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[1] This paper applies a four-objective calibration strategy focusing on peak flows,
low flows, water balance, and flashiness to 392 model parameter estimation experiment
(MOPEX) watersheds across the United States. Our analysis explores the influence of
model structure by analyzing how the multiobjective calibration trade-offs for two
conceptual hydrologic models, the Hydrology Model (HYMOD) and the Hydrologiska
Byråns Vattenbalansavdelning (HBV) model, compare for each of the 392 catchments.
Our results demonstrate that for modern multiobjective calibration frameworks to identify
any meaningful measure of model structural failure, users must be able to carefully control
the precision by which they evaluate their trade-offs. Our study demonstrates that the concept
of epsilon-dominance provides an effective means of attaining bounded and meaningful
hydrologic model calibration trade-offs. When analyzed at an appropriate precision, we
found that meaningful multiobjective trade-offs are far less frequent than prior literature has
suggested. However, when trade-offs do exist at a meaningful precision, they have significant
value for supporting hydrologic model selection, distinguishing core model deficiencies, and
identifying hydroclimatic regions where hydrologic model prediction is highly challenging.
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1. Introduction
[2] Gupta et al. [1998] carefully frame how multiobjec-

tive hydrologic calibration can be used as a means to
extract more information from observed time series by
using several measures of performance. This view has
evolved to the more broadly defined area of model diagnos-
tics [Gupta et al., 2008] where evaluation and identifica-
tion of parameters are conditional on multiple hydrologic
responses (e.g., high flow, low flow, water balance, flashi-
ness, etc.). Beyond hydrologic modeling, the mathematical
challenges and multiobjective nature of model identifica-
tion has long been recognized in the water resources litera-
ture [Emsellem and de Marsily, 1971; Neuman, 1973; Sun,
1994]. The core assumption in multiobjective hydrologic
model calibration is that limitations in model structure, in
combination with the parameterization conflicts, will yield
trade-offs across the multiple error measures used to repre-
sent a suite of hydrologic responses. For example, many
hydrologic modeling studies have often focused on the
trade-offs between high and low streamflow responses
[Bekele and Nicklow, 2007; Boyle et al., 2000; Cheng
et al., 2002; Fenicia et al., 2007; Gill et al., 2006; Khu and
Madsen, 2005; Khu et al., 2008; Madsen, 2000; Madsen
et al., 2002; Tang et al., 2006, 2007; van Griensven and
Bauwens, 2003; Vrugt et al., 2003; Wagener et al., 2001;

Yapo et al., 1998]. The mathematical principle of multiob-
jective optimality (or Pareto optimality) is fundamentally
based on conflict. For example, Pareto optimal hydrologic
model calibration trade-offs only exist if a parameter sets
performance with respect to high flows cannot be improved
without degrading its performance relative to low flows. If
this conflict does not exist, then a single parameterization
exists that optimizes both high-flow response and low-flow
response, causing the two-objective trade-off to collapse
to this single point. In general, an M-objective calibration
problem will have at maximum an (M – 1) dimensional Par-
eto front assuming parameterization conflicts exist for all
combinations of the objectives [Das, 1999; di Pierro et al.,
2007; Khu and Madsen, 2005; Teytaud, 2007]. If, however,
no parameterization conflicts exist, then the M-objective
multiobjective formulation’s solution will collapse to a zero
dimensional geometry (i.e., a single parameter set that opti-
mizes all objectives).

[3] Starting with the early multiobjective calibration
work [Gupta et al., 1998; Yapo et al., 1998] and the large
body of literature it has inspired over the past decade (for a
comprehensive review see Efstratiadis and Koutsoyiannis
[2010]), the existence and meaning of hydrologic calibra-
tion trade-offs have largely been discussed as representing
structural deficiencies in conceptual hydrologic models.
Detailed discussions of these issues are present in the early
studies [e.g., see Gupta et al., 1998; Seibert, 2000; Seibert
and McDonnell, 2002; Wagener et al., 2003]. Ideally, mul-
tiobjective trade-offs should not exist for hydrologic mod-
els. Their presence represents a failure to identify a single
set of parameters that allow the model to optimize simulta-
neously all of the specified measures of performance. For
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conceptual hydrologic models, the presence or absence of
calibration trade-offs is strongly shaped by the ability of the
model to capture the suite of user specified objectives across
diverse watersheds [van Werkhoven et al., 2008, 2009], the
complexity of each of the component objectives’ response
surfaces (i.e., multimodality, see Duan et al. [1992], Kavetski
and Kuczera [2007], Kavetski et al. [2006], and Tang et al.
[2006]), and the numerical precision at which output errors
are evaluated [Kavetski and Clark, 2010, 2011].

