i) To describe the structure best fitting the bulk of data.

(ii) To identify deviating data points (outliers) or deviating substructures for further

treatment, if desired.

1As Einstein noted: ”So far as mathematics is exact, it does not apply to nature; so far as it applies
to nature, it is not exact.”
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2.3.1 Outliers

The intuitive definition of an outlier would be ”an observation which deviates so much

from other observations as to arouse suspicion that it was generated by a different mech-

anism” [Haw80]. An inspection of a sample containing outliers would show up such

characteristics as large gaps between ”outlying” and ”inlying” observations and the de-

viation between the outliers and the group of inliers, as measured on some suitably

standardized scale.

There are two basic mechanisms which give rise to samples that appear to have

outliers. It is a matter of some importance which of the mechanisms generated any

particular set of observations, since this consideration certainly affects, or should affect,

the subsequent analysis of the data.

Mechanism (i) The data arise from two distributions. One of these, the ”basic dis-

tribution,” generates ”good” observations, while another, the ”contaminating dis-

tribution,” generates ”contaminants.” If the contaminating distribution has tails

which are heavier than those of the basic distribution, then there will be a ten-

dency for the contaminants to be outliers – that is, to separate visibly from the

good observations, which will then constitute the inliers.

Mechanism (ii) The data come from some heavy tailed distributions such as Stu-

dent’s t. There is no question that any observation is in any way erroneous.

Formalizing the latter model, Green [Gre76] has introduced a classification of families

of statistical distributions into those that are ”outlier-prone” and those that are ”outlier-

resistant.” The outlier-prone families have tails which go to zero slowly: a distribution

is said to be absolutely outlier-prone if (letting Xn,i be the ith order statistic based on

a sample of size n) there exists ε > 0, δ > 0, and an integer n0 such that

P [Xn,n −Xn,n−1 > ε] ≥ δ for all n > n0 (2.130)

and is relatively outlier-prone if there exist c > 1, δ > 0 and n0 such that

P [Xn,n/Xn,n−1 > c] ≥ δ for all n > n0 (2.131)

Clearly if either of these situations holds, then there will be a tendency for the

larger order statistic to be suspiciously large relative to its predecessor, and so samples

generated by outlier-prone distributions will tend to contain visual outliers.
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Absolutely and relatively outlier-resistant distributions are those which are not ab-

solutely and relatively outlier-prone, respectively.

The effect of outliers on the analysis of a set of data depends strongly on the mech-

anism by which the outliers are believed to be generated. If mechanism (ii) is assumed,

then the outliers, despite appearances, are valid observations from the distribution under

study. Usually, the major objective of the analysis will be to estimate a parameter - for

example location - of this distribution. For doing this, a maximum likelihood estimation

procedure is typically used.

2.4 Maximum Likelihood Estimators

Suppose that we are fitting N data points (xi, yi), i = 1, . . . , N to a model that has

M adjustable parameters a = [a1 . . . aM ]. The model predicts a functional relationship

between the measured independent and dependent variables,

y(x) = y(x; a) (2.132)

where the dependence on the parameters is indicated explicitly on the right-hand side.

What exactly do we want to minimize to get the fitted values for the aj’s? The first

thing that comes in mind is the familiar least-squares fit,

min
a

N∑
i=1

(yi − y(xi; a))2 (2.133)

But where does this come from? What general principles is it based on? The answer to

these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of xi’s and yi’s we have the intuitive feeling that some

parameter sets a1 . . . aM are very unlikely – those for which the model function y(x) looks

nothing like the data – while others may be very likely – those that closely resemble the

data. How can we quantify this intuitive feeling? How can we select fitted parameters

that are ”most likely” to be correct? In order to answer these questions we have to

compute the probability that the data set could have occurred when a particular set of

parameters was given. If the probability of obtaining the data set is infinitesimally small,

then we can conclude that the parameters under consideration are ”unlikely” to be right.

Conversely, the intuition tells that the data set should not be too improbable for the
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correct choice of parameters. In other words, we identify the probability of the data

given the parameters (which is a mathematically computable number), as the likelihood

of the parameters given the data. Once we make this intuitive identification, however,

it is only a small further step to decide to fit for the parameters a1 . . . aM precisely by

finding those values that maximize the likelihood defined in the above way. This form

of parameter estimation is maximum likelihood estimation.

In order to make a connection to (2.133), suppose that each data point yi has a

measurement error that is independently random and distributed as a normal distribution

around the ”true” model y(x). And suppose that the standard deviations σ of these

normal distributions are the same for all points. Then the probability of the data set is

the product of the probabilities of each point,

P ∼
N∏

i=1

exp

[
−1

2

(
yi − y(xi; a)

σ

)2
]

(2.134)

Maximizing (2.134) is equivalent to maximizing its logarithm, or minimizing the negative

of its logarithm, namely,
N∑

i=1

(yi − y(xi; a))2

2σ2
(2.135)

Since σ is constant, minimizing this equation is equivalent to minimizing (2.133).

What we see is that least-squares fitting is a maximum likelihood estimation of the

fitted parameters if the measurement errors are independent and normally distributed

with constant standard deviation. If the normal distribution model is a bad approxima-

tion, or outliers are important, robust estimators are employed.

In a general case, suppose we know that our measurement errors are not normally dis-

tributed. Then, in deriving a maximum likelihood formula for the estimated parameters

a in a model y(x; a), we would write instead of equation (2.134)

P ∼
N∏

i=1

exp[−ρ(yi, y(xi; a))] (2.136)

where the function ρ is the negative logarithm of the probability density. Taking the

logarithm of (2.136), analogously with (2.135), we find that we want to minimize the

expression
N∑

i=1

ρ(yi, y(xi; a)) (2.137)
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Very often, it is the case that the function ρ depends not independently on its two

arguments, measured yi and predicted y(xi), but only on their difference. In this case

the estimate is said to be local, and we can replace (2.137) by

min
a

N∑
i=1

ρ(yi − y(xi; a)) (2.138)

where the function ρ(z) is a function of a single variable z ≡ yi − y(xi).

2.5 Maximum Likelihood in Relation to Other Ap-

proaches

The goal of a content based retrieval system can be defined to be the minimization of

the probability of retrieval error. In this way, the problem of retrieving images from a

database is formulated as a classification problem. Consider a feature space F for the

entries in the database. The retrieval system will find a map

g : F →M = {1, . . . , K} (2.139)

from F to the set M of classes identified as useful for the retrieval operation [VL00]. K,

the cardinality of M, can be as large as the number of items in the database (in which

case each item is a class by itself) or smaller. The probability of error that should be

minimized is given by P (g(x) 6= y). This is the probability of having a set of feature

vectors x drawn from the class y retrieved by the system from a class g(x) different from

y. Once the problem is formulated in this way, the optimal map is given by the Bayes

classifier [DGL96]

g∗(x) = max
i
P (y = i|x) (2.140)

It is, however, known that the posterior probabilities required by the Bayes classifier

are in general difficult to compute, making the classifier of limited practical use. To

cope with this difficulty, there are two important approaches proposed in the pattern

recognition literature: one using discriminant classifiers and the other one using classifiers

based on generative models.

Discriminant classifiers try to find the surfaces in F that better separate the regions

associated with the different classes in the sense of Equation (2.140), classifying each
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point according to its position relative to those surfaces. Examples are linear discriminant

classifiers, neural networks, and decision trees. The problem with these classifiers is that

they must be completely retrained every time a new class is added or deleted from the

database, making this approach difficult to be applied in a retrieval scenario.

Instead of dealing directly with Equation (2.140), classifiers based on generative mod-

els take the alternative provided by the Bayes rule,

g∗(x) = max
i
P (x|y = i)P (y = i) (2.141)

where P (x|y = i) is the likelihood function for the ith class and P (y = i) is the prior

probability for this class. The smallest achievable probability of error is the Bayes error

[Fuk72]

L∗ = 1− Ex[max
i
P (x|y = i)P (y = i)] (2.142)

Whenever there is no prior reason to believe that one class is more likely than the

others, then P (y = i) = 1/K, in which case we obtain the maximum likelihood (ML)

classifier

g(x) = max
i
P (x|y = i) (2.143)

Under the assumption that the query consists of a collection of N independent query

features x = {xi, . . . , xN} this equation can also be written as

g(x) = max
i

1

N

N∑
j=1

logP (xj|y = i) (2.144)

which closely resembles Equation (2.137).

If there are only two classes a and b in the classification problem then, Equa-

tion (2.142) can be written as [YC74]

L∗ = Ex[min(P (y = a|x), P (y = b|x))]

=

∫
min[P (x|y = a)P (y = a), P (x|y = b)P (y = b)] dx

≤
√
P (y = a)P (y = b)

∫ √
P (x|y = a)P (x|y = b) dx

≤ 1

2

∫ √
P (x|y = a)P (x|y = b) dx (2.145)

In determination of Equation (2.145) we used the following bounds min[p, q] ≤ √
pq,
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for arbitrary p ≥ 0 and q ≥ 0, and
√
P (x|y = a)P (x|y = b) ≤ 1/2, taking into account

that P (x|y = a) = 1− P (x|y = b).

The relation (resembled by Equation (2.145))

d2
B = − log

∫ √
P1(x)P2(x) dx (2.146)

represents the Bhattacharyya distance between two arbitrary distributions {Pi(x)}i=1,2.

From here we can see that the Bhattacharyya distance is an upper bound on the Bayes

error probability. Note that the Bhattacharyya distance is not a metric (it does not obey

the triangle inequality).

The Bhattacharyya distance was used for image retrieval in [CMXT99], where it took

the form

g(x) = min
i

∫ √
P (x|q)P (x|y = i) dx (2.147)

where P (x|q) is the density of the query. The resulting classifier can thus be seen as the

one which finds the lowest upper-bound of the Bayes error for the collection of two-class

problems involving the query and each of the database classes.

Consider now that the distribution of features of interest is Gaussian, characterized

by its mean vector µ and covariance matrix Σ

P (x|y = i) =
1√

(2π)n|Σi|
exp

(
−1

2
(x− µi)

T Σ−1
i (x− µi)

)
(2.148)

the Bhattacharyya distance becomes

d2
B =

1

4
(µa − µb)

T (Σa + Σb)
−1(µa − µb) +

1

2
log

∣∣Σa+Σb

2

∣∣√
|Σa||Σb|

(2.149)

where | · | is the determinant. The first term in Equation (2.149) gives the class separa-

bility due to mean-difference, while the second term gives the class separability due to

the covariance-difference.

The Mahalanobis distance is proportional to a particular case of Bhattacharyya dis-

tance when the covariances are the same Σa = Σb = Σ,

d2
B = (µa − µb)

T Σ−1(µa − µb) (2.150)

A dissimilarity measure using Mahalanobis distance is unable to distinguish among
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distributions with the same mean but different covariance matrices.

Finally, if the covariance matrix is the identity matrix Σ = I, we obtain the Euclidean

distance

L2 = (µa − µb)
T (µa − µb) (2.151)

Other dissimilarity measures such as Fisher linear discriminant function yield useful

results only for distributions that are separated by the mean-difference [Fuk72], whereas

the Kullback discriminant [Kul68] provides in various instances lower performance than

the Bhattacharyya distance, as shown in [Kai67]. The Chernoff distance [Fuk72] is in

general closer to the error probability than the Bhattacharyya distance (in fact the latter

is a special case of Chernoff distance), but it is difficult to evaluate.

Exposing the assumptions behind each similarity function enables a critical analysis

of their usefulness and the determination of the retrieval scenarios for which they may

be appropriate. While the choice between the Bayesian and the maximum likelihood

criterion is a function only of the amount of prior knowledge about class probabilities,

there is in general no strong justification to rely on any of the remaining measures. In this

context, there is a small justification to replace the minimization of the error probability

on the multi-class retrieval problem (as in maximum likelihood) by the search for the

two class problem with the smallest error bound (Bhattacharyya distance). Moreover,

the Mahalanobis and the Euclidean distances only make sense if the image features are

Gaussian distributed for all classes.

2.6 Our Maximum Likelihood Approach

In the previous sections, the standard maximum likelihood procedure was presented to-

gether with its relation with other approaches. There, the goal was to find the particular

set of parameters that would maximize the probability that the data set under observa-

tion could have occurred. In our case, we consider applications that involve similarity

where the ground truth is provided. The goal is to find the probability density function

which maximizes the similarity probability. Furthermore, applying the maximum like-

lihood procedure described above, we determine the corresponding metric and use it in

the experiments. By doing this we expect to obtain better retrieval/matching results.

To state the issue more concretely, consider N pairs of M -dimensional feature vectors

(Xi, Yi), i = 1, . . . , N , extracted from images in a database D, which according to the

ground truth G are similar: Xi ≡ Yi. Further, consider that all N feature vectors Xi
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are concatenated in a single B-dimensional vector, x, where B = N ×M . The same

procedure applies to the N feature vectors Yi concatenated in a B-dimensional vector y.

Applying Equation (2.136) the similarity probability can be calculated as

P (G) ∼
B∏

i=1

exp[−ρ(ni)] (2.152)

where n = [n1 . . . nB] is the ”noise” vector obtained as the difference between the vectors

x and y, and ρ is the negative logarithm of the probability density of the noise. We used

the notation P (G) to explicitly show that the similarity probability was calculated in

the presence of a particular ground truth G.

The additive noise model in Equation (2.152) is the dominant model used in computer

vision regarding maximum likelihood estimation. Haralick and Shapiro [HS93] consider

this model in defining the M-estimate: ”any estimate Tk defined by a minimization

problem of the form min
∑
i

ρ(xi− Tk) is called an M-estimate.” Note that the operation

”-” between the estimate and the real data implies an additive model.

According to Equation (2.152), we have to find the probability density function of

the noise that maximizes the similarity probability: the maximum likelihood estimate

for the noise distribution [Hub81].

Taking the logarithm of (2.152) we find that we have to minimize the expression

B∑
i=1

ρ(ni) (2.153)

To analyze the behavior of the estimate we take the approach described in [HRRS86]

and [RL87] based on the influence function. The influence function characterizes the bias

that a particular measurement has on the solution and is proportional to the derivative,

ψ, of the estimate [Bla92]

ψ(z) ≡ dρ(z)

dz
(2.154)

In the case where the noise is Gaussian distributed (Figure 2.6(a)):

P (ni) ∼ exp(−ni
2) (2.155)

then,

ρ(z) = z2 and ψ(z) = z (2.156)
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Figure 2.6: Gaussian, Exponential, and Cauchy distributions. The tails of the Gaussian
and of the Exponential drop off quickly. The tails of the Cauchy distribution are more
prominent.

If the errors are distributed as a double or two-sided exponential (Figure 2.6(b)),

namely,

P (ni) ∼ exp(−|ni|) (2.157)

then,

ρ(z) = |z| and ψ(z) = sgn(z) (2.158)

In this case, using Equation (2.153), we minimize the mean absolute deviation, rather

than the mean square deviation. Here the tails of the distribution, although exponentially

decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive tails is the Cauchy distribution (Fig-

ure 2.6(c)),

P (ni) ∼
a

a2 + ni
2

(2.159)

where the scale parameter a determines the height and the tails of the distribution.

This implies

ρ(z) = log

(
1 +

(z
a

)2
)

and ψ(z) =
z

a2 + z2
(2.160)

For normally distributed errors, Equation (2.156) says that the more deviant the

points, the greater the weight (Figure 2.7). By contrast, when tails are somewhat more

prominent, as in (2.157), then (2.158) says that all deviant points get the same relative

weight, with only the sign information used (Figure 2.8). Finally, when the tails are even

larger, (2.160) says that ψ increases with deviation, then starts decreasing, so that very

deviant points - the true outliers - are not counted at all (Figure 2.9).
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Figure 2.7: Quadratic estimator. (a) Estimate, (b) ψ-function
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Figure 2.8: Exponential estimator. (a) Estimate, (b) ψ-function
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Figure 2.9: Cauchy estimator. (a) Estimate, (b) ψ-function
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Maximum likelihood gives a direct connection between the noise distributions and the

comparison metrics. Considering ρ as the negative logarithm of the probability density

of the noise, then the corresponding metric is given by Equation (2.153).

Consider the Minkowski-form distance Lp between two vectors x and y defined by

Lp(x, y) =

(∑
i

|xi − yi|p
) 1

p

(2.161)

If the noise is Gaussian distributed, so ρ(z) = z2, then Equation (2.153) is equivalent

to Equation (2.161) with p = 2. Therefore, in this case the corresponding metric is

L2. Equivalently, if the noise is Exponential, so ρ(z) = |z|, then the corresponding

metric is L1 (Equation (2.161) with p = 1). In the case the noise is distributed as a

Cauchy distribution with scale parameter a, then the corresponding metric is no longer

a Minkovski metric. However, for convenience we denote it as Lc and it is given by

Lc(x, y) =
∑

i

log

(
1 +

(
xi − yi

a

)2
)

(2.162)

In practice, the probability density of the noise can be approximated as the normal-

ized histogram of the differences between the corresponding feature vectors elements.

For convenience, the histogram is made symmetric around zero by considering pairs of

differences (e.g., x−y and y−x). Using this normalized histogram, we extract a metric,

called maximum likelihood (ML) metric. The ML metric is a discrete metric extracted

from a discrete normalized histogram having a finite number of bins.

The ML metric is given by Equation (2.153) where ρ(ni) is the negative logarithm

of P (ni):

ρ(ni) = − log(P (ni)). (2.163)

When ni does not exactly match any of the bins, for calculating P (ni) we perform

linear interpolation between P (ninf ) (the histogram value at bin ninf ) and P (nsup) (the

histogram value at bin nsup), where ninf and nsup are the closest inferior and closest

superior bins to ni, respectively (see Figure 2.10)

P (ni) =
(nsup − ni)P (ninf ) + (ni − ninf )P (nsup)

nsup − ninf

(2.164)
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Figure 2.10: ML metric calculation procedure

2.6.1 Scale Parameter Estimation in a Cauchy Distribution

An interesting property of the Cauchy distribution is that the scale parameter a can be

found in the expression of the corresponding metric Lc (see Equation (2.162)). Although,

a scale parameter σ can also be employed in a Gaussian or Exponential distribution (e.g.

Equation (2.134)), the corresponding metric does not exhibit the parameter. Therefore,

for all Gaussian or Exponential distributions having different scale parameters, there will

be only one corresponding metric, L2 or L1, respectively. By contrast, when a family

of Cauchy distributions having different scale parameters is considered, the result will

be a family of corresponding metrics Lc. How can we estimate the value of the scale

parameter in this case? Is the corresponding Cauchy distribution a good approximation

for the real noise distribution?

One solution would be to use a maximum likelihood procedure. For doing this one

prior assumption is that the noise distribution is Cauchy and random samples are ob-

tained from it. Let x1, . . . , xn be a random sample from a Cauchy distribution with

density a/[π{a2 + (x − µ)2}], where µ is the location parameter and a > 0 is the scale

parameter, both unknown. A Cauchy random sample generator can be obtained from

the cumulative distribution [HBA70] using the expression

F (x;µ, a) =
1

2
+

1

π
arctan

(
x− µ

a

)
(2.165)
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where −∞ < x <∞, −∞ < µ <∞, and a > 0.

Let µ̂ and â be the maximum likelihood estimators for µ and a. The likelihood

function, L(x1, . . . , xn;µ, a) is given by

L(x1, . . . , xn;µ, a) =
n∏

i=1

[
a

π(a2 + (xi − µ)2

]
(2.166)

and the logarithm of the likelihood is

logL = −n log π + n log a−
n∑

i=1

log(a2 + (xi − µ)2) (2.167)

Hence, the maximum likelihood equations are

∂ logL

∂µ
=

n∑
i=1

2(xi − µ̂)

â2 + (xi − µ̂)2
= 0 (2.168)

∂ logL

∂a
=

n

â
−

n∑
i=1

2â

â2 + (xi − µ̂)2
= 0 (2.169)

A numerical procedure must be used in order to solve (2.168) and (2.169) for µ̂ and

â. For solving these equations we used a Newton-Raphson iterative method with the

starting points given by the mean and the variance of the data. We were always able

to find unique positive solutions for â and b̂ which is in accordance with the conjecture

stated by Hass et al. [HBA70]. In certain cases, however, the Newton-Raphson iteration

diverged, in which cases we selected new starting points.

As noted previously, the noise distribution is symmetric and centered around zero,

therefore µ = 0. In this case, the maximum likelihood equation that should be solved is

n∑
i=1

â2

â2 + xi
2

=
1

2
n (2.170)

The problem with this approach comes mainly from the assumption that the real

noise distribution is Cauchy, which does not always hold. Moreover, a solution for Equa-

tion (2.170) highly depends on the size n of the sample extracted from the distribution.

A reliable value for the parameter a can only be obtained when sufficient ground truth

is available, which is not always the case.

Another way to estimate the scale parameter is by selecting that value that assures
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the best fit between a Cauchy model distribution and the noise distribution. A question

that comes in mind is: What distance measure do we use when comparing two distri-

butions? One solution is to use the Prokhorov distance measure [Yuk89] which permits

the comparison of a discrete empirical distribution with a continuous one through the

association of each observation of the former with a subset of the sample space; the

comparison is then performed with the help of the probability of the latter distribution

over this subset.

Another solution, adopted here, is to use a Chi-square goodness-of-fit test [Wat58].

The Chi-square test is frequently used in literature for comparing two binned distribu-

tions. Additionally, we can use the test not only for estimating the scale parameter but

also as a goodness-of-fit indicator between the noise distribution and a model distribu-

tion (see next section). Let M be a binned Cauchy distribution used as a model for the

noise distribution R. The number and the location of bins for M are identical with the

ones for R. The Chi-square test is given by

χ2 =
∑

i

(Ri −Mi)
2

Mi

(2.171)

where the sum is over all bins.

Using this simple procedure we estimate the value of the scale parameter a as that

value that minimizes the χ2.

2.7 Experimental Setup

In the previous section, our maximum likelihood approach was introduced for a similarity

application in the presence of ground truth. An important issue is how to design a

framework so that the noise distribution can be reliably constructed from the ground

truth and in the same time, the performances of matching algorithms can be computed.

In order to achieve the latter requirement we should also have ground truth information,

so we can compare the obtained results of a matching algorithm with the ideal ones

provided by the ground truth. Concretely, the setup of our experiments was the following.

We assume that representative ground truth is provided. The ground truth is split

into two non-overlapping sets: the training set and the test set, as shown in Figure 2.11.

Note that Lk is a notation for all possible metrics that can be used, e.g. L1, L2, Lc.

First, for each image in the training set a feature vector is extracted. Second, the
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real noise distribution is computed as the normalized histogram of differences from the

corresponding elements in feature vectors taken from similar images according to the

ground truth. The Gaussian, Exponential, and Cauchy distributions are fitted to the

real distribution. The Chi-square test is used to find the fit between each of the model

distributions and the real distribution. We select the model distribution which has the

best fit and its corresponding metric (Lk) is used in ranking. The ranking is done using

only the test set.

Ground
truth

distribution
Training

set
Features Real noise

distribution
Model L k

Test

Ranking

set

Figure 2.11: An overview of a similarity matching algorithm

It is important to note that for real applications, the parameter in the Cauchy dis-

tribution is found when fitting this distribution to the real distribution. This parameter

setting would be used for the test set and any future comparisons in that application.

The parameter setting can be generalized beyond the ground truth if the ground truth

is representative.

For benchmarking purposes we also investigate the performance of other distance

measures in matching. In all of the experiments we compare our results with the ones

obtained using the Kullback relative information (K) [Kul68]. Let u and v be two

discrete distributions then

K =
∑

i

ui log
ui

vi

(2.172)

where the sum is over all bins.

Note that the Kullback relative information is an asymmetric similarity measure

between normalized probability density functions. In the applications where normalized

histograms are used as feature vectors, K was computed using (2.172) where u was the

feature vector corresponding to the query and v was the feature vector corresponding to

a candidate match. When template matching was performed, suppose we are searching
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for a match for an intensity vector U from the left image. In the right image there will

be many possible matching vectors and let V be one of them. Each of the intensity

vectors is normalized to have the sum equal to 1 by dividing each component by the

total intensity within the vector, i.e., ui = Ui/
∑
i

Ui. This results in two normalized

vectors u and v and (2.172) can be applied for computing K.

We chose the Kullback relative information as a benchmark because it is the most

frequently used similarity measure in information theory. Furthermore, Rissanen [Ris78]

showed that it serves as the foundation for other minimum description length measures

such as the Akaike’s information criterion [Aka73]. Regarding the relationship between

the Kullback relative information and the maximum likelihood approach, Akaike [Aka73]

showed that maximizing the expected log likelihood ratio in maximum likelihood estima-

tion is equivalent to maximizing the Kullback relative information. Another interesting

aspect of using the Kullback relative information as a benchmark is that it gives an ex-

ample of using a logarithmically weighted function: instead of u− v a weighted version

of log u− log v = log(u/v) is computed.

In summary, our algorithm can be described as follows:

Step 1 Compute the feature vectors from the training set

Step 2 Compute the real noise distribution from the differences between corresponding
elements of the feature vectors

Step 3 Compare each of the model distributions M to the real noise distribution R
using the Chi-square test

χ2 =
∑

i

(Ri −Mi)
2

Mi

(2.173)

where the sum is over all bins.

Step 3.1 For a parameterized metric such as Lc, compute the value a of the
parameter that minimizes the Chi-square test

Step 4 Select the corresponding Lk of the best fit model distribution

Step 4.1 Use the value a found from Step 3.1 in the parameterized metrics

Step 5 Apply the Lk metric in ranking

Step 6 Compare the results with the ones obtained using the maximum likelihood (ML)
metric extracted directly from the real noise distribution
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2.8 Concluding Remarks

In this chapter we formulated a framework for a maximum likelihood approach in com-

puter vision applications involving similarity. The basic concepts from robust statistics

were introduced and we illustrated our approach based on maximum likelihood. In the

case where representative ground truth can be obtained for an application, we provided

a method for selecting the appropriate metric, and proposed Lc as an alternative for

both L2 and L1. Furthermore, we showed how to create a maximum likelihood metric

(ML) based on the real noise distribution. Minimizing the ML metric is optimal with

respect to maximizing the likelihood of the differences between feature vector elements

when the noise distribution is representative. Therefore, the breaking points occur when

there is no ground truth, or when the ground truth is not representative.



Chapter 3

Color Based Retrieval

In content based retrieval, color indexing is one of the most prevalent retrieval methods.

The key problems in color indexing are (1) choice of color space, (2) color features, and (3)

finding the best distance metric. In our color experiments we examine two applications

from computer vision which involve distortions derived from changes in viewpoint and the

process of printing and scanning. In the first experiments we use the Corel stock photo

database and a color histogram method to find copies of images which were printed and

subsequently scanned in. The second application deals with object based retrieval. The

goal is to find all images of an object in a database where the images depicting the object

were taken from different viewpoints. Both the ground truth and the algorithm come

from the work by Gevers and Smeulders [GS99]. Furthermore, for both applications,

we implement the quadratic perceptual similarity measure proposed by Hafner, et al.

[HSE+95] and the correlogram introduced by Huang, et al. [HRKM+97] as benchmarks.

3.1 Introduction

Color is an important attribute of visual information. Not only does color add beauty to

objects but also gives information about objects as well. Furthermore, color information

facilitates our daily life, e.g. reading a traffic light or identifying a favorite team in a

sport event.

Color, in and of itself, does not exist. The color of an object is determined solely by

which wavelengths of light are absorbed by the object and which ones filter back to our

eyes. For instance, if we are in a forest on a sunny day, the leaves on the trees appear

green. However, when we return to the same spot in the evening, the leaves now look

63
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gray. The leaves themselves are obviously unchanged, but the lighting is different, and

thus our color perception is altered.

This phenomenon, along with many of its wider implications, was first noted in 1666

by 23-year-old Isaac Newton. Newton split, or refracted, a beam of sunlight by passing

it through a rectangular glass prism. The colored rays of light that emerged from the

other end of the prism were what Newton termed the “spectrum” of color: red, orange,

yellow, green, blue, and violet (the colors of the rainbow). Later, Newton passed these

colors through a second glass prism and discovered that they recombined to produce

white light. Newton proved that there really are no “colors” in nature - just different

wavelengths of light that were bent in different ways by the glass prism.

After Newton established the fundamentals of color in his “Optics” [New04], color

has been involved in many fields ranging from art to psychology and science. The

emotional and psychological influence of color on humans was studied by Goethe in his

famous book “Farbenlehre” [Goe40]. Goethe fiercely contested Newton’s optics theory

and its focus on physical properties. He said that colors arise in the eye and based his

description of their properties on optical phenomena he himself observed. For Goethe,

colors were analogous to perspective and proportions, i.e. formal categories that we

process to make the observed world conform to the internal order of our brain. Light is

needed to see colors because they are not part of nature but a product of our mind and

eyes. Goethe’s original proposal was to “marvel at color’s occurrences and meanings, to

admire and, if possible, to uncover color’s secrets.” To Goethe it was most important to

understand human reaction to color, and his research marks the beginning of modern

color psychology. To accomplish his goals, he created a color triangle where three primary

colors red, yellow, and blue were arranged at the vertices of the triangle. The other

subdivisions of the triangle were grouped into secondary and tertiary triangles, where

the secondary triangle colors represented the mix of the two primary triangles to either

side of it, and the tertiary triangle colors represented the mix of the primary triangle

adjacent to it and the secondary triangle directly across from it. Goethe believed that his

triangle was a diagram of the human mind and he linked each color with certain emotions.

For example, Goethe associated blue with understanding and believed it evoked a quiet

mood, while for him red evoked a festive mood and was suggestive of imagination. He

chose the primaries red, yellow, and blue based on their emotional content, as well as on

physical grounds, and he grouped the different subsections of the triangle by “elements”

of emotion as well as by mixing level. This emotional aspect of the arrangement of the

triangle reflects Goethe’s concern that the emotional content of each color be taken into
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account by artists.

Heisenberg [Hei67] tried to reconcile Goethe’s and and Newton’s views. He suggested

that the Cartesian dichotomy between an objective and subjective world - each within

its own validity - would be resolved by the study of the neurological system which would

ultimately be described in terms of mathematical structures.

Whoever should compare Goethe’s theory of colors with Newton’s preferred approach

will soon become aware of two completely different attitudes to the one, single theme.

These attitudes do not oppose each other, however, they complement each other - alone,

neither of the systems can cover all aspects of color completely. Newton’s analysis of

colors is to be seen as complementary to Goethe’s. Neither of the theories is wrong; each

independently reproduces a valid aspect of our world, and substantiates the other.

In order to bring life to this idea of complementarity, we can compare the English

scientist’s and the German poet’s beliefs: what for Newton is simple - pure blue, for

example, being light with one wavelength (“monochromatic light”) - is complicated for

Goethe, since pure blue must first of all be prepared by extravagant means and is there-

fore artificial. In contrast, white light is simple for Goethe, since it exists completely

naturally and without effort; Newton, on the other hand, sees in white light a mixture

of all colors. White light is not simple for Newton; it is a combination. The essential

complementarity of both color theories becomes evident when we consider the role of

the subject - the human being. While Goethe, as a matter of course, views the human

being as central, Newton omits him totally.

Maxwell’s work in color vision is acknowledged as being the origin of quantitative

color measurement (colorimetry). He developed a chart in the form of an equilateral

triangle from his studies on the electromagnetic theory of light. His triangle is very

similar to Goethe’s, both are equilateral and both choose three primaries which are

combined to produce the inner colors. Maxwell, however, believed that he could produce

all the known colors within his triangle and he chose red (R), green (abbreviated to V

[verde]), and blue (B) as primaries.

In painting, Munsell provided the theoretical basis in his “A Color Notation” [Mun05]

on which most painters derive their notations about color ordering. His color space is

based on pigment, not light. He began from two observations that he has made as

painter. The first is that pure hues vary in their degree of lightness, and therefore all the

pure hues (red, yellow, green, blue, violet) should not be on the same horizontal plane.

The second observation is that some colors (red) are more vivid than others (green),

and therefore, they should be further away from the axis. These observations pointed
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Munsell toward a color space whose shape is very irregular and asymmetric.

In 1931, an attempt was made to establish a world standard for measurement of

color by the Commission Internationale de l’Eclairage (CIE). They generated a version of

Maxwell’s triangle, choosing a particular red, green, and blue from which to generate all

the colors. The result became known as the CIE chromaticity chart, the updated version

of which is used to measure and quantify the light produced by computer phosphor guns

today.

3.2 Colorimetry

All color is light. The visible spectrum of light, however, is only a small portion of

the entire wavelength spectrum, which includes the ultraviolet portion that cannot be

detected by the naked eye. The visible spectrum consists of three wavelength bands of

light: red, green, and blue. The red is the longest wavelength, followed by the green, and

then the blue. The various combinations of these three light wavelengths are interpreted

by the human brain as a particular color.

Any color that we see represents those portions of the three bands of light that are not

absorbed by the observed object and instead filter back to our eyes. An apple, therefore,

appears red because all light bands except red are absorbed by the object, while the red

is reflected back to us.

These three colors of light - red, green, and blue - are known as the primary colors

(or the additive colors, or simply the primaries). They are colors that are used in video,

and appear on a desktop computer screen. When combined, they produce white light;

when mixed in varying intensities, they can form every other color that our eyes are

capable of seeing.

To be more specific, electromagnetic radiation F (λ) in the range of visible light

(λ ∈ {380nm, . . . , 780nm}) is perceived as color or colored light. As noticed above, it

has been verified experimentally that color is perceived through three independent color

receptors which have peak response at approximately red, green, and blue wavelengths,

λr = 700nm, λg = 546.1nm, and λb = 435.8nm, respectively. By assigning each primary

color receptor, k ∈ {r, g, b}, a response function ck(λ), visible light of any color F (λ) is

represented by a linear superposition of the ck(λ)’s [Nie90], as follows: by normalizing

ck(λ)’s to reference white light W (λ) such that

W (λ) = cr(λ) + cg(λ) + cb(λ). (3.1)
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F (λ) produces the tristimulus responses (R,G,B) such that

F (λ) = R cr(λ) +Gcg(λ) +B cb(λ). (3.2)

As such, any color can be represented by a linear combination of the three primary

colors (R,G,B).

3.3 Color Models

There has been no consensus about which color space is most suitable for color based

image retrieval. The problem is a result of the fact that there does not exist a univer-

sally accepted color space, and color perception is significantly subjective [WS82]. As a

consequence, a large variety of color spaces is used in practice.

Color systems have been developed for different purposes [SWS+00]:

(1) display and printing process: RGB, CMY ;

(2) television and video transmission efficiency: Y IQ, Y UV ;

(3) color standardization: XY Z;

(4) color uncorrelation: I1I2I3;

(5) color normalization and representation: rgb, xyz;

(6) perceptual uniformity: U∗V ∗W ∗, L∗a∗b∗, L∗u∗v∗;

(7) intuitive description: HSI, HSV .

With this large variety of color systems, the inevitable question arises which color

system to use for different image retrieval applications. An important criterion is that the

color system should be independent of the underlying imaging device. This is required

when the images in the database are recorded by different imaging devices such as cam-

eras and scanners. Additionally, the color system should exhibit perceptual uniformity

meaning that the distances within the color space can be related to human perceptual

differences. This is important when visually similar images are to be retrieved. Also,

the transformation needed to compute the color system should be linear. A non-linear

transformation may introduce instabilities with respect to noise, causing poor retrieval

results. Moreover, to achieve robust and discriminative image retrieval, color invariance

is an important criterion.
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For our experiments, we chose two of the most frequently used color spaces, namely,

RGB andHSV , together with the l1l2l3 color model introduced by Gevers and Smeulders

[GS99].

3.3.1 RGB Color System

RGB refers to the intensity of 3 additive color primaries, red, green, and blue. The RGB

space is not perceptually uniform. As such, the proximity of colors in RGB color space

does not indicate color similarity. The space spanned by the R, G, and B values (see

Equation 3.2) is complete in that all colors are represented as vectors in the 3D RGB

space. Since it corresponds directly to the hardware, it is the easiest to be implemented

and is in wide use. Typically, each primary is quantized into 256 levels and then combined

to create 256× 256× 256 possible colors.

3.3.2 HSV Color System

The HSV color model, introduced by Smith [Smi78], approximates the perceptual prop-

erties of “hue,” “saturation,” and “value.” Hue and saturation are taken from common

speech about color, while the term value was introduced by Munsell [Mun05], although

it was defined differently. The concept of value as a perceptually uniform quantity akin

to brightness was created by Munsell. Roughly speaking:

(1) hue associates a color with some position in the color spectrum - red, green, and

yellow are hue names;

(2) saturation describes the “vividness” of a color, pure spectral colors being “fully

saturated colors” and grays being “desaturated colors”;

(3) value corresponds to the “lightness” of a color.

A hue-saturation slice of HSV space is derived by projecting the surface of an RGB

color cube onto the R + G + B = 1 plane: the saturation and hue of a point on the

projection are its polar coordinates r and θ with respect to the center of the projected

surface, while the value V of all points on the projection is simply the length of the

diagonal of the color cube projected.

The transformation Tc from RGB to HSV is accomplished through the following

equations [Hun89]. Let vc = (r, g, b) be the color triple of a point in normalized RGB



3.3. COLOR MODELS 69

space and let wc = (h, s, v) be the color triple of the transformed color point in HSV

color space, such that wc = Tc(vc).