[4] Given the uncertainties and observation errors
implicit to hydrologic modeling, our study demonstrates
that prior multiobjective calibration exercises have suffered
from excessively precise trade-off analysis [Boyle et al.,
2000; Gupta et al., 1998; Tang et al., 2006, 2007; van
Werkhoven et al., 2009; Yapo et al., 1998], providing a
false sense of calibration trade-offs. The principle of non-
domination sorting underlies multiobjective optimization,
particularly for approaches based on multiobjective evolu-
tionary algorithms (MOEAs) (see the review by Nicklow
et al. [2010]). In multiobjective hydrologic model calibra-
tion, nondomination sorting partitions candidates model
parameterizations into groups that are worse in all objec-
tives (‘‘dominated solutions’’) and those where their per-
formance is superior to all others in at least one objective
(‘‘nondominated solutions’’). This partitioning must be
done carefully and at a numerical precision that is meaning-
ful. For example, van Werkhoven et al. [2009] showed that
although trade-off solution sets can be very large (more
than 100,000 parameter sets), they may, in fact, represent a
very small ranges of performance for component calibra-
tion objectives. This implies that the trade-offs themselves
are not meaningful.

[5] Building on these observations, this paper poses a ba-
sic question: When are multiobjective calibration trade-
offs in hydrologic models meaningful? To comprehen-
sively explore this question, we have expanded the four-
objective calibration strategy of van Werkhoven et al.
[2009] focusing on peak flows, low flows, water balance,
and flashiness to 392 model parameter estimation experi-
ment (MOPEX) watersheds [Duan et al., 2006] across the
United States. Our analysis explores the influence of model
structure by analyzing how the multiobjective calibration
trade-offs for the lower complexity HYMOD [Boyle et al.,
2003; Moore, 1985; Wagener et al., 2001] and the moderate
complexity HBV [Bergström, 1975, 1992, 1995] compare for
each of the 392 watersheds. Our results demonstrate that
for modern multiobjective calibration frameworks to yield
any meaningful measure of model structural failure, users
must be able to carefully control the precision by which
they evaluate their trade-offs to a level that is reasonably
consistent with the variety of uncertainties that exist (e.g.,
input uncertainty, model structural uncertainty, numerical
precision, etc.). Building on Kollat and Reed [2007] our
study demonstrates that the concept of epsilon-dominance
("-dominance) [Laumanns et al., 2002] provides an effec-
tive means of attaining bounded and meaningful hydrologic
model calibration trade-offs. When analyzed at an appro-
priate precision, our study demonstrates that multiobjective
trade-offs are far less frequent than the prior literature has
suggested [Efstratiadis and Koutsoyiannis, 2010]. How-
ever, when trade-offs do exist at a meaningful precision,
they do capture structural deficiencies in hydrologic

models. This study demonstrates how to use the presence
or absence of calibration trade-offs to support hydrologic
model selection.

2. Methodology
2.1. Case Study

[6] This study utilizes data from the model parameter
estimation experiment (MOPEX) data set [Duan et al.,
2006] available from the National Weather Service [2011]
(available at http://www.nws.noaa.gov/oh/mopex/mo_da-
tasets.htm). The MOPEX data set includes hydrometeoro-
logical data for 438 U.S. catchments ranging in size from
67 to 10,329 km2 located across the conterminous United
States. Data available at each catchment includes daily
mean areal precipitation (mm), minimum and maximum
daily air temperature (�C), daily streamflow (mm), and cli-
matic potential evapotranspiration (mm) based on the
NOAA Pan Evaporation Atlas [Farnsworth and Thompson,
1982]. Data for many of the MOPEX catchments starts on
1 January 1948 and is available through 31 December
2003. Additional data associated with the 438 basins is
available (e.g., soil characteristics, vegetation, etc.), but
was not utilized as part of this study. Three hundred ninety-
two MOPEX catchments were selected for use in this study
based on data availability for a 10-yr calibration period
(described in section 3.1). The climatic potential evapo-
transpiration data available with the MOPEX catchments
was replaced with Hamon potential evaporation (PE)
[Hamon, 1961; Vorosmarty et al., 1998], as this was
deemed a more applicable approach. This technique uti-
lized the minimum and maximum daily temperature avail-
able with the MOPEX data set, as well as the number of
daylight hours per day (which is dependent on the day of
the year and the latitude of the catchment), and the satu-
rated vapor pressure (which is estimated based on the daily
temperature data available at each catchment). Estimating
PE using the Hamon approach resulted in PE estimates that
were more consistent with the actual daily temperature at a
catchment and did not require additional data, but rather
additional calculations based on the available data.

2.2. Rainfall Runoff Models Tested

2.2.1. HYMOD
[7] The lumped conceptual model HYMOD [Boyle et al.,

2003; Wagener et al., 2001] (an iteration of the probability
distributed model or PDM [Moore, 1985]) represents a sim-
ple conceptual hydrologic model, which in our study is
composed of a snow module, soil-moisture accounting
module, and a routing module (see Figure 1). Our HYMOD
snow module uses a simple degree-day method [Bergström,
1975] for calculating snowmelt. When the average air tem-
perature for a day falls below the temperature threshold for
snow (Tt), snow storage occurs. When the average daily
air temperature is above the temperature threshold for
snowmelt (Tb), snowmelt occurs at the rate defined by the
degree-day factor (DDF). The soil-moisture accounting
module of HYMOD utilizes a storage capacity distribution
function for the storage elements of the catchment. In this
module, the storage elements of the catchment are distrib-
uted according to a probability density function defined by
the maximum soil moisture storage, and the distribution of
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soil moisture stores. The maximum soil moisture storage
(Cmax) represents the capacity of the largest soil moisture
store, while the shape parameter (�) describes the degree of
spatial variability of the stores [Wagener et al., 2004].
Evaporation from the soil moisture store occurs at the rate
of the potential evaporation estimates using the Hamon
approach. Following evaporation, the remaining rainfall
and snowmelt are used to fill the soil moisture stores.
Excess rainfall is sent to the routing module. The routing
module divides the excess rainfall using split parameter (�)
and routes these through parallel conceptual linear reser-
voirs meant to simulate the quick and slow flow response
of the system. The flow from each reservoir is controlled by
the quick flow residence time (Kq) and the slow flow resi-
dence time (Ks). The simulated streamflow is therefore the
addition of the outputs from each of these reservoirs.

[8] There are a total of eight parameters that must be
calibrated for HYMOD as shown in Figure 1, three of
which are related to the snow module.

2.2.2. HBV
[9] Our study is focused on a lumped form of the

conceptual HBV model [Bergström, 1975, 1992, 1995;
Lindström et al., 2005; Seibert, 2000] that consists of a
degree-day snow module, a soil-moisture accounting mod-
ule, and a runoff response module (see Figure 2). The
HBV model represents an increase in complexity relative
to the HYMOD model. In fact, HYMOD can be viewed
approximately as a simpler form of the more complex
HBV model as the various modules are very similar in

function, only differing in their parametric complexity.
The snow module utilized in HBV operates similarly to the
degree-day snow module used in HYMOD, but with an
added level of complexity that includes meltwater storage,
refreeze, and rain/snow mixing. In order to account for the
mix of rain and snow that might occur at air temperatures
close to the temperature threshold for snow (Tt), a tempera-
ture interval parameter (TTI) is added. The temperature
interval parameter specifies temperature bounds where pre-
cipitation falls either completely as rain or completely as
snow, or a linear mixture of rain and snow for temperatures
in between the bounds. The snow store is also assumed to
be capable of retaining melt water, expressed as a fraction
of its total storage by the water holding capacity of the
snow parameter (CWH). The meltwater within the snow
can also refreeze according to the refreeze parameter
(CFR), which is expressed as a fraction of the degree-day
factor. For additional details on the more complex degree-
day snow module formulation, refer to Hamilton et al.
[2000].

[10] The soil-moisture accounting module utilized by
HBV is functionally similar to that used by HYMOD.
However, instead of assuming that evaporation would
occur at the rate of the potential evaporation found using
the Hamon approach, the HBV model defines the limiting
soil moisture storage at which potential evaporation occurs
(LP). For soil moisture storage between 0 and LP, the
actual evaporation varies linearly as a fraction of the poten-
tial evaporation, and equals the potential evaporation for
soil moisture storage at or above LP.

Figure 1. Diagram of the HYMOD conceptual hydrologic model including the definitions of its eight
calibration parameters.
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[11] The routing module of the HBV model, similarly to
HYMOD, transforms excess rainfall from the soil-moisture
storage module to streamflow. The excess rainfall and
snowmelt that remains following evaporation, and filling of
the soil moisture stores, is routed into an upper response
reservoir. Three outlets in the upper response reservoir
divide the runoff into near-surface flow, interflow, and per-
colation to base flow. Flow from the three outlets is defined
by the near-surface flow recession coefficient (Kq) the inter-
flow recession coefficient (Km), and the percolation rate
(PERC). A threshold parameter (L) defines the height of
runoff in the upper response reservoir at which near-surface
flow occurs. Runoff percolating into the lower response
reservoir is released according to the base flow recession
coefficient (Ks). Runoff released from the upper and lower
response reservoirs is then transformed using a triangular
distribution with a defined base length (MaxBas).