For r, g, b ∈ [0 . . . 1], Tc gives h, s, v ∈ [0 . . . 1] as follows:

v = max(r, g, b), s =
v −min(r, g, b)

v

Let

r′ =
v − r

v −min(r, g, b)
, g′ =

v − g

v −min(r, g, b)
, b′ =

v − b

v −min(r, g, b)

then,

6h =



5 + b′ if r = max(r, g, b) and g = min(r, g, b)

1− g′ if r = max(r, g, b) and g 6= min(r, g, b)

1 + r′ if g = max(r, g, b) and b = min(r, g, b)

3− b′ if g = max(r, g, b) and b 6= min(r, g, b)

3 + g′ if b = max(r, g, b) and r = min(r, g, b)

5− r′ otherwise

Similarly, for h, s, v ∈ [0 . . . 1], T−1
c gives r, g, b ∈ [0 . . . 1] as follows. Let,

α = 6h− round(6h)

and,

ω1 = (1− s)v, ω2 = (1− sα)v, ω3 = (1− s(1− α))v

then,

r =



v if α = 0 or α = 5

ω1 if α = 2 or α = 3

ω2 if α = 1

ω3 if α = 4

g =



v if α = 1 or α = 2

ω1 if α = 4 or α = 5

ω2 if α = 3

ω3 if α = 0

b =



v if α = 3 or α = 4

ω1 if α = 0 or α = 1

ω2 if α = 5

ω3 if α = 2

TheHSV and RGB color systems are typically used in generic content based retrieval

applications.
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3.3.3 l1l2l3 Color System

Gevers and Smeulders [GS99] analyzed and evaluated various color features for the pur-

pose of image retrieval by color histogram matching under varying illumination environ-

ments. They introduced the l1l2l3 color model as follows:

l1(R,G,B) =
(R−G)2

(R−G)2 + (R−B)2 + (G−B)2
(3.3)

l2(R,G,B) =
(R−B)2

(R−G)2 + (R−B)2 + (G−B)2
(3.4)

l3(R,G,B) =
(G−B)2

(R−G)2 + (R−B)2 + (G−B)2
(3.5)

where R, G, and B are the color values in the RGB color space, 0 ≤ li ≤ 1, and

l1+l2+l3 = 1. They showed that the l1l2l3 color model is invariant to a substantial change

in viewpoint (when the viewpoint is changed, photometric changes may occur, yielding

different shadows, shading, and highlighting cues for the same object), object geometry,

highlights, and illumination. These invariant properties make the l1l2l3 color system

suitable for object recognition and retrieval applications. In their object recognition

experiments, Gevers and Smeulders [GS99] showed that the l1l2l3 color model achieved

the highest recognition rate.

3.4 Color Based Retrieval

As the world enters the digital age, visual media is becoming prevalent and easily ac-

cessible. Factors such as the explosive growth of the World Wide Web, terabyte disk

servers, and the digital versatile disk, reveal the growing amount of visual media which is

available to society. With the availability of visual media comes the associated problem

of searching for it and consequently, the focus of researchers toward providing automatic

content based retrieval systems. With this new application area, color has returned to

the center of interest of a growing number of scientists and artists. Aside from decorating

and advertising potentials for Web-design, color information has already been used as

a powerful tool in content based image and video retrieval. Different measures on the

color features such as color histograms, color correlograms, prominent colors, and salient

colors, have proven to be efficient in discriminating between relevant and non-relevant

images. In particular, retrieval based on histograms has been widely studied in [SB91],
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[FSN+95], [Smi97], [HSE+95] and is now considered to be an effective measure for color

based retrieval.

Color based retrieval may concern [DB99]:

• Finding images containing a specified color in an assigned proportion.

This is the simplest type of color based query. The most efficient way to resolve it is

to use histogram based representation of chromatic content and count the relative

number of pixels that are in the histogram bin closest to the color in a query.

• Finding images containing similar color regions as specified in a query.

A simple but generally ineffective solution to find images with color regions similar

to a query, is to partition images into number of regions with fixed absolute loca-

tion. Chromatic features extracted from each region are compared with those of

the corresponding regions in the query. Different weights can be assigned to each

region according to its relative importance [SD97]. However, this approach does

not permit to specify arbitrary shaped regions nor their spatial relationships. To

make this possible, images should be segmented into homogeneous color regions.

However, size, shape, and color of regions of database images, resulting from color

segmentation, in general do not fit size, shape, and color of regions specified in the

query. Therefore, retrieval by color region similarity is a very complex operation.

• Finding images containing a known object based on its color properties.

This application is similar to the previous one. Here, the object histogram is

matched against parts of the database images and regions of potential interest are

extracted. Histogram intersection method is suited for detecting whether an object

is present in an image using its color information when objects have surfaces with

fairy large homogeneous regions of color.

• Finding image whose colors are similar to those of an example image.

When a user wants to find an image similar to a query image its interest lies

on the global image chromatic content. For example, in the case of a database

of paintings, this kind of query may help to find paintings of the same artist, or

perceptually similar paintings, with no regard to what is represented in the picture.

Image chromatic contents is usually represented through color histograms.
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Queries can be expressed either through text of through visual examples. Textual

specification of colors is a simple way to express queries about the presence of a color.

However, it needs a commonly accepted correspondence between color names and color

stimuli. Eventually, the color associated with the name selected can be visualized and the

user can directly perceive the color stimuli, increasing his confidence in the color choice.

Querying through visual examples is a more effective way of querying color distributions

or color regions. In this approach, given a query image, the goal is to retrieve all the

images whose color compositions are similar to the color composition of the query image

(have colors in the same/similar proportion or location). Visual examples are also helpful

for finding images containing a known object with certain color properties. Examples are

expressed either by using icons [LS00], or by extracting a sample image or a subimage

from an image set [SL99a]. In querying by example, color can be combined with other

features like texture, structure, and composition.

3.4.1 Color Indexing

Color indexing is based on the observation that often color is used to encode functionality:

grass is green, sky is blue, etc.

Color histogram is the most traditional way of describing low-level color properties of

images. It can be represented as three independent color distributions, in each primary, or

as two independent distributions (for color spaces which separate chromatic information

from luminance) or - more frequently - as one distribution over the three primaries,

obtained by discretizing image colors and counting how many pixels belong to each

color.

In the last case, if we map the colors in the image I into a discrete color space contain-

ing n colors, then the color histogram [SB91][SH94] H(I) is a vector (hc1 , hc2 , · · · , hcn),

where each element hcj
represents the probability of having the color cj in the image I.

The fundamental elements of the color histogram based approach include the selection

of the color space together with the associated quantization scheme and the histogram

distance metric. Color histograms are quite an efficient representation of color content;

a positive aspect is that their computation is trivial. Moreover, histograms are fairly

insensitive to variations originated by small camera rotations or zooming. Also they are

fairly insensitive to changes in image resolution (when images have quite large homoge-

neous regions), and partial occlusions. However, where there are changes in lighting and

large changes in view angle, histogram based representation of color may vary greatly.
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Moreover, histograms, by themselves, do not include spatial information so that images

with very different layouts can have similar representations.

Two widely used distance metrics in color indexing are L2 [BS97] and L1

[SB91][GSJ97]. The L2 distance applied to two color histograms I and M is defined

as

L2(I,M) =

√√√√ n∑
i=1

(ici
−mci

)2 (3.6)

Similarly, the L1 distance will be

L1(I,M) =
n∑

i=1

|ici
−mci

| (3.7)

Swain and Ballard [SB91] introduced a color matching method, known as histogram

intersection. Specifically, given a pair of histograms I and M , each containing n bins,

the histogram intersection measure is defined as follows:

H(I,M) =

n∑
i=1

min(Ii,Mi)

n∑
i=1

Mi

(3.8)

Moreover, if
n∑

i=1

Mi =
n∑

i=1

Ii = k, as will be the case for normalized histograms, then

the histogram intersection measure is equivalent to L1, thus

1−H(I,M) =
1

2k

n∑
i=1

|Ii −Mi| (3.9)

For a proof consider initially the relations:

Ii =

min(Ii,Mi) + |Ii −Mi| if Ii > Mi

min(Ii,Mi) otherwise
(3.10)

and

Mi =

min(Ii,Mi) if Ii > Mi

min(Ii,Mi) + |Ii −Mi| otherwise
(3.11)
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In either case

Ii +Mi = 2 min(Ii,Mi) + |Ii −Mi| (3.12)

Then, using Equation (3.12)

k =
1

2

n∑
i=1

(Ii +Mi) =
n∑

i=1

min(Ii,Mi) +
1

2

n∑
i=1

|Ii −Mi| (3.13)

By definition,

1−H(I,M) =

k −
n∑

i=1

min(Ii,Mi)

k
(3.14)

Replacing k in the numerator by the expression in Equation (3.13) we have

1−H(I,M) =
1

2k

n∑
i=1

|Ii −Mi| (3.15)

and relation (3.9) is proven.

When we create a color histogram, we must quantize each component of the color

model using a number of bits. We define quantization X:Y :Z for color model ABC as

quantizing color component A using X bits, B using Y bits, and C using Z bits. In the

case of HSV , a 4:2:2 quantization refers to quantizing H using 4 bits, S using 2 bits,

and V using 2 bits. When not otherwise specified RGB refers to a 3:3:2 quantization

and HSV refers to a 4:2:2 quantization.

We applied the theoretical results described in Chapter 2 in two experiments. We

determined the influence of the similarity noise model on finding similar images which

differ due to either printer-scanner noise or change of viewpoint. We used two color image

databases. The first one was the Corel Photo database and the second one consisted of

500 reference images of domestic objects, tools, art artifacts, etc.

For benchmarking purposes we compared our results with the ones obtained using

Hafner’s quadratic distance measure (Lq) [HSE+95] and the color auto-correlogram (Cg)

[HRKM+97].

Hafner, et al. [HSE+95] introduced a sophisticated method of comparing histograms.

They used a quadratic distance measure Lq which allows for similarity matching between

different colors (represented by the color histograms bins)

Lq(x, y) = (x− y)tA(x− y) (3.16)
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where x and y are two color histograms, A = [aij] is a symmetric matrix, and the weights

aij denote similarity between bins (colors) i and j. These weights can be normalized so

that 0 ≤ aij ≤ 1, with aii = 1, and large aij denoting similarity between bins i and j,

and small aij denoting dissimilarity. In their implementation [HSE+95], the weights aij

are calculated using dij, the Euclidean distance (L2) between colors i and j in a color

space, for instance, [R(ed),G(reen),B(lue)]. Let dmax = max
ij

(dij) then

aij = 1− dij

dmax

(3.17)

The authors state that the quadratic distance measure more closely corresponds to

human judgment of color similarity than the Euclidean distance (L2). For simplicity,

consider a histogram distribution of three colors, say red, orange, and blue, with

Ared, orange, blue =

 1.0 0.9 0.0

0.9 1.0 0.0

0.0 0.0 1.0

 (3.18)

where red and orange are considered highly similar. Consider a pure red image,

x = [1.0, 0.0, 0.0]T , and a pure orange image, x = [0.0, 1.0, 0.0]T . The (squared) his-

togram distance given by Equation (3.16) is 0.2. This low distance reflects the percep-

tual similarity of the two images although their distribution populate distinct bins of the

histogram so their squared Euclidean distance is 2.0.

Observing the fact that the color histograms lack information about how color is

spatially distributed, Huang, et al. [HRKM+97], introduced a new color feature for image

retrieval called color correlogram. This feature characterizes how the spatial correlation

of pairs of color changes with distance in an image. A color correlogram of an image is

a table indexed by color pairs, where the k-th entry for 〈ci, cj〉 specifies the probability

of finding a pixel of color cj at distance k from a pixel of color ci in the image:

Cgk
ci,cj

(I) = Pp1∈Ici
[p2 ∈ Icj

||p1 − p2| = k] (3.19)

where p1 and p2 are pixels in the image and Ic = {p|I(p) = c} with I(p) denoting the

pixel color. Usually, because the size of color correlogram is quite large, the color auto-

correlogram (simply denoted as Cg) is often used instead. This feature only captures
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spatial correlation between identical colors

Cg = Cgk
ci,ci

(I) (3.20)

Local correlation between colors are more significant than global correlations in an

image and therefore, a small subset of distances k is sufficient to capture the spatial

correlation.

Since both Lq and Cg were meant to be benchmarks, they were implemented as

described in the original papers. For Lq, Hafner used a 256 bin histogram in RGB color

space. In computing the auto-correlograms, there were used 64 colors in RGB color space

and {1,3,5,7} for spatial distances, resulting in a 256 feature vector. The comparison

was made using L1.

Clearly, the maximum likelihood approach described in Section 2.6 can also be applied

to these features in the same way as it is applied to color histograms. However, in order

to have a fair benchmark we consider only the implementation from the original papers.

In a typical image retrieval application the result of a query is a ranked list of images

that are hopefully interesting to the user (a group of images similar to the query image).

From this list only a limited number of the retrieval results are showed to the user.

This is because in general a user will not want to browse through a large number of

retrieval results to find the image(s) he is looking for. In this context, we consider in our

experiments the best s retrieval results, where we define s as the scope.

The problem is formulated as follows: Let Q1, · · · ,Qn be the query images and for

the ith query Qi, and let I(i)
1 , · · · , I

(i)
m be the images similar with Qi according to the

ground truth. The retrieval method will return this set of answers with various ranks.

As an evaluation measure of the performance of the retrieval method we used precision

versus recall at different scopes: For a query Qi and a scope s > 0, the recall r is defined

as

r =
|{I(i)

j |rank(I
(i)
j ) ≤ s}|

m
(3.21)

and the precision p is defined as

p =
|{I(i)

j |rank(I
(i)
j ) ≤ s}|

s
(3.22)

Another interesting performance evaluation measure is the retrieval accuracy defined

as the percentage of correct copies found within the top s matches.
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3.5 Experiments with the Corel Database

The first experiments were done using 8,200 images from the Corel database. We

used this database because it represents a widely used set of photos by both ama-

teur and professional graphical designers. Furthermore, it is available on the Web at

http://www.corel.com. In these experiments we chose two of the most frequently used

color spaces, namely, RGB and HSV .

3.5.1 Early Experiments

Before we can measure the accuracy of particular methods, we first had to find a chal-

lenging and objective ground truth for our tests [SL99b]. We perused the typical image

alterations and categorized various kinds of noise with respect to finding image copies.

Copies of images were often made with images at varying JPEG qualities, in different

aspect ratio preserved scales, and in the printed media. We defined these as JPEG noise,

Scaling noise, and Printer-Scanner noise.

JPEG noise was created by coding and then decoding a JPEG image using varying

JPEG-quality values. Using HSV 4:2:2, JPEG quality 30, and L1 metric, we were able

to recover the exact image copy as the top rank with 100% retrieval accuracy from our

large image database.

In Scale noise, we made the copy by reducing the image in size so that the image

was aspect ratio preserved with maximum size 32×32. Using HSV 4:2:2 and L1 metric,

the copy was found within the top 10 ranks with 100% retrieval accuracy. We concluded

that JPEG noise and Scaling noise were not sufficiently challenging to discriminate the

different color indexing methods.

In Printer-Scanner noise, the idea was to measure the effectiveness of a retrieval

method when trying to find a copy of an image in a magazine or newspaper. In order

to create the ground truth we printed 82 images using an Epson Stylus 800 color printer

at 720 dots/inch and then scanned each of them at 400 pixels/inch using an HP IIci

color scanner. The noise from this copy process was the most significant in that the

copy was found in the top 10 ranks using HSV 4:2:2 and L1 metric with less than 45%

accuracy. From these primary investigations in Printer-Scanner noise we concluded that

this application is challenging and therefore we investigated it further.

Examples of copy pairs from the Printer-Scanner noise experiments are shown in

Figure 3.1. The query image is typically very different from the target image. In the
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copy pair containing the child, the textures on the sleeve and on the hair are missing.

Also, the cup and water jug are barely discernible. In the other copy pair, note the loss

of details in the background mountainside and windows on the lower-right house wall.

In conclusion, note that we purposely chose a hard ground truth in order to have a good

discrimination between the retrieval methods.

(a) (b) (c) (d)

Figure 3.1: Two examples of copy pairs used in Printer-Scanner noise experiments: (a)-
(c) the original image; (b)-(d) copy image. The copy image is very different from the
original image.

3.5.2 Usability Issues

In creating a system for users, it is important to take into account the way in which users

will interact with the system. Two important issues are: the total response time of the

system and the number of results pages which the user must look at before finding the

image copy. We made the following assumptions. First, in order to have an interactive

experience, the total system response time should be less than 2 seconds. Furthermore,

the number of results pages which are looked at by the user should reflect the usage of

real professionals. Graphical artists typically flip through stock photo albums containing

tens of pages, which amounts to a few hundred images for relevant material. For this

reason we show the results regarding the top 1 to 100 ranks. We also avoid methods

which require more than a few seconds of response time.

3.5.3 Printer-Scanner Noise Experiments

As we stated in Section 3.5.1, JPEG noise and Scaling noise were not sufficiently challeng-

ing to separate the different color indexing methods therefore, we focused on Printer-

Scanner noise application. Our ground truth consists of 82 copy-pairs: the original

images along with their copies obtained by printing and then scanning. The training
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set (see Section 2.7) was obtained by randomly choosing 50 copy-pairs from the ground

truth. The test set consisted of the remaining pairs from the ground truth.

As it was noted in Section 3.3 there are various color models proposed in the literature

and there has been no consensus about which one is most suitable for color based image

retrieval. In our experiments with Corel database we considered the two most frequently

used color models RGB and HSV . Initially, we compared the results obtained with each

of these color models using the L2 and L1 distance measures introduced above. Further,

we investigated the influence of the quantization scheme on the retrieval results. Finally,

based on the previous results, we used the color model that provided the best retrieval

results and investigated the influence of the similarity noise model on the retrieval results

applying the theoretical framework described in Chapter 2.

3.5.4 Color Model

The first question we asked was: Which color model gives better retrieval accuracy? As

shown in Figure 3.2, we obtained better retrieval accuracy when using the HSV color

model, regardless of using L1 or L2 distance measures. The results are also summarized

in Table 3.1. One can also notice that L1 consistently provided better retrieval results

compared to L2.
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Figure 3.2: Retrieval accuracy for the top 100 using HSV and RGB: (a) L1; (b) L2

3.5.5 Quantization

Based upon the improvement in the retrieval accuracy it is clear that the best choice is

to use the HSV color model with the L1 metric. So, the next question is: How does

the quantization scheme affect the retrieval accuracy? In Figure 3.3(a) it appears that
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Top 20 40 100
L2 48.78 54.87 67.07

HSV L1 62.19 68.29 84.14
L2 40.17 48.66 61.24

RGB L1 50.15 57.72 69.09

Table 3.1: Retrieval accuracy (%) for HSV and RGB using L1 and L2

increased resolution in H may be the cause of increased accuracy. This leads us to ask

whether further H resolution will give even better results. Figure 3.3(b) shows that this

is not the case.
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Figure 3.3: Retrieval accuracy for HSV using different quantization models (a) 4:2:2 -
3:3:2 and (b) 4:2:2 - 5:2:1

In summary, the choice of the color model and quantization can affect the accuracy

by up to 15% and 7%, respectively. Our first experiments showed that the best retrieval

results are obtained when using the HSV color model with a 4:2:2 quantization scheme.

Consequently, we use this color model in our next experiments.

3.5.6 Distribution Analysis

The next question we asked was: Which distribution is a good approximation for the

real color model noise? To answer this, we need to measure the noise with respect to

the color model. The real noise distribution (Figure 3.4) was obtained as the normalized

histogram of differences between the elements of color histograms corresponding to copy-

pair images from the training set (50 image pairs).

Note that the Chi-square test was used to calculate the approximation error which
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Figure 3.4: Noise distribution in Corel database compared with (a) the best fit Gaussian
(approximation error is 0.106), (b) best fit Exponential (approximation error is 0.082)
and (c) best fit Cauchy (approximation error is 0.068)

measures the fit between each of the model distributions and the real distribution. The

best fit Exponential had a better fit to the noise distribution than the Gaussian. Con-

sequently, this implies that L1 should have better retrieval results than L2. The Cauchy

distribution is the best fit overall, and the results obtained with Lc reflect this (see

Figure 3.5).
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Figure 3.5: Precision/Recall in Corel database; for Lc, a=1.32

If it is necessary to perform analytic computations, then the usage of one of the

analytic metrics like, L1, L2, or Lc metrics is required. The main advantage of these

metrics is the ease in implementation and analytic manipulation. However, neither

corresponding distribution models the real noise distribution accurately, so we expect

that we can lower the misdetection rates even further. As was shown in Section 2.6, a

metric, called maximum likelihood (ML) metric can be extracted directly from the real

noise distribution. We expect this metric to provide the best retrieval results.
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Figure 3.5 shows the precision/recall graphs. Lc gave a significant improvement

in accuracy as compared to L2, L1, and Lq. The Kullback relative information (K)

(see Equation (2.172)), Lq, and the correlograms Cg performed better than L2 and L1.

Overall, the ML metric gave the best accuracy.

The retrieval accuracy results are presented in Table 3.2. Note that the choice of the

noise model can significantly affect the retrieval accuracy. The usage of Lq and Cg also

produce improvement in retrieval accuracy compared with L2 and L1, since they use

some extra information regarding color similarity or spatial correlation between colors.

However, when the noise is modeled best, so therefore ML is used, we obtained the best

retrieval results.

Top 20 40 100
L2 48.78 54.87 67.07
L1 62.19 68.29 84.14
Lq 66.34 73.66 88.29
K 68.29 75.60 86.58

Lc a=1.32 71.95 79.26 92.68
ML 75.60 82.92 96.34
Cg 71.09 79.63 88.17

Table 3.2: Retrieval accuracy (%) in the Corel database

3.6 Experiments with the Objects Database

In the next experiments we used a database [GS00] consisting of 500 images of color

objects such as domestic objects, tools, toys, food cans, etc. The objects were recorded

in isolation (one per image) against a white cardboard background. The digitization

was done in 8 bits per color. Two light sources of average day-light color were used to

illuminate the objects in the scene. There was no attempt to individually control the

focus of the camera or the illumination. Objects were recorded at a pace of a few shots

a minute. They show a considerable amount of noise, shadows, shading, specularities,

and self occlusion resulting in a good representation of views from everyday life.

As ground truth we used 48 images of 8 objects taken from different camera view-

points (6 images for a single object). The objects were put perpendicularly in front of

the camera and recordings were generated by varying the angle between the camera for



3.6. EXPERIMENTS WITH THE OBJECTS DATABASE 83

s={30,45,60,75,80} degrees with respect to the object’s surface normal. An example is

shown in Figure 3.6.

Figure 3.6: Example of images of one object taken from different camera viewpoints

For this experiment we chose to implement a method proposed in [GS99] designed

for indexing by color invariants. Our goal was to study the influence of the similarity

noise on the retrieval results.

Using 24 images with varying viewpoint as the training set, we calculated the real

noise distribution and studied the influence of different distance measures on the retrieval

results. We used the l1l2l3 color model introduced previously and we quantized each color

component with 3 bits resulting in color histograms with 512 bins.

The Cauchy distribution was the best match for the measured noise distribution. The

Exponential distribution was a better match than the Gaussian (Figure 3.7). Table 3.3

shows the precision and recall values at various scopes. The results obtained with Lc

were consistently better than the ones obtained with L2 or L1.
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Figure 3.7: Noise distribution in color objects database compared with (a) the best fit
Gaussian (approximation error is 0.123), (b) best fit Exponential (approximation error
is 0.088) and (c) best fit Cauchy (approximation error is 0.077)

Figure 3.8 shows the precision-recall graphs. The curve corresponding to Lc is above

the curves corresponding to L1 or L2 showing that the method using Lc is more effective.
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Precision Recall
Scope 5 10 25 5 10 25
L2 0.425 0.258 0.128 0.425 0.517 0.642
L1 0.45 0.271 0.135 0.45 0.542 0.675
Lq 0.46 0.280 0.143 0.46 0.561 0.707
K 0.466 0.279 0.138 0.466 0.558 0.692
Lc 0.525 0.296 0.146 0.525 0.592 0.733
ML 0.533 0.304 0.149 0.533 0.618 0.758
Cg 0.5 0.291 0.145 0.5 0.576 0.725

Table 3.3: Recall/Precision versus Scope; for Lc, a=2.88

Note that the Kullback relative information performed better than L1 or L2.
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Figure 3.8: Precision/Recall for color objects database; for Lc, a=2.88

In summary, Lc performed better than the analytic distance measures, and the ML

metric performed best overall. It is interesting that the Kullback relative information per-

formed consistently better than the well-known histogram intersection (L1), and roughly

the same as Lq. The correlogram (Cg) performed better than L1, L2, Lq, and K.

3.7 Concluding Remarks

We examined two applications from computer vision which involve distortions derived

either from changes in viewpoint or from the process of printing and scanning. The

first application was finding copies of images which had been printed and then scanned.

For this application we used the Corel stock photo database and a color histogram

method for finding the copies. The second application dealt with finding all images of



3.7. CONCLUDING REMARKS 85

an object in a database where the images were taken from different viewpoints. The

database consisted of color images taken from multicolored man-made objects composed

of variety of materials including plastic, textile, paper, wood, rubber, painted metal,

and ceramic. Both the ground truth and the algorithm came from the work by Gevers

and Smeulders [GS99]. Note that in their work, they used the L1 metric. Furthermore,

for both applications, we implemented Hafner’s quadratic perceptual similarity measure

[HSE+95] and Huang’s correlogram [HRKM+97] as benchmarks.

For both applications in our experiments, the Cauchy distribution was the best match

for the similarity noise distribution and consequently the results obtained with Lc were

better than the ones obtained with L2 and L1. Overall, the ML metric consistently

outperformed all of the other metrics including the algorithms by Hafner, et al. [HSE+95]

and Huang, et al. [HRKM+97].





Chapter 4

Robust Texture Analysis

Textures are one of the basic features in visual searching and computer vision. In the

research literature, most of the attention has been focussed on the texture features with

minimal consideration of the noise models. In this chapter we investigate the problem of

texture classification from a maximum likelihood perspective. We take into account the

texture models (e.g., Gabor and wavelet models and texture distribution models such

as gray-level differences, Laws’ models, covariance models, and local binary patterns),

the noise distribution, and the inter-dependence of the texture features. We use the

Brodatz’s texture database [Bro66] in two experiments. Firstly, we use a subset of nine

textures from the database in a texture classification experiment. The goal is to classify

correctly random samples extracted from the original textures. In these experiments we

use the texture distribution models for extracting features as in the work by Ojala, et al.

[OPH96]. Secondly, we consider a texture retrieval application where we extract random

samples from all the 112 original Brodatz’s textures and the goal is to retrieve samples

extracted from the same original texture as the query sample. As texture models we use

the wavelet model as in the work by Smith and Chang [SC94] and the Gabor texture

model as in the work by Ma and Manjunath [MM96].

4.1 Introduction

Texture is an intuitive concept. Every child knows that leopards have spots but tigers

have stripes, that curly hair looks different from straight hair, etc. In all these examples

there are variations of intensity and color which form certain repeated patterns called

visual texture. The patterns can be the result of physical surface properties such as rough-

ness or oriented strands which often have a tactile quality, or they could be the result of

87
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reflectance differences such as the color on a surface. Even though the concept of tex-

ture is intuitive (we recognize texture when we see it), a precise definition of texture has

proven difficult to formulate. This difficulty is demonstrated by the number of different

texture definitions attempted in the literature [BCG90][RP74][Har79][CSK93][TMY78].

Despite the lack of a universally accepted definition of texture, all researchers agree

on two points:

(1) within a texture there is significant variation in intensity levels between nearby

pixels; that is, at the limit of resolution, there is non-homogeneity

(2) texture is a homogeneous property at some spatial scale larger than the resolution

of the image.

It is implicit in these properties of texture that an image has a given resolution. A

single physical scene may contain different textures at varying scales. For example, at

a large scale the dominant pattern in a floral cloth may be a pattern of flowers against

a white background, yet at a finer scale the dominant pattern may be the weave of the

cloth. The process of photographing a scene, and digitally recording it, creates an image

in which the pixel resolution implicitly defines a finest scale. It is conventional in the

texture analysis literature to investigate texture at the pixel resolution scale; that is,

the texture which has significant variation at the pixel level of resolution, but which is

homogeneous at a level of resolution about an order of magnitude coarser.

Some researchers finesse the problem of formally defining texture by describing it

in terms of the human visual system: textures do not have uniform intensity, but are

nonetheless perceived as homogeneous regions by a human observer. Other researchers

are completely driven in defining texture by the application in which the definition is

used. Some examples are given here:

• “An image texture may be defined as a local arrangement of image irradiances

projected from a surface patch of perceptually homogeneous irradiances.” [BCG90]

• “Texture is defined for our purposes as an attribute of a field having no components

that appear enumerable. The phase relations between the components are thus not

apparent enumerable. The phase relations between the components are thus not

apparent. Nor should the field contain an obvious gradient. The intent of this def-

inition is to direct attention of the observer to the global properties of the display,

i.e., its overall “coarseness,” “bumpiness,” or “fineness.” Physically, nonenumerable
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(aperiodic) patterns are generated by stochastic as opposed to deterministic pro-

cesses. Perceptually, however, the set of all patterns without obvious enumerable

components will include many deterministic (and even periodic) textures.” [RP74]

• “An image texture is described by the number and types of its (tonal) primitives

and the spatial organization or layout of its (tonal) primitives ... A fundamental

characteristic of texture: it cannot be analyzed without a frame of reference of

tonal primitive being stated or implied. For any smooth gray tone surface, there

exists a scale such that when the surface is examined, it has no texture. Then as

resolution increases, it takes on a fine texture and then a coarse texture.” [Har79]

• “Texture regions give different interpretations at different distances and at differ-

ent degrees of visual attention. At a standard distance with normal attention, it

gives the notion of macroregularity that is characteristic of the particular texture.”

[CSK93]

A definition of texture based on human perception is suitable for psychometric studies

and for discussion on the nature of texture. However, such a definition poses problems

when used as the theoretical basis for a texture analysis algorithm. Consider the three

images in Figure 4.1. All three images are constructed by the same method, differing

in only one parameter. Figures 4.1(a) and (b) contain perceptually different textures,

whereas Figures 4.1(b) and (c) are perceptually similar. Any definition of texture, in-

tended as the theoretical foundation for an algorithm and based on human perception,

has to address the problem that a family of textures, as generated by a parameterized

method, can vary smoothly between perceptually distinct and perceptually similar pairs

of textures.

4.2 Human Perception of Texture

Julesz has studied texture perception extensively in the context of texture discrimination

[JGSF73][Jul75]. The question he posed was: “When is a texture pair discriminable,

given that the textures have the same brightness, contrast, and color?” His approach

was to embed one texture in the other. If the embedded patch of texture visually stood

out from the surrounding texture, then the two textures were considered to be dissimilar.

In order to analyze if two textures are discriminable, he compared their first and second

order statistics.
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(a) (b) (c)

Figure 4.1: Visibility of texture distinctions; Each of the images is composed of lines
of the same length having their intensity drawn from the same distribution and their
orientations drawn from different distributions. The lines in (a) are drawn from the
uniform distribution, with a maximum deviation from the vertical of 45◦. The orientation
of lines in (b) is at most 30◦ from the vertical and in (c) at most 28◦ from the vertical.

First order statistics measure the likelihood of observing a gray value at a randomly

chosen location in the image. These statistics can be computed from the histogram of

pixel intensities in the image. These depend only on individual pixel values and not on

the interaction or co-occurrence of neighboring pixel values. The average intensity in

an image is an example of a first order statistic. Second order statistics are defined as

the likelihood of observing a pair of gray values occurring at the endpoints of a dipole

of random length placed in the image at a random location and orientation. These are

properties of pairs of pixel values.

Julesz found that textures with similar first order statistics, but different second order

statistics were easily discriminated. However, he could not find any textures with the

same first and second order statistics that could be discriminated. This led him to the

conjecture that “iso-second-order textures are indistinguishable.” [JGSF73]

Later Caelli, et al. [CJG78] did produce iso-second-order textures that could be

discriminated with pre-attentive human visual perception. Further work by Julesz

[Jul81a][Jul81b] revealed that his original conjecture was wrong. Instead, he found that

the human visual perception mechanism did not necessarily use third order statistics

for the discrimination of these iso-second-order textures, but rather use the second or-

der statistics of features he called textons. These textons are described as being the

fundamentals of texture. Three classes of textons were found: color, elongated blobs,

and the terminators (end points) of these elongated blobs. The original conjecture was
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revised to state that “the pre-attentive human visual system cannot compute statistical

parameters higher than second order.” Furthermore, Julesz stated that the pre-attentive

human visual system actually uses only the first order statistics of these textons.

Since these pre-attentive studies into the human visual perception, psychophysical

research has focused on developing physiologically plausible models of texture discrim-

ination. These models involved determining which measurements of textural variations

humans are most sensitive to. Textons were not found to be the plausible textural dis-

criminating measures as envisaged by Julesz [BA88][VP88]. Beck, et al. [BSI87] argued

that the perception of texture segmentation in certain types of patterns is primarily

a function of spatial frequency analysis and not the result of a higher level symbolic

grouping process. Psychophysical research suggested that the brain performs a multi-

channel, frequency, and orientation analysis of the visual image formed on the retina

[CR68][DVAT82]. Campbell and Robson [CR68] conducted psychophysical experiments

using various grating patterns. They suggested that the visual system decomposes the

image into filtered images of various frequencies and orientations. De Valois, et al.

[DVAT82] have studied the brain of the macaque monkey which is assumed to be close

to the human brain in its visual processing. They recorded the response of the sim-

ple cells in the visual cortex of the monkey to sinusoidal gratings of various frequencies

and orientations and concluded that these cells are tuned to narrow ranges of frequency

and orientation. These studies have motivated vision researchers to apply multi-channel

filtering approaches to texture analysis. Tamura, et al. [TMY78] and Laws [Law80]

identified the following properties as playing an important role in describing texture:

uniformity, density, coarseness, roughness, regularity, linearity, directionality, direction,

frequency, and phase. Some of these perceived qualities are not independent. For exam-

ple, frequency is not independent of density, and the property of direction only applies

to directional textures. The fact that the perception of texture has so many different di-

mensions is an important reason why there is no single method of texture representation

which is adequate for a variety of textures.

4.3 Texture Features

Interest in visual texture was triggered by the phenomenon of texture discrimination

which occurs when a shape is defined purely by its texture, with no associated change

in color or brightness: color alone cannot distinguish between tigers and cheetahs! This

phenomenon gives clear justification for texture features to be used in content based
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retrieval together with color and shape. Several systems have been developed to search

through image databases using combination of texture, color, and shape attributes

(QBIC [FSN+95], Photobook [PPS96], Chabot [OS95], VisualSEEk [SC96], etc.). Al-

though, in these systems texture features are used in combination with color and shape

features, texture alone can also be used for content based retrieval.

In practice, there are two different approaches in which texture is used as the main

feature for content based retrieval. In the first approach, texture features are extracted

from the images and then are used for finding similar images in the database [MM98]

[GP94] [SC94]. Texture queries can be formulated in a similar manner to color queries, by

selecting examples of desired textures from a palette, or by supplying an example query

image. The system then retrieves images with texture measures most similar in value to

the query. The systems using this approach may use already segmented textures as in

the applications with Brodatz database [PKL93], or they first have a segmentation stage

after which the extracted features in different regions are used as queries [MM98]. The

segmentation algorithm used in this case may be crucial for the content based retrieval.

In the second approach, texture is used for annotating the image [PM95]. Vision based

annotation assists the user in attaching descriptions to large sets of images and video. If

a user labels a piece of an image as “water,” a texture model can be used to propagate

this label to other visually similar regions.

The method of texture analysis chosen for feature extraction is critical to the success

of texture classification. However, the metric used in comparing the feature vectors is

also clearly critical. Many methods have been proposed to extract texture features either

directly from the image statistics, e.g. co-occurrence matrix [HSD73], or from the spatial

frequency domain [VGDO85]. Ohanian and Dubes [OD92] studied the performance of

four types of features: Markov Random Fields parameters, Gabor multi-channel features,

fractal based features, and co-occurrence features. Comparative studies to evaluate the

performance of some texture measures were made in [RDB93][OPH96]. Recently there

has been a strong push to develop multiscale approaches to the texture problem. Smith

and Chang [SC94] used the statistics (mean and variance) extracted from the wavelet

subbands as the texture representation. To explore the middle-band characteristics, tree-

structured wavelet transform was used by Chang and Kuo [CK93]. Ma and Manjunath

[MM95] evaluated the texture image annotation by various wavelet transform repre-

sentations, including orthogonal and bi-orthogonal wavelet transforms, tree-structured

wavelet transform, and the Gabor wavelet transform (GWT). They found out that the

Gabor transform was the best among the tested candidates, which matched the human
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vision study results [BSI87].

Most of these previous studies have focussed on the features, but not on the metric,

nor on modeling the noise distribution. Here, we study the effect of the similarity noise,

the metric, and their interrelationship within the maximum likelihood paradigm, using

texture distribution models, Gabor, and wavelet features.

4.3.1 Texture Distribution Models

Texture distribution methods use probability density function (PDF) models which are

sensitive to high order interactions. Typically, these methods use a histogram model

in which the partitioning of the intensity space is sensitive to high order interactions

between pixels. This sensitivity is made feasible by quantizing the intensity values to

a small number of levels, which considerably reduces the size of the space. The largest

number of levels used is four, but two levels, or thresholding, is more common. These

methods can be categorized into the following classes: gray-level differences, Laws’ tex-

ture measures, center-symmetric covariance measures, and local binary patterns. We

briefly describe them and give references to the original papers.

Gray-level differences

The class of gray-level differences were used by Unser [Uns86]. These methods capture

the distribution of local contrast in different directions. Since they rely on the differences,

they provide reduced dependence on intensity. In our implementation, we used four

measures based on the gray-level difference method. By accumulating the differences of

the adjacent gray levels in the horizontal and vertical directions, we create histograms

DIFFX and DIFFY. When we accumulate the absolute differences in both horizontal

and vertical directions, we arrive at DIFF2, and in DIFF4, we accumulate the absolute

differences in all four principal directions, which also gives rotational invariance.

Laws’ texture energy measures

Beyond gray-level differences, we examine larger convolution masks which measure the

energy of local patterns. From Laws’ work [Law80] on texture energy measures, we

used four Laws’ 3× 3 operators (see Figure 4.2): two perform edge detection in vertical

(L3E3) and horizontal directions (E3L3) and the other ones are line detectors in these

two orthogonal directions (L3S3 and S3L3).
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Figure 4.2: Four 3×3 Laws’ masks used in the experiments

Center-symmetric covariance measures

We also consider statistical concepts of symmetry and covariance. Harwood, et al.

[HOP+95] introduced measures for gray-level symmetry (positive) and anti-symmetry

(negative) by computing local auto-covariances or auto-correlations of center-symmetric

pixel values of suitably sized neighborhoods. We implemented a local center-symmetric

auto-correlation measure based on neighborhood rank-order (SRAC) and a related co-

variance measure (SCOV).

SCOV is a measure of the pattern correlation as well as the local pattern contrast.

SCOV =
1

4

4∑
i=1

(gi − µ)(g′i − µ) (4.1)

where gi refers to the gray level of pixel i (see Figure 4.3) and µ denotes the local mean.
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Figure 4.3: A 3×3 neighborhood with 4 center-symmetric pairs of pixels

SRAC is a gray-scale invariant measure which ignores the local means and variances

but preserves local linear and ranked ordering.
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SRAC = 1−
12

{
4∑

i=1

(ri − r′i)
2 + Tx

}
m3 −m

(4.2)

Tx =
1

12

l∑
i=1

(t3i − ti) (4.3)

where m is n2 (considering a n× n neighborhood), each ti is the number of ties at rank

ri, ri refers to the rank of the gray level pixel i, and l defines the number of different

ranks. The values of SRAC are bounded between -1 and 1.

Since SCOV it is not normalized with respect to local gray scale variation, it pro-

vides more texture information than SRAC. However, there is a tradeoff here: since the

unnormalized SCOV is more sensitive to local sample variation, it is not so invariant as

SRAC which is very robust in the presence of local gray scale variability or noise.

Local binary patterns and trigrams

Another way of analyzing local patterns is to binarize the local pattern information

and measure the distribution of these patterns in the texture. Ojala, et al. [OPH96]

proposed a texture unit represented by eight elements, each of which has two possible

values {0,1} obtained from a neighborhood of 3×3 pixels. These textures units are called

local binary patterns (LBP) and their occurrence of distribution over a region forms the

texture spectrum. The LBP is computed by thresholding each of the noncenter pixels

by the value of the center pixel, resulting in 256 binary patterns. The LBP method

is gray-scale invariant and can be easily combined with a simple contrast measure by

computing for each neighborhood the difference of the average gray-level of those pixels

which after thresholding have the value 1, and those which have the value 0, respectively.

The algorithm is detailed below:

For each 3×3 neighborhood, consider Pi the intensities of the component pixels with

P0 the intensity of the center pixel. Then,

1. Threshold pixels Pi by the value of the center pixel: P ′
i =

0 if Pi < P0

1 otherwise

2. Count the number n of resulting non-zero pixels: n =
8∑

i=1

P ′
i
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Figure 4.4: Computation of Local Binary Pattern (LBP) and contrast measure (C).

3. Calculate the local binary pattern: LBP =
8∑

i=1

P ′
i2

i−1

4. Calculate the local contrast:

C =


0 if n = 0 or n = 8

1
n

8∑
i=1

P ′
iPi − 1

8−n

8∑
i=1

(1− P ′
i )Pi otherwise

A numerical example is given in Figure 4.4.

Another texture unit called trigram was introduced by Huijsmans, et al. [HPL96].

This texture unit is represented by 9 elements each of which has two possible values

{0,1} obtained from a neighborhood of 3 × 3 pixels. The value 0 or 1 associated with

each element is calculated by applying a threshold in gradient space. If the pixel value is

greater than the threshold then, the assigned value of the corresponding trigram element

is 1, otherwise 0. This results in 512 trigrams which are accumulated in a histogram.

Note that for the trigrams it is important to select the threshold properly.

Complementary feature pairs

In many cases a single texture measure cannot provide sufficient information about the

spatial and frequency oriented structure of the local texture. Better discrimination of

textures can be obtained considering joint occurrences of two or more features. Therefore,

we consider pairs of features which provide complementary information.
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The center-symmetric covariance measures provide robust information about the lo-

cal texture, but little about the exact local spatial pattern. This suggests that as com-

plementary features we should consider measures that provide spatial patterns such as

LBP, trigrams, or any difference measure. We consider two different features combined

with LBP. LBP/C is based on the contrast measure already introduced and the other

pair is LBP/SCOV. Laws’ masks perform edge and line detections in horizontal and

vertical directions. Since these patterns can be in arbitrary directions, the joint use

of edge and line detectors in the orthogonal directions should be considered. Simi-

larly, the joint use of histograms of differences between neighboring pixels computed

in the horizontal and vertical directions should provide useful information for texture

discrimination. The pair L3E3/E3L3 corresponds to edge detection, L3S3/S3L3 to line

detection, DIFFX/DIFFY to absolute gray-level in the horizontal and vertical direction,

respectively, and DIFFY/SCOV combines absolute gray-scale differences in the vertical

direction with the center-symmetric covariance measure.

4.3.2 Gabor and Wavelet Models

The Fourier transform is an analysis of the global frequency content in the signal. Many

applications require the analysis to be localized in the spatial domain. This is usually

handled by introducing spatial dependency into the Fourier analysis. The classical way

of doing this is through what is called the window Fourier transform. Considering a one

dimensional signal f(x), the window Fourier transform is defined as:

Fw(u, ψ) =

∫ ∞

−∞
f(x)w(x− ψ)e−j2πuxdx (4.4)

When the window function w(x) is Gaussian, the transform becomes a Gabor trans-

form. The limits of the resolution in the time and frequency domain of the window

Fourier transform are determined by the time-bandwidth product or the Heisenberg un-

certainty inequality given by ∆t∆u ≥ 1
4π

. Once a window is chosen for the window

Fourier transform, the time-frequency resolution is fixed over the entire time-frequency

plane. To overcome the resolution limitation of the window Fourier transform, one lets

the ∆t and ∆u vary in the time-frequency domain. Intuitively, the time resolution must

increase as the central frequency of the analyzing filter is increased. That is, the relative

bandwidth is kept constant in a logarithmic scale. This is accomplished by using a win-

dow whose width changes as the frequency changes. Recall that when a function f(t) is
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scaled in time by a, which is expressed as f(at), the function is contracted if a > 1 and

it is expanded when a < 1. Using this fact, the Wavelet transform can be written as:

Wf,a(u, ψ) =
1√
a

∫ ∞

−∞
f(t)h

(
t− ψ

a

)
dt (4.5)

Setting in Equation (4.5),

h(t) = w(t)e−j2πut (4.6)

we obtain the wavelet model for texture analysis. Usually the scaling factor will be based

on the frequency of the filter.

Daugman [Dau80] proposed the use of Gabor filters in the modeling of receptive fields

of simple cells in the visual cortex of some mammals. The proposal to use the Gabor

filters in texture analysis was made by Turner [Tur86] and Clark and Bovik [CB87].

Gabor filters produce spatial-frequency decompositions that achieve the theoretical lower

bound of the uncertainty principle [Dau85]. They attain maximum joint resolution in

space and spatial-frequency bounded by the relations ∆x∆u ≥ 1
4π

and ∆y∆v ≥ 1
4π

,

where [∆x,∆y] gives the resolution in space and [∆u,∆v] gives the resolution in spatial-

frequency.

A two-dimensional Gabor function consists of a sinusoidal plane wave of a certain

frequency and orientation modulated by a Gaussian envelope. It is given by:

g(x, y) = exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))
cos(2πu0(x cos θ + y sin θ)) (4.7)

where u0 and θ are the frequency and phase of the sinusoidal wave, respectively. The

values σx and σy are the sizes of the Gaussian envelope in the x and y directions,

respectively. The Gabor function at an arbitrary orientation θ0 can be obtained from

(4.7) by a rigid rotation of the xy plane by θ0.

The Gabor filter is a frequency and orientation selective filter. This can be seen

from the Fourier domain analysis of the function. When the phase θ is 0, the Fourier

transform of the resulting even-symmetric Gabor function g(x, y) is given by:

G(u, v) = A

(
exp

(
−1

2

(
(u− u0)

2

σ2
u

+
v2

σ2
v

))
+ exp

(
−1

2

(
(u+ u0)

2

σ2
u

+
v2

σ2
v

)))
(4.8)

where σu = 1/(2πσx), σv = 1/(2πσy), and A = 2πσxσy. This function is real-valued
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and has two lobes in the spatial frequency domain, one centered around u0, and another

centered around −u0. For a Gabor filter of a particular orientation, the lobes in the

frequency domain are also appropriately rotated. An example of a 1D Gabor function

in spatial and frequency domains is given in Figure 4.5.
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Figure 4.5: 1D Gabor function in (a) spatial domain and (b) frequency domain

The Gabor filter masks can be considered as orientation and scale tunable edge and

line detectors. The statistics of these microfeatures in a given region can be used to

characterize the underlying texture information. A class of such self similar functions

referred to as Gabor wavelets is discussed in [MM96]. This self-similar filter dictionary

can be obtained by appropriate dilations and rotations of g(x, y) through the generating

function,

gmn(x, y) = a−mg(x′, y′), m = 0, 1, · · · , S − 1 (4.9)

x′ = a−m(x cos θ + y sin θ), y′ = a−m(−x sin θ + y cos θ)

where θ = nπ/K, K the number of orientations, S the number of scales in the multires-

olution decomposition, and a = (Uh/Ul)
−1/(S−1) with Ul and Uh the lower and the upper

center frequencies of interest, respectively.

Another approach which uses the trade-off between space and spatial-frequency res-

olution without using Gabor functions is using a wavelet filter bank. The wavelet filter

bank produces octave bandwidth segmentation in spatial-frequency. It allows simultane-

ously for high spatial resolutions at high spatial-frequencies and high spatial-frequency

resolution at low spatial-frequencies. Furthermore, the wavelet tiling is supported by

evidence that visual spatial-frequency receptors are spaced at octave distances [Dau89].

A quadrature mirror filter (QMF) bank was used for texture classification by Kundu and
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Chen [KC92]. A two band QMF bank utilizes orthogonal analysis filters to decompose

data into low-pass and high-pass frequency bands. Applying the filters recursively to the

lower frequency bands produces wavelet decomposition as illustrated in Figure 4.6.
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Figure 4.6: Texture classifier for Brodatz textures samples using QMF-wavelets based
features

4.4 Texture Classification Experiments

In our first experiments, nine classes of textures - herringbone, wool, calf, sand, waves,

wood, raffia, pigskin, and plastic - taken from Brodatz’s album [Bro66] were used (Fig-

ure 4.7). The texture images were normalized to have the same gray-level mean and

standard deviation in order to avoid gray-level bias which is unrelated to the image

texture. The test samples were obtained by randomly subsampling the original texture

images. 1000 subsamples each consisted of rectangular blocks of 32 × 32 or 16 × 16

pixels in size were extracted from every texture class, resulting in a classification of 9000

random samples in total. Regarding implementation, we used the same number of bins

for the texture classification methods as in the survey by Ojala [OPH96]. In the case of

Trigrams, 512 bins were used.

As feature vectors we used the texture distribution features introduced in Section

4.3.1. In order to obtain better texture discrimination we also considered joint occur-

rences of two features, as described in Section 4.3.1.

4.4.1 Texture Classification

In our experiments we used a nearest neighbor classifier. The classification of a sample

was based on comparing the sample distribution of feature values to several pre-defined

model distributions of feature values with known true-class labels. The sample was
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herringbone (D15) wool (D19) calf (D24)

sand (D29) waves (D38) wood (D68)

raffia (D84) pigskin (D92) plastic (D112)

Figure 4.7: Brodatz textures
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assigned the label of the model that was found to be more similar, using a certain

similarity measure.

Consider that s and m are the sample and the model distributions, n is the number of

bins, and si, mi are respective sample and model probabilities at bin i. In this context,

the L1 metric will have the expression:

L1(s,m) =
n∑

i=1

|mi − si| (4.10)

The other metrics, such as L2 and Lc, can be defined similarly. As benchmark we use the

Kullback discriminant (see Equation (2.172)). In this case, the Kullback discriminant

measures likelihoods that samples are from an alternative texture class, based on exact

probabilities of feature values of pre-classified texture prototypes:

K(s,m) =
n∑

i=1

si log
si

mi

(4.11)

The model distribution for each class was obtained by scanning the original gray-scale

256 × 256 texture image with the local texture operator. The number of bins used in

quantization of feature space is important. Histograms with small number of bins will

not provide enough discriminative information about the distributions. Furthermore, if

histograms have too many bins and the average number of entries per bin is small, then

the histograms become sparse and unstable.

4.4.2 Distribution Analysis

From the maximum likelihood paradigm, the first critical step is to determine the real

noise distribution. Considering m the feature vector corresponding to a texture class M

and xi the feature vector corresponding to the sample block i extracted from M then

the real noise distribution is seen as the normalized histogram of differences between the

elements of the two vectors xi and m.

The next step is to determine the distortion between the real noise distribution and

the distributions associated with the L1, L2, and Lc distance measures, namely, the

Exponential, the Gaussian, and the Cauchy distributions. We present the quantitative

results in Table 4.1. For all the features considered, L1 has a lower modeling error

than L2 and therefore, L1 is a more appropriate distance measure than L2 regarding



4.4. TEXTURE CLASSIFICATION EXPERIMENTS 103

modeling the noise distribution. The Cauchy distribution is the best match for the noise

distribution so, consequently, the results obtained with Lc will outperform the results

obtained with L1 and L2.

LBP Trig DIFFX DIFFY DIFF2 DIFF4
L2 0.065 0.06 0.041 0.042 0.068 0.09
L1 0.052 0.051 0.029 0.032 0.05 0.078
Lc 0.05 0.047 0.025 0.027 0.048 0.073

L3E3 E3L3 L3S3 S3L3 SCOV SRAC
L2 0.03 0.035 0.039 0.042 0.03 0.037
L1 0.023 0.026 0.029 0.027 0.021 0.031
Lc 0.019 0.017 0.024 0.021 0.018 0.029

Table 4.1: The approximation error for the corresponding noise distribution using single
features

Furthermore, we visually display in Figure 4.8 the similarity noise distribution for

LBP matched by the best fit Exponential, best fit Gaussian, and the best fit Cauchy,

respectively. We can further conclude that the noise distribution is not Gaussian as

assumed with regard to the L2 measure.
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Figure 4.8: Noise distribution for LBP compared with the best fit Gaussian (a) (approx-
imation error is 0.065), best fit Exponential (b)(approximation error is 0.052), and best
fit Cauchy (c) (approximation error is 0.05)

For the feature pairs, we show the numerical modeling errors in Table 4.2. The results

are consistent with the single feature tests.
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LBP/C LBP/SCOV DIFFX/DIFFY DIFFY/SCOV L3E3/E3L3 L3S3/S3L3
L2 0.05 0.064 0.041 0.037 0.031 0.039
L1 0.045 0.044 0.026 0.019 0.015 0.028
Lc 0.041 0.039 0.025 0.017 0.012 0.022

Table 4.2: The approximation error for the corresponding noise distribution using pairs
of features

4.4.3 Misdetection Rates

The next step is to determine the misdetection rates from Brodatz’s test database. We

compute the misdetection rate as the percentage of misclassified texture blocks.
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Figure 4.9: Trigrams error rate (%) for different threshold values using L1 and 32 × 32
samples

Since the Trigrams require a threshold, this parameter affects the performance of the

method. For the tests, we used the optimal threshold which provided the best accuracy.

In Figure 4.9 is presented the trigrams misdetection error as a function of the threshold

when L1 was used and the sample size was 32 × 32. The optimal value for the threshold

in this case is 23.

In Figure 4.10, we display the misdetection rates for various distance measures versus

the sample size for each of the texture distribution features. Note that Lc consistently

yields lower misdetection rates, which agrees with the maximum likelihood paradigm.

Note that ML consistently has lower misdetection rates for all sample sizes. As expected,

the misdetection rate is getting smaller when the sample size increases.

In order to have an overall measure of the performance of a particular feature we
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Figure 4.10: Error rates (%) for single features as function of sample size using L1, L2,
Lc, the Kullback discriminant (K), and ML: (a) LBP, (b) DIFFX, (c) DIFFY, (d) DIFF2,
(e) DIFF4, (f) L3E3, (g) E3L3, (h) L3S3, (i) S3L3, (j) SCOV, (k) SRAC, (l) Trigram.
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calculated the average error rate when the sample size varied from 16 × 16 to 48 × 48

pixels (Table 4.3). LBP has the lowest average misdetection rate followed by DIFF4,

DIFF2, and Trigrams.

L2 L1 Lc K ML
LBP 4.62 3.68 3.47 4.1 2.84

DIFFX 13.44 8.89 7.87 10.5 5.84
DIFFY 13.22 8.07 7.42 10.53 6.11
DIFF2 11.86 7.46 6.86 8.78 5.09
DIFF4 11.56 7.15 6.54 8.66 4.72
L3E3 11.67 7.63 6.57 8.89 5.14
E3L3 23.09 19.57 18.27 21.33 16.98
L3S3 14.98 10.53 9.85 12.11 9.17
S3L3 18.85 16.68 15.4 17.5 14.48
SCOV 12.48 9.64 9.25 11.77 8.79
SRAC 14.97 13.02 12.21 13.82 11.35
Trig 13.64 7.93 7.18 9.4 5.7

Table 4.3: Average error rates (%) for single features when the sample size varied from
16× 16 to 48× 48 pixels

Regarding the feature pairs, the misdetection rates are shown in Figure 4.11. These

results are consistent with the single feature tests. Moreover, the use of joint occurrences

of features produces a much lower misdetection rate comparing with the case when only

one feature is considered.

The average error rate for pairs of features when the sample size varied from 16 ×
16 to 48 × 48 pixels is presented in Table 4.4. LBP/C and LBP/SCOV have the lowest

average misdetection rates.

When looking at the results one can ask if there really is a significant gain in accuracy

when using ML comparing with the other metrics. This question is even more legitimate

when pairs of features are considered. Consider for example the case where LBP/C

pair is used in classification (Figure 4.11(a)). When the sample size is greater than

32 the misdetection rates for all metrics are getting very close to zero, so the absolute

improvement is very small. However, if one would compute the improvement relative to

the ML result, the gain will be significant. In this context, in order to give a quantitative

value for the improvement in accuracy introduced by the ML distortion measure we
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Figure 4.11: Error rates (%) for pairs of features as function of sample size using
L1, L2, Lc, the Kullback discriminant (K), and ML: (a) LBP/C, (b) LBP/SCOV, (c)
DIFFX/DIFFY, (d) DIFFY/SCOV, (e) L3E3/E3L3, (f) L3S3/S3L3.

define the relative gain as being:

RG =

(
1− errML

errMIN

)
× 100 (4.12)

where errML denote the error rate obtained using theML distortion measure and errMIN

is the minimum error obtained using all the other distortion measures.

Tables 4.5 and 4.6 summarize the results for single and feature pairs across the L2,

L1, Lc, K, and ML distortion measures when 32 × 32 samples were considered. Note

that using the maximum likelihood approach one can lower the misdetection rate by

significant percentages.

Overall, for the single features LBP had the least error rate and for the feature pairs

LBP/C and LBP/SCOV provide the best results. The relative gain obtained by using
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L2 L1 Lc K ML
LBP/C 1.24 0.7 0.63 0.93 0.49

LBP/SCOV 1.53 0.51 0.43 0.79 0.26
DIFFX/DIFFY 5.61 2.97 2.68 3.41 2.11
DIFFY/SCOV 3.94 2.4 2.17 2.81 1.72

L3E3/E3L3 2.74 1.84 1.67 2.24 1.16
L3S3/S3L3 2.61 1.42 1.29 1.95 0.98

Table 4.4: Average error rates (%) for pairs of features when the sample size varied from
16× 16 to 48× 48 pixels

L2 L1 Lc K ML RG
LBP 2.42 1.98 1.86 3.05 1.51 18.81

DIFFX 12.71 7.14 6.1 8.37 4.04 33.77
DIFFY 12.40 8.47 7.2 10.05 4.67 35.13
DIFF2 10.73 6.03 5.34 7.56 4.91 8.05
DIFF4 10.87 6.57 5.9 7.12 3.62 38.64
L3E3 13.73 9.95 9.35 10.62 8.75 6.41
E3L3 22.12 18.47 17.35 19.33 15.24 12.16
L3S3 13.93 9.65 9.06 10.66 8.48 6.4
S3L3 17.77 15.49 14.54 15.64 13.12 9.76
SCOV 11.26 8.71 7.9 10.38 7.29 7.72
SRAC 13.38 11.18 10.5 11.85 9.83 6.38
Trig 13.02 5.94 5.05 7.30 3.27 35.24

Table 4.5: Error rates (%) for single features considering 32 × 32 samples. The last
column represent the relative gain (RG) in % obtained using the ML distortion measure
in comparison with the best of the other measures (Lc)

the ML distortion measure has significant values. Moreover, for pairs of features the

relative gain is in general greater than in the case of single features.

Summary

Most of the pattern recognition literature uses the Kullback discriminant or the sum of

squared differences (L2). By linking the distributions with the metrics, we can directly

show why a particular metric would outperform another metric. Specifically, the metric

which will have the least misdetection rate should be the metric whose distribution best
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L2 L1 Lc K ML RG
LBP/C 0.66 0.12 0.09 0.28 0.04 55.55

LBP/SCOV 1.27 0.35 0.27 0.88 0.12 55.55
DIFFX/DIFFY 4.91 1.91 1.62 2.32 1.05 35.18
DIFFY/SCOV 2.24 1.12 1.02 1.48 0.83 18.62

L3E3/E3L3 1.33 0.92 0.83 1.12 0.58 30.12
L3S3/S3L3 1.56 0.42 0.38 1.03 0.31 18.42

Table 4.6: Error rates for pairs of features considering 32 × 32 samples. The last column
represent the relative gain (RG) in % obtained using the ML distortion measure in
comparison with the best of the other measures (Lc)

matches the real noise distribution from the test set.

Given that the modeling of the real noise distribution is linked with the misdetection

rate, the next logical question is, What is the misdetection rate when we directly model

the real noise distribution? It is also validated that the lowest misdetection rate occurs

when we use an approximate, quantized model for the real noise distribution. The

corresponding distortion measure clearly outperforms the rest of the distortion measures

as shown in Figures 4.10 and 4.11.

Regarding completeness we have given the absolute error rates. We have also provided

one of the possible measures of improvement denoted as relative gain. This measure

reflects the significance of the ML distortion measure in comparison with the best of the

other measures. It should be noted that the real significance of a change in error rate

can only be made with regard to a particular application - whether the acceptable error

rate is 1 in a hundred or a thousand.

In the summary Figure 4.12 we show the average comparative results over all features

for L1, L2, Lc, K, and ML for single and complementary feature pairs. Note that ML

consistently provided lower misdetection rate comparing with all the other measures.

4.5 Texture Retrieval Experiments

What distinguishes image search for database related applications from traditional pat-

tern classification methods is the fact that there is a human in the loop (the user), and

in general there is a need to retrieve more than just the best match. In typical applica-

tions, a number of top matches with rank ordered similarities to the query pattern will
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Figure 4.12: Average error rates (%) over all features for single feature (a) and for pairs
of features (b) using: L1, L2, Lc, the Kullback discriminant (K), and ML

be retrieved. Comparison in the feature space should preserve visual similarities between

patterns. In this context, the next experiments dealt with a texture database retrieval

application.

The textures used in these experiments are the 112 Brodatz textures. We extract

random samples from the textures and store them in a texture database. The goal here

is to retrieve as many as possible similar samples in top n retrieved samples. The similar

samples, by definition, are the ones previously extracted from the same original texture

as the query sample. The database was formed by randomly subsampling 20 samples

of 128× 128 pixels in size from the 112 original textures, resulting in a number of 2240

texture samples.

4.5.1 Texture Features

As noted before, there has recently been a strong push to develop multiscale approaches

to the texture problem. These methods were found to be the best choices for texture

retrieval applications. Moreover, they match the human vision study results. In our

study we consider the Gabor and wavelet models introduced in Section 4.3.2.

As shown before, the wavelet transformation involves filtering and subsampling. A

compact representation needs to be derived in the transform domain for classification

and retrieval. The mean and the variance of the energy distribution of the transform

coefficients for each subband at each decomposition level are used to construct the feature

vector (Figure 4.6). Let the image subband be Wn(x, y), with n denoting the specific

subband. The resulting feature vector is f = {µn, σn} with,

µn =

∫
|Wn(x, y)|dx dy (4.13)
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σn =

√∫
(|Wn(x, y)| − µn)2dx dy (4.14)

Consider two image patterns i and j and let f (i) and f (j) represent the corresponding

feature vectors. The distance between the two patterns in the features space is:

d(f (i), f (j)) =
∑

n

(∣∣∣∣∣µ(i)
n − µ

(j)
n

α(µn)

∣∣∣∣∣
Lk

+

∣∣∣∣∣σ(i)
n − σ

(j)
n

α(σn)

∣∣∣∣∣
Lk

)
(4.15)

where α(µn) and α(σn) are the standard deviations of the respective features over the

entire database and Lk is a notation for all possible metrics that can be used, e.g. L1,

L2, Lc.

Note that in the case of Gabor wavelet transform (GWT) there are two indexes m

and n, with m indicating a certain scale and n a certain orientation.

4.5.2 Experiments Setup

First the ground truth was known since the samples were extracted from the original

textures. The ground truth was split into two non-overlapping sets: the training set

and the test set. In our experiments the training set consisted of 1000 samples from the

ground truth. Second, for each sample in the training set a feature vector was extracted

using the scheme in Figure 4.6. Note that in these experiments, the feature vector was

composed from two features: the mean and the variance. For each of them the real

noise distribution was estimated as the normalized histogram of the absolute difference

of corresponding elements from the feature vectors in the training set. The Gaussian,

Exponential, and Cauchy distributions were fitted to each real noise distributions using

the Chi-square test. We selected the model distribution which had the best fit and

its corresponding metric (Lk) was used in ranking. The ranking was done using only

the test set. It is important to note that for real applications, the parameter in the

Cauchy distribution was found by fitting this distribution to the real distribution from

the training set. This parameter setting was used for the test set and any further

comparisons in the application.

Note that there were two ML metrics calculated, one from the mean distribution and

the other one from the variance distribution. It is also interesting to note that metric

values were already normalized through the histogram so the normalization factors (the

standard deviations) in this case were not necessary.
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Recall that our database was composed by randomly extracting 20 subsamples from

the 112 original textures. When doing retrieval, in the ideal case all the top 19 retrievals

should be from the same original texture as the query sample. The performance was

measured in term of the average retrieval rate defined as the percentage of retrieving the

19 correct patterns when top n matches were considered.

4.5.3 Similarity Noise for QMF-Wavelet Transform

A QMF wavelet filter bank was used for texture classification by Kundu and Chen [KC92].

The authors identified several properties of the QMF filter bank as being relevant to

texture analysis: orthogonality and completeness of basic functions, filter outputs that

are spatially localized, and the reduction of complexity afforded by decimation of filter

outputs. In our implementation we used five levels of decomposition of the wavelet

transform. We extracted the mean and the variance of each subband in a 32 (16 subbands

× 2) dimensional feature vector.

As noted before, we had to compute two similarity noise distributions correspond-

ing to mean and variance features. The similarity noise distributions are displayed in

Figure 4.13 and 4.14. The similarity noise distribution was obtained as the normalized

histogram of differences between the corresponding feature elements from the training

set.
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Figure 4.13: Noise distribution for mean feature in QMF-wavelets compared with the best
fit Gaussian (a) (approximation error is 0.279), best fit Exponential (b) (approximation
error is 0.207), and best fit Cauchy (c) (approximation error is 0.174)

For both features, the Exponential had a better fit to the noise distribution than the

Gaussian. Consequently, this implies that L1 should have a better retrieval rate than

L2. The Cauchy distribution was the best fit overall and the results obtained with Lc

reflect this. Figure 4.15 presents the average retrieval rate for the correct patterns when
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Figure 4.14: Noise distribution for variance feature in QMF-wavelets compared with the
best fit Gaussian (a) (approximation error is 0.036), best fit Exponential (b) (approxi-
mation error is 0.0255), and best fit Cauchy (c) (approximation error is 0.023)

top n matches are considered. This results are also contained in Table 4.7. Note that

using ML we obtained the best average retrieval.
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Figure 4.15: Average retrieval rate using QMF-wavelets

Top 5 10 25 50
L2 62.43 68.86 78.83 85.14
L1 72.36 76.34 81.41 89.62
Lc 76.32 79.15 83.67 90.18
ML 80.06 83.58 88.66 94.24

Table 4.7: Comparison of retrieval performances using QMF-wavelets for different met-
rics

4.5.4 Similarity Noise for Gabor Wavelet Transform

A Gabor wavelet transform (GWT) enables us to obtain image representations which

are locally normalized in intensity and decomposed in spatial frequency and orientation.

It thus provides a mechanism for obtaining (1) invariance under intensity transforma-

tions, (2) selectivity in scale by providing a pyramid representation, and (3) it permits
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investigation of the local oriented features. In this paper, for the non-orthogonal Gabor

wavelet transform we used 4 scales (S=4) and 6 orientations/scale (K = 6).

The mean and the variance of the energy distribution of the transform coefficients for

each subband at each decomposition level were used to construct a 48 (6×4×2) dimen-

sional feature vector. We calculated the similarity noise distribution for both features

and fitted them with the model distributions. As seen from Table 4.8, the Cauchy dis-

tribution was the best match for the measured noise distribution. The Exponential was

a better match than the Gaussian.

Feature Gauss Exponential Cauchy
Mean 0.186 0.128 0.114

Variance 0.049 0.035 0.027

Table 4.8: The approximation error for the noise distribution using GWT

Figure 4.16 presents the average retrieval rate when different metrics were used. Note

that Lc had better retrieval rate than L1 and L2. ML provided the best results.
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Figure 4.16: Average retrieval rate using GWT

In summary, Lc performed better than the analytic distance measures, and the ML

metric performed best overall. Note that the results obtained with GWT were superior

to the ones obtained using QMF-wavelet transform.

4.6 Concluding Remarks

This research is differentiated from the previous works in texture analysis in that we had

investigated the role of the underlying noise distribution and corresponding metric in the

paradigm of maximum likelihood. Our experiments on both the noise distribution and
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the retrieval rates from using a particular distortion measure provided strong evidence

of the maximum likelihood theory.

We considered two kind of applications involving texture and we used the well-known

Brodatz’s textures. First, we investigated the influence of the noise distribution in a typi-

cal texture classification application using a nearest neighbor classifier. The classification

of a sample was based on comparing the sample distribution of feature values to sev-

eral pre-defined model distributions of feature values with known true-class labels. The

second application was a typical database retrieval application. The textures in the

database were obtained by randomly subsampling the original textures. The goal was

to retrieve as many samples as possible among the top n retrieved samples, which were

extracted from the same texture as the query texture.

In both experiments, we have found that the noise distribution is modeled better

by the Cauchy distribution than the Exponential or Gaussian distributions. Conse-

quently, among the analytic distortion measures, Lc consistently had a better misdetec-

tion/retrieval rate than L1 or L2.

Given that the modeling of the real noise distribution is linked with the retrieval

rate, the next logical question was, What is the misdetection/retrieval rate when we

directly model the real noise distribution? It was also validated that the best misdetec-

tion/retrieval rate occurs when we used an approximate, quantized model for the real

noise distribution. The corresponding distortion measure (ML) clearly outperformed

the rest of the distortion measures.





Chapter 5

Shape Based Retrieval

Together with color and texture, shape is one of the basic features in computer vision.

Shape analysis methods play an important role in systems for object recognition, match-

ing, registration, and analysis. Research in shape analysis has been motivated, in part,

by studies of human visual form perception systems. Several theories of visual form are

briefly mentioned here. A proper definition of shape similarity calls for the distinctions

between shape similarity in images (similarity between actual geometrical shapes appear-

ing in the images) and shape similarity between the objects depicted by the images, i.e.

similarity modulo a number of geometrical transformations corresponding to changes in

view angle, optical parameters, and scale. In our shape-based retrieval experiments we

concentrate on active contour methods for shape segmentation and invariant moments

for shape measures. We implemented two algorithms from the research literature and

we applied them on a standard object database.

5.1 Introduction

Shape is a concept which is widely understood yet difficult to define formally. For human

beings perception of shape is a high-level concept whereas mathematical definitions tend

to describe shape with low-level attributes. Therefore, there exists no uniform theory

of shape. However, the word shape can be defined in some specific frameworks. For

object recognition purposes Marshall [Mar89] defined shape as a function of position

and direction of a simply connected curve within a two-dimensional field. Clearly, this

definition is not general, nor even sufficient for general pattern recognition.

In pattern recognition, the definition suggested by Marshall [Mar89] is suitable for

117



118 CHAPTER 5. SHAPE BASED RETRIEVAL

two dimensional image objects whose boundaries or pixels inside the boundaries can be

identified. It must be pointed out that this kind of definition requires that there are

some objects in the image and, in order to code or describe the shape, the objects must

be identified by segmentation. Therefore, either manual or automatic segmentation is

usually performed before shape description.

How can we separate the objects from the background? Difficulties come from dis-

cretization, occlusions, poor contrast, viewing conditions, noise, complicated objects,

complicated background etc. In the cases where the segmentation is less difficult and

possible to overcome, the object shape is a characteristic which can contribute enor-

mously in further analysis. If segmentation is not an option, a global search in the form

of template matching is a possibility [JZL96]. Here, the template represents the desired

object to be found. However, performing template matching over a dense structure of

scales and rotations of an image is not an interactive solution regarding searches in large

image databases.

We are interested in using shape descriptors in content-based retrieval. Our problem

is as follows: assume that we have a large number of images in the database. Given a

query image, we would like to obtain a list of images from the database which are most

similar (here we consider the shape aspect) to the query image. For solving this problem,

we need two things - first, a measure which represents the shape information of the

image, and second a similarity measure to compute the similarity between corresponding

features of two images.

We addressed the problem of choosing a similarity metric in Chapter 2. There we

showed that in the case where representative ground truth is available, there is a way

to select the appropriate metric, and we proposed Lc as an alternative for both L2 and

L1. Furthermore, we showed how to create a maximum likelihood metric (ML) based

on the real noise distribution.

In this chapter, the problem of image retrieval using shape was approached by active

contours for segmentation and invariant moments for shape measure. Active contours

were first introduced by Kass, et al. [KWT88], and were termed snakes by the nature of

their movement. Active contours are a sophisticated approach to contour extraction and

image interpretation. They are based on the idea of minimizing energy of a continuous

spline contour subject to constraints on both its autonomous shape and external forces

derived from a superposed image that pull the active contour toward image features such

as lines and edges.

Moments describe a shape in terms of its area, position, orientation, and other pa-
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rameters. The set of invariant moments [Hu62] makes a useful feature vector for the

recognition of objects which must be detected regardless of position, size, or orientation.

Matching of the invariant moments feature vectors is computationally inexpensive and

is a promising candidate for interactive applications.

5.2 Human Perception of Visual Form

The goal of this section is to emphasize the role and the importance of research in inter-

disciplinary fields like visual perception, cognition, psychology, and physiology towards

the development of new shape analysis techniques.

From the broad field of cognitive science, the areas of visual cognition and perception

are of particular interest for the study of shape description. If the structure of the human

shape analysis system were known, it would be possible to develop analog artificial

systems. For this reason the study of shape analysis methods is often motivated by and

utilizes the results of research in the area of human visual perception. An exhaustive

survey of human visual perception research is beyond the scope of this chapter. Some

introductory and more advanced books and articles dealing with visual perception and

cognition include [Zus70, Cor70, Gra81, Low85, Pos89, Lon98]. In this section, a brief

overview of visual perception research related to shape description is presented.

The Gestalt school of psychology [Zus70] has played a revolutionary role with its

novel approach to visual form. The Gestalt theory is a non-computational theory of

visual form, and thus a disadvantage for practical engineering applications. However,

according to Zusne “it is still the only theory to deal with form in a comprehensive

fashion” ([Zus70], p. 108). There have been many books on Gestalt laws presenting

various lists of principles. These lists range from six to more than one hundred. Here,

we provide a list of laws for visual forms as proposed by Zusne [Zus70]:

• Visual form is the most important property of a configuration.

• Visual form is either dynamic or the outcome of dynamic processes which underlie

them.

• All visual forms possess at least two aspects, a figured portion called figure and a

background called ground.

• Visual forms may possess one or several centers of gravity about which the form is

organized.
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• Visual forms are transposable (with respect to translation, size, orientation, and

color) without loss of identity.

• Visual forms resist change. They tend to maintain their structure against disturb-

ing forces.

• Visual forms will always be as good (regular, symmetric, simple, uniform, exhibit-

ing the minimum amount of stress) as the conditions (pattern stimulus) allow.

• Forms may fuse to produce new ones.

• A change in one part of form affects other parts of the form (law of compensation).

• Visual forms tend to appear and disappear as wholes.

• Visual forms leave an aftereffect that make them easier to remember (law of repro-

duction).

• Space is anisotropic, it has different properties in different directions.

Another approach to the theory of visual form is found in Hebb’s work. Hebb pre-

sented a neuropsychological theory of behavior in his book “The Organization of Be-

havior” [Heb49]. In his theory, Hebb emphasized the role of neural structures in the

mechanism of visual perception. His work influenced a number of researchers in the

field of artificial neural networks. As opposed to the Gestalt school, Hebb argues that

form is not perceived as a whole but consists of parts. The organization and mutual

spatial relation of parts must be learned for successful recognition. This learning aspect

of perception is the central point in Hebb’s theory.

Gibson [Gib50] developed another comprehensive theory of visual perception. The

first principle of his theory is that space is not a geometric or abstract entity, but a

real visual one characterized by the forms that are in it. Gibson’s theory is centered

around perceiving real three-dimensional objects, not their two-dimensional projections.

The second principle is that a real world stimulus exists behind any simple or complex

visual perception. This stimulus is in the form of a gradient which is a property of the

surface. Examples of physical gradients are the change in size of texture elements (depth

dimension), degree of convergence of parallel edges (perspective), hue and saturation of

colors, and shading. Gibson points out that the Gestalt school has been occupied with

the study of two-dimensional projections of the three-dimensional world and that its
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dynamism is no more than the ambiguity of the interpretation of projected images. In

his classification there are ten different kinds of form:

• Solid form. (Seeing an object means seeing a solid form.)

• Surface form. (Slanted forms and forms with edges.)

• Outline form. (A drawing of edges of a solid form.)

• Pictorial form. (Representations which are drawn, photographs, paintings, etc.)

• Plan form. (A drawing of edges of a surface projected on a flat surface.)

• Perspective form. (A perspective drawing of a form.)

• Nonsense form. ( Drawings which do not represent a real object.)

• Plane geometric form. (An abstract geometric form not derived from or attempting

to make a solid form visible.)

• Solid geometric form. (An abstract part of a three-dimensional space bounded

with imaginary surfaces.)

• Projected form. (A plane geometric form which is a projection of a form.)

These forms are grouped into three classes as follows:

• Real objects: solid and surface forms.

• Representations of real objects: outline, pictorial, plan, perspective, and nonsense

forms.

• Abstract (non-real) objects: Plane geometric forms, solid geometric forms, and

projected forms.

The first class is the “real” class consisting of objects from the real world. The second

class are representations of real objects. The third class are abstractions that can be

represented using symbols but do not correspond to real objects (because they have no

corresponding stimulus in the real world).

Marr, et al. [Mar76, MP79, Mar82] made significant contributions to the study of

the human visual perception system. In Marr’s paradigm [Mar82], the focus of research

is shifted from applications to topics corresponding to modules of the human visual
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system. An illustration of this point is the so-called shape from x research which repre-

sents an important part of the total research in computer vision [Alo88]. Papers dealing

with shape from x techniques include: shape from shading [ZTS99], shape from con-

tour [HB88], shape from texture [MR97], shape from stereo [HA89], and shape from

fractal geometry [CKC90].

In [Mar76] Marr developed a primal sketch paradigm for early processing of visual

information. In his method, a set of masks is used to measure discontinuities in first

and second derivatives of the original image. This information is then processed by

subsequent procedures to create a primal sketch of the scene. The primal sketch contains

locations of edges in the image and is used by subsequent stages of the shape analysis

procedure. Marr and Hildreth [MH80] further developed the concept of the primal sketch

and proposed a new edge detection filter based on the zero crossings of the Laplacian of

the two-dimensional Gaussian distribution function. In this approach, zeros of Laplacian

indicate the inflection point in the edge to detect edge positions.

Koenderink [Koe84] and Koenderink and van Doorn [KVD86] have studied the psy-

chological aspects of visual perception and proposed several interesting paradigms. Con-

ventional approaches to shape are often static in the sense that they treat all shape

details equally as global shape features [KVD86]. A dynamic shape model was devel-

oped where visual perception is performed on several scales of resolution. Such notions

of order and relatedness are present in visual psychology and are absent in conventional

geometrical theories of shape. It has been argued in [KVD86] that there exist manuals

of art theory (such as [Gom60]) which have not been given the attention they deserve

and which contain practical knowledge accumulated over centuries. In art as well as in

perception, a shape is viewed as a hierarchical structure. A procedure for morphogenesis

based on multiple levels of resolution has been developed [KVD86]. Any shape can be

embedded in a “morphogenetic sequence” based on the solution of the partial differential

equation that describes the evolution of the shape through multiple resolutions.

Many authors agree on the significance of high curvature points for visual perception.

Attneave [Att54] performed psychological experiments to investigate the significance of

corners for perception. In the famous Attneave’s cat experiment a drawing of a cat

was used to locate points of high curvature which were then connected to create a

simplified drawing of the cat. After a brief presentation the cat could be reliably rec-

ognized in the drawing. It has been suggested that such points have high information

content. Attneave’s work has initiated further research on the topic of curve partition-

ing [WB91, FW94, KLP94]. To approximate curves by straight lines, high curvature
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points are the best place to break the lines, thereby the resulting image retains the

maximal amount of information necessary for successful shape recognition. For the pur-

pose of shape description, corners are used as points of high curvature and the shape

can be approximated by a polygon. Davis [Dav77] combined the use of high curvature

points and line segment approximations for polygonal shape approximations. Stokely

and Wu [SW92] investigated methods for measurement of the curvature of 3-D surfaces

that evolve in many applications (e.g. tomographic medical images).

Hoffman and Richards [HR84] argue that when the visual system decomposes ob-

jects it does so at points of high negative curvature. This agrees with the principle of

transversality [GP74] found in nature. This principle contends that when two arbitrarily

shaped convex objects interpenetrate each other, the meeting point is a boundary point

of concave discontinuity of their tangent planes.

Leyton [Ley87] demonstrated the Symmetry-Curvature theorem which claims that

any curve section that has only one curvature extremum has one and only one sym-

metric axis which terminates at the extremum itself. This is an important result be-

cause it establishes the connection between two important notions in visual perception.

In [Ley89], Leyton developed a theory which claims that all shapes are basically circles

which changed form as a result of various deformations caused by external forces like

pushing, pulling, stretching, etc. Two problems were considered: the first was the infer-

ence of the shape history from a single shape, and the second was the inference of shape

evolution between two shapes. The concept of symmetry-curvature was used to explain

the process that deformed the object. Symmetric axes show the directions along which

a deformation process most likely took place. In [Ley87], Leyton proposed a theory of

nested structures of control which, he argues, governs the functioning of the human per-

ceptual system. It is a hierarchical system where at each level of control all levels bellow

any given level are also included in information processing.

Pentland [Pen84, Pen86] investigated methods for representation of natural forms

by means of fractal geometry. He argued that fractal functions are appropriate for

natural shape representation because many physical processes produce fractal surface

shapes. This is due to the fact that natural forms repeat whenever possible and non-

animal objects have a limited number of possible forms [Ste74]. Most existing schemes

for shape representation were developed for engineering purposes and not necessarily to

study perception. Fractal representations produce objects which correspond much better

to the human model of visual perception and cognition.

Lowe [Low87] proposed a computer vision system that can recognize three-
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dimensional objects from unknown viewpoints and single two-dimensional images. The

procedure is non-typical and uses three mechanisms of perceptual grouping to determine

three-dimensional knowledge about the object as opposed to a standard bottom-up ap-

proach. The disadvantage of bottom-up approaches is that they require an extensive

amount of information to perform recognition of an object. Instead, the human visual

system is able to perform recognition even with very sparse data or partially occluded

objects. The conditions that must be satisfied by perceptual grouping operations are the

following.

• The viewpoint invariance condition. This means that observed primitive features

must remain stable over a range of viewpoints.

• The detection condition. There must be enough information available to avoid

accidental mis-interpretations.

The grouping operations used by Lowe are the following. Grouping on the basis of

proximity of line end points was used as one viewpoint invariant operation. The second

operation was grouping on the basis of parallelism, which is also viewpoint independent.

The third operation was grouping based on collinearity. The preprocessing operation

consisted of edge detection using Marr’s zero crossings in the image convolved with a

Laplacian of Gaussian filter. In the next step a line segmentation was performed. Group-

ing operations on line-segmented data were performed to determine possible locations of

objects.

5.3 Active Contours

Active contours challenge the widely held view of bottom-up vision processes. The

principal disadvantage with the bottom-up approach is its serial nature; errors generated

at a low-level are passed on through the system without the possibility of correction. The

principal advantage of active contours is that the image data, the initial estimate, the

desired contour properties, and the knowledge-based constraints are integrated into a

single extraction process.

Snakes [KWT88], or active contours, are curves defined within an image domain

which can move under the influence of internal forces coming from within the curve itself

and external forces computed from the image data. The internal and external forces are

defined so that the snake will conform to the boundary of an object or other desired
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features within an image. Snakes are widely used in many applications, including edge

detection [KWT88], shape modeling [TF88, MT95], segmentation [LL93, DKY95], and

motion tracking [LL93, TS92].

In the literature, del Bimbo, et al. [DBP97] deformed active contours over a shape in

an image and measured the similarity between the two based on the degree of overlap

and on how much energy the active contour had to spend in the deformation. Jain, et

al. [JZL96] used a matching scheme with deformable templates. The approach taken

here is different in that we use a Gradient Vector Flow (GVF) based method [XP97] to

improve the automatic fit of the snakes to the object contours.

Active contours are defined as energy-minimizing splines under the influence of inter-

nal and external forces. The internal forces of the active contour serve as a smoothness

constraint designed to hold the active contour together (elasticity forces) and to keep it

from bending too much (bending forces). The external forces guide the active contour

towards image features such as high intensity gradients. The optimal contour position is

computed such that the total energy is minimized. The contour can hence be viewed as a

reasonable balance between geometrical smoothness properties and local correspondence

with the intensity function of the reference image.

Let the active contour be given by a parametric representation x(s) = [x(s), y(s)],

with s the normalized arc length of the contour. The expression for the total energy can

then be decomposed as follows:

Etotal =

1∫
0

E(x(s))ds =

1∫
0

[Eint(x(s)) + Eext(x(s)) + Econ(x(s))] ds (5.1)

where Eint represents the internal forces (or energy) which encourage smooth curves,

Eext represents the local correspondence with the image function, and Econ represents a

constraint force that can be included to attract the contour to specific points in the image

plane. In the following discussions the Econ will be ignored. Eext is typically defined

such that locations with high image gradients or short distances to image gradients are

assigned low energy values.

Internal Energy
Eint is the internal energy term which controls the natural behavior of the active contour.

It is designed to minimize the curvature of the active contour and to make the active

contour behave in an elastic manner. According to Kass, et al. [KWT88], the internal
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energy is defined as

Eint(x(s)) = α(s)

∣∣∣∣dx(s)

ds

∣∣∣∣2 + β(s)

∣∣∣∣d2x(s)

ds2

∣∣∣∣2 (5.2)

The first order continuity term, weighted by α(s), makes the contour behave elas-

tically, while the second order curvature term, weighted by β(s), makes it resistant to

bending. Setting β(s) = 0 at a point s allows the active contour to become second order

discontinuous at that point and to develop a corner. Setting α(s) = 0 at a point s allows

the active contour to become discontinuous. Active contours can interpolate gaps in

edges phenomena known as subjective contours due to the use of the internal energy.

It should be noted that α(s) and β(s) are defined to be functions of the curve param-

eter s, and hence segments of the active contour may have different natural behavior.

Minimizing the energy of the derivatives gives a smooth function.

External Energy
Eext is the image energy term derived from the image data over which the active contour

lies and is constructed to attract the active contour to desired feature points in the

image, such as edges and lines. Given a gray-level image I(x, y), viewed as a function of

continuous position variables (x, y), typical external energies designed to lead an active

contour toward step edges are [KWT88]:

E
(1)
ext(x, y) = − |∇I(x, y)|2 (5.3)

E
(2)
ext(x, y) = − |∇(Gσ(x, y) ∗ I(x, y))|2 (5.4)

where Gσ(x, y) is a two-dimensional Gaussian function with standard deviation σ and ∇
is the gradient operator. If the image is a line drawing (black on white), then appropriate

external energies include [Coh91]:

E
(3)
ext(x, y) = I(x, y) (5.5)

E
(4)
ext(x, y) = Gσ(x, y) ∗ I(x, y) (5.6)

It is easy to see from these definitions that larger σ will cause the boundaries to become

blurry. Such large σ are often necessary, however, in order to increase the capture range

of the active contour.
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A snake that minimizes Etotal (see Eq 5.1) must satisfy the Euler equation:

αx′′(s)− βx′′′′(s)−∇Eext = 0 (5.7)

This can be viewed as a force balance equation:

Fint + F
(p)
ext = 0 (5.8)

where Fint = αx′′(s)− βx′′′′(s) and F
(p)
ext = −∇Eext. The internal force Fint discourages

stretching and bending while the external potential force F
(p)
ext pulls the snake towards

the desired image edge.

To find a solution to Eq. (5.7), the snake is made dynamic by treating x as function

of time t as well as s i.e., x(s, t). The partial derivative of x with respect to t is then set

equal to the left hand side of Eq. (5.7) as follows:

xt(s, t) = αx′′(s, t)− βx′′′′(s, t)−∇Eext (5.9)

When the solution x(s, t) stabilizes, the term xt(s, t) vanishes and we achieve a solution

of Eq. (5.7). A numerical solution to Eq. (5.9) can be found by discretizing the equa-

tion and solving the discrete system iteratively (cf. [KWT88]). Note that most snake

implementations use either a parameter which multiplies xt in order to control the tem-

poral step-size, or a parameter to multiply ∇Eext which permits separate control of the

external force strength.

5.3.1 Behavior of Traditional Active Contours

An example of the behavior of a traditional snake is shown in Figure 5.1. Figure 5.1(a)

shows a 64×64-pixel linedrawing of a U-shaped object (shown in gray) having a boundary

concavity at the top. It also shows a sequence of curves (in black) depicting the iterative

progression of a traditional snake (α = 0.6, β = 0.0) initialized outside the object but

within the capture range of the potential force field. The potential force field F
(p)
ext =

−∇E(4)
ext where σ = 1.0 pixel is shown in Figure 5.1(b). Note that the final solution

in Figure 5.1(a) solves the Euler equations of the snake formulation, but remains split

across the concave region.

The reason for the poor convergence of this snake is revealed in Figure 5.1(c) where

a close-up of the external force field within the boundary concavity is shown. Although
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(a) (b) (c)

Figure 5.1: (a) The convergence of an active contour using (b) traditional potential
forces. (c) Close-up within the boundary concavity.

the external forces correctly point toward the object boundary, within the boundary

concavity the forces point horizontally in opposite directions. Therefore, the active

contour is pulled apart toward each of the “fingers” of the U-shape, but not made to

progress downward into the concavity. There is no choice of α and β that will correct

this problem.

Another key problem with traditional snake formulations, the problem of limited

capture range, can be understood by examining Figure 5.1(b). In this figure, we see

that the magnitude of the external forces die out quite rapidly away from the object

boundary. Increasing σ in Equation (5.6) will increase this range, but the boundary

localization will become less accurate and distinct, ultimately obliterating the concavity

itself when σ becomes too large.

Cohen and Cohen [CC93] proposed an external force model that significantly increases

the capture range of a traditional snake. These external forces are the negative gradient

of a potential function that is computed using a Euclidean (or chamfer) distance map. We

refer to these forces as distance potential forces to distinguish them from the traditional

potential forces defined above. Figure 5.2 shows the performance of a snake using distance

potential forces. Figure 5.2(a) shows both the U-shaped object (in gray) and a sequence

of contours (in black) depicting the progression of the snake from its initialization far from

the object to its final configuration. The distance potential forces shown in Figure 5.2(b)

have vectors with large magnitudes far away from the object, explaining why the capture

range is large for this external force model.
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(a) (b) (c)

Figure 5.2: (a) The convergence of an active contour using (b) distance potential forces.
(c) Close-up within the boundary concavity.

As shown in Figure 5.2(a), this snake also fails to converge to the boundary concav-

ity. This can be explained by inspecting the magnified portion of the distance potential

forces shown in Figure 5.2(c). We see that, like traditional potential forces, these forces

also point horizontally in opposite directions, which pulls the snake apart but not down-

ward into the boundary concavity. We note that Cohen and Cohen’s modification to

the basic distance potential forces, which applies a nonlinear transformation to the dis-

tance map [CC93], does not change the direction of the forces, only their magnitudes.

Therefore, the problem of convergence to boundary concavities is not solved by distance

potential forces.

In summary, several fundamental problems exist with active contours. Furthermore,

solutions to these problems may create problems in other components of the active

contour model.

• Initialization - The final extracted contour is highly dependent on the position

and shape of the initial contour due to the presence of many local minima in the

energy function. The initial contour must be placed near the required feature

otherwise the contour can become obstructed by unwanted features like JPEG

compression artifacts, closeness of a nearby object, and different other noises.

• Non-convex shapes - How do we extract non-convex shapes without compen-

sating the importance of the internal forces, or without a corruption of the image

data? For example pressure forces [Coh91] (addition to the external force) can
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push an active contour into boundary concavities, but cannot be too strong or

otherwise weak edges will be ignored. Pressure forces must also be initialized to

push out or push in, a condition that mandates careful initialization.

The original method of Kass, et al. [KWT88] suffered from three main problems: de-

pendence on the initial contour, numerical instability, and lack of guaranteed convergence

to the global energy minimum. Amini, et al. [ATW88] improved the numerical insta-

bility by minimizing the energy functional using dynamic programming, which allows

inclusion of hard constraints into the energy functional. However, memory requirements

are large, being O(nm2), and the method is slow, being O(nm3) where n is the number

of contour points and m is the neighborhood size to which a contour point is allowed to

move in a single iteration. Seeing the difficulties with both previous methods Williams

and Shah [WS92] developed the greedy algorithm which combines speed, flexibility, and

simplicity. The greedy algorithm is faster O(nm) than the dynamic programming and is

more stable and flexible for including constraints than the variational approach of Kass,

et al. [KWT88]. During each iteration, a neighborhood of each point is examined and a

point in the neighborhood with the smallest energy value provides the new location of

the point. Iterations continue till the number of points in the active contour that moved

to a new location in one iteration is below a specified threshold.

5.3.2 Generalized Force Balance Equations

The snake solutions shown in Figures 5.1(a) and 5.2(a) both satisfy the Euler equa-

tion (5.7) for their respective energy model. Accordingly, the poor final configurations

can be attributed to convergence to a local minimum of the objective function (5.1).

Several researchers have sought solutions to this problem by formulating snakes directly

from a force balance equation in which the standard external force F
(p)
ext is replaced by a

more general external force F
(g)
ext as follows

Fint + F
(g)
ext = 0 (5.10)

The choice of F
(g)
ext can have a profound impact on both the implementation and the

behavior of a snake. Broadly speaking, the external forces F
(g)
ext can be divided into two

classes: static and dynamic. Static forces are those that are computed from the image

data, and do not change as the snake progresses. Standard snake potential forces are

static external forces. Dynamic forces are those that change as the snake deforms.
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Several types of dynamic external forces have been invented to try to improve upon

the standard snake potential forces. For example, the forces used in multiresolution

snakes [LHC96] and the pressure forces used in balloons [Coh91] are dynamic external

forces. The use of multiresolution schemes and pressure forces, however, adds complex-

ity to a snake’s implementation and unpredictability to its performance. For example,

pressure forces must be initialized to either push out or push in, and may overwhelm

weak boundaries if they act too strongly [TK95]. Conversely, they may not move into

boundary concavities if they are pushing in the wrong direction or act too weakly.

Here, we discuss the type of static external force proposed by Xu and Prince [XP97].

This force does not change with time or depend on the position of the snake itself.

The underlying mathematical premise for this force comes from the Helmholtz theorem

(cf. [MF53]), which states that the most general static vector field can be decomposed

into two components: an irrotational (curl-free) component and a solenoidal (divergence-

free) component. Irrotational fields are sometimes called conservative fields; they can

be represented as the gradient of a scalar potential function. An external potential

force generated from the variational formulation of a traditional snake must enter the

force balance equation (5.7) as a static irrotational field, since it is the gradient of

a potential function. Therefore, a more general static field F
(g)
ext can be obtained by

allowing the possibility that it comprises both an irrotational component and a solenoidal

component. In the following section, a more natural approach in which the external

force field is designed to have the desired properties of both a large capture range and

the presence of forces that point into boundary concavities is presented. The resulting

formulation produces external force fields that can be expected to have both irrotational

and solenoidal components.

5.3.3 Gradient Vector Flow

Since the greedy algorithm easily accommodates new changes, there are three things we

would like to add to it: the ability to inflate the contour as well as deflate it, the ability

to deform to concavities, and to increase the capture range of the external forces. These

three additions reduce the sensitivity to initialization of the active contour and allow

deformation inside concavities. This can be done by replacing the existing external force

with the gradient vector flow (GVF) [XP97]. The GVF is an external force computed

as a diffusion of the gradient vectors of an image, without blurring the edges. The idea

of the diffusion equation is taken from physics. An example of the effect of the GVF
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external force can be seen in Figure 5.3. Figures 5.3(b) and (c) show the differences

between the deformation with the gradient magnitude (the greedy algorithm) and the

deformation with the gradient vector flow in the presence of a concavity.

(a) (b) (c)

Figure 5.3: Initialization across the shape: (a) initial position, (b) deformation with the
gradient magnitude, (c) deformation with the GVF.

The overall approach taken by Xu and Prince [XP97] is to use the force balance

condition (5.8) as a starting point for designing a snake. The gradient vector flow (GVF)

field is defined as new static external force field F
(g)
ext = v(x, y). To obtain the corre-

sponding dynamic snake equation, we replace the potential force −∇Eext in (5.9) with

v(x, y), yielding

xt(s, t) = αx′′(s, t)− βx′′′′(s, t) + v (5.11)

The parametric curve solving the above dynamic equation is called a GVF snake. It is

solved numerically by discretization and iteration, in identical fashion to the traditional

snake.

Although the final configuration of a GVF snake will satisfy the force-balance equa-

tion (5.8), this equation does not, in general, represent the Euler equations of the energy

minimization problem in (5.1). This is because v(x, y) will not, in general, be an irro-
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tational field. The loss of this optimality property, however, is well-compensated by the

significantly improved performance of the GVF snake.

Consider an edge map f(x, y) derived from the image I(x, y) having the property

that it is larger near the image edges. We can use any gray-level or binary edge map

defined in the image processing literature (cf. [Jai89]); for example, we could use

f(x, y) = −E(i)
ext(x, y) i = 1, 2, 3, or 4 (5.12)

Three general properties of edge maps are important in the present context. First,

the gradient of an edge map ∇f has vectors pointing toward the edges, which are normal

to the edges at the edges. Second, these vectors generally have large magnitudes only

in the immediate vicinity of the edges. Third, in homogeneous regions, where I(x, y) is

nearly constant, ∇f is nearly zero.

Now consider how these properties affect the behavior of a traditional snake when

the gradient of an edge map is used as an external force. Because of the first property, a

snake initialized close to the edge will converge to a stable configuration near the edge.

This is a highly desirable property. Because of the second property, however, the capture

range will be very small, in general. Because of the third property, homogeneous regions

will have no external forces whatsoever. These last two properties are undesirable. The

approach is to keep the highly desirable property of the gradients near the edges, but to

extend the gradient map farther away from the edges and into homogeneous regions using

a computational diffusion process. As an important benefit, the inherent competition of

the diffusion process will also create vectors that point into boundary concavities.

Consider the gradient vector flow field to be the vector field v(x, y) = (u(x, y), v(x, y))

that minimizes the energy functional

E =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2|v −∇f |2dxdy (5.13)

This variational formulation follows a standard principle, that of making the result

smooth when there is no data. In particular, we see that when |∇f | is small, the

energy is dominated by sum of the squares of the partial derivatives of the vector field,

yielding a slowly-varying field. On the other hand, when |∇f | is large, the second term

dominates the integrand, and is minimized by setting v = ∇f . This produces the de-

sired effect of keeping v nearly equal to the gradient of the edge map when it is large,

but forcing the field to be slowly-varying in homogeneous regions. The parameter µ is
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a regularization parameter governing the tradeoff between the first term and the second

term in the integrand. This parameter should be set according to the amount of noise

present in the image (more noise, increase µ).

Note that the smoothing term – the first term within the integrand of (5.13) – is the

same term used by Horn and Schunck in their classical formulation of optical flow [HS81].

Gupta and Prince [GP96] also showed that this term corresponds to an equal penalty on

the divergence and curl of the vector field. Therefore, the vector field resulting from this

minimization can be expected to be neither entirely irrotational nor entirely solenoidal.

Using the calculus of variations, it can be shown that the GVF field can be found by

solving the following Euler equations

µ∇2u− (u− fx)(f
2
x + f 2

y ) = 0 (5.14)

µ∇2v − (v − fy)(f
2
x + f 2

y ) = 0 (5.15)

where ∇2 is the Laplacian operator. These equations provide further intuition behind

the GVF formulation. Note that in a homogeneous region (where I(x, y) is constant), the

second term in each equation is zero because the gradient of f(x, y) is zero. Therefore,

within such a region, u and v are each determined by Laplace’s equation, and the resulting

GVF field is interpolated from the region’s boundary, reflecting a kind of competition

among the boundary vectors. This explains why GVF yields vectors that point into

boundary concavities.

Equations (5.14) and (5.15) can be solved by treating u and v as functions of time

and solving

ut(x, y, t) = µ∇2u(x, y, t)− (u(x, y, t)− fx(x, y))(f
2
x(x, y) + f 2

y (x, y)) (5.16)

vt(x, y, t) = µ∇2v(x, y, t)− (v(x, y, t)− fy(x, y))(f
2
x(x, y) + f 2

y (x, y)) (5.17)

The steady-state solution of these linear parabolic equations is the desired solution

of the Euler equations (5.14) and (5.15). Note that these equations are decoupled, and

therefore can be solved as separate scalar partial differential equations in u and v. The

equations in (5.16) and (5.17) are known as generalized diffusion equations. They have

appeared here from the description of desirable properties of snake external force fields

as represented in the energy functional of (5.13).
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For convenience, we rewrite the equations as follows

ut(x, y, t) = µ∇2u(x, y, t)− b(x, y)u(x, y, t) + c1(x, y) (5.18)

vt(x, y, t) = µ∇2v(x, y, t)− b(x, y)v(x, y, t) + c2(x, y) (5.19)

where

b(x, y) = f 2
x(x, y) + f 2

y (x, y)

c1(x, y) = b(x, y)fx(x, y)

c2(x, y) = b(x, y)fy(x, y)

Any digital image gradient operator can be used to calculate fx and fy. In the examples

shown in this chapter, we used simple central differences. The coefficients b(x, y), c1(x, y),

and c2(x, y), can then be computed and fixed for the entire iterative process.

To set up the iterative solution, let the indices i, j, and n correspond to x, y, and t,

respectively. Then the required partial derivatives can be approximated as

ut = un+1
i,j − un

i,j

vt = vn+1
i,j − vn

i,j

∇2u = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j

∇2u = vi+1,j + vi,j+1 + vi−1,j + vi,j−1 − 4vi,j

Substituting these approximations into (5.18) and (5.19) gives the iterative solution to

GVF:

un+1
i,j = (1− bi,j)u

n
i,j + (un

i+1,j + un
i,j+1 + un

i−1,j + un
i,j−1 − 4un

i,j) + c1i,j (5.20)

vn+1
i,j = (1− bi,j)v

n
i,j + (vn

i+1,j + vn
i,j+1 + vn

i−1,j + vn
i,j−1 − 4vn

i,j) + c2i,j (5.21)

The intuition behind the diffusion equations is that in homogeneous regions, the first

and third terms are zeros since the gradient is zero, and within those regions, u and

v are each determined by Laplace’s equation. This results in a type of “filling-in” of

information taken from the boundaries of the region. In regions of high gradient v is

kept nearly equal to the gradient.

Creating GVF field yields streamlines to a strong edge. In the presence of these

streamlines, blobs and thin lines in the way to strong edges do not form any impediments
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to the movement of the active contour. It can be considered as an advantage if the blobs

are in front of the shape, nevertheless it can be considered as a disadvantage if the active

contour enters the shape’s silhouette.

(a) (b) (c)

Figure 5.4: (a) The convergence of an active contour using (b) GVF external forces. (c)
Close-up within the boundary concavity.

In Figure 5.4 we computed the GVF field for the same U-shaped object used in

Figures 5.1 and 5.2. Comparing the GVF field, shown in Figure 5.4(b), to the traditional

potential force field of Figure 5.1(b), reveals several key differences. First, like the

distance potential force field (Figure 5.2(b)), the GVF field has a much larger capture

range than traditional potential forces. A second observation, which can be seen in

the closeup of Figure 5.4(c), is that the GVF vectors within the boundary concavity at

the top of the U-shape have a downward component. This stands in stark contrast to

both the traditional potential forces of Figure 5.1(c) and the distance potential forces

of Figure 5.2(c). Finally, it can be seen from Figure 5.4(b) that the GVF field behaves

in an analogous fashion when viewed from the inside of the object. In particular, the

GVF vectors are pointing upward into the “fingers” of the U shape, which represent

concavities from this perspective.

Figure 5.4(a) shows the initialization, progression, and final configuration of a GVF

snake. The initialization is the same as that of Figure 5.2(a), and the snake parameters

are the same as those in Figures 5.1 and 5.2. Clearly, the GVF snake has a broad

capture range and superior convergence properties. The final snake configuration closely

approximates the true boundary, arriving at a sub-pixel interpolation through bilinear

interpolation of the GVF force field.
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5.4 Invariant Moments

Perhaps the most popular method for shape description is the use of invariant mo-

ments [Hu62] which are invariant to affine transformations. For a 2-D continuous func-

tion f(x, y), the moments of order (p+ q) are defined for p, q ∈ N as

mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy (5.22)

A uniqueness theorem states that if f(x, y) is piecewise continuous and has non-

zero values in a finite part of the xy plane, moments of all orders exist and the set

of moments {mpq, p, q ∈ N} is uniquely determined by f(x, y). Conversely, {mpq} is

uniquely determined by f(x, y).

In the case of a digital image, the moments are approximated by

mpq =
∑

x

∑
y

xpyqf(x, y) (5.23)

where the order of the moment is (p + q) as in the above formulation, x and y are the

pixel coordinates relative to some arbitrary standard origin, and f(x, y) represents the

pixel brightness.

To have moments that are invariant to translation, scale, and rotation, first the

central moments µ are calculated

µpq =
∑

x

∑
y

(x− x)p(y − y)qf(x, y) (5.24)

where x = m10

m00
and x = m01

m00
.

Further, the normalized central moments ηpq are calculated as

ηpq =
µpq

µλ
00

(5.25)

where λ = (p+q)
2

+ 1, and p+ q ≥ 2.

From these normalized parameters a set of invariant moments {φ} found by

Hu [Hu62], may then be calculated. The seven equations of the invariant moments

contain terms up to order 3:
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φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 − η12)
2 + (η21 − η03)

2

φ5 = (η30 − 3η12)(η30 + η12)
(
(η30 + η12)

2 − 3(η21 + η03)
2
)

+

(3η21 − η03)(η21 + η03)
(
3(η30 + η12)

2 − (η21 + η03)
2
)

φ6 = (η20 − η02)
(
(η30 + η12)

2 − (η21 + η03)
2
)

+ 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η30)(η30 + η12)
(
(η30 + η12)

2 − 3(η21 + η03)
2
)

+

(3η12 − η03)(η21 + η03)
(
3(η30 + η12)

2 − (η21 + η03)
2
)

Global (region) properties provide a firm common base for similarity measure between

shapes silhouettes where gross structural features can be characterized by these moments.

Since we do not deal with occlusion, the invariance to position, size, and orientation,

and the low dimensionality of the feature vector represent good reasons for using the

invariant moments in matching shapes. The logarithm of the invariant moments is taken

to reduce the dynamic range.

5.5 Experiments

In our experiments we used a database of 1,440 images of 20 common house hold objects

from the COIL-20 database [MN95]. Each object was placed on a turntable and pho-

tographed every 5◦ for a total of 72 views per object. Examples are shown in Figure 5.5.

Figure 5.5: Example of images of one object rotated with 60◦

In creating the ground truth we had to take into account the fact that the images of

one object may look very different when an important rotation is considered. Therefore,
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for a particular instance (image) of an object we consider as similar the images taken

for the same object when it was rotated within ±r × 5◦. In this context, we consider

two images to be r-similar if the rotation angle of the object depicted in the images is

smaller than r × 5◦. In our experiments we used r = 3 so that one particular image is

considered to be similar with 6 other images of the same object rotated within ±15◦.

We prepared our training set by selecting 18 equally spaced views for each object and

using the remaining views for testing.

The first question we asked was, “Which distribution is a good approximation for

the similarity noise distribution?” To answer this we needed to measure the similarity

noise caused by the object rotation and depending on the feature extraction algorithm

(greedy or GVF). The real noise distribution was obtained as the normalized histogram

of differences between the elements of feature vectors corresponding to similar images

from the training set.

Figure 5.6 presents the real noise distribution obtained for the greedy algorithm.

The best fit Exponential had a better fit to the noise distribution than the Gaussian.

Consequently, this implies that L1 should provide better retrieval results than L2. The

Cauchy distribution is the best fit overall, and the results obtained with Lc should reflect

this. However, when the maximum likelihood metric (ML) extracted directly from the

similarity noise distribution is used we expect to obtain the best retrieval results.
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Figure 5.6: Similarity noise distribution for the greedy algorithm compared with (a) the
best fit Gaussian (approximation error is 0.156), (b) the best fit Exponential (approxi-
mation error is 0.102), and (c) the best fit Cauchy (approximation error is 0.073)

In the case of GVF algorithm the approximation errors for matching the similar-

ity noise distribution with a model distribution are given in Table 5.1. Note that the

Gaussian is the worst approximation. Moreover, the difference between the Gaussian fit

and fit obtained with the other two distributions is larger than in the previous case and

therefore the results obtained with L2 will be much worse. Again the best fit by far is



140 CHAPTER 5. SHAPE BASED RETRIEVAL

provided by the Cauchy distribution.

Gauss Exponential Cauchy
0.0486 0.0286 0.0146

Table 5.1: The approximation error for matching the similarity noise distribution with
one of the model distributions in the case of GVF algorithm (for Cauchy a=3.27)

The results are presented in Figure 5.7 and Table 5.2. In the precision-recall graphs

the curves corresponding to Lc is above the curves corresponding to L1 and L2 showing

that the method using Lc is more effective. Note that the choice of the noise model

significantly affects the retrieval results. The Cauchy distribution was the best match

for the measured similarity noise distribution and the results in Table 5.2 show that

the Cauchy model is more appropriate for the similarity noise than the Gaussian and

Exponential models. However, the best results are obtained when the metric extracted

directly from the noise distribution is used. One can also note that the results obtained

with the GVF method are significantly better than the ones obtained with the greedy

method.
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Figure 5.7: Precision/Recall for COIL-20 database using (a) the greedy algorithm (for
Lc a=2.43) and (b) the GVF algorithm (for Lc a=3.27)

In summary, Lc performed better than the analytic distance measures, and the ML

metric performed best overall.



5.6. CONCLUSIONS 141

Precision Recall
Scope 6 10 25 5 10 25

L2 0.425 0.258 0.128 0.425 0.517 0.642
L1 0.45 0.271 0.135 0.45 0.542 0.675

Lc a=2.43 0.466 0.279 0.138 0.466 0.558 0.692
greedy

ML 0.525 0.296 0.146 0.525 0.592 0.733

L2 0.46 0.280 0.143 0.46 0.561 0.707
L1 0.5 0.291 0.145 0.5 0.576 0.725

Lc (a=3.27) 0.533 0.304 0.149 0.533 0.618 0.758
GVF

ML 0.566 0.324 0.167 0.566 0.635 0.777

Table 5.2: Precision and Recall for different Scope values

5.6 Conclusions

We showed that the GVF based snakes give better retrieval results than the traditional

snakes. In particular, the GVF snakes have the advantage over traditional snakes in that

it is not necessary to know apriori whether the snake must be expanded or contracted

to fit the object contour. Furthermore, the GVF snakes have the ability to fit into

concavities of the object, which traditional snakes cannot do. Both of these factors

resulted in significant improvement in the retrieval results.

We also considered the choice of the similarity metric in a shape based retrieval

application. From our experiments, L2 is typically not justified because the similarity

noise distribution is not Gaussian. We showed that better accuracy was obtained when

the Cauchy metric was substituted for the L2 and L1.





Chapter 6

Robust Stereo Matching and Motion

Tracking

Despite the wealth of information contained in a photograph, the depth of a scene point

along the corresponding projection ray is not directly accessible in a single image. With

at least two pictures, depth can be measured through triangulation. This is of course one

of the reasons that most animals have at least two eyes and/or move their head when

looking for friend or foe, as well as the motivation for equipping an autonomous robot

with a stereo and motion analysis system.

In the human visual system, two of the fundamental methods of obtaining informa-

tion about the world are stereo matching and motion tracking. Stereo matching refers

to finding correspondences between a pair of binocular images of a scene. When the cor-

respondences to all of the pixels in the image pair are found, a three dimensional model

of the world can be mathematically derived. Stereo matching is typically performed at a

single instant in time. However, the world changes and evolves over time which is where

motion tracking becomes important. Motion tracking describes how the world changes

over time. Instead of matching pixels between images at a single instant in time, we

trace the movement of a pixel over a sequence of images taken at different instants in

time. In this chapter we explore several promising stereo matching methods from the

research literature which include pixel and template based algorithms. For the motion

tracking, we examine the topic of tracking facial expressions through a video sequence.

143
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6.1 Introduction

It is a well known fact that for the visual perception of depth in humans stereoscopic

vision has an important contribution. Evidence of this must have been known to the

Greek geometer Euclid, who around the year 280 BC demonstrated that the right and

left eyes see a slightly different version of the same scene. Leonardo da Vinci studied

and sketched human anatomy quite extensively in the 1500’s, but his drawings of the

eye, while showing the optic nerve stretching into the brain, did not reveal the true

anatomical arrangement of binocular vision. However, his artistic observations on the

problem of representing space were far ahead of his time. Leonardo wrote that the art of

painting can never reproduce space because painting lacks the quality he called “relievo,”

the relief of objects in space [Lay79]. Yet, however easy it is to link the perception of

depth to stereoscopic vision, it still took more than two millenniums for scientists to be

in a position to guess at the complex mechanism by which objects are perceived as 3D

structures in space.

Though some experiments in stereo viewing were conducted earlier (most notably

pairs of “stereo” drawings made by the sixteenth century Florentine painter Jacopo

Chimenti [Se80]), the advent of photography really made widespread 3D viewing possible.

Chimenti made a drawing of a man from two slightly different viewpoints (and on a

slightly different scale). The small differences give the impression of 3D depth effects,

when one fuses the pair binocularly. However, von Helmholtz [Heled] said: “... it

seems to me very unlikely that Chimenti intended them [the drawings] for a stereoscopic

experiment ... It seems more probable to me that the artist was not satisfied with the

first figure and did it over again ...”

One of the fundamental milestones in the science of stereo vision was laid in 1838 by

Sir Charles Wheatstone when addressing the Royal Society in London [Fer87]. Wheat-

stone came across a peculiar effect: when two hand-drawn images of an object depicted

from two different perspectives were viewed by means of a special apparatus, the result

was a full 3D experience. The key factor behind this perception relied on isolating the

two images so that each eye would only see one drawing. In order to ensure this, Wheat-

stone built a complex viewing device that made use of mirrors. The small experiment

proved that the perception of depth was a psychological effect that took place entirely

in the human brain.

No other scientists before him were so close to a theory of stereo vision. Naturally, it

was not until Niepce discovered a means of retaining the physically transformed lattice
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of silver-halide crystals exposed to light, that stereo images were really feasible to be

produced. A major contribution in this respect came from Daguerre, who published in

1839 the foundations of the photographic process: the Daguerreotype. The first stereo-

scope, was built in 1849 by Brewster. His stereoscope resembled greatly the binocular

lens, whereby a stereo pair of images would be placed on a support frame just in front

of the optics. Stereography soon became a very popular form of art and entertainment,

particularly after the 1851 World Fair in London. Legend says that Queen Victoria was

so attracted by the stereoscopes on display that she initiated an enthusiasm for stereo

photography that lasts to these days.

6.1.1 Stereoscopic Vision

In retrospect, it is difficult to understand why the basic cause for stereoscopic vision

and the revelation that 3D drawings could be created and viewed stereoscopically were

not discovered until Wheatstone’s magnificent breakthrough in 1838. Since 3D drawings

can be easily made and viewed without instruments or optical devices of any kind, there

is no technical reason why these discoveries could not have occurred 2000 years ago.

Wheatstone’s demonstration of his 3D drawings required his mirror stereoscope, which

was called by Sir John Herschel, “one of the most curious and beautiful for its simplicity

in the entire range of experimental optics.” [Lay79]

Since Wheatstone, the overwhelming conclusion of more than one hundred years

of perception research is that retinal image disparities, alone, determine the quality

and nature of the stereoscopic experience. Of course the cues of accommodation and

convergence play an important role in assisting the eyes to “lock on” objects at various

distances, but do not seem to affect seriously our psychic reconstruction of space.

Another aspect of this issue lies in a perceptual phenomenon that is unique to 3D, the

separation of accommodation and convergence planes. In natural viewing, these planes

always coincide; that is, we automatically converge our eyes for the same distance that

we focus. This is also true in viewing a hologram. However, a stereoscopic image cannot

be viewed without a separation of these two functions - a fact that is quite important in

3D projection systems, especially large theaters.

Stereoscopic vision has been called a primary factor in spatial orientation. It exists

in babies at the earliest ages that can be measured, and thereby seems to be an innate

quality of vision. Most other depth cues of vision are considered secondary in the sense

that they are learned cues, derived from our previous experiences with objects.
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Also, stereoscopic vision is considered a perception of relative depth rather than

absolute distance. The eyes do not work like a camera rangefinder for the purpose of

determining a specific distance. It is nearly impossible to gauge the distance from one

point of light in a totally dark room, although it is quite easy to tell which of two adjacent

lights is closer. Our stereoscopic acuity for small differences in depth comparisons is

quite high - as little as ten seconds of arc. And, since stereoscopic acuity is measured

by parallax angle - a numerical constant regardless of object distance - the minimum

distances between objects with a perceived change of relief vary dramatically.

Note that just as monoscopic illusions can be ambiguous, so can perceptual conflicts

be created between monocular and binocular depth cues. Ittelson and other psychologists

[Itt60] have studied the dynamics of cue conflicts in order to evaluate their relative

importance, the underlying factors, the effect of learning, and the influence of cross-

sensory conflicts, such as between vision and hearing. The classic subject for a stereo

cue conflict is the human face. If the right-eye view of a face is displayed only to the left

eye and the left-eye view to the right eye, the physical shape of the face should appear

inverted, with the result that it will look like the inside of a mask, but it does not.

Monocular depth cues in the picture conflict with the stereo disparity cues, as well as

with our previous knowledge of a human face, and suppress the inversion. On the other

hand, abstract subjects invert easily. There are little or no monocular cues to counter

the stereo cues. A general rule should be remembered: the more familiar a subject is,

the more its monocular depth cues will suppress any contradictory stereo depth cues in

the final spatial perception.

An agreed upon theory of stereoscopic vision has yet to be found. Artists are fa-

miliar with the wealth of known visual illusions, such as used so ingeniously by the

artist M.C. Escher, but almost no visual illusions centering on the stereoscopic experi-

ence have been discovered. Julesz [Jul71][Jul95] introduced the random dot stereograms

(RDS) technique. Briefly, in an RDS, each of two pictures presents a random pattern of

dots or other elements with no apparent meaning. Only when fused into one image does

the impression of a recognizable object in 3D emerge. The use of Julesz stereograms

in perception experiments, described as “incredible” by Harvard psychologists, indicates

the brain’s ability to extract depth cues from the integration of disparate images and

establishes that this process enhances our ability to recognize objects that are other-

wise obscure or even invisible. In this, the RDS effect provides a powerful metaphor

concerning our ability to gain insights from the integration of competing perspectives.

Based on this power of stereoscopic vision to aid the accuracy of recognition and
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the clarity of perception, Julesz refers to stereo 3D effects as “breaking camouflage.”

By analogy, this is the process at work when aerial reconnaissance experts take two

photographs of the ground while flying overhead and then fuse these images with the

help of a stereoscope to locate hidden enemy weapons. It is also the process at work

when a hunter sees a white rabbit standing in the snow. In these ways, stereoscopic

vision confers considerable survival value. This beneficial effect may help to explain the

deep sense of satisfaction that often accompanies the stereo 3D experience.

6.2 Stereo Matching

The projection of light rays onto the retina presents our visual system with an image of

the world that is inherently two-dimensional, and yet we are able to interact with the

three-dimensional world, even in situations new to us, or with unknown objects. That

we accomplish this task easily implies that one of the functions of the human visual

system is to reconstruct a 3D representation of the world from its 2D projection onto

our eyes. The quest to depict reality as seen by our naked eyes has been pursued by

countless individuals throughout the history of human kind. Beginning with the early

cave painters, people have attempted to capture the reality. Photography - or in more

general, imaging - is a natural extension of this will.

The problem with conventional images is that they have an inherent limitation: they

do not retain the psychological perception of depth. Objects depicted in images are

flat. It is the observer who - via accumulated knowledge of shapes and forms - perceives

their true volume. It could be argued that photographs are accepted amongst us simply

because we are used to them; we have learned to deal with their inherent limitation.

However, a means to retain depth alongside shape, color, and other features is clearly a

significant increase in information content. An image that captures shapes and volumes

equally, enables navigation through space and thus a higher degree of realism. Further-

more, since these types of images stand in 3D space, measurements unavailable before

can readily be made for them. Depths of interiors, separation distance between objects

and backgrounds, height of terrain seen from satellite imagery, are all examples of its

applications.

Stereo imaging offers an intuitive way to reconstruct the lost depth information. It

relies on one fundamental finding: if two shots of a given static (e.g., without egomotion)

scene are captured from two different viewpoints, then the resulting images will differ

slightly due to the effect of perspective projection. The correspondences of the stereo
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pair can be used effectively to reconstruct the three-dimensions of the scene depicted,

via a procedure known as stereo matching.

Stereo matching stated simply is the process of finding a pair of corresponding image

elements produced by a unique object in a stereo arrangement. These elements can be

decomposed into sets of corresponding points. The distance that one of the points has

shifted with respect to the second one - relative to its local coordinate system - is termed

disparity, and is the fundamental measure required to reconstruct a scene.

The minimum system requirements for stereo vision are a pair of cameras positioned

with overlapping fields of view (Figure 6.1). These cameras could be arranged in any

number of ways, but to simplify the forthcoming discussion we will restrict our attention

to a simple case: both cameras on a horizontal plane with optical and vertical axes

parallel, and known baseline (distance between them). A constraint that is often applied

to stereo systems is the epipolar constraint. The main idea is that given a pixel in

the left image, one does not need to search through the entire right image looking for a

correspondent. Instead, attention may be limited to a straight line, the so-called epipolar

line. Why is it a line instead of some 2D region? The object represented by a pixel in the

left image must lie on a ray that extends in the world from the left focal point through

that pixel on the left image plane. The epipolar line is the image on the right image

plane of that ray in the world; the projection of a straight line is still a straight line. An

introduction to epipolar analysis can be found in [BM95], and a very detailed description

in [Fau93]. When the optical axes are parallel, as we have assumed here, we enjoy the

further property that epipolar lines are guaranteed to be horizontal, and therefore all

correspondents will lie on the same-numbered scanline in the other image.

At first finding correspondences in a stereo pair seems to be a simple task, but there

are several sources of errors that makes it very difficult to locate the correct pairs.

There are systematic errors that appear due to the way the stereo system is constructed.

Changes in intensity of the same 3D point in the stereo pair may appear due to the

different viewing position. Moreover, some points in the left image simply have no

match in the right image, because projection takes place from two different viewpoints

(Figure 6.1). This is known as the occlusion problem. Another source of errors is related

to the symmetries present in the stereo pair. When two or more parts of an image pair

are similar in appearance, as can happen when a repetitive pattern like a checkerboard

or a brick wall is present, a part of the pattern in one image might seem to match several

parts in the other. When this happens, when there are multiple potential correspondents

for a given pixel, an ambiguous match is said to exist.



6.2. STEREO MATCHING 149

optical
axis

optical
axis

point
principal

point
principal

image
plane

image
plane

Field of
View

left
camera

right
camera

Figure 6.1: Stereo arrangement with a pair of cameras positioned with overlapping fields
of view. Some points in the left image simply have no match in the right image, because
projection takes place from two different viewpoints.

Consider the case in which the position of the principal point in the left camera is

located at distance b from the principal point in the right camera. Assume that the image

plane is at distance f in front of each camera lens and that both cameras are oriented

identically, with their optical axes parallel and their image planes aligned (Figure 6.2).

Let O(x, y, z) be a 3D point and let L(xL, yL) and R(xR, yR) be its perspective projections

on the left and right images, respectively. Note that in this situation yL = yR, so that

the y disparity is zero. From Figure 6.2 by means of similar triangles we can derive the

relations:

xL

f
=

x

z
(6.1)

−xR

f
=

b− x

z
(6.2)

The solution for (x, y, z), given the (xL, yL) and (xR, yR), can be obtained from the
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Figure 6.2: Top view of a stereo arrangement

difference xL − xR, which is referred to as disparity. Now

xL − xR =
f · b
z
. (6.3)

Hence,

z =
f · b

xL − xR

. (6.4)

Once the depth z is determined, the (x, y) coordinates are easily determined from

the perspective projection equations.(
x

y

)
=
z

f

(
xL

yL

)
(6.5)

Generally the baseline distance b between the two cameras’ optical axes and the focal

length f are known parameters of the geometry. The disparity however, is unknown and

needs to be estimated in order to recover the depth information. Current stereo matching

algorithms estimate disparity by making use of a metric function that is minimized.
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6.2.1 Related Work

Many types of stereo algorithms have been published in the literature. Overviews of

the then-strongest techniques can be found in Barnard and Fischler [BF82] and Dhond

and Aggarwal [DA89]. Existing stereo algorithms from the computer vision literature

can be loosely classified under one of the headings: traditional correlation based stereo

(template based stereo) and feature based stereo.

In correlation based stereo [LM90][MKA73][KO94] disparity is computed by fixing

a small window around a pixel in the left image, then measuring the Sum-of-Squared-

Differences (SSD) error between intensities in that window and those in similar windows

placed at different locations in the right image. The placement that yields the lowest

error gives the disparity estimate. Fusiello, et al. [FRT97] implemented an algorithm

that is an extension of the simple SSD match in the sense that nine windows were used

instead of one. The reference and matching image points were placed at pre-defined

locations within the windows in order to find the best area-correlation amongst them.

In feature based stereo [Gri85][Mat89], a dense image is converted into a spatially

sparse set of features which are then matched. This results into a sparse disparity

map which must be interpolated to yield disparities at every pixel. Semantic features

(with known physical properties and/or spatial geometry) or intensity anomaly features

(isolated anomalous intensity patterns not necessarily having any physical significance)

are the basic units that are matched. Semantic features of the generic types include

occlusion edges, vertices of linear structures, and prominent surface markings; domain

specific semantic features may include such features as the corner or peak of a building,

or a road surface marking. Intensity anomaly features include zero crossings or salient

points [LSBJ00]. Methods used for feature matching often include symbolic classification

techniques, as well as correlation.

Obviously, feature matching alone cannot provide a depth map of the desired density,

and so it must be augmented by a model based interpretation step (e.g., we recognize

the edges of a building and assume that the intermediate space is occupied by planar

walls and roofs), or by template matching. When used in conjunction with template

matching, the feature matches are generally considered to be more reliable than the

template matching alone, and can constrain the search for correlation matches.

Jones and Malik [JM92] applied 2D oriented derivative-of-Gaussian filters to a stereo

pair and used the magnitude of the filter responses at each pixel as matching features.

The original signal may also be transformed to Fourier space, and some part of the
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transformed signal is used to compute the disparity [San88]. Often the phase of the

transformed signal is used [JJ94], [Mai96].

A post-processing refinement technique of the template based stereo algorithm is

the Kanade/Okutomi variable-window method [KO94]. This method addresses the oc-

clusion and foreshortening problems by dynamically adjusting the size of the matching

windows according to constraints on the local variations of both intensity and disparity.

The difficulty of a locally adaptive window lies in a difficulty in evaluating and using

disparity variances. While the intensity variation is directly measurable from the image,

evaluation of the disparity variation is not easy, since the disparity is what we intend

to calculate as the end product of stereo. To resolve the dilemma, the authors employ

a statistical model of the disparity distribution within the window: the difference of

disparity at a point in the window from that of the center point has a zero-mean Gaus-

sian distribution with variance proportional to the distance between these points. This

modeling enables the computation of the uncertainty of the disparity estimate by taking

into account both intensity and disparity variances. As a result, their method searches

for a window that produces the estimate of disparity with the least uncertainty for each

pixel of an image: the method controls not only the size but also the shape (rectangle)

of the window. Finally, this adaptive-window method is embedded in an iterative stereo

matching algorithm: starting with an initial estimate of the disparity map, the algorithm

iteratively updates the disparity estimate for each point by choosing the size and shape

of a window until it converges. In this way the authors attempt to avoid the boundary

problems that arise when the correlation window encompasses two objects at different

depths.

The use of multiple cameras for stereo was described by Kanade, et al. [KON92].

Their approach, known as multibaseline stereo, advocates using a simple Sum-of-

Absolute-Differences (SAD) stereo matching algorithm over several image pairs. By

incorporating multiple views of the world using known camera calibration, many of the

shortcomings of the direct yet simple SAD method are eliminated: e.g., specular high-

lights are ignored, noisy disparity maps become smoother, and some occluded surfaces

become visible.

An interesting approach using a maximum likelihood cost function optimization was

proposed by Cox, et al. [CHR96]. This function assumes that corresponding features in

the left and right images are normally distributed about a common true value. However,

the authors [CHR96] noticed that the normal distribution assumption used to compare

corresponding intensity values is violated for some of their test sets. They altered the
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stereo pair so that the noise distribution would be closer to a Gaussian.

Recent research by [BN98] concluded that the SSD is sensitive to outliers and there-

fore robust M-estimators should be used regarding stereo matching. However, the au-

thors [BN98] did not consider metrics based on similarity distributions. They considered

ordinal metrics, where an ordinal metric is based on relative ordering of intensity values

in windows - rank permutations.

Most of the efforts mentioned above were concentrated on finding a better algorithm

or feature that can provide a more accurate and dense disparity map. Some of them use

a simple SSD or SAD metric in matching correspondences or make assumptions about

the corresponding features in the left and right stereo images. Our goal is to use the

maximum likelihood framework introduced in Chapter 2 and to find a better model for

the noise distribution in a stereo pair. We implemented a template based matching

algorithm, the multi-window algorithm by Fusiello, et al. [FRT97], and the maximum

likelihood method by Cox, et al. [CHR96]. Note that for the last two algorithms in order

to have a good benchmark we used the original source codes provided by the authors

and only the line of code where the metric was involved was modified.

6.3 Stereo Matching Algorithms

Several algorithms have been proposed to estimate the disparity map of a stereo arrange-

ment. They all agree to a large extent in their form: some sort of metric function SSD

(L2) or SAD (L1) is minimized to yield the best match for a given reference point. The

choice of the metric function is the subject of our investigations. We implemented the

algorithms mentioned before and investigated the influence of the metric function on the

matching accuracy.

6.3.1 Template Based Algorithm

A template based algorithm makes minimal assumptions (e.g., constant depth inside the

template) about the underlying geometry of the stereo pair and uses a simple transla-

tional model to estimate the disparity. An implementation of this technique gives good

disparity estimates for points located at constant depths, but it is less robust with reced-

ing features - i.e. image facets that recede in depth - that can become severely distorted

due to perspective projection.

Considering the stereo arrangement illustrated in Figure 6.2, pixels of a left and right
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image of a stereo pair are matched using a simple pair of equations of the form

SSD(x, y, d) =
∑

wx,wy∈W

(R(x+ wx, y + wy)− L(x+ wx + d, y + wy))
2 (6.6)

disparity (x, y) = min
m≤d≤M

SSD(x, y, d) (6.7)

or

SAD(x, y, d) =
∑

wx,wy∈W

|R(x+ wx, y + wy)− L(x+ wx + d, y + wy)| (6.8)

disparity (x, y) = min
m≤d≤M

SAD(x, y, d) (6.9)

These equations are employed to estimate the disparity by placing a window W of a

predefined size (wx, wy), centered around a reference point in the right image. A second

window of identical size (see Figure 6.3) would be placed in the left image and moved

around its x axis (the epipolar constraint is assumed). Generally the matching window

would be moved from a minimum disparity m to a maximum disparity M which in turn

determines the disparity search range. The position at which the minimum error occurs

for each candidate point, is chosen as the best disparity estimate for a given reference

point. Sub-pixel precision can be obtained by fitting a curve through the chosen values,

yielding more accurate disparity estimates [FRT00].

r� eference window
matching window

match
 reference


Figure 6.3: Example of a template matching procedure

An important problem that has to be considered is the occlusion. Some points in
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the left image simply have no match in the right image, because projection takes place

from two different viewpoints (see Figure 6.1). The algorithm will still try to match

these occluded points, and will even produce an incorrect disparity estimation for them.

The situation can be detected in a post-processing stage whereby two disparity maps -

dRtoL (right to left), and dLtoR (left to right) - are checked for consistency, using equation

(6.10). For example, if the disparity of a point x in the right image is d, then the match

of x is located at x+ d in the right image, and vice versa.

dRtoL(x) = dLtoR(x+ dRtoL(x)) (6.10)

Points that satisfy this expression are retained while the others are signaled as oc-

cluded pixels and disparity is assigned heuristically. Following [LG90], we assumed that

occluded areas, occurring between two planes at different depth, take the disparity of

the deeper plane.

6.3.2 Multiple Windows Algorithm

As observed by Kanade and Okutomi [KO94], when the correlation window covers a

region with non-constant disparity, template based matching is likely to fail, and the

error in the depth estimates grows with the window size. Reducing the latter, on the

other hand, makes the estimated disparities more sensitive to noise.

To overcome such difficulties, Kanade and Okutomi [KO94] proposed a statistically

adaptive technique which selects at each pixel the window size that minimizes the un-

certainty in the disparity estimates. As an alternative, Fusiello, et al. [FRT97] proposed

a multiple window algorithm (SMW) to outperform the standard template based stereo

matching procedure described in 6.3.1. The concept behind their algorithm was very

simple - they proposed the use of nine windows (see Figure 6.4) instead of one to com-

pute the standard SSD error. This simple procedure proved to be very effective at

disambiguating the various candidate disparity matches of a reference point.

It was reasoned by the authors that comparing with the template based algorithm

it is better to obtain an estimate of any given point by matching it against multiple

windows, in which the point to match would be located at different strategic positions

within them. The point with the smallest disparity amongst the nine windows, and

amongst the various search candidates would then be chosen as the best estimate for the

given point. The idea is that a window yielding a smaller SSD error is more likely to cover
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Figure 6.4: The nine asymmetric correlation windows in Fusiello’s algorithm. The black
pixel in the array denotes the position where the reference image-point is located in each
matching window. The template based algorithm would use only the top window where
the matching pixel is at center.

a constant depth region; in this way, the disparity profile itself drives the selection of the

appropriate window. Consider the case of a piecewise-constant surface: points within a

window close to surface discontinuities come from two different planes, therefore a single

“average” disparity cannot be assigned to the whole window without making a gross

error. The multiple window approach can be regarded as a robust technique able to

fit a constant disparity model to data consisting of piecewise-constant surface, that is,

capable of “drawing the line” between two different populations (see Figure 6.5).

While this is nothing else than a more involved form of the conventional template

matching strategy, it was shown in their paper that computation of the disparity estimate

was more accurate compared with the adaptive algorithm proposed by Kanade and

Okutomi [KO94].

A left-right consistency test (see equation 6.10) was also employed for detecting the

occluded points.
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Figure 6.5: Multiple windows approach. If one use windows of fixed size with different
centers, it is likely that one of them will cover a constant depth area.

6.3.3 Cox’ Maximum Likelihood Algorithm

A different approach was proposed by Cox, et al. [CHR96]. Their interesting idea was to

perform matching on the individual pixel intensity, instead of using an adaptive window

as in the area based correlation methods. Although there is a commonly held belief that

since “stereo projections do not preserve photometric invariance,” pixel based stereo is

“in general doomed to failure” [FP91], their experimental results show that pixel based

stereo can be considered as a practical alternative.

Their algorithm assumed that any two corresponding features (pixels) in the left

and right images are normally distributed about their true value. This leads to a local

matching cost that is the weighted SSD error between the features. The global cost

function that is eventually minimized is the sum of the local costs of matching pixels plus

the sum of occlusion costs for unmatched pixels. The global optimization is efficiently

performed in 1D along each epipolar line.

Initially, the local cost of matching two points zi1 and zi2 is calculated. The condition

that measurement zi1 from camera 1, and measurement zi2 from camera 2 originate from

the same location, X, in space, i.e. that zi1 and zi2 correspond to each other, is denoted

by Zi1,i2 . The likelihood that the measurement pair Zi1,i2 originated from the same point

X is denoted by Λ(Zi1,i2|X) and is given by

Λ(Zi1,i2|X) =

(
1− PD

φ

)δi1,i2

[PD p(zi1 |X)× PD p(zi2|X)]1−δi1,i2 (6.11)
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where δi1,i2 is an indicator variable that is unity if a measurement is not assigned a

corresponding point, i.e. is occluded, and zero otherwise, φ is the field of view of the

camera, and the term p(z|X) is a probability density distribution that represents the

likelihood of measurement z assuming it originated from a point X in the scene. The

parameter PD represents the probability of detecting a measurement originating from X

at sensor s and is a function of the number of occlusions, noise, etc. Conversely, (1−PD)

may be viewed as the probability of occlusion.

As mentioned before, the authors assume that the measurement vectors zis , s =

{1, 2}, are normally distributed about their ideal value z, so

p(zis |X) = |(2π)dSs|−
1
2 exp

{
−1

2
(z − zis)

′S−1
s (z − zis)

}
(6.12)

where d is the dimension of the measurement vectors zis and Ss is the covariance matrix

associated with the error (z− zis). Since the true value z is unknown, it is approximated

by maximum likelihood estimate ẑ obtained from the measurement pair Zi1,i2 and given

by

z ≈ ẑ =
S−1

i1
zi1 + S−1

i2
zi2

S−1
i1

+ S−1
i2

(6.13)

where Sis is the covariance associated with measurement zis .

The cost of the individual pairings Zi1,i2 was established and now it is necessary

to determine the total cost of all pairs. Let Γ be the set of all feasible partitions, i.e.

Γ = {γ}. The idea is to find the pairings or partition γ that maximizes L(γ)/L(γ0),

where the likelihood L(γ) of a partition is defined as

L(γ) = p(Z1, Z2|γ) =
∏

Zi1,i2
∈γ

Λ(Zi1,i2|X) (6.14)

The maximization of L(γ)/L(γ0) is equivalent to

min
γ∈Γ

J(γ) = min
γ∈Γ

[− ln(L(γ))] (6.15)
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which leads to

min
γ∈Γ

J(γ) = min
γ∈Γ

∑
Zi1,i2

∈γ

{
δi1,i2 ln

(
P 2

Dφ

(1− PD)|(2π)dS| 12

)
+

(1− δi1,i2)

[
1

4
(zi1 − zi2)

′S−1(zi1 − zi2)

]}
(6.16)

assuming that the covariances Sis are equal to S.

The first term of the summation represents the cost of an occlusion in the left or

right views, while the latter term is the cost of matching two features. Clearly, as the

probability of occlusion (1 − PD) becomes small the cost of not matching a feature

increases, as expected.

The problem with this approach is that it relies on the assumption that any two cor-

responding features (pixels) in the left and right images are normally distributed about

their true value. The authors noted that changes in illumination conditions and differ-

ences in camera responses were the principal source of errors to their normal assumption.

The changes in illumination and/or camera responses were modeled by constant multi-

plicative and additive factors, i.e.

IL(x, y) = AIR(x, y) +B (6.17)

In their model, the intensity histograms for the left and right images are approx-

imatively the same except for the fixed offset B and the scaling term A (considering

that the number of occluded points is small compared to the overall number of pixels).

Estimation of the constants A and B was performed by first calculating the intensity

histograms for both left and right image and then plotting the ten percentile points. A

linear regression can be performed on these points, the slope and offset providing esti-

mates for A and B, respectively. Applying this model they alter the intensities of the

stereo pair and compensate these effects prior to the stereo matching. Instead of altering

the original data, our solution proposes to model the noise distribution and to estimate

the corresponding metric to be used in matching.
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6.4 Stereo Matching Experiments

The best way to measure the success of a stereo matching method is to compare the

results against the ground truth, or range information measured using means other than

stereo. Typically, the ground truth in stereo matching is generated manually. A set of

reference points are defined in the images and then a person finds the correspondences

for the stereo pair. Unfortunately, relatively little ground truth data is publicly available.

Despite this fact, many attempts were made in the literature to create standard stereo

sets and to compare different stereo algorithms using the stereo sets as benchmarks. One

such study, the ARPA JISCT stereo evaluation [BBH93], compared the results of four

stereo methods. However, since ground truth was not available, most of their statistics

dealt with agreement between the results; not “method A is 80% accurate,” but “methods

A and B agree on 80% of the images.” Thus they could neither evaluate stereo methods

independently nor quantitatively characterize their performance. The study conclusion

states in part that the “ground truth is expensive, but there is no substitute for assessing

quantitative issues.” In our experiments we used different standard stereo sets from the

literature with ground truth provided by the authors.

6.4.1 Stereo Sets

The first stereo data sets we used in our experiments (Castle set and Tower set) were

provided by the Calibrated Imaging Laboratory, Robotics Institute, Carnegie Mellon

University. These datasets contain multiple images of static scenes with accurate infor-

mation about object locations in 3D. The 3D locations are given in X-Y-Z coordinates

with a simple text description (at best accurate to 0.3 mm) and the corresponding image

coordinates (the ground truth) are provided for all eleven images taken for each scene.

For each image there are 28 ground truth points in the Castle set and 18 points in the

Tower set. An example of two stereo images from the Castle data set is given in Fig-

ure 6.6. Note that on the left image the ground truth points were superimposed on the

image.

In order to evaluate the performance of the stereo matching algorithms under difficult

matching conditions we also used the Robots stereo pair [LHW94] from University of

Illinois at Urbana-Champaign. This stereo pair is more difficult due to varying levels of

depth and occlusions (Figure 6.7). For this stereo pair, the ground truth consists of 1276

point pairs, given with one pixel accuracy.
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Figure 6.6: A stereo image pair from the Castle data set

Figure 6.7: Robots stereo pair

In addition, we also used two stereo datasets, Flat and Suburb (Figure 6.8), which

contain aerial views of a suburban region. These were taken from Stuttgart ISPRS Image

Understanding datasets [Gue88]. These stereo sets were selected because they show

the potential of a stereo matcher to perform automated terrain mapping. Moreover, a

substantial number of ground truth points were given (53020 points for the Flat stereo

pair and 52470 for the Suburb stereo pair).
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(a) (b)

Figure 6.8: Left images from the Flat and Suburb stereo pairs; (a) Flat, (b) Suburb

6.4.2 Stereo Matching Results

The first experiments were done using the template based stereo algorithm introduced

in Section 6.3.1. In each image we considered the templates around points which were

given by the ground truth. We wanted to find the model for the real noise distribution

which gave the best accuracy in finding the corresponding templates in the other image.

As a measure of performance we computed the accuracy of finding the corresponding

points in the neighborhood of one pixel around the points provided by the test set. In

searching for the corresponding pixel, we examined a band of height 7 pixels and width

equal to the image dimension centered at the row coordinate of the pixel provided by

the test set.

In this application we used a template size of n = 25, i.e. a 5 × 5 window around

the central point. For all the stereo images we divided the ground truth points in two

equal sized non-overlapping sets: the training set and the test set. The assignment of

a particular point from the ground truth to one of these sets was done randomly. In

order to compute the real noise distribution we placed templates around the training

set points, and we created the normalized histogram of the differences between pixels in

corresponding templates.

We present the real noise distribution corresponding to the Castle dataset in Fig-

ure 6.9. As one can see from Table 6.1 the Cauchy distribution had the best fit to the
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measured noise distribution relative to L1 and L2 for both Castle and Tower stereo sets.
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Figure 6.9: Noise distribution in the stereo matcher using Castle data set

Set Gauss Exponential Cauchy
Castle 0.0486 0.0286 0.0246
Tower 0.049 0.045 0.043

Table 6.1: The approximation error for the corresponding point noise distribution in
stereo matching using Castle and Tower stereo sets

As mentioned before, the Robots stereo pair is more difficult due to varying levels of

depth and occlusions. This fact is illustrated in the shape of the real noise distribution

(Figure 6.10). Note that the distribution in this case has wider spread and is less smooth.

The Cauchy distribution is the best fit, followed by the Exponential and the Gaussian.
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Figure 6.10: Noise distribution for the Robots stereo pair compared with the best fit
Gaussian (a) (approximation error is 0.0267), best fit Exponential (b) (approximation
error is 0.0156), and best fit Cauchy (c) (approximation error is 0.0147)

A different behavior can be noted for the real noise distribution in the case of Flat

and Suburb stereo pairs. In this case, the shape of the real noise distribution clearly
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resembles a Gaussian distribution. The tails are less prominent (Figure 6.11) and as

a consequence the Exponential and the Cauchy distributions are worse approximations

(see Table 6.2). In these conditions, one expects L2 to have greater matching accuracy

comparing with L1 and Lc.
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Figure 6.11: Noise distribution for the Suburb stereo pair compared with the best fit
Gaussian (a) (approximation error is 0.0217), best fit Exponential (b) (approximation
error is 0.0273), and best fit Cauchy (c) (approximation error is 0.0312)

Set Gauss Exponential Cauchy
Flat 0.0356 0.0412 0.0446

Suburb 0.0217 0.0273 0.0312

Table 6.2: The approximation error for the corresponding point noise distribution in
stereo matching using Flat and Suburb stereo pairs

The complete results for the template based matching are presented in Table 6.3.

Note that the results are consistent with the matching between the real noise distribution

and the model distributions. In the case where Cauchy distribution was the best fit

(Castle, Tower, and Robots stereo sets), the results obtained with Lc are better than the

ones obtained with L1 and L2. For all these stereo sets, the Gaussian was the worst fit

and consequently the results obtained with L2 were the worst. On the other hand, in the

case of Flat and Suburb stereo pairs, the Gaussian was the best fit and consequently the

results obtained with L2 were the best. Now, the worst results were obtained with Lc

because the Cauchy distribution was the worst fit to the real noise distribution. For all

the stereo sets, significant improvement in accuracy was obtained when the ML metric

(see Section 2.6) was used.
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Set L2 L1 K Lc ML
Castle 91.05 92.43 92.12 93.71 a=7.47 94.52
Tower 91.11 93.32 92.84 94.26 a=5.23 95.07
Robots 71.19 73.35 75.34 76.79 a=26.2 78.54
Flat 78.39 77.50 77.22 75.92 a=17.17 83.67

Suburb 80.08 79.24 78.59 77.36 a=15.66 85.11

Table 6.3: The accuracy of the stereo matcher (%) using template matching

Note also the range in the accuracy values for all stereo sets. The best results were

obtained for Castle and Tower stereo sets. For the other stereo pairs, there were more

difficult matching conditions due to occlusions and complex background and therefore

the matching accuracy is lower. However, for these stereo pairs (especially for Robots)

the improvement in accuracy given by the ML metric is more significant.

In the next experiments, we investigated the influence of similarity noise using

Fusiello’s multiple windows stereo algorithm [FRT97] (see Section 6.3.2) and the maxi-

mum likelihood stereo algorithm by Cox, et al. [CHR96] (see Section 6.3.3).

In the maximum likelihood algorithm, matching was done on the individual pixel

intensity, instead of using an adaptive window as in the template based methods. In

this case the disparity map gives the location of the corresponding pixels. The accuracy

is given by the percentage of pixels in the test set which are matched correctly by the

algorithm.

In Tables 6.4 and 6.5, the results using different distance measures are presented.

The accuracy values are better than in the case of template based algorithm. This is an

expected result since both algorithms use more sophisticated procedures in matching,

instead of a simple template centered around the matching points.

The results are also consistent with the fitting between the real noise distribution and

the model distributions. For all of the stereo sets, ML had the highest accuracy. Note

the improvement in accuracy comparing with L2 (SSD) which was used in the original

algorithms. For the multiple window stereo algorithm, the ML beat L2 by 3 to 7 percent.

For the maximum likelihood algorithm the ML metric had improved accuracy over the

L2 of approximately 3 to 9 percent.
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Set L2 L1 K Lc ML
Castle 92.27 92.92 92.76 94.82 a=7.47 95.73
Tower 91.79 93.67 93.14 95.28 a=5.23 96.05
Robots 72.15 73.74 75.87 77.69 a=26.2 79.54
Flat 79.43 77.92 77.76 76.82 a=17.17 84.69

Suburb 81.14 79.67 79.14 78.28 a=15.66 86.15

Table 6.4: The accuracy of the stereo matcher using Fusiello’s multiple window stereo
algorithm

Set L2 L1 K Lc ML
Castle 93.45 94.72 94.53 95.72 a=7.47 96.37
Tower 93.18 95.07 94.74 96.18 a=5.23 97.04
Robots 74.81 76.76 78.15 82.51 a=26.2 84.38
Flat 81.19 80.67 80.15 79.23 a=17.17 86.07

Suburb 82.07 81.53 80.97 80.01 a=15.66 87.18

Table 6.5: The accuracy of the stereo matcher using maximum likelihood stereo algorithm

6.4.3 Summary

We implemented a template matching algorithm, an adaptive, multi-window algorithm

by Fusiello, et al. [FRT97], and a maximum likelihood method using pixel intensities

by Cox, et al. [CHR96]. Note that the SSD was used in the paper by Fusiello, et al.

[FRT97] and in the work by Cox, et al. [CHR96]. Furthermore, we used international

stereo data sets from Carnegie Mellon University(Castle and Tower), University of Illinois

at Urbana-Champaign (Robots) and University of Stuttgart (Flat and Suburb).

From our experiments, it was clear that choosing the correct metric had significant

impact on the accuracy. Specifically, among the L2, L1, Cauchy, and Kullback metrics,

the accuracy varied up to 7%.

For the stereo pairs and the algorithms in our experiments, the maximum likelihood

metric consistently outperformed all of the other metrics. Furthermore, it is optimal

with respect to maximizing the probability of similarity. The breaking points occur

when there is no ground truth, or when the ground truth is not representative.

There appear to be two methods of applying maximum likelihood toward improving

the accuracy of matching algorithms in stereo matching. The first method recommends
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altering the images so that the measured noise distribution is closer to the Gaussian and

then using the SSD. The second method is to find a metric which has a distribution

which is close to the real noise distribution.

6.5 Motion Tracking Experiments

Automatic motion tracking has long been an important topic in computer vision. Re-

cently facial motion analysis has captured the attention of many researchers as the

interests for model based video compression and human-computer interaction grow

[TH99][BY95]. One important aspect in analyzing human facial movement is to au-

tomatically track moving feature points on human faces. The motion parameters of

these feature points can be used to reconstruct the original motion (e.g., human expres-

sion synthesis [TH94]) or for further analysis (e.g., computerized lipreading [BMHW93]

and expression recognition [BY95]).

There are two classical methods for tracking feature points, namely optical flow and

block correlation (template matching). Optical flow tries to find the correspondence

between two images by calculating the velocity (displacement vector) at which a point

on the first image moves in the second image. Block correlation tracks a specific point

by finding the maximum similarity between two pixel patterns of images containing this

point. There are many different algorithms available for computing optical flow [BFB94].

However, since the assumptions to calculate optical flow are not usually satisfied in real

situations, particularly for human facial movements [Mas91], the results of optical flow

are often unreliable. Problems also occur with the block correlation method [TKC+94].

This method identifies an image pattern as a template and moves it over a specific search

area in a second image. Correlations between the template and the second image are then

calculated. The point at which the maximum correlation occurs is the tracking result.

Obviously, the accuracy of this method is affected by the size of both the template and

the search area. If the search area is too small, the points with bigger motion will be

lost. In contrast, if the search area is too large search, the computation will be expensive

and possibly an erroneous estimation of the position of the point will be found. When

the small template is used, the local details are captured. On the other hand, when the

template is large you lose all the local details and concentrate on more coarse (global)

details.

We used a video sequence containing 19 images on a talking head in a static back-

ground [TKC+94]. An example of three images from this video sequence is given in
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Figure 6.12. For each image in this video sequence there are 14 points given as ground

truth.

Figure 6.12: Video sequence of a talking head

The motion tracking algorithm between the test frame and another frame performed

template matching to find the best match in a 5 × 5 template around a central pixel.

In searching for the corresponding pixel, we examined a region of width and height of

7 pixels centered at the position of the pixel in the test frame.

The idea of this experiment was to trace moving facial expressions. Therefore, the

ground truth points were provided around the lips and eyes which are moving through

the sequence. This movement causes the templates around the ground truth points to

differ more when far-off frames are considered. This is illustrated in Figure 6.13.
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Figure 6.13: Average tracking error (displacement) of corresponding points in successive
frames; for Lc a=2.03

Between the first frame and a later frame, the tracking error represents the average

displacement (in pixels) between the ground truth and the corresponding pixels found by
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the matching algorithm. When consecutive frames are considered (frame difference = 1),

the average displacement is low, however, when far-off frames are compared (frame dif-

ference = 3) the displacement error is significantly increased. Note that regardless of the

frame difference, Lc had the least error and L2 had the greatest error.

In Figure 6.14 we display the fit between the real noise distribution and the three

model distributions. The real noise distribution was calculated using templates around

points in the training set (6 points for each frame) considering sequential frames. The

best fit is the Cauchy distribution, and the Exponential distribution is a better match

than the Gaussian distribution.
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Figure 6.14: Noise distribution in the video sequence using sequential frames compared
with the best fit Gaussian (a) (approximation error is 0.083), best fit Exponential (b)
(approximation error is 0.069), and best fit Cauchy (c) (approximation error is 0.063)

Since the Cauchy distribution was the best fit overall, it is expected that the accuracy

is greater when using Lc than when using L1 and L2 (Table 6.6). For Lc, the greatest

accuracy was obtained around the values of the parameter a which gave the best fit

between the Cauchy distribution and the real distribution (Figure 6.15). The ML metric

gave the best results overall.

In addition, we considered the situation of motion tracking between non-adjacent

frames. In Table 6.6, the results are shown for tracking pixels between frames located at

interframe distances of 1, 3, and 5.

Note that as the interframe distance increases, the accuracy decreases and the error

increases. The ML metric had improved accuracy over the L2 (which is typically used

in matching) of approximately 5 to 9 percent.
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Figure 6.15: The accuracy of the matching process in the video sequence using sequential
frames

Interframe Distance L2 L1 K Lc ML
1 84.11 84.91 85.74 87.43 (a=2.03) 89.67
3 74.23 75.36 76.03 78.15 (a=13.45) 81.25
5 65.98 67.79 68.56 70.14 (a=21.15) 74.19

Table 6.6: The accuracy (%) of the matching process in the video sequence

6.6 Concluding Remarks

We examined two topic areas from computer vision which were stereo matching and

motion tracking. In stereo matching we implemented a template based matching algo-

rithm, an adaptive, multi-window algorithm by Fusiello, et al. [FRT97], and a maximum

likelihood method using pixel intensities by Cox, et al. [CHR96]. In motion tracking, we

implemented a template based matching algorithm to track pixels on a moving object in

a video sequence. We examined the tracking error and accuracy between adjacent and

non-adjacent frames.

For most of our experiments, better accuracy was obtained when the Cauchy metric

was substituted for the SSD, SAD, or Kullback relative information. The only exception

occurred in stereo matching when the Flat and Suburb stereo pairs were used. In this

case the similarity noise distribution exhibited a Gaussian shape. One of the possible

explanation for this relies on the particularity of these stereo pairs. They consist of aerial

images and therefore, the depth values in the scene are much lower than the distance

from where the images were taken. In this conditions, the noise in the camera may be

the main source of errors. As was shown in the work by Boie and Cox [BC92] the camera
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noise can be appropriately modeled as a Gaussian noise. However, also in this case the

accuracy results were consistent with the fitting of the real noise distribution and the

model distribution, in the sense that when a model distribution was the best fit then,

the accuracy obtained with the corresponding metric was the best.

An important aspect was to use the original source code as was the case for the

multi-window algorithm by Fusiello, et al. [FRT97] and for Cox’ maximum likelihood

stereo algorithm [CHR96]. In order to have a reliable evaluation of our method we

modified only the part of the code where the comparison metric was employed. In

these conditions, using the ML metric estimated from the ground truth information we

significantly improved the accuracy of the original methods. Note that the SSD (L2) was

used in both original algorithms.





Chapter 7

Facial Expression Recognition

The most expressive way humans display emotions is through facial expressions. Humans

detect and interpret faces and facial expressions in a scene with little or no effort. Still,

development of an automated system that accomplishes this task is rather difficult.

There are several related problems: detection of an image segment as a face, extraction

of the facial expression information, and classification of the expression (e.g., in emotion

categories). A system that performs these operations accurately and in real time would

be a major step forward in achieving a human-like interaction between the man and

machine.

In this chapter we present a system for classification of facial expressions from con-

tinuous video input. We introduce and test different Bayesian network classifiers for

classifying expressions from video, focusing on changes in distribution assumptions and

feature dependency structures. In particular we use Naive Bayes classifiers and change

the distribution from Gaussian to Cauchy. Observing that the features independence

assumption used by the Naive Bayes classifiers may be inappropriate we use Gaussian

Tree-Augmented Naive Bayes (TAN) classifiers to learn the dependencies among dif-

ferent facial motion features. We also introduce a facial expression recognition from

live video input using temporal cues. We exploit the existing methods and present an

architecture of hidden Markov models (HMMs) for automatically segmenting and rec-

ognizing human facial expression from video sequences. The architecture automatically

performs both segmentation and recognition of the facial expressions using a multi-level

architecture composed of an HMM layer and a Markov model layer. We explore both

person-dependent and person-independent recognition of expressions and compare the

different methods using two databases.

173
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7.1 Introduction

In recent years there has been a growing interest in improving all aspects of the inter-

action between humans and computers. This emerging field has been a research interest

for scientists from several different scholastic tracks, i.e., computer science, engineering,

psychology, and neuroscience. These studies focus not only on improving computer in-

terfaces, but also on improving the actions the computer takes based on feedback from

the user. Feedback from the user has traditionally been given through the keyboard and

mouse. Other devices have also been developed for more application specific interfaces,

such as joysticks, trackballs, datagloves, and touch screens. The rapid advance of tech-

nology in recent years has made computers cheaper and more powerful, and has made the

use of microphones and PC-cameras affordable and easily available. The microphones

and cameras enable the computer to “see” and “hear,” and to use this information to

act. A good example of this is the “Smart-Kiosk” [GPRH00].

It is argued that to truly achieve effective human-computer intelligent interaction

(HCII), there is a need for the computer to be able to interact naturally with the user,

similar to the way human-human interaction takes place.

Human beings possess and express emotions in everyday interactions with others.

Emotions are often reflected on the face, in hand and body gestures, and in the voice, to

express our feelings or likings. While a precise, generally agreed upon definition of emo-

tion does not exist, it is undeniable that emotions are an integral part of our existence.

Facial expressions and vocal emotions are commonly used in everyday human-to-human

communication, as one smiles to show greeting, frowns when confused, or raises one’s

voice when enraged. People do a great deal of inference from perceived facial expres-

sions: “You look tired,” or “You seem happy.” The fact that we understand emotions

and know how to react to other people’s expressions greatly enriches the interaction.

There is a growing amount of evidence showing that emotional skills are part of what

is called “intelligence” [SM90, Gol95]. Computers today, on the other hand, are still

quite “emotionally challenged.” They neither recognize the user’s emotions nor possess

emotions of their own.

Psychologists and engineers alike have tried to analyze facial expressions in an at-

tempt to understand and categorize these expressions. This knowledge can be for exam-

ple used to teach computers to recognize human emotions from video images acquired

from built-in cameras. In some applications, it may not be necessary for computers to

recognize emotions. For example, the computer inside an automatic teller machine or an
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airplane probably does not need to recognize emotions. However, in applications where

computers take on a social role such as an “instructor,” “helper,” or even “compan-

ion,” it may enhance their functionality to be able to recognize users’ emotions. In her

book, Picard [Pic97] suggested several applications where it is beneficial for computers

to recognize human emotions. For example, knowing the user’s emotions, the computer

can become a more effective tutor. Synthetic speech with emotions in the voice would

sound more pleasing than a monotonous voice. Computer “agents” could learn the user’s

preferences through the users’ emotions. Another application is to help the human users

monitor their stress level. In clinical settings, recognizing a person’s inability to express

certain facial expressions may help diagnose early psychological disorders.

This chapter presents a real time automatic facial expression recognition system

using video input developed at University of Illinois at Urbana-Champaign. We focus

on the design of the classifiers used for performing the recognition following extraction

of features using a real time face tracking system. We describe classification schemes in

two types of settings: dynamic and ’static’ classification.

The ’static’ classifiers classify a frame in the video to one of the facial expression cat-

egories based on the tracking results of that frame. More specifically, we use Bayesian

network classifiers and compare two different models: (1) Naive Bayes classifiers where

the features are assumed to be either Gaussian or Cauchy distributed, and (2) Gaussian

Tree-Augmented Naive (TAN) Bayes classifiers. The Gaussian Naive Bayes classifier is

a standard classifier which has been used extensively in many classification problems.

We propose changing the assumed distribution of the features from Gaussian to Cauchy

because of the ability of Cauchy to account for heavy tail distributions. While Naive

Bayes classifiers are often successful in practice, they use a very strict and often unrealis-

tic assumption, that the features are independent given the class. We propose using the

Gaussian TAN classifiers which have the advantage of modeling dependencies between

the features without much added complexity compared to the Naive Bayes classifiers.

TAN classifiers have an additional advantage in that the dependencies between the fea-

tures, modeled as a tree structure, are efficiently learnt from data and the resultant tree

structure is assured to maximize the likelihood function.

Dynamic classifiers take into account the temporal pattern in displaying facial ex-

pression. We first describe the hidden Markov model (HMM) based classifiers for facial

expression recognition which have been previously used in recent works [OO97a, OPB97,

Lie98]. We further advance this line of research and present a multi-level HMM classifier,

combining the temporal information which allows not only to perform the classification
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of a video segment to the corresponding facial expression, as in the previous works on

HMM based classifiers, but also to automatically segment an arbitrary long video se-

quence to the different expressions segments without resorting to heuristic methods of

segmentation.

An important aspect is that while the static classifiers are easier to train and imple-

ment, the dynamic classifiers require more training samples and many more parameters

to learn.

The rest of the chapter is organized as follows. Section 7.2 introduces the emotion

recognition studies and presents the facial expression recognition state-of-the-art. In

Section 7.3 we briefly describe the real-time face tracking system and the features ex-

tracted for classification of facial expressions. Section 7.4 describes the Bayesian network

classifiers used for classifying frames in the video sequence to the different expressions.

In Section 7.5 we describe HMM based classifiers for facial expression recognition from

presegmented video sequences and introduce the multi-level HMM classifier for both rec-

ognizing facial expression sequences and automatically segmenting the video sequence.

We perform experiments for all the described methods using two databases in Section 7.6.

The first is a database of subjects displaying facial expressions collected by Chen [Che00].

The second is the Cohn-Kanade database [KCT00]. We have concluding remarks in Sec-

tion 7.7.

7.2 Emotion Recognition

There is little agreement about a definition of emotion and many theories of emotion

have been proposed. Some of these could not be verified until recently when measure-

ment of some physiological signals became available. In general, emotions are short-

term, whereas moods are long-term, and temperaments or personalities are very long-

term [JOS98]. A particular mood may sustain for several days, and a temperament for

months or years. Finally, emotional disorders can be so disabling that people affected

are no longer able to lead normal lives.

Darwin [Dar90] held an ethological view of emotional expressions, arguing that the

expressions from infancy and lower life forms exist in adult humans. Following the Origin

of Species he wrote The Expression of the Emotions in Man and Animals. According to

him, emotional expressions are closely related to survival. Thus in human interactions,

these nonverbal expression are as important as the verbal interaction. James [Jam90]

viewed emotions not as causes but as effects. Situations arise around us which cause
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changes in physiological signals. According to James, “the bodily changes follow directly

the perception of the exciting fact, and that our feeling of the same changes as they occur

is the emotion.” Carl Lange proposed a similar theory independently at around the same

time. This is often referred to as the “James-Lange” theory of emotion. Cannon [Can27],

contrary to James, believed that emotions are first felt, then exhibited outwardly causing

certain behaviors.

7.2.1 Judgment Studies

Despite these diverse theories, it is evident that people display expressions to various

degrees. One frequently studied task is the judgment of emotions—how well can human

observers tell the emotional expressions of others, in the voice, on the face, etc? Related

questions are: Do these represent their true emotions? Can they be convincingly por-

trayed? How well can people conceal their emotions? In such tasks, researchers often

use two different methods to describe the emotions.

One approach is to label the emotions in discrete categories, i.e., human judges must

choose from a prescribed list of word labels, such as joy, fear, love, surprise, sadness,

etc. One problem with this approach is that the stimuli may contain blended emotions.

Also the choice of words may be too restrictive, or culturally dependent.

Another way is to have multiple dimensions or scales to describe emotions. Instead

of choosing discrete labels, observers can indicate their impression of each stimulus on

several continuous scales, for example, pleasant–unpleasant, attention–rejection, simple–

complicated, etc. Two common scales are valence and arousal. Valence describes the

pleasantness of the stimuli, with positive (or pleasant) on one end, and negative (or

unpleasant) on the other. For example, happiness has a positive valence, while disgust

has a negative valence. The other dimension is arousal or activation. For example,

sadness has low arousal, whereas surprise has high arousal level. The different emotional

labels could be plotted at various positions on a two-dimensional plane spanned by these

two axes to construct a 2D emotion model [Lan95]. Scholsberg [Sch54] suggested a

three-dimensional model in which he had attention–rejection in addition to the above

two.

Another interesting topic is how the researchers managed to obtain data for obser-

vation. Some people used posers, including professional actors and nonactors. Others

attempted to induce emotional reactions by some clever means. For example, Ekman

showed stress-inducing film of nasal surgery in order to get the disgusted look on the
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viewers’ faces. Some experimenter even dumped water on the subjects or fired blank

shots to induce surprise, while others used clumsy technicians who made rude remarks

to arouse fear and anger [HAH71]. Obviously, some of these are not practical ways of

acquiring data. After studying acted and natural expressions, Ekman concluded that

expressions can be convincingly portrayed [Ekm82].

7.2.2 Review of Facial Expression Recognition

Since the early 1970s, Paul Ekman and his colleagues have performed extensive studies

of human facial expressions [Ekm94]. They found evidence to support universality in

facial expressions. These “universal facial expressions” are those representing happiness,

sadness, anger, fear, surprise, and disgust. They studied facial expressions in different

cultures, including preliterate cultures, and found much commonality in the expression

and recognition of emotions on the face. However, they observed differences in expres-

sions as well, and proposed that facial expressions are governed by “display rules” in

different social contexts. For example, Japanese subjects and American subjects showed

similar facial expressions while viewing the same stimulus film. However, in the presence

of authorities, the Japanese viewers were more reluctant to show their real expressions.

Babies seem to exhibit a wide range of facial expressions without being taught, thus

suggesting that these expressions are innate [Iza94].

Ekman and Friesen [EF78] developed the Facial Action Coding System (FACS) to

code facial expressions where movements on the face are described by a set of action

units (AUs). Each AU has some related muscular basis. Figure 7.1 shows some of the

key facial muscles on the face [Fai90]. The muscle movements (contractions) produce

facial expressions. For example, the corrugator is also known as the “frowning muscle,”

zygomatic major is responsible for smiling, and lavator labii superioris produces “sneer-

ing.” Table 7.1 lists some example action units. Each facial expression may be described

by a combination of AUs. This system of coding facial expressions is done manually by

following a set prescribed rules. The inputs are still images of facial expressions, often

at the peak of the expression. This process is very time-consuming.

Ekman’s work inspired many researchers to analyze facial expressions by means of

image and video processing. By tracking facial features and measuring the amount of

facial movement, they attempt to categorize different facial expressions. Recent work

on facial expression analysis and recognition [Mas91, UMYH94, LTC95, BY95, RYD96,

EP97, OO97a, DBH+99, Lie98, NH99, Mar99, OPB00] has used these “basic expressions”
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Figure 7.1: Some key facial muscles (adapted from [Fai90]).
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AU number FACS name Muscular basis

1 Inner brow raiser Frontalis, pars medialis
2 Outer brow raiser Frontalis, pars lateralis
5 Upper lid raiser Levator palpebrae superioris
11 Nasolabial furrow Zygomatic minor
12 Lip corner puller Zygomatic major
20 Lip stretcher Risorious

Table 7.1: Some example action units [EF78].

or a subset of them. In [PR00], Pantic and Rothkrantz provide an in depth review of

many of the research done in automatic facial expression recognition in recent years.

The work in computer-assisted quantification of facial expressions did not start until

the 1990s. Mase [Mas91] used optical flow (OF) to recognize facial expressions. He was

one of the first to use image processing techniques to recognize facial expressions. Lani-

tis, et al. [LTC95] used a flexible shape and appearance model for image coding, person

identification, pose recovery, gender recognition, and facial expression recognition. Black

and Yacoob [BY95] used local parameterized models of image motion to recover non-rigid

motion. Once recovered, these parameters were used as inputs to a rule-based classifier

to recognize the six basic facial expressions. Yacoob and Davis [YD96] computed optical

flow and used similar rules to classify the six facial expressions. Rosenblum, Yacoob, and

Davis [RYD96] also computed optical flow of regions on the face, then applied a radial

basis function network to classify expressions. Essa and Pentland [EP97] used an optical

flow region-based method to recognize expressions. Donato et al. [DBH+99] tested dif-

ferent features for recognizing facial AUs and inferring the facial expression in the frame.

Otsuka and Ohya [OO97a] first computed optical flow, then computed the 2D Fourier

transform coefficients, which were used as feature vectors for a hidden Markov model

(HMM) to classify expressions. The trained system was able to recognize one of the six

expressions near real-time (about 10 Hz). Furthermore, they used the tracked motions to

control the facial expression of an animated Kabuki system [OO97b]. A similar approach,

using different features, was used by Lien [Lie98]. Nefian and Hayes [NH99] proposed

an embedded HMM approach for face recognition that uses an efficient set of observa-

tion vectors based on the DCT coefficients. Martinez [Mar99] introduced an indexing

approach based on the identification of frontal face images under different illumination

conditions, facial expressions, and occlusions. A Bayesian approach was used to find the

best match between the local observations and the learned local features model and an
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HMM was employed to achieve good recognition even when the new conditions did not

correspond to the conditions previously encountered during the learning phase. Oliver,

et al. [OPB00] used lower face tracking to extract mouth shape features and used them

as inputs to an HMM based facial expression recognition system (recognizing neutral,

happy, sad, and an open mouth).

These methods are similar in that they first extract some features from the images,

then these features are used as inputs into a classification system, and the outcome is

one of the preselected emotion categories. They differ mainly in the features extracted

from the video images and in the classifiers used to distinguish between the different

emotions.

Another interesting aspect to point out is commonly confused categories in the six

basic expressions. As reported by Ekman, anger and disgust are commonly confused

in judgment studies. Also, fear and surprise are commonly confused. The reason why

these confusions occur is because they share many similar facial actions [EF78]. Surprise

is sometimes mistaken for interest, but not the other way around. In the computer

recognition studies, some of these are observed [BY95, YD96].

As mentioned in the Section 7.1, the classifiers used can either be ’static’ classifiers or

dynamic ones. Static classifiers use feature vectors related to a single frame to perform

classification (e.g., Neural networks, Bayesian networks, linear discriminant analysis).

Temporal classifiers try to capture the temporal pattern in the sequence of feature vectors

related to each frame such as the HMM based methods of [OO97a, Lie98, OPB00].

7.3 Face Tracking and Feature Extraction

The real time facial expression recognition system (see Figure 7.2) is composed of a face

tracking algorithm which outputs a vector of motion features of certain regions of the

face. The features are used as inputs to a classifier. The face tracker is based on a system

developed by Tao and Huang [TH98] called the Piecewise Bézier Volume Deformation

(PBVD) tracker.

This face tracker uses a model-based approach where an explicit 3D wireframe model

of the face is constructed. In the first frame of the image sequence, landmark facial

features such as the eye corners and mouth corners are selected interactively. The generic

face model is then warped to fit the selected facial features. The face model consists of

16 surface patches embedded in Bézier volumes. The surface patches defined this way

are guaranteed to be continuous and smooth. The shape of the mesh can be changed by
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Figure 7.2: A snap shot of the realtime facial expression recognition system. On the right
side is a wireframe model overlayed on a face being tracked. On the left side the correct
expression, Angry, is detected (the bars show the relative probability of Angry compared
to the other expressions). The example is from Cohn-Kanade database [KCT00].

changing the locations of the control points in the Bézier volume. Before describing the

Bézier volume, we begin with the Bézier curve.

Given a set of n+ 1 control points b0,b1, . . . ,bn, the corresponding Bézier curve (or

Bernstein-Bézier curve) is given by

x(u) =
n∑

i=0

biB
n
i (u) =

n∑
i=0

bi

(
n

i

)
ui(1− u)n−i (7.1)

where the shape of the curve is controlled by the control points bi and u ∈ [0, 1]. As the

control points are moved, a new shape is obtained according to the Bernstein polynomials

Bn
i (u) in Equation (7.1). The displacement of a point on the curve can be described in

terms of linear combinations of displacements of the control points.

The Bézier volume is a straight-forward extension of the Bézier curve and is defined

by the next equation written in matrix form

V = BD, (7.2)

where V is the displacement of the mesh nodes, D is a matrix whose columns are the

control point displacement vectors of the Bézier volume, and B is the mapping in terms
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of Bernstein polynomials. In other words, the change in the shape of the face model can

be described in terms of the deformations in D.

Once the model is constructed and fitted, head motion and local deformations of

the facial features such as the eyebrows, eyelids, and mouth can be tracked. First the

2D image motions are measured using template matching between frames at different

resolutions. Image templates from the previous frame and from the very first frame

are both used for more robust tracking. The measured 2D image motions are modeled

as projections of the true 3D motions onto the image plane. From the 2D motions of

many points on the mesh, the 3D motion can be estimated by solving an overdetermined

system of equations of the projective motions in the least squared sense. Figure 7.3

shows four frames of tracking result with the meshes overlaid on the face.

Figure 7.3: The wireframe model overlaid on a face being tracked

The recovered motions are represented in terms of magnitudes of some predefined mo-
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tion of various facial features. Each feature motion corresponds to a simple deformation

on the face, defined in terms of the Bézier volume control parameters. We refer to these

motions vectors as Motion-Units (MU’s). Note that they are similar but not equivalent

to Ekman’s AU’s and are numeric in nature, representing not only the activation of a

facial region, but also the direction and intensity of the motion. The MU’s used in the

face tracker are shown in Figure 7.4 and are described in Table 7.2.

1 

2 

3 4 

5 

6 

8 7 

9 
10 

12 11 

Figure 7.4: The facial motion measurements

MU Description

1 vertical movement of the center of upper lip
2 vertical movement of the center of lower lip
3 horizontal movement of left mouth corner
4 vertical movement of left mouth corner
5 horizontal movement of right mouth corner
6 vertical movement of right mouth corner
7 vertical movement of right brow
8 vertical movement of left brow
9 lifting of right cheek
10 lifting of left cheek
11 blinking of right eye
12 blinking of left eye

Table 7.2: Motion units used in the face tracker.
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Each facial expression is modeled as a linear combination of the MU’s:

V = B [D0D1 . . .Dm]


p0

p1

...

pm

 = BDP (7.3)

where each of the Di corresponds to an MU, and the pi are the corresponding magnitudes

(or coefficients) of each deformation. The overall motion of the head and face is

R(V0 + BDP) + T (7.4)

where R is the 3D rotation matrix, T is the 3D translation matrix, and V0 is the initial

face model.

The MU’s are used as the basic features for the classification scheme described in the

next sections.

7.4 The Static Approach: Bayesian Network Classi-

fiers for Facial Expression Recognition

Bayesian networks can represent joint distributions in an intuitive and efficient way; as

such, Bayesian networks are naturally suited for classification. We can use a Bayesian

network to compute the posterior probability of a set of labels given the observable

features, and then we classify the features with the most probable label.

A few conventions are adopted throughout. The goal here is to label an incoming

vector of features (MUs) X. Each instantiation of X is a record. We assume that there

exists a class variable C; the values of C are the labels, one of the facial expressions. The

classifier receives a record x and generates a label ĉ(x). An optimal classification rule

can be obtained from the exact distribution p(C,X). However, if we do not know this

distribution, we have to learn it from expert knowledge or data.

For recognizing facial expression using the features extracted from the face tracking

system, we consider probabilistic classifiers that represent the a-posteriori probability

of the class given the features, p(C,X), using Bayesian networks [Pea88]. A Bayesian

network is composed of a directed acyclic graph in which every node is associated with a

variable Xi and with a conditional distribution p(Xi|Πi), where Πi denotes the parents



186 CHAPTER 7. FACIAL EXPRESSION RECOGNITION

of Xi in the graph. The directed acyclic graph is the structure, and the distributions

p(Xi|Πi) represent the parameters of the network.

Typically, Bayesian network classifiers are learned with a fixed structure – the

paradigmatic example is the Naive Bayes classifier. More flexible learning methods allow

Bayesian network classifiers to be selected from a small subset of possible structures –

for example, the Tree-Augmented-Naive-Bayes structures [FGG97]. After a structure is

selected, the parameters of the classifier are usually learned using maximum likelihood

estimation.

Given a Bayesian network classifier with parameter set Θ, the optimal classification

rule under the maximum likelihood (ML) framework to classify an observed feature

vector of n dimensions, X ∈ Rn, to one of |C| class labels, c ∈ {1, ..., |C|}, is given as:

ĉ = argmax
c

P (X|c; Θ) (7.5)

There are two design decisions when building Bayesian network classifiers. The first is

to choose the structure of the network, which will determine the dependencies among

the variables in the graph. The second is to determine the distribution of the features.

The features can be discrete, in which case the distributions are probability mass func-

tions. The features can also be continuous, in which case one typically has to choose a

distribution, with the most common being the Gaussian distribution. Both these design

decisions determine the parameter set Θ which defines the distribution needed to com-

pute the decision function in Equation (7.5)). Designing the Bayesian network classifiers

for facial expression recognition is the focus of this section.

7.4.1 Continuous Naive-Bayes: Gaussian and Cauchy Naive

Bayes Classifiers

Naive Bayes classifier is a probabilistic classifier in which the features are assumed in-

dependent given the class. Naive-Bayes classifiers have a very good record in many

classification problems, although the independence assumption is usually violated in

practice. The reason for the Naive-Bayes success as a classifier is attributed to the small

number of parameters needed to be estimated. Recently, Garg and Roth [GR01] showed

using information theoretic arguments additional reasons for the success of Naive-Bayes

classifiers. An example of a Naive Bayes classifier is given in Figure 7.5.

If the features in X are assumed to be independent of each other conditioned upon
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Figure 7.5: An example of a Naive Bayes classifier.

the class label c (the Naive Bayes framework), Eq. (7.5) reduces to:

ĉ = argmax
c

n∏
i=1

P (xi|c; Θ) (7.6)

Now the problem is how to model P (xi|c; Θ), which is the probability of feature xi

given the class label. In practice, the common assumption is that we have a Gaussian

distribution and the ML can be used to obtain the estimate of the parameters (mean

and variance). However, we showed that the Gaussian assumption is often invalid and

we proposed the Cauchy distribution as an alternative model. This model is referred to

as Cauchy Naive Bayes.

The difficulty of this model is in estimating the parameters of the Cauchy distribution.

For this we used the procedure presented in Section 2.6.1.

The Naive-Bayes classifier was successful in many applications mainly due to its

simplicity. Also, this type of classifier is working well even if there is not too much

training data. However, the strong independence assumption may seem unreasonable in

some cases. Therefore, when sufficient training data is available we want to learn and to

use the dependencies present in the data.

7.4.2 Beyond the Naive-Bayes Assumption: Finding Depen-

dencies among Features Using a Gaussian TAN Classifier

The goal of this section is to provide a way to search for a structure that captures the

dependencies among the features. Of course, to attempt to find all the dependencies is an

NP-complete problem. So, we restrict ourselves to a smaller class of structures called the

Tree-Augmented-Naive Bayes (TAN) classifiers. TAN classifiers have been introduced by

Friedman, et al. [FGG97] and are represented as Bayesian networks. The joint probability

distribution is factored to a collection of conditional probability distributions of each node
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in the graph.

In the TAN classifier structure the class node has no parents and each feature has

as parents the class node and at most one other feature, such that the result is a tree

structure for the features (see Figure 7.6). Friedman, et al. [FGG97] proposed using

the TAN model as a classifier, to enhance the performance over the simple Naive-Bayes

classifier. TAN models are more complicated than the Naive-Bayes, but are not fully

connected graphs. The existence of an efficient algorithm to compute the best TAN

model makes it a good candidate in the search for a better structure over the simple NB.

Figure 7.6: An example of a TAN classifier.

Learning the TAN classifier is more complicated. In this case, we do not fix the

structure of the Bayesian network, but we try to find the TAN structure that maximizes

the likelihood function given the training data out of all possible TAN structures.

In general, searching for the best structure has no efficient solution, however, search-

ing for the best TAN structure does have one. The method is using the modified Chow-

Liu algorithm [CL68] for constructing tree augmented Bayesian networks [FGG97]. The

algorithm finds the tree structure among the features that maximizes the likelihood of

the data by computation of the pairwise class conditional mutual information among

the features and building a maximum weighted spanning tree using the pairwise mutual

information as the weights of the arcs in the tree. The problem of finding a maximum

weighted spanning is defined as finding the set of arcs connecting the features such

that the resultant graph is a tree and the sum of the weights of the arcs is maximized.

There have been several algorithms proposed for building a maximum weighted spanning

tree [CLR90] and in our implementation we use the Kruskal algorithm described in the

boxed text.

The five steps of the TAN algorithm are described in the boxed text. This procedure

ensures to find the TAN model that maximizes the likelihood of the data we have. The
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Kruskal’s Maximum Weighted Spanning Tree Algorithm
Consider an undirected graph with n vertices and m edges, where each edge (u, v)
connecting the vertices u and v, has an associated positive weight w(u,v). To construct
the maximum weighted spanning tree graph follow the following steps:

1. Create an empty set of edges called spanningTree.

2. For each vertex v in the graph, create a set containing v.

3. Sort all edges in the graph using the weights in the edges from highest to lowest.

4. In order of the sorted edges, for each edge (u, v) if the set that contains u is
different from the set that contains v:

• Put the edge (u, v) in spanningTree

• Make u and v belong to the same set (union of sets).

5. spanningTree contains all the edges in the maximum weighted spanning tree.

TAN learning algorithm

1. Compute the class conditional pair-wise mutual information between each pair of
features, (Xi, Xj) for all i, j ∈ {1, ..., n},

IP (Xi, Xj|C) =
∑

Xi,Xj ,C

P (xi, xj, c) log
P (xi, xj|c)

P (xi|c)P (xj|c)
, i 6= j.

2. Build a complete undirected graph in which each vertex is a variable, and the
weight of each edge is the mutual information computed in Step 1.

3. Build a maximum weighted spanning tree (MWST) (see the boxed text above).

4. Transform the undirected MWST of Step 3 to a directed graph by choosing a
root node and pointing the arrows of all edges away from the root.

5. Make the class node the parent of all the feature nodes in the directed graph of
Step 4.
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algorithm is computed in polynomial time (O(n2logN), with N being the number of

instances and n the number of features).

The learning algorithm for the TAN classifier as proposed by Friedman, et al. [FGG97]

relies on computations of the class conditional mutual information of discrete features.

In our problem the features are continuous, and computation of the mutual information

for a general distribution is very complicated. However, if we assume that the features

are Gaussian, computation of the conditional mutual information is feasible and is given

by (see the boxed text for details):

I(Xi, Xj|C) = −1

2

|C|∑
c=1

P (C = c) log(1− ρ2
(ij)|c), (7.7)

where ρ(ij)|c is the correlation coefficient between Xi and Xj given the class label c.

We replace the expression for the mutual information in Step 1 of the TAN algorithm

with the expression in Equation (7.7), to find the maximum likelihood Gaussian-TAN

classifier.

The full joint distribution of the Gaussian-TAN model can be written as:

p(c, x1, x2, ..., xn) = p(c)
n∏

i=1

p(xi|Πi, c), (7.8)

where Πi is the feature that is the additional parent of feature xi. Πi is empty for the

root feature in the directed tree graph of Step 4 in the Kruskal’s algorithm.

Using the Gaussian assumption, the probability density functions (pdf’s) of the dis-

tribution in the product above are:

p(Xi = xi|Πi, C = c) = Nc(µxi
+ a · Πi, σ

2
xi
· (1− ρ2)), (7.9)

where Nc(µ, σ
2) refers to the Gaussian distribution with mean and variance given that

the class is c, µxi
, σ2

xi
are the mean and variance of the feature xi,

ρ =
COV (xi,Πi)

σxi
σΠi

is the correlation coefficient between xi and Πi, and

a =
COV (xi,Πi)

σ2
Πi

.
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For further details on the derivation of the parameters see the boxed text.

After learning the structure, the Gaussian-TAN classifier’s added complexity com-

pared to the Naive Bayes classifier is small; there are |C| · (n − 1) extra parameters to

estimate (the covariances between features and their parents). For learning the structure,

all pairwise mutual information are estimated using the estimates for the covariances.

7.5 The Dynamic Approach: Facial Expression Rec-

ognition Using Multi-level HMMs

As discussed in Section 7.1, the second approach to perform classification of video se-

quences to facial expression is the dynamic approach. The dynamic approach uses clas-

sifiers that can use temporal information to discriminate different expressions. The logic

behind using the temporal information is that expressions have a unique temporal pat-

tern. When recognizing expressions from video, using the temporal information can lead

to more robust and accurate classification results compared to methods that are ’static’.

The method we present automatically segments the video to the different facial ex-

pression sequences, using a multi-level HMM structure. The first level of the architecture

is comprised of independent HMMs related to the different emotions. This level of HMMs

is very similar to the one used in [Lie98], [OPB97], and [OO97a] who used the likelihood

of a given sequence in a ML classifier to classify a given video sequence. Instead of clas-

sifying using the output of each HMM, we use the state sequence of the HMMs as the

input of the higher level Markov model. This is meant to segment the video sequence,

which is the main problem facing the previous works using HMM’s for expression recog-

nition. Moreover, this also increases the discrimination between the classes since it tries

to find not only the probability of each the sequence displaying one emotion, but also

the probability of the sequence displaying one emotion and not displaying all the other

emotions at the same time.

7.5.1 Hidden Markov Models

Hidden Markov models have been widely used for many classification and modeling

problems. Perhaps the most common application of HMM is in speech recognition [RJ83].

One of the main advantages of HMMs is their ability to model nonstationary signals or

events. Dynamic programming methods allow one to align the signals so as to account for
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Gaussian-TAN Parameters Computation
The mutual information between continuous random variables, X, Y is given as:

I(X, Y ) =

∫ ∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy = H(x) +H(y)−H(x, y) (7.10)

where H(·) is the differential entropy, analogous to the entropy of discrete variables,
defined as:

H(Z) = −
∫
p(z) log p(z)dz. (7.11)

Here p(z) is the probability density function of Z and the integral is over all dimensions
in z.
For a Gaussian random vector Z of N dimensions with covariance matrix Σ, by
inserting the Gaussian pdf to Eq. (7.11) and taking the integral, we get that the
differential entropy of Z is:

H(Z) =
1

2
log
(
(2πe)N |Σ|

)
(7.12)

where |Σ| is the determinant of Σ.
Suppose now that X and Y are jointly Gaussian. Then,

p(X, Y ) ∼ N

([
µX

µY

]
,ΣXY

)
(7.13)

where ΣXY is the covariance matrix given as:

ΣXY =

[
σ2

X COV (X, Y )
COV (X, Y ) σ2

Y

]
. (7.14)

Using Eqs. (7.12) and (7.10) we get that the mutual information of X and Y is given
by:

I(X, Y ) = −1

2
log

(
σ2

Xσ
2
Y

σ2
Xσ

2
Y − COV (X,Y )2

)

= −1

2
log

 1

1− COV (X,Y )2

σ2
Xσ2

Y


= −1

2
log

(
1

1− ρ2
XY

)
, (7.15)

where ρXY = COV (X,Y )2

σ2
Xσ2

Y
is the correlation coefficient between X and Y .
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In the TAN classifiers, the class is the parent of all features, and the features are
Gaussian given a class label. Thus all the results above apply with an understanding
that the distributions are conditioned on the class label (which is omitted for clarity).
The class conditional mutual information between the pair X and Y is derived as
follows:

I(X, Y |C) =

|C|∑
c=1

∫ ∫
p(x, y, c) log

(
p(x, y|c)

p(x|c)p(y|c)

)
dxdy

=

|C|∑
c=1

∫ ∫
p(c)p(x, y|c) log

(
p(x, y|c)

p(x|c)p(y|c)

)

=

|C|∑
c=1

p(c)I(X, Y |C = c)

= −1

2

|C|∑
c=1

p(c) log

(
1

1− ρ2
XY |c

)
(7.16)

After finding the TAN structure, suppose that we find that feature X is the parent of
Y . Given the class label, X and Y are jointly Gaussian with mean vector and
covariance as defined in Eqs. (7.13) and (7.14) (again omitting the conditioning on the
class variable for clarity). Since X is the parent of Y , we are interested in finding the
parameters of the conditional distribution p(Y |X) as a function of the parameters of
the joint distribution. Because X and Y are jointly Gaussian, Y |X is also Gaussian.
Using p(X, Y ) = p(X)p(Y |X) and the Gaussian pdf, after some manipulations we get:

p(Y |X) =
p(X, Y )

p(X)

=
1

(2πσ2
Y (1− ρ2

XY ))1/2
exp

(
−(y − µY − ax)2

2σ2
Y (1− ρ2

XY )

)
= N

(
µY + ax, σ2

Y (1− ρ2
XY )

)
(7.17)

where a = COV (X,Y )

σ2
X

.
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the non stationarity. However, the main disadvantage of this approach is that it is very

time-consuming since all of the stored sequences are used to find the best match. The

HMM finds an implicit time warping in a probabilistic parametric fashion. It uses the

transition probabilities between the hidden states and learns the conditional probabilities

of the observations given the state of the model. In the case of emotion expression, the

signal is the measurements of the facial motion. This signal is non stationary in nature,

since an expression can be displayed at varying rates, with varying intensities even for

the same individual.

An HMM is given by the following set of parameters:

λ = (A,B, π)

aij = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N

B = {bj(Ot)} = P (Ot|qt = Sj), 1 ≤ j ≤ N

πj = P (q1 = Sj)

where A is the state transition probability matrix, B is the observation probability

distribution, and π is the initial state distribution. The number of states of the HMM

is given by N . It should be noted that the observations (Ot) can be either discrete or

continuous, and can be vectors. In the discrete case, B becomes a matrix of probability

entries (Conditional Probability Table), and in the continuous case, B will be given

by the parameters of the probability distribution function of the observations (normally

chosen to be the Gaussian distribution or a mixture of Gaussians). Given an HMM there

are three basic problems that are of interest. The first is how to efficiently compute the

probability of the observations given the model. This problem is related to classification

in the sense that it gives a measure of how well a certain model describes an observation

sequence. The second is how to find the corresponding state sequence in some optimal

way, given a set of observations and the model. This will become an important part of

the algorithm to recognize the expressions from live input and will be described later

in this paper. The third is how to learn the parameters of the model λ given the set

of observations so as to maximize the probability of observations given the model. This

problem relates to the learning phase of the HMMs which describe each facial expression

sequence. A comprehensive tutorial on HMMs is given by Rabiner [Rab89].
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7.5.2 Expression Recognition Using Emotion-Specific HMMs

Since the display of a certain facial expression in video is represented by a temporal

sequence of facial motions it is natural to model each expression using an HMM trained

for that particular type of expression. There will be six such HMMs, one for each

expression: {happy(1), angry(2), surprise(3), disgust(4), fear(5), sad(6)}. There are

several choices of model structure that can be used. The two main models are the

left-to-right model and the ergodic model. In the left-to-right model, the probability

of going back to the previous state is set to zero, and therefore the model will always

start from a certain state and end up in an ‘exiting’ state. In the ergodic model every

state can be reached from any other state in a finite number of time steps. In [OO97a],

Otsuka and Ohya used left-to-right models with three states to model each type of facial

expression. The advantage of using this model lies in the fact that it seems natural to

model a sequential event with a model that also starts from a fixed starting state and

always reaches an end state. It also involves fewer parameters and therefore is easier to

train. However, it reduces the degrees of freedom the model has to try to account for

the observation sequence. There has been no study to indicate that the facial expression

sequence is indeed modeled well by the left-to-right model. On the other hand, using

the ergodic HMM allows more freedom for the model to account for the observation

sequences, and in fact, for an infinite amount of training data it can be shown that the

ergodic model will reduce to the left-to-right model, if that is indeed the true model. In

this work both types of models were tested with various numbers of states in an attempt

to study the best structure that can model facial expressions.

The observation vector Ot for the HMM represents continuous motion of the facial

action units. Therefore, B is represented by the probability density functions (pdf) of

the observation vector at time t given the state of the model. The Gaussian distribution

is chosen to represent these pdf’s, i.e.,

B = {bi(Ot)} ∼ N(µj,Σj), 1 ≤ j ≤ N (7.18)

where µj and Σj are the mean vector and full covariance matrix, respectively.

The parameters of the model of emotion-expression specific HMM are learned using

the well-known Baum-Welch reestimation formulas (see [LRS83] for details of the algo-

rithm). For learning, hand labeled sequences of each of the facial expressions are used

as ground truth sequences, and the Baum algorithm is used to derive the maximum

likelihood (ML) estimation of the model parameters (λ).
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Parameter learning is followed by the construction of a ML classifier. Given an

observation sequence Ot, where t ∈ (1, T ), the probability of the observation given each

of the six models P (Ot|λj) is computed using the forward-backward procedure [Rab89].

The sequence is classified as the emotion corresponding to the model that yielded the

highest probability, i.e.,

c∗ = argmax
1≤c≤6

[P (O|λc)] (7.19)

7.5.3 Automatic Segmentation and Recognition of Emotions

Using Multi-level HMM.

The main problem with the approach taken in the previous section is that it works on

isolated facial expression sequences or on pre-segmented sequences of the expressions

from the video. In reality, this segmentation is not available, and therefore there is

a need to find an automatic way of segmenting the sequences. Concatenation of the

HMMs representing phonemes in conjunction with the use of grammar has been used in

many systems for continuous speech recognition. Dynamic programming for continuous

speech has also been proposed in different researches. It is not very straightforward

to try and apply these methods to the emotion recognition problem since there is no

clear notion of language in displaying emotions. Otsuka and Ohya [OO97a] used a

heuristic method based on changes in the motion of several regions of the face to decide

that an expression sequence is beginning and ending. After detecting the boundaries,

the sequence is classified to one of the emotions using the emotion-specific HMM. This

method is prone to errors because of the sensitivity of the classifier to the segmentation

result. Although the result of the HMMs are independent of each other, if we assume

that they model realistically the motion of the facial features related to each emotion,

the combination of the state sequence of the six HMMs together can provide very useful

information and enhance the discrimination between the different classes. Since we will

use a left-to-right model (with return), the changing of the state sequence can have a

physical attribute attached to it (such as opening and closing of mouth when smiling),

and therefore there we can gain useful information from looking at the state sequence

and using it to discriminate between the emotions at each point in time.

To solve the segmentation problem and enhance the discrimination between the

classes, a different kind of architecture is needed. Figure (7.7) shows the architecture

for automatic segmentation and recognition of the displayed expression at each time

instance. The motion features are continuously used as input to the six emotion-specific
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HMMs. The state sequence of each of the HMMs is decoded and used as the observation

vector for the high level Markov model. The high-level Markov model consists of seven

states, one for each of the six emotions and one for neutral. The neutral state is necessary

as for the large portion of time, there is no display of emotion on a person’s face. In

this implementation of the system, the transitions between emotions are imposed to pass

through the neutral state since our training data consists of facial expression sequences

that always go through the neutral state.

It is possible (although less likely) for a person to go from one expression to another

without passing through a neutral expression, as has been reported in [OO97a]. Handling

such cases is done by slightly modifying the high level HMM of Figure 7.7. We simply

have to set the transition probabilities of passing from all states to all states to values

higher than zero (which appears as arcs between the different states of the expressions

in the high-level HMM).

The recognition of the expression is done by decoding the state that the high-level

Markov model is in at each point in time since the state represents the displayed emotion.

6 HMM
State sequence of 

Model for Emotion (1)

Decoded State Sequence = Observation Sequence for High−Level HMM

Recognition of Emotion at Each

Sampling Time

Higher−Level HMM

Decoded State Sequence

HMM Model for Emotion (6)

 t+3 t+4t+2t+1t

t+3 t+4t+2t+1t

Tracking Results − Motion

Decoded State Sequence

Anger

Surprise

Sad

Happy

Disgust

Fear

Neutral

Unit Measurements

Figure 7.7: Multilevel HMM architecture for automatic segmentation and recognition of
emotion.

The training procedure of the system is as follows:

• Train the emotion-specific HMMs using a hand segmented sequence as described
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in the previous section.

• Feed all six HMMs with the continuous (labeled) facial expression sequence. Each

expression sequence contains several instances of each facial expression with neutral

instances separating the emotions.

• Obtain the state sequence of each HMM to form the six-dimensional observation

vector of the higher-level Markov model, i.e., Oh
t = [q

(1)
t ,...,q

(6)
t ]T , where q

(i)
t is the

state of the ith emotion-specific HMM. The decoding of the state sequence is done

using the Viterbi algorithm [Rab89].

• Learn the probability observation matrix for each state of the high-level Markov

model using P (q
(i)
j |Sk) = {expected frequency of model i being in state j given

that the true state was k}, and

B(h) = {bk(Oh
t )} =

{
6∏

i=1

(P (q
(i)
j |Sk)

}
(7.20)

where j ∈ (1,Number of States for Lower Level HMM).

• Compute the transition probability A = {akl} of the high-level HMM using the

frequency of transiting from each of the six emotion classes to the neutral state in

the training sequences and from the neutral state to the other emotion states. For

notation, the neutral state is numbered 7 and the other states are numbered as in

the previous section. All the transition probabilities could also be set using expert

knowledge, and not necessarily from training data.

• Set the initial probability of the high level Markov model to be 1 for the neutral

state and 0 for all other states. This forces the model to always start at the neutral

state and assumes that a person will display a neutral expression in the beginning

of any video sequence. This assumption is made just for simplicity of the testing.

The steps followed during the testing phase are very similar to the ones followed

during training. The face tracking sequence is used as input into the lower-level HMMs

and a decoded state sequence is obtained using the Viterbi algorithm. The decoded

lower-level state sequence Oh
t is used as input to the higher-level HMM and the obser-

vation probabilities are computed using Eq. (7.20). Note that in this way of computing



7.6. EXPERIMENTS 199

the probability, it is assumed that the state sequences of the lower-level HMMs are in-

dependent given the true labeling of the sequence. This assumption is reasonable since

the HMMs are trained independently and on different training sequences. In addition,

without this assumption, the size of B will be enormous, since it will have to account

for all possible combinations of states of the six lower-level HMMs, and it would require

a huge amount of training data.

Using the Viterbi algorithm again for the high level Markov model, a most likely

state sequence is produced. The state that the HMM was in at time t corresponds to

the expressed emotion in the video sequence at time t. To make the classification result

robust to undesired fast changes, a smoothing of the state sequence is done by preserving

the actual classification result if the HMM did not stay in a particular state for more

than T times, where T can vary between 1 and 15 samples (assuming a 30-Hz sampling

rate). The introduction of the smoothing factor T will cause a delay in the decision of

the system, but of no more than T sample times.

7.6 Experiments

In order to test the algorithms described in the previous sections we use two different

databases, a database collected by Chen [Che00] and the Cohn-Kanade [KCT00] AU

code facial expression database.

The first is a database of subjects that were instructed to display facial expressions

corresponding to the six types of emotions. The data collection method is described in

detail in [Che00]. All the tests of the algorithms are performed on a set of five people,

each one displaying six sequences of each one of the six emotions, and always coming

back to a neutral state between each emotion sequence. The restriction of coming back

to the neutral state after each emotion was imposed for the sake of simplicity in labeling

the sequence. However, as mentioned in the previous section the system is also able to

deal with the situation where a person can go from one expression to another without

passing through a neutral expression.

Each video sequence was used as the input to the face tracking algorithm described

in Section 7.3. The sampling rate was 30 Hz, and a typical emotion sequence is about

70 samples long (∼2s). Figure 7.8 shows one frame of each emotion for each subject.

The data was collected in an open recording scenario, where the person was asked

to display the expression corresponding to the emotion being induced. This is of course

not the ideal way of collecting emotion data. The ideal way would be using a hidden
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(a) Anger (b) Disgust (c) Fear (d) Happiness (e) Sadness (f) Surprise

Figure 7.8: Examples of images from the video sequences used in the experiment.
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Figure 7.9: The learned TAN structure for the facial features. Dashed lines represent
links that are relatively weaker than the others.

recording, inducing the emotion through events in the normal environment of the subject,

not in a studio. The main problem with collecting the data this way is the impracticality

of it and the ethical issue of hidden recording.

We use this database in two types of experiments. First we performed person depen-

dent experiments, in which part of the data for each subject was used as training data,

and another part as test data. Second, we performed person independent experiments,

in which we used the data of all but one person as training data, and tested on the

person that was left out.

For the TAN classifiers we used the dependencies shown in Figure 7.9, learned using

the algorithm described in Section 7.4.2. The arrows are from parents to children MUs.

From the tree structure we see that the TAN learning algorithm produced a structure

in which the bottom half of the face is almost disjoint from the top portion, except for

a weak link between MU 4 and MU 11.

For the HMM-based models, several states were tried (3-12) and both the ergodic

and left-to-right with return were tested. The results presented below are of the best

configuration (an ergodic model using 11 states), determined using cross-validation over

the training set.

The Cohn-Kanade database [KCT00] consists of expression sequences of subjects,

starting from a Neutral expression and ending in the peak of the facial expression. There

are 104 subjects in the database. Because for some of the subjects, not all of the six

facial expressions sequences were available to us, we used a subset of 53 subjects, for
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which at least four of the sequences were available. For each person there are on average

8 frames for each expression, which makes insufficient data to perform person dependent

tests. Also, the fact that each sequence ends in the peak of the facial expression makes

the use of our dynamic multi-level HMM classifier impractical since in this case each

sequence counts for an incomplete temporal pattern. In these conditions, we only used

this database for performing person independent tests using the static Bayesian network

classifiers.

A summary of both databases is presented in Table 7.3.

Sequences Sequences per subject average frames
Database Subjects per expression per expression per expression

Chen DB 5 30 6 70
Cohn-Kanade DB 53 53 1 8

Table 7.3: Summary of the databases

For the frame based methods (NB-Gaussian, NB-Cauchy, and TAN), we measure

the accuracy with respect to the classification result of each frame, where each frame

in the video sequence was manually labeled to one of the expressions (including neu-

tral). This manual labeling can introduce some ’noise’ in the classification because the

boundary between Neutral and the expression of a sequence is not necessarily optimal,

and frames near this boundary might cause confusion between the expression and the

Neutral. A different labeling scheme is to label only some of the frames that are around

the peak of the expression leaving many frames in between unlabeled. We did not take

this approach because a real-time classification system would not have this information

available to it. The accuracy for the temporal based methods is measured with respect

to the misclassification rate of an expression sequence, not with respect to each frame.

7.6.1 Results Using the Chen Database

Person-Dependent Tests

A person-dependent test is first tried. Tables 7.4 and 7.5 show the recognition rate of

each subject and the average recognition rate of the classifiers.

The fact that subject 5 was poorly classified can be attributed to the inaccurate

tracking result and lack of sufficient variability in displaying the emotions. It can also be
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Subject NB-Gaussian NB-Cauchy TAN

1 80.97% 81.69% 85.94%
2 87.09% 84.54% 89.39%
3 82.5% 83.05% 86.58%
4 77.18% 79.25% 82.84%
5 69.06% 71.74% 71.78%

Average 79.36% 80.05% 83.31%

Table 7.4: Person-dependent facial expression recognition accuracies using frame based
methods.

Subject Single HMM Multilevel HMM

1 82.86% 80%
2 91.43% 85.71%
3 80.56% 80.56%
4 83.33% 88.89%
5 54.29% 77.14%

Average 78.49% 82.46%

Table 7.5: Person-dependent facial expression recognition rates using the emotion-
specific HMM and multilevel HMM.

seen that the multilevel HMM achieves similar recognition rate (and improves it in some

cases) compared to the emotion-specific HMM, even though the input is unsegmented

continuous video.

The NB-Cauchy assumption does not give a significant improvement in recognition

rate comparing with the NB-Gaussian assumption mainly due to the fact that in this

case there are not many outliers in the data (we train and test with sequences of the

same person in the same environment). This may not be the case in a natural setting

experiment. Note that only in the case of subject 2 the Gaussian assumption gave better

results than the Cauchy assumption. This result can be attributed to the fact that this

subject shows the expressions in a more consistent way over time and this counts fewer

outliers in the recorded data. It is also important to observe that taking into account

the dependencies in the features (the TAN model) gives significantly improved results.

In average the best results are obtained by TAN followed by the NB-Cauchy and

NB-Gaussian.
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The confusion matrix for the TAN classifier is presented in Table 7.6. The analysis of

the confusion between different emotions shows that most of the confusion of the classes

is with the Neutral class. This can be attributed to the arbitrary labeling of each frame

in the expression sequence. The first and last few frames of each sequence are very close

to the Neutral expression and thus are more prone to become confused with it. We also

see that most expression do not confuse with Happy.

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral 79.58 1.21 3.88 2.71 3.68 5.61 3.29
Happy 1.06 87.55 0.71 3.99 2.21 1.71 2.74
Anger 5.18 0 85.92 4.14 3.27 1.17 0.30
Disgust 2.48 0.19 1.50 83.23 3.68 7.13 1.77

Fear 4.66 0 4.21 2.28 83.68 2.13 3.00
Sad 13.61 0.23 1.85 2.61 0.70 80.97 0

Surprise 5.17 0.80 0.52 2.45 7.73 1.08 82.22

Table 7.6: Person-dependent confusion matrix using the TAN classifier

The confusion matrices for the HMM based classifiers (described in details in [Coh00])

show similar results, with happiness achieving near 100%, and surprise approximately

90%.

Person-Independent Tests

In the previous section it was seen that a good recognition rate was achieved when the

training sequences were taken from the same subject as the test sequences. A more

challenging application is to create a system which is person-independent. In this case

the variation of the data is more significant and we expect that using a Cauchy-based

classifier we will obtain significantly better results.

For this test all of the sequences of one subject are used as the test sequences and

the sequences of the remaining four subjects are used as training sequences. This test

is repeated five times, each time leaving a different person out (leave one out cross

validation). Table 7.7 shows the recognition rate of the test for all classifiers. In this case

the recognition rates are lower compared with the person-dependent results. This means

that the confusions between subjects are larger than those within the same subject.

In this case the TAN classifier provides the best results. It is important to observe

that the Cauchy assumption also yields a larger improvement compared to the Gaussian
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Classifier NB-Gaussian NB-Cauchy TAN Single HMM Multilevel HMM
Recognition rate 60.23% 64.77% 66.53% 55.71% 58.63%

Table 7.7: Recognition rate for person-independent test.

classifier, due to the capability of the Cauchy distribution to handle outliers. One of

the reasons for the misclassifications is the fact that the subjects are very different from

each other (three females, two males, and different ethnic backgrounds); hence, they

display their emotion differently. Although it appears to contradict the universality of

the facial expressions as studied by Ekman and Friesen [EF78], the results show that for

practical automatic emotion recognition, consideration of gender and race play a role in

the training of the system.

Table 7.8 shows the confusion matrix for the the TAN classifier. We see that Happy,

Fear, and Surprise are detected with high accuracy, and other expressions are greatly

confused mostly with Neutral. Here the differences in the intensity of the expressions

among the different subjects played a significant role in the confusion among the different

expressions.

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral 76.95 0.46 3.39 3.78 7.35 6.53 1.50
Happy 3.21 77.34 2.77 9.94 0 2.75 3.97
Anger 14.33 0.89 62.98 10.60 1.51 9.51 0.14
Disgust 6.63 8.99 7.44 52.48 2.20 10.90 11.32

Fear 10.06 0 3.53 0.52 73.67 3.41 8.77
Sad 13.98 7.93 5.47 10.66 13.98 41.26 6.69

Surprise 4.97 6.83 0.32 7.41 3.95 5.38 71.11

Table 7.8: Person-independent average confusion matrix using the TAN classifier

7.6.2 Results Using the Cohn-Kanade Database

For this test we first divided the database in 5 sets which contain the sequences corre-

sponding to 10 or 11 subjects (three sets with 11 subjects, two sets with 10 subjects).

We used the sequences from a set as test sequences and the remaining sequences were

used as training sequences. This test was repeated five times, each time leaving a dif-



206 CHAPTER 7. FACIAL EXPRESSION RECOGNITION

ferent set out (leave one out cross validation). Table 7.9 shows the recognition rate of

the test for all classifiers. Note that the results obtained with this database are much

better than the ones obtained with the Chen database. This is because in this case we

have more training data. For training we had available the data from more than 40

different persons. Therefore, the learnt model is more accurate and can achieve better

classification rates when using the test data.

Classifier NB-Gaussian NB-Cauchy TAN
Recognition rate 67.03% 68.14% 73.22%

Table 7.9: Recognition rate for Cohn-Kanade database.

In average the best results were obtained using the TAN followed by NB-Cauchy and

NB-Gaussian which is consistent with the results obtained with the Chen database.

The confusion matrix for the TAN classifier is presented in Table 7.10. In this case,

Surprise was detected with over 93% accuracy and Happy with over 86% accuracy. The

other expressions are greatly confused with each other.

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral 78.59 1.03 3.51 8.18 1.85 5.78 1.03
Happy 0 86.22 4.91 5.65 3.19 0 0
Anger 2.04 4.76 66.46 14.28 5.21 6.09 1.14
Disgust 3.40 1.13 10.90 62.27 10.90 9.09 2.27

Fear 1.19 13.57 7.38 7.61 63.80 3.80 1.90
Sad 5.55 1.58 13.25 11.19 3.96 61.26 3.17

Surprise 0 0 0 0 2.02 4.04 93.93

Table 7.10: Person-independent average confusion matrix using the TAN classifier

7.7 Summary and Discussion

In this chapter we presented several methods for expression recognition from video. The

intention was to perform an extensive evaluation of different methods using static and

dynamic classification.

In the case of static classifiers the idea was to classify each frame of a video to one

of the facial expressions categories based on the tracking results of that frame. The
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classification in this case was done using Bayesian networks classifiers. We showed that

there are two design decisions for building such classifiers: (1) determining the distribu-

tion of the features and (2) choosing the structure of the network which determines the

dependencies among the features.

We first presented Naive Bayes classifiers which assumed that the features are inde-

pendent given the class. The common assumption is that we have Gaussian distribution

for the features but we showed that in practice using the Cauchy distribution we obtained

improved classification results. The problem with the Naive Bayes approach is that the

independence assumption is not justified in this case because the facial motion measure-

ments are highly correlated when humans display emotions. Therefore, the next effort

was in developing another classifier that took into account these dependencies among

features. We used the TAN classifier and showed a method to search for the optimal TAN

structure when the features were assumed to be Gaussian. We showed that after learning

the structure from data, the Gaussian-TAN classifier added only small complexity to the

Naive Bayes approach and improved significantly the classification results.

A legitimate question here is, “Is it always possible to learn the TAN structure from

the data and use it in classification?” Provided that there is sufficient training data,

the TAN structure indeed can be extracted and used in classification. However, when

the data is insufficient the learnt structure is unreliable and the use of the Naive Bayes

classifier is recommended. Note also that in the Naive Bayes approach one can use a

better distribution assumption than the Gaussian (e.g. Cauchy) while in TAN this would

be extremely difficult.

In the case of dynamic classifiers the temporal information was used to discriminate

different expressions. The idea is that expressions have a unique temporal pattern and

recognizing these patterns can lead to improved classification results. We introduced

the multi-level HMM architecture and compared it to the straight forward Emotion-

specific HMM. We showed that comparable results can be achieved with this architecture,

although it does not rely on any pre-segmentation of the video stream.

When one should use a dynamic classifier versus a static classifier? This is a difficult

question to ask. It seems, both from intuition and from the results, that dynamic

classifiers are more suited for systems that are person dependent due to their higher

sensitivity not only to changes in appearance of expressions among different individuals,

but also to the differences in temporal patterns. Static classifiers are easier to train

and implement, but when used on a continuous video sequence, they can be unreliable

especially for frames that are not at the peak of an expression. Another important aspect
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is that the dynamic classifiers are more complex, therefore they require more training

samples and many more parameters to learn compared with the static approach. A

hybrid of classifiers using expression dynamics and static classification is the topic of

future research.

An important problem in the facial expression analysis field is the lack of agreed

upon benchmark datasets and methods for evaluating performance. A well-defined and

commonly used database is a necessary prerequisite to compare the performances of

different methods in an objective manner. The Cohn-Kanade database is a step in this

direction, although there is still a need for an agreement on how to measure performance:

frame based classification, sequence based classification and even the number and names

of the classes. The large deviations in the reported performance of different methods

surveyed by Pantic and Rothkrantz [PR00] demonstrate the need to resolve these issues.

As a consequence, it is hard to compare our results with the one reported in the literature

and assert superiority or inferiority of our methods over others.

Are these recognition rates sufficient for real world use? We think that it depends

upon the particular application. In the case of image and video retrieval from large

databases, the current recognition rates could aid in finding the right image or video by

giving additional options for the queries. Moreover, the integration of multiple modalities

such as voice analysis and context would be expected to improve the recognition rates

and eventually improve the computer’s understanding of human emotional states. Voice

and gestures are widely believed to play an important role as well [Che00, DMN97], and

physiological states such as heart beat and skin conductivity are being suggested [CT90].

People also use context as an indicator of the emotional state of a person.



Bibliography

[Aig87] P. Aigrain. Organizing image banks for visual access: Model and tech-
niques. International Meeting for Optical Publishing and Storage, pages
257–270, 1987.

[Aka73] H. Akaike. Information theory and an extension of the maximum likelihood
principle. 2nd International Symposium on Information Theory, pages 267–
281, 1973.

[Alo88] Y. Aloimonos. Visual shape computation. Proceedings of IEEE, 76(8):899–
916, 1988.

[AN88] J.K. Aggarwal and N. Nandhakumar. On the computation of motion from
sequences of images - A review. Proceedings of IEEE, 76(8):917–933, 1988.

[AS72] A. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications, 1972.

[Att54] F. Attneave. Some informational aspects of visual perception. Psychological
Review, 61:183–193, 1954.

[ATW88] A.A. Amini, S. Tehrani, and T.E. Weymouth. Using dynamic program-
ming for minimizing the energy of active contours in the presence of hard
constraints. International Conference on Computer Vision, pages 95–99,
1988.

[BA88] J.R. Bergen and E.H. Adelson. Early vision and texture perception. Nature,
333:363–364, 1988.

[BAN94] E. Boyle, A.H. Anderson, and A. Newlands. The effects of visibility on
dialog in a cooperative problem solving task. Language and speech, 37(1):1–
20, 1994.

[BBH93] R.C. Bolles, H.H. Baker, and M.J. Hannah. The JISCT stereo evaluation.
ARPA Image Understanding Workshop, pages 263–274, 1993.

[BC92] R. Boie and I. Cox. An analysis of camera noise. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(6):671–674, 1992.

209



210 BIBLIOGRAPHY

[BCG90] A. Bovik, M. Clarke, and W. Geisler. Multichannel texture analysis us-
ing localized spatial filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(1):55–73, 1990.

[BF82] S. Barnard and M. Fischler. Computational stereo. ACM Computing Sur-
veys, 14(4):553–572, 1982.

[BF87] S. Barnard and M. Fischler. Stereo vision. Encyclopedia of Artificial Intel-
ligence, New York: John Wiley, pages 422–438, 1987.

[BFB94] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow
techniques. International Journal of Computer Vision, 12(1):43–77, 1994.

[Bla92] M.J. Black. Robust Incremental Optical Flow. PhD thesis, Yale University,
September 1992.

[BM95] B. Boufama and R. Mohr. Epipole and fundamental matrix estimation
using visual parallax. International Conference on Computer Vision, pages
1030–1036, 1995.

[BMHW93] C. Bregler, S. Manke, H. Hild, and A. Waibel. Improving connected letter
recognition by lipreading. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 557–560, 1993.

[BN98] D.N. Bhat and S.K. Nayar. Ordinal measures for image correspon-
dence. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(4):415–423, 1998.

[Box53] G.E.P. Box. Non-normality and test on variances. Biometrika, 40:318–335,
1953.

[Boy90] R.M. Boynton. Human color perception. Science of Vision, Leibovic, K.N.,
ed., pages 211–253, 1990.

[Bro66] P. Brodatz. Textures: A Photographic Album for Artists and Designers.
Dover Publications, 1966.

[BS97] A. Berman and L.G. Sapiro. Efficient image retrieval with multiple dis-
tance measures. SPIE, Storage and Retrieval for Image/Video Databases,
3022:12–21, 1997.

[BSI87] J. Beck, A. Sutter, and A. Ivry. Spatial frequency channels and perceptual
grouping in texture segregation. Computer Vision, Graphics, and Image
Processing, 37:299–325, 1987.

[BY95] M.J. Black and Y. Yacoob. Tracking and recognizing rigid and non-rigid
facial motions using local parametric models of image motion. International
Conference on Computer Vision, pages 374–381, 1995.



BIBLIOGRAPHY 211

[Can27] W. B. Cannon. The James-Lange theory of emotion: A critical examination
and an alternative theory. American Journal of Psychology, 39:106–124,
1927.

[CB87] M. Clark and A. Bovik. Texture segmentation using Gabor modula-
tion/demodulation. Pattern Recognition Letters, 6:261–267, 1987.

[CC93] L. Cohen and I. Cohen. Finite-element methods for active contours mod-
els and balloons for 2-D and 3-D images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15:1131–1147, 1993.

[CF80] N.S. Chang and K.S. Fu. Query by pictorial example. IEEE Transactions
on Software Engineering, 6(6):519–524, 1980.

[Che00] L.S. Chen. Joint processing of audio-visual information for the recognition
of emotional expressions in human-computer interaction. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Dept. of Electrical Engineering,
2000.

[CHR96] I. Cox, S. Hingorani, and S. Rao. A maximum likelihood stereo algorithm.
Computer Vision and Image Understanding, 63(3):542–567, 1996.

[CJG78] T. Caelli, B. Julesz, and E. Gilbert. On perceptual analyzers underlying
visual texture discrimination: Part II. Biological Cybernetics, 29(4):201–
214, 1978.

[CK93] T. Chang and C. Kuo. Texture analysis and classification with tree-
structured wavelet transform. IEEE Transactions on Image Processing,
2(4):429–441, 1993.

[CKC90] S. Chen, J. Keller, and R. Crownover. Shape from fractal geometry. Arti-
ficial Intelligence, 43:199–218, 1990.

[CL68] C.K. Chow and C.N. Liu. Approximating discrete probability distribution
with dependence trees. IEEE Transactions on Information Theory, 14:462–
467, 1968.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms.
MIT Press, Cambridge, MA, 1990.

[CMXT99] D. Comaniciu, P. Meer, K. Xu, and D. Tyler. Performance improvement
through low rank corrections. In IEEE Workshop on Content-based Access
of Image and Video Libraries, pages 50–54, 1999.

[Coh91] L. Cohen. On active contour models and balloons. Computer Vision,
Graphics, and Image Processing: Image Understanding, 53:211–218, 1991.



212 BIBLIOGRAPHY

[Coh00] I. Cohen. Automatic facial expression recognition from video sequences
using temporal information. In MS Thesis, University of Illinois at Urbana-
Champaign, Dept. of Electrical Engineering, 2000.

[Cor70] T. N. Cornsweet, editor. Visual Perception. Academic Press, 1970.

[CR68] F.W. Campbell and J.G. Robson. Application of Fourier analysis to the
visibility of gratings. Journal of Physiology, 197:551–566, 1968.

[CSG+02] I. Cohen, N. Sebe, A. Garg, M.S. Lew, and T.S. Huang. Facial expres-
sion recognition from video sequences. IEEE International Conference on
Multimedia and Expo, II:121–124, 2002.

[CSGH03] I. Cohen, N. Sebe, A. Garg, and T.S. Huang. Facial expression recogni-
tion from video sequences: Temporal and static modeling. to appear in
Computer Vision and Image Understanding, 2003.

[CSK93] B. Chaudhuri, N. Sarkar, and P. Kundu. Improved fractal geometry based
texture segmentation technique. Proceedings of IEE, 140:233–241, 1993.

[CT90] J.T. Cacioppo and L.G. Tassinary. Inferring psychological significance from
physiological signals. American Psychologist, 45:16–28, 1990.

[DA89] U.R. Dhond and J.K. Aggarwal. Structure from stereo - A review. IEEE
Transactions on Systems, Man, and Cybernetics, 19(6):1489–1510, 1989.

[Dar90] C. Darwin. The Expression of the Emotions in Man and Animals. John
Murray, London, 2nd edition, 1890.

[Dau80] J. Daugman. Two-dimensional spectral analysis of cortical receptive profile.
Vision Research, 20:847–856, 1980.

[Dau85] J. Daugman. Uncertainty relation for resolution in space, spatial frequency
and orientation optimized by two-dimensional visual cortical filters. Journal
of the Optical Society of America, A 4:221–231, 1985.

[Dau89] J. Daugman. Entropy reduction and decorrelation in visual coding by
oriented neural receptive fields. IEEE Transactions on Biomedical Engi-
neering, 36(1):107–114, 1989.

[Dav77] L. Davis. Understanding shape: Angles and sides. IEEE Transactions on
Computers, 26:236–242, 1977.

[DB99] A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann, 1999.

[DBH+99] G. Donato, M.S. Bartlett, J.C. Hager, P. Ekman, and T.J. Sejnowski. Clas-
sifying facial actions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(10):974–989, 1999.



BIBLIOGRAPHY 213

[DBP97] A. Del Bimbo and P. Pala. Visual image retrieval by elastic matching
of user sketches. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(2):121–132, 1997.

[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer, 1996.

[DKY95] R. Durikovic, K. Kaneda, and H. Yamashita. Dynamic contour: A texture
approach and contour operations. The Visual Computer, 11:277–289, 1995.

[DMN97] L.C. De Silva, T. Miyasato, and R. Natatsu. Facial emotion recognition
using multimodal information. In IEEE Int. Conf. on Information, Com-
munications and Signal Processing (ICICS’97), pages 397–401, 1997.

[DVAT82] R.L. De Valois, D.G. Albrecht, and L.G. Thorell. Spatial-frequency se-
lectivity of cells in macaque visual cortex. Vision Research, 22:545–559,
1982.

[EF78] P. Ekman and W.V. Friesen. Facial Action Coding System: Investigator’s
Guide. Consulting Psychologists Press, Palo Alto, CA, 1978.

[Ekm82] P. Ekman, editor. Emotion in the Human Face. Cambridge University
Press, New York, NY, 2nd edition, 1982.

[Ekm94] P. Ekman. Strong evidence for universals in facial expressions: A reply to
Russell’s mistaken critique. Psychological Bulletin, 115(2):268–287, 1994.

[EP97] I.A. Essa and A.P. Pentland. Coding, analysis, interpretation, and recog-
nition of facial expressions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):757–763, 1997.

[Fai90] G. Faigin. The Artist’s Complete Guide To Facial Expression. Watson-
Guptill Publications, New York, NY, 1990.

[Fau93] O. Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.

[Fer87] J.G. Ferwerda. The World of 3-D - A Practical Guide to Stereo Photogra-
phy. 3-D Book Productions, 1987.

[FGG97] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.
Machine Learning, 29(2):131–163, 1997.

[FP91] J.P. Frisby and S.B. Pollard. Computational issues in solving the stereo
correspondence problem. Computational Models of Visual Processing, M.S.
Landy and J.A. Movshon, eds., pages 331–357, 1991.

[Fri91] A.J. Fridlund. Evolution and facial action in reflex, social motive, and
paralanguage. Biological Psychology, 32:2–100, 1991.



214 BIBLIOGRAPHY

[FRT97] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple win-
dowing. IEEE Conference on Computer Vision and Pattern Recognition,
pages 858–863, 1997.

[FRT00] A. Fusiello, V. Roberto, and E. Trucco. Symmetric stereo with multiple
windowing. International Journal of Pattern Recognition and Artificial
Intelligence, 14(8):1053–1066, 2000.

[FSN+95] M. Flicker, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker.
Query by image and video content: The QBIC system. IEEE Computer,
28(9):23–32, 1995.

[Fuk72] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, 1972.

[FW94] M.A. Fischler and H.C. Wolf. Locating perceptually salient points on planar
curves. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(2):113–129, 1994.

[Gib50] J.J. Gibson. The perception of the visual world. Houghton, 1950.

[Goe40] J.W. Goethe. Farbenlehre. Princeton University Press (reprinted 1988),
1840.

[Gol95] D. Goleman. Emotional Intelligence. Bantam Books, New York, 1995.

[Gom60] H.E. Gombrich. Art and Illusion. Phaidon Press, 1960.

[GP74] V. Guillemin and A. Pollack. Differential topology. Prentice Hall, 1974.

[GP94] M. Gorkani and R. Picard. Texture orientation for sorting photos ’at a
glance’. International Conference on Pattern Recognition, pages 459–464,
1994.

[GP96] S. Gupta and J. Prince. Stochastic models for DIV-CURL optical flow
methods. IEEE Signal Processing Letters, 3(2):32–35, 1996.

[GPRH00] A. Garg, V. Pavlovic, J. Rehg, and T.S. Huang. Audio–visual speaker
detection using dynamic Bayesian networks. In International Conference
on Automatic Face and Gesture Recognition, pages 374–471, 2000.

[GR95] V.N. Gudivada and V. Raghavan. Design and evaluation of algorithms for
image retrieval by spatial similarity. ACM Transactions on Information
Systems, 13(2):115–144, 1995.

[GR01] A. Garg and D. Roth. Understanding probabilistic classifiers. In European
Conference on Machine Learning, pages 179–191, 2001.



BIBLIOGRAPHY 215

[Gra81] D. Granrath. The role of human visual models in image processing. Pro-
ceedings of IEEE, 69:552–561, 1981.

[Gre76] R. Green. Outlier-prone and outlier-resistant distributions. Journal of the
American Statistical Association, 71(354):502–505, 1976.

[Gri85] W. Grimson. Computational experiments with a feature based stereo algo-
rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
7:17–34, 1985.

[GS99] T. Gevers and A. Smeulders. Color-based object recognition. Pattern
Recognition, 32(3):453–464, 1999.

[GS00] T. Gevers and A. Smeulders. PicToSeek: Combining color and shape invari-
ant features for image retrieval. IEEE Transactions on Image Processing,
20(1):102–119, 2000.

[GSJ97] A. Gupta, S. Santini, and R. Jain. In search of information in visual media.
Communications of the ACM, 12:34–42, 1997.

[Gue88] E. Guelch. Results of test on image matching of ISPRS WG III/4. Inter-
national Archives of Photogrammetry and Remote Sensing, 27(3):254–271,
1988.

[HA89] W. Hoff and N. Ahuja. Surfaces from stereo: Integrating feature matching,
disparity estimation, and contour detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(2):121–136, 1989.

[HAH71] E. Hilgard, R.C. Atkinson, and R.L. Hilgard. Introduction to Psychology.
Harcourt Brace Jovanovich, New York, NY, 5th edition, 1971.

[Har79] R.M. Haralick. Statistical and structural approaches to texture. Proceedings
of IEEE, 67:786–804, 1979.

[Haw80] D.M. Hawkins. Identification of Outliers. Chapman and Hall, 1980.

[HB88] R. Horaud and M. Brady. On the geometric interpretation of image con-
tours. Artificial Intelligence, 37:333–353, 1988.

[HBA70] G. Haas, L. Bain, and C. Antle. Inferences for the Cauchy distribution
based on maximum likelihood estimators. Biometrika, 57(2):403–408, 1970.

[Heb49] D.O. Hebb. The organization of behavior. John Wiley, 1949.

[Hei67] W. Heisenberg. Goethe’s View of Nature and the World of Science and
Technology. Harper & Row (reprinted 1974), 1967.



216 BIBLIOGRAPHY

[Heled] H. von Helmholtz. Treatise on Physiological Optics. Dover, New York,
1962, P.C. Southall trans. and ed.

[HOP+95] D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis. Texture
classification by center-symmetric auto-correlation using Kullback discrim-
ination of distributions. Pattern Recognition Letters, 16:1–10, 1995.

[HPL96] D.P. Huijsmans, S. Poles, and M.S. Lew. 2D pixel trigrams for content-
based image retrieval. In 1st International Workshop on Image Databases
and Multimedia Search, pages 139–145, 1996.

[HR84] D.D. Hoffman and W.A. Richards. Parts of recognition. Cognition, 18:65–
96, 1984.

[HRKM+97] J. Huang, S. Ravi Kumar, M. Mitra, W. Zhu, and R. Zabih. Image indexing
using color correlogram. IEEE Conference on Computer Vision and Pattern
Recognition, pages 762–768, 1997.

[HRRS86] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust
Statistic: The Approach Based on Influence Functions. John Wiley and
Sons, New York, 1986.

[HS81] B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence,
17:185–203, 1981.

[HS93] R. Haralick and L. Shapiro. Computer and Robot Vision II. Addison-
Wesley, 1993.

[HSD73] R.M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for im-
age classification. IEEE Transactions on Systems, Man, and Cybernetics,
3(6):610–621, 1973.

[HSE+95] J. Hafner, H. Sawhney, W. Equitz, M. Flicker, and W. Niblack. Effi-
cient color histogram indexing for quadratic form distance functions. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17(7):729–736,
1995.

[Hu62] M.K. Hu. Visual pattern recognition by moment invariants. IRA Transac-
tions on Information Theory, 17-8(2):179–187, 1962.

[Hub81] P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

[Hun89] R.W.G. Hunt. Measuring Color. Halsted Press, New York, 1989.

[Itt60] W.H. Ittelson. Visual Space Perception. Springer, 1960.



BIBLIOGRAPHY 217

[Iza94] C.E. Izard. Innate and universal facial expressions: Evidence from develop-
mental and cross-cultural research. Psychological Bulletin, 115(2):288–299,
1994.

[Jai89] A. Jain. Fundamentals of digital image processing. Prentice Hall, 1989.

[Jam90] W. James. The Principles of Psychology. Henry Holt, New York, NY, 1890.

[JGSF73] B. Julesz, E.N. Gilbert, L.A. Shepp, and H.L. Frisch. Inability of humans to
discriminate between visual textures that agree in second-order statistics.
Perception, 2:391–405, 1973.

[JJ94] M.R. Jenkin and A.D. Jepson. Recovering local surface structure through
local phase difference measurements. Computer Vision, Graphics, and Im-
age Processing: Image Understanding, 59(1):72–93, 1994.

[JM92] D.G. Jones and J. Malik. Computational framework for determining stereo
correspondence from a set of linear spatial filters. Image and Vision Com-
puting, 10:699–708, 1992.

[JOS98] J. M. Jenkins, K. Oatley, and N. L. Stein, editors. Human Emotions: A
Reader. Blackwell Publishers, Malden, MA, 1998.

[Jul71] B. Julesz. Foundations of Cyclopean Perception. University of Chicago
Press, 1971.

[Jul75] B. Julesz. Experiments in the visual perception of texture. Scientific Amer-
ican, 232:34–43, 1975.

[Jul81a] B. Julesz. Textons, the elements of texture perception and their interac-
tions. Nature, 290:91–97, 1981.

[Jul81b] B. Julesz. A theory of preattentive texture discrimination based on first-
order statistics of textons. Biological Cybernetics, 41(2):131–138, 1981.

[Jul95] B. Julesz. Dialogues on Perception. MIT Press, 1995.

[JV96] A.K. Jain and A Vailaya. Image retrieval using color and shape. Pattern
Recognition, 29(8):1233–1244, 1996.

[JZL96] A. Jain, Y. Zhong, and S. Lakshmanan. Object matching using deformable
template. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18:267–278, 1996.

[Kai67] K. Kailath. The divergence and Bhattachayya distance measures in signal
selection. IEEE Transactions on Communication Technology, 15:52–60,
1967.



218 BIBLIOGRAPHY

[Kat92] K. Kato. Database architecture for content-based image retrieval. SPIE -
Conference on Image Storage and Retrieval Systems, 1662:112–123, 1992.

[KB81] M.G. Kendall and W.R. Buckland. A Dictionary of Statistical Terms.
Oliver and Boyd, Edinburgh, 4th ed., 1981.

[KC92] A. Kundu and J-L. Chen. Texture classification using QMF bank-based
subband decomposition. Computer Vision, Graphics, and Image Process-
ing: Graphical Models and Image Processing, 54(5):369–384, 1992.

[KCB96] P.M. Kelly, T.M. Cannon, and J.E. Barros. Efficiency issues related to
probability density function comparison. SPIE - Storage and Retrieval for
Image and Video Databases, 2670(4):42–49, 1996.

[KCH95] P.M. Kelly, T.M. Cannon, and D.R. Hush. Query by image example: The
CANDID approach. SPIE - Storage and Retrieval for Image and Video
Databases, 2420:238–248, 1995.

[KCT00] T. Kanade, J. Cohn, and Y. Tian. Comprehensive database for facial
expression analysis, 2000.

[KLP94] N. Katzir, M. Lindenbaum, and M. Porat. Curve segmentation under par-
tial occlusion. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 16:513–519, 1994.

[KO94] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive
window: Theory and experiment. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(9):920–932, 1994.

[Koe84] J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370,
1984.

[KON92] T. Kanade, M. Okutomi, and T. Nakahara. A multi-baseline stereo method.
ARPA Image Understanding Workshop, pages 409–426, 1992.

[Kul68] S. Kullback. Information Theory and Statistics. Dover Publications, 1968.

[KVD86] J. Koenderink and A. Van Doorn. Dynamic shape. Biological Cybernetics,
53:383–396, 1986.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331, 1988.

[Lan95] P. Lang. The emotion probe: Studies of motivation and attention. Ameri-
can Psychologist, 50(5):372–385, May 1995.

[Law80] K.I. Laws. Textured energy measures. In Image Understanding Workshop,
pages 47–51, 1980.



BIBLIOGRAPHY 219

[Lay79] H. Layer. Stereoscopy: Where did it come from? Where will it lead?
Exposure, 17(3):34–48, 1979.

[Ley87] M. Leyton. Symmetry-curvature duality. Computer Vision, Graphics, and
Image Processing, 38:327–341, 1987.

[Ley89] M. Leyton. Inferring causal history from shape. Cognitive Science, 13:357–
387, 1989.

[LG90] J.J. Little and W.E. Gillet. Direct evidence for occlusions in stereo and
motion. Image and Vision Computing, 8(4):328–340, 1990.

[LHC96] B. Leroy, I. Herlin, and L. Cohen. Multi-resolution algorithms for active
contour models. In International Conference on Analysis and Optimization
of Systems, pages 58–65, 1996.

[LHW94] M. Lew, T. Huang, and K. Wong. Learning and feature selection in stereo
matching. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 16(9):869–882, 1994.

[Lie98] J. Lien. Automatic recognition of facial expressions using hidden Markov
models and estimation of expression intensity. PhD thesis, Carnegie Mellon
University, 1998.

[LL93] F. Leymarie and M. Levine. Tracking deformable objects in the plane
using an active contour model. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(6):617–634, 1993.

[LM90] W. Luo and H. Maitre. Using surface model to correct and fit disparity
data in stereo vision. International Conference on Pattern Recognition,
1:60–64, 1990.

[Lon98] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition,
31(8):983–1001, 1998.

[Low85] D. G. Lowe. Perceptual organization and visual recognition. Kluwer Aca-
demic, 1985.

[Low87] D. G. Lowe. Three-dimensional object recognition from single two-
dimensional images. Artificial Intelligence, 31:355–395, 1987.

[LP96] F. Liu and R. Picard. Periodicity, directionality, and randomness: Wold
features for image modeling and retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(7):722–733, 1996.



220 BIBLIOGRAPHY

[LRS83] S.E. Levinson, L.R. Rabiner, and M.M. Sondhi. An introduction to the
application of the theory of probabilistic functions of a Markov process
to automatic speech recognition. The Bell Lab System Technical Journal,
62(4):1035–1072, 1983.

[LS00] M. Lew and N. Sebe. Visual websearching using iconic queries. IEEE
Conference on Computer Vision and Pattern Recognition, 2:788–789, 2000.

[LSBJ00] E. Loupias, N. Sebe, S. Bres, and J-M. Jolion. Wavelet-based salient points
for image retrieval. In IEEE International Conference on Image Processing,
volume 2, pages 518–521, 2000.

[LSH00] M. Lew, N. Sebe, and T.S. Huang. Improving visual matching. IEEE
Conference on Computer Vision and Pattern Recognition, 2:58–65, 2000.

[LTC95] A. Lanitis, C.J. Taylor, and T.F. Cootes. A unified approach to coding and
interpreting face images. In International Conference on Computer Vision,
pages 368–373, 1995.

[Mai96] M.W. Maimone. Characterizing Stereo Matching Problems using Local Spa-
tial Frequency. PhD thesis, Carnegie Mellon University, 1996.

[Mar76] D. Marr. Early processing of visual information. Proc. Royal Society Lond.,
B275:483–519, 1976.

[Mar82] D. Marr. Vision. Freeman, 1982.

[Mar89] S. Marshall. Review of shape coding techniques. Image and Vision Com-
puting, 7(4):281–294, 1989.

[Mar99] A Martinez. Face image retrieval using HMMs. In IEEE Workshop on
Content-based Access of Images and Video Libraries, pages 35–39, 1999.

[Mas91] K. Mase. Recognition of facial expression from optical flow. IEICE Trans-
actions, E74(10):3474–3483, 1991.

[Mat89] L.H. Matthies. Dynamic Stereo Vision. PhD thesis, Carnegie Mellon Uni-
versity, 1989.

[Meh68] A. Mehrabian. Communication without words. Psychology Today, 2(4):53–
56, 1968.

[MF53] P.M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-
Hill, New York, 1953.

[MH80] D. Marr and E. Hildreth. Theory of edge detection. Proc. Royal Society
Lond., B207:187–217, 1980.



BIBLIOGRAPHY 221

[MKA73] K.I. Mori, M. Kidode, and H. Asada. An iterative prediction and correction
method for automatic stereo comparison. Computer Graphics and Image
Processing, 2(3/4):393–401, 1973.

[MM95] W.Y. Ma and B.S. Manjunath. A comparison of wavelet transform features
for texture image annotation. IEEE International Conference on Image
Processing, 2:256–259, 1995.

[MM96] W.Y. Ma and B.S. Manjunath. Texture features and learning similarity.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 425–430,
1996.

[MM98] W.Y. Ma and B.S. Manjunath. A texture thesaurus for browsing large aerial
photographs. Journal of the American Society for Information Science,
49(7):633–648, 1998.

[MN95] H. Murase and S. Nayar. Visual learning and recognition of 3D objects
from appearance. International Journal of Computer Vision, 14(1):5–24,
1995.

[MP79] D. Marr and T. Poggio. A computational theory of human stereo vision.
Proc. Royal Society Lond., B204:301–328, 1979.

[MR97] J. Malik and R. Rosenholtz. Computing local surface orientation and shape
from texture for curved surfaces. International Journal of Computer Vision,
23(2):149–168, 1997.

[MT95] T. McInerney and D. Terzopoulos. A dynamic finite element surface model
for segmentation and tracking in multidimensional medical images with
applications to cardiac 4d image analysis. Computerized Medical Imaging
and Graphics, 19(1):69–83, 1995.

[Mun05] A.H. Munsell. A Color Notation. Munsell Color, Baltimore (reprinted
1976), 1905.

[New04] I. Newton. Optics. Dover, New York (reprinted 1952), 1704.

[NH99] A. Nefian and M. Hayes. Face recognition using an embedded HMM. In
IEEE Conf. on Audio and Video-based Biometric Person Authentication,
pages 19–24, 1999.

[Nie90] H. Nieman. Pattern Analysis and Understanding. Springer Series in Infor-
mation Sciences, Springer Verlag, 1990.

[OD92] P. Ohanian and R. Dubes. Performance evaluation for four classes of tex-
tural features. Pattern Recognition, 25:819–833, 1992.



222 BIBLIOGRAPHY

[OO97a] T. Otsuka and J. Ohya. Recognizing multiple persons’ facial expressions
using HMM based on automatic extraction of significant frames from image
sequences. In IEEE International Conference on Image Processing, pages
546–549, 1997.

[OO97b] T. Otsuka and J. Ohya. A study of transformation of facial expressions
based on expression recognition from temporal image sequences. Technical
report, Institute of Electronic, Information, and Communications Engi-
neers (IEICE), 1997.

[OPB97] N. Oliver, A.P. Pentland, and F. Bérard. LAFTER: Lips and face real time
tracker. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 123–129, 1997.

[OPB00] N. Oliver, A. Pentland, and F. Bérard. LAFTER: A real-time face and lips
tracker with facial expression recognition. Pattern Recognition, 33:1369–
1382, 2000.

[OPH96] T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of tex-
ture measures with classification based on feature distribution. Pattern
Recognition, 29:51–59, 1996.

[OS95] V. Ogle and M. Stonebracker. Chabot: Retrieval from a relational database
of images. IEEE Computer, 28(9):40–48, 1995.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, California, 1988.

[Pen84] A. Pentland. Fractal-based description of natural scenes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 6:661–674, 1984.

[Pen86] A. Pentland. Perceptual organization and the representation of natural
form. Artificial Intelligence, 28:293–331, 1986.

[Pic97] R.W. Picard. Affective Computing. MIT Press, Cambridge, MA, 1997.

[PKL93] R. Picard, T. Kabir, and F. Liu. Real-time recognition with the entire bro-
datz texture database. IEEE Conference on Computer Vision and Pattern
Recognition, pages 638–639, 1993.

[PM95] R. Picard and T. Minka. Vision texture for annotation. Multimedia Sys-
tems, 3(1):3–14, 1995.

[Pos89] M.I. Posner. Foundations of Cognitive Science. MIT Press, 1989.

[PPS96] A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-based ma-
nipulation of image databases. International Journal of Computer Vision,
18:233–254, 1996.



BIBLIOGRAPHY 223

[PR00] M. Pantic and L.J.M. Rothkrantz. Automatic analysis of facial expressions:
The state of the art. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(12):1424–1445, 2000.

[Pri86] K. Price. Anything you can do, I can do better (No you can’t)... Computer
Vision, Graphics, and Image Processing, 36:387–391, 1986.

[Rab89] L.R. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech processing. Proceedings of IEEE, 77(2):257–286, 1989.

[RCZS99] M. Ramsey, H. Chen, B. Zhu, and B. Schatz. A collection of visual thesauri
for browsing large collections of geographic images. Journal of the American
Society of Information Science, 50(9):826–834, 1999.

[RDB93] T. Reed and J. Du Buf. A review of recent texture segmentation and feature
extraction techniques. Computer Vision, Graphics, and Image Processing,
57(3):359–373, 1993.

[Rey83] W. Rey. Introduction to Robust and Quasi-Robust Statistical Methods.
Springer-Verlag, 1983.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–
471, 1978.

[RJ83] L.R. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice
Hall, 1983.

[RL87] P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection.
John Wiley and Sons, New York, 1987.

[RP74] W. Richards and A. Polit. Texture matching. Kybernetic, 16:155–162, 1974.

[Rus94] J.A. Russell. Is there universal recognition of emotion from facial expres-
sion? Psychological Bulletin, 115(1):102–141, 1994.

[RYD96] M. Rosenblum, Y. Yacoob, and L.S. Davis. Human expression recogni-
tion from motion using a radial basis function network architecture. IEEE
Transactions on Neural Network, 7(5):1121–1138, September 1996.

[San88] T.D. Sanger. Stereo disparity computation using Gabor filters. Biological
Cybernetics, 59:405–418, 1988.

[SAR76] G.M. Stephenson, K. Ayling, and D.R. Rutter. The role of visual commu-
nication in social exchange. British Journal of Social Clinical Psychology,
15:113–120, 1976.

[SB91] M.J. Swain and D.H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11–32, 1991.



224 BIBLIOGRAPHY

[SC94] J.R. Smith and S.-F. Chang. Transform features for texture classification
and discrimination in large image databases. IEEE International Confer-
ence on Image Processing, 3:407–411, 1994.

[SC96] J.R. Smith and S.F. Chang. VisualSEEk: A fully automated content-based
image query system. ACM Multimedia, pages 87–93, 1996.

[SCG+02] N. Sebe, I. Cohen, A. Garg, M.S. Lew, and T.S. Huang. Emotion recog-
nition using a Cauchy naive Bayes classifier. International Conference on
Pattern Recognition, I:17–20, 2002.

[Sch54] H. Schlosberg. Three dimensions of emotion. Psychological Review, 61:81–
88, 1954.

[SD97] M. Stricker and A. Dimai. Spectral covariance and fuzzy regions for image
indexing. Machine Vision and Applications, 10(2):66–73, 1997.

[Se80] C.C. Slama (ed.). Manual of Photogrammetry. American Society of Pho-
togrammetry and Remote Sensing, 1980.

[SH94] H.S. Sawhney and J.L. Hafner. Efficient color histogram indexing. In
IEEE International Conference on Image Processing, volume 2, pages 66–
70, 1994.

[SL99a] N. Sebe and M.S. Lew. Multi-scale sub-image search. ACM Multimedia,
2:79–82, 1999.

[SL99b] N. Sebe and M.S. Lew. Robust color indexing. ACM Multimedia, 1:239–
242, 1999.

[SL00a] N. Sebe and M.S. Lew. Color based retrieval and recognition. IEEE Inter-
national Conference on Multimedia and Expo, pages 311–314, 2000.

[SL00b] N. Sebe and M.S. Lew. A maximum likelihood investigation into color
indexing. Visual Interface, pages 101–106, 2000.

[SL00c] N. Sebe and M.S. Lew. A maximum likelihood investigation into texture
classification. Asian Conference on Computer Vision, pages 1094–1099,
2000.

[SL00d] N. Sebe and M.S. Lew. Wavelet-based texture classification. International
Conference on Pattern Recognition, 3:959–962, 2000.

[SL01a] N. Sebe and M.S. Lew. Color-based retrieval. Pattern Recognition Letters,
22(2):223–230, 2001.

[SL01b] N. Sebe and M.S. Lew. Texture features for content-based retrieval. Prin-
ciples of Visual Information Retrieval, M.S. Lew, ed., pages 51–85, 2001.



BIBLIOGRAPHY 225

[SLH98] N. Sebe, M.S. Lew, and D.P. Huijsmans. Which ranking metric is optimal?
with applications in image retrieval and stereo matching. International
Conference on Pattern Recognition, pages 265–271, 1998.

[SLH00] N. Sebe, M.S. Lew, and D.P. Huijsmans. Toward improved ranking met-
rics. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(10):1132–1141, 2000.

[SM90] P. Salovey and J.D. Mayer. Emotional intelligence. Imagination, Cognition,
and Personality, 9(3):185–211, 1990.

[Smi78] A.R. Smith. Color gamut transform pairs. Computer Graphics, 12(3):12–
19, 1978.

[Smi97] J.R. Smith. Integrated Spatial and Feature Image Systems: Retrieval, Com-
pression, and Analysis. PhD thesis, Columbia University, February 1997.

[SO95] A. Stricker and M. Orengo. Similarity of color images. SPIE - Storage and
Retrieval for Image and Video Databases III, 2420:381–392, 1995.

[SP95] S. Sclaroff and A. Pentland. Modal matching for correspondence and recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(6):545–561, 1995.

[Ste74] S. Stevens. Patterns in nature. Atlantic-Little Brown Books, 1974.

[STL+00] N. Sebe, Q. Tian, E. Loupias, M.S. Lew, and T.S. Huang. Color indexing
using wavelet-based salient points. In IEEE Workshop on Content-based
Access of Image and Video Libraries, pages 15–19, 2000.

[SW92] E M. Stokely and S.Y. Wu. Surface parametrization and curvature measure-
ment of arbitrary 3-D objects: Five practical methods. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14:833–840, 1992.

[SWS+00] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content
based image retrieval at the end of the early years. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(12):1349–1380, 2000.

[TF88] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Com-
puter, 4:306–331, 1988.

[TH94] L. Tang and T.S. Huang. Analysis-based facial expression synthesis. In
IEEE International Conference on Image Processing, volume 3, pages 98–
102, 1994.

[TH98] H. Tao and T.S. Huang. Connected vibrations: A modal analysis approach
to non-rigid motion tracking. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 735–740, 1998.



226 BIBLIOGRAPHY

[TH99] H. Tao and T.S. Huang. Explanation-based facial motion tracking using a
piecewise bezier volume deformation model. IEEE Conference on Computer
Vision and Pattern Recognition, pages 611–617, 1999.

[Thu72] Thucydides. History of the Peloponnesian War, 428 BC. New York, NY:
Penguin Books, (in [Rey83]), 1972.

[TJ98] M. Tuceryan and A.K. Jain. Texture analysis. Handbook of Pattern Recog-
nition and Computer Vision, C.H. Chen, L.F. Pau, P.S.P. Wang, eds.,
pages 207–248, 1998.

[TK77] A. Tversky and D.H. Krantz. The dimensional representation and the
metric structure of similarity data. Journal of Mathematical Psychology,
7:572–597, 1977.

[TK95] H. Tek and B. Kimia. Image segmentation by reaction-diffusion bubbles.
In International Conference on Computer Vision, pages 156–162, 1995.

[TKC+94] L. Tang, Y. Kong, L.S. Chen, C.R. Lansing, and T.S. Huang. Performance
evaluation of a facial feature tracking algorithm. NSF/ARPA Workshop:
Performance vs. Methodology in Computer Vision, pages 218–229, 1994.

[TMY78] H. Tamura, S. Mori, and Y. Yamawaki. Textural features corresponding to
visual perception. IEEE Transactions on Systems, Man, and Cybernetics,
8:460–473, 1978.

[TS92] D. Terzopoulos and R. Szeliski. Tracking with Kalman snakes. Active
Vision, A. Blake and A. Yuille, eds., pages 2–20, 1992.

[Tur86] M. Turner. Texture discrimination by Gabor functions. Biological Cyber-
netics, 55:71–82, 1986.

[Tve77] A. Tversky. Features of similarity. Psychological Review, 84(4):327–352,
1977.

[UMYH94] N. Ueki, S. Morishima, H. Yamada, and H. Harashima. Expression anal-
ysis/synthesis system based on emotion space constructed by multilayered
neural network. Systems and Computers in Japan, 25(13):95–103, Nov.
1994.

[Uns86] M. Unser. Sum and difference histograms for texture classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(1):118–125,
1986.

[VGDO85] L. Van Gool, P. Dewaele, and A. Oosterlinck. Texture analysis. Computer
Vision, Graphics, and Image Processing, 29(3):336–357, 1985.



BIBLIOGRAPHY 227

[VL00] N. Vasconcelos and A. Lippman. A unifying view of image similarity. In-
ternational Conference on Pattern Recognition, 1:38–41, 2000.

[VP88] H. Voorhees and T. Poggio. Computing texture boundaries in images.
Nature, 333:364–367, 1988.

[Wal58] M. Wallach. On psychological similarity. Psychological Review, 65(2):103–
116, 1958.

[Wat58] G.S. Watson. On Chi-square goodness-of-fit tests for continuous distribu-
tions. Journal of the Royal Statistical Society, 20(1):44–72, 1958.

[WB91] D.M. Wuescher and K.L. Boyer. Robust contour decomposition using a
constant curvature criterion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13:41–51, 1991.

[WR67] E.T. Whittaker and G. Robinson. Normal Frequency Distribution, Ch. 8
in The Calculus of Observations: A Treatise on Numerical Mathematics.
Dover Publications, 1967.

[WS82] G. Wyszecki and W.S. Stiles. Color Science: Concepts and Methods, Quan-
titative Data and Formulae. John Wiley and Sons, New York, 1982.

[WS92] D.J. Williams and M. Shah. A fast algorithm for active contours and
curvature estimation. Computer Vision, Graphics, and Image Processing:
Image Understanding, 55:14–26, 1992.

[XP97] C. Xu and J.L. Prince. Gradient vector flow: A new external force for
snakes. IEEE Conference on Computer Vision and Pattern Recognition,
pages 66–71, 1997.

[YC74] T.Y. Young and T.W. Calvert. Classification, Estimation, and Pattern
Recognition. Elsevier, 1974.

[YD96] Y. Yacoob and L.S. Davis. Recognizing human facial expressions from long
image sequences using optical flow. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18(6):636–642, June 1996.

[Yuk89] J.E. Yukich. Optimal matching and empirical measures. Proceedings of the
American Mathematical Society, 107(4):1051–1059, 1989.

[ZTS99] R. Zhang, J. Tsai, P-S. Cryer, and M. Shah. Shape from shading: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(8):690–706, 1999.

[Zus70] L. Zusne, editor. Visual Perception of Forms. Academic Press, 1970.





Index

L1 metric, 54, 73, 102

L2 metric, 53, 73

active contours, 10, 124

advantages, 11, 125

behavior of traditional active con-

tours, 127

bending forces, 11, 125

definition, 125

distance potential forces, 128

elasticity forces, 11, 125

Euler equations, 127, 132, 134

external energy, 126

external forces, 11, 125

external potential force, 127

generalized force balance equations,

130

gradient vector flow (GVF), 131

greedy algorithm, 130

internal energy, 125

internal forces, 10, 125

traditional potential forces, 128

active contours, problems, 129

initialization, 129

non-convex shapes, 129

additive noise model, 53
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emotion recognition databases, 199

Chen database, 199

Cohn-Kanade database, 199

Euclidean distance, 52

evaluation, 17

basic categories, 17

experimental setup, 59

exponential distribution, 39, 54

characteristic function, 40

kurtosis, 40

mean, 40

moment-generating function, 40

skewness, 40

variance, 40

exponential estimator, 55

Fisher linear discriminant, 52

fuzzy central limit theorem, 31

Gabor filter, 98

Gabor function, 98

Gabor transform, 97
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Gabor wavelets, 99

gamma distribution, 38

Gaussian distribution, 28, 53

P confidence interval, 29

central moments, 36

characteristic function, 34

Cramer’s theorem, 36

cumulative distribution function, 28

differential equation, solution, 37

error function (erf), 28

Fourier transform, 30

kurtosis, 36

moment-generating function, 34

normal distribution function, 29

normal form variate, 30

probability distribution, 28

raw moments, 35

relation with Cauchy distribution, 32

skewness, 36

standard normal distribution, 29

variance, 36

z-score, 29

generalized diffusion equations, 134

generative model classifiers, 50

ground truth, 18, 52

Heisenberg uncertainty inequality, 97

Hidden Markov Models (HMM), 191

basic problems, 194

Conditional Probability Table, 194

human-computer intelligent interaction

(HCII), 174

applications, 175

influence function, 53

invariant moments, 11, 137

central moments, 137

normalized central moments, 137

Kullback discriminant, 52, 60, 102

Kullback relative information, 60

least-squares fit, 26, 47, 48

local contrast, 96

Lorentzian distribution, 42

Mahalanobis distance, 51

man-machine interaction, 14, 173

maximum likelihood, 47

classical approach, 47

estimation, 48

formula, 48

our approach, 52

relation to other approaches, 49

maximum likelihood

estimators, 47

maximum likelihood (ML) metric, 56

maximum likelihood classifier, 50

Minkowski-form distance, 56

motion tracking, 167, 181

average tracking error, 168

block correlation, 14, 167

optical flow, 14, 167

Piecewise Bézier Volume Deforma-

tion (PBVD) tracker, 181

template matching, 14, 167

multi-level HMM classifier

architecture, 196

automatic segmentation, 196

emotion recognition, 196

training procedure, 197
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ordinal metrics, 13

outliers, 26, 46

generation mechanisms, 46

Pearson System, 38

perspective projection, 11, 147

Poisson distribution, 39

precision, 76

Prokhorov distance measure, 59

quadratic estimator, 55

quadrature mirror filter (QMF) bank, 99

ratio distribution, 32, 33

recall, 76

retrieval accuracy, 76

retrieval by example, 2

robust statistics, 45

robustness, 25

scope, 76

shape, 117

COIL-20 database, 138

definition, 9, 117

deformation modes, 10, 123

retrieval by shape similarity, 10, 117

similarity, 10, 117

similarity, 2

color distribution similarity, 5

concept, 2

judgments, 2

retrieval by similarity, 2

system requirements, 2

types of similarity, 3

similarity noise, 19

similarity probability, 53

snakes, 10, 124

GVF snake, 132

statistical distributions, 27

outlier-prone, 46

outlier-resistant, 46

stereo, 144

accommodation cue, 145

adaptive-window stereo, 152

ambiguous match, 148

ARPA JISCT stereo evaluation study,

160

baseline distance, 150

binocular cue, 146

convergence cue, 145

correlation based stereo, 12, 151

disparity, 12, 148, 150

epipolar constraint, 148

epipolar line, 148

Euclid’s experiments, 144

feature based stereo, 12, 151

focal length, 150

intensity anomaly features, 12

Jacopo Chimenti’s stereo drawings,

144

Julesz’s experiments, 146

left-right consistency test, 155, 156

Leonardo da Vinci’s experiments,

144

monocular cue, 146

multibaseline stereo, 152

occlusion problem, 148

optical axes, 148

random dot stereograms, 146

semantic features, 12

stereo cue conflict, 146

stereo matching, 12, 147
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stereo matching vs. image matching,

3

stereoscopic (cyclopean) image, 11

stereoscopic vision, 144–146

stereoscopy, 11, 145

Wheatstone’s demonstration, 144

stereo matching algorithms, 153

maximum likelihood (Cox), 157

multiple windows, 155

template based, 153

stereo sets, 160

Castle set, 160

Flat set, 161

Robots stereo pair, 160

Suburb set, 161

Tower set, 160

stereopsis, 11

Student’s t-distribution, 38, 46

test set, 59

texture, 87

approaches for retrieval, 8, 92

Brodatz textures, 100

Caelli’s experiments, 90

definition, 88

first order statistics, 90

human perception, 89

Julesz’s conjecture, 90

Julesz’s studies, 89

multiscale approach, 8, 92

perceptual difference, 89

relative gain, 107

second order statistics, 90

textons, 90

texture annotation, 8, 92

texture discrimination, 8, 91

texture segmentation, 8, 92

visual texture, 87

texture experiments, 100

distribution analysis, 102

experimental setup, 111

misdetection rate, 104

texture features, 100, 110

texture features, 91

center-symmetric covariance, 94

co-occurrence features, 92

co-occurrence matrix, 8, 92

coarseness, 91

complementary feature pairs, 96

density, 91

direction, 91

directionality, 7, 91

fractal based features, 8, 92

frequency, 91

Gabor multi-channel features, 8, 92

granularity, 7

gray-level differences, 93

Laws’ energy measures, 93

linearity, 91

local binary patterns, 95

Markov Random Fields parameters,

8, 92

phase, 91

regularity, 91

repetitiveness, 8

roughness, 91

spatial frequency, 92

trigrams, 95

uniformity, 91
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texture models

Gabor, 97

wavelet, 97

time-bandwidth product, 97

training set, 59

visual form, 119

Attneave’s cat experiment, 122

Gestalt school, 119

Gibson’s theory, 120

Hebb’s theory, 120

human perception, 119

kinds of, 121

Koenderink’s morphogenetic sequence,

122

laws, 119

Marr’s paradigm, 121

symmetry-curvature theorem, 123

transversality principle, 123

visual similarity, 2

color, 5

facial expression, 14

main issues, 16

motion, 13

shape, 9

stereo, 11

texture, 7

Viterbi algorithm, 198

wavelet filter bank, 99

wavelet transform, 8, 97, 98

bi-orthogonal, 9, 92

Gabor wavelet transform (GWT), 9,

92, 111, 113, 114

orthogonal, 9, 92

quadrature mirror filter (QMF) wavelet

transform, 112, 114

tree-structured, 9, 92

window Fourier transform, 97