[12] There are a total of 14 parameters that must be
calibrated for the HBV model as shown in Figure 2, five
of which are related to the snow module. Again, it is use-
ful to note that HYMOD can actually be viewed as a sim-
pler version of the HBV model as most of its modules are
conceptually similar to those in the HBV model. HYMOD
and HBV were chosen and formulated in this way to dem-
onstrate how the existence of trade-offs in one or both

models is indicative of their structural differences (and/or
deficiencies).

2.3. Multiobjective Calibration Objectives

[13] Our multiobjective formulation builds on van
Werkhoven et al. [2009] to focus on peak flows, low flows,
water balance, and flashiness. Adding water balance and
flashiness-related signatures to standard error measures
provides additional hydrologically relevant information
about how watersheds behave and how closely the model
matches this behavior [Sawicz et al., 2011; Yilmaz et al.,
2008].

2.3.1. Nash-Sutcliffe Efficiency (NSE)
[14] Peak flow errors are emphasized in our use of

the Nash-Sutcliffe efficiency (NSE) [Gupta et al., 2009;
Nash and Sutcliffe, 1970], as the first objective as shown
in equation (1),

NSE ¼ 1�

XN

t¼1

ðQs;t � Qo;tÞ2

XN

t¼1

ðQo;t � QoÞ
2

; (1)

where Qs;t is the simulated runoff at time t, Qo;t is the
observed runoff at time t, and Qo is the mean observed flow

Figure 2. Diagram of the moderately more complex conceptual HBV hydrologic model including defi-
nitions of its 14 calibration parameters.
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over the calibration period. The summation is performed
over t ¼ 1 through the number of time steps in the calibra-
tion period (N). NSE ranges from 1 (optimal) to �1, and
has been used frequently as a hydrologic model calibration
objective.

2.3.2. Transformed Root-Mean-Square
Error (TRMSE)

[15] Following prior studies [Misirli et al., 2003; Tang
et al., 2006], the second objective emphasizes low flow
errors using the Box-Cox transformed [Box and Cox, 1964]
root-mean-square error (TRMSE) as shown in equation (2),

TRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1

ðQ̂s;t� Q̂o;tÞ
2

vuut ;where Q̂¼ ð1þQÞ�� 1

�
; (2)

where Q̂s;t is the Box-Cox transformed simulated runoff at
time t and Q̂o;t is the Box-Cox transformed observed runoff
at time step t. The summation is performed over time steps
1 through the number of time steps in the calibration period
(N). Q̂ represents the Box-Cox transformation of the runoff
Q, where �¼ 0:3. The Box-Cox transformation, in addition
to emphasizing low flow periods, also serves to reduce the
impacts of heteroscedasticity in the RMSE calculation.

2.3.3. Runnoff Coefficient Percent Error (ROCE)
[16] The third objective considers water balance by seek-

ing to minimize the average annual runoff coefficient per-
cent error (ROCE) as shown in equation (3),

ROCE ¼ 1

Y

XY

y¼1

Qs

Qo

� 1

����
����� 100%; (3)

where Qs is the mean annual simulated runoff and Qo is the
mean annual observed runoff. The summation occurs over
years 1 through Y of the calibration period, for which an av-
erage annual value is then calculated.

2.3.4. Slope of the Flow Duration Curve (SFDCE)
[17] The fourth objective addresses the flashiness of a

watershed’s response by minimizing the error in simulating
the slope of the flow duration curve (SFDCE) as shown in
equation (4),

SFDCE ¼ Qs;67% � Qs;33%

Qo;67% � Qo;33%
� 1

����
����� 100%; (4)

where Qs;67% is the 67th percentile of the simulated flows,
and Qs;33% is the 33rd percentile of the simulated flows.
Likewise, Qo;67% and Qo;33% are the 67th and 33rd percen-
tiles of the observed flows. The flow duration curve is the
cumulative distribution function of the flows with the flow
values plotted on the Y-axis and the probability of exceed-
ance plotted on the X-axis.

2.4. Multiobjective Optimization Algorithm

[18] In this study, the "-nondominated sorted genetic
algorithm II ("-NSGAII) [Kollat and Reed, 2005, 2006;
Reed et al., 2007] is used to optimize the model parameters
for each of the MOPEX catchments based on the four cali-
bration objectives identified in section 2.3. The "-NSGAII
is a multiobjective evolutionary algorithm (MOEA) [Coello

Coello et al., 2007] that uses a population-based search to
evolve the Pareto approximate set of hydrologic model cal-
ibration parameters (i.e., the parameter sets whose perform-
ance in an objective cannot be improved without degrading
their performance in one or more other objectives). The
"-NSGAII has been shown to be highly effective at multi-
objective calibration of hydrologic models [Tang et al.,
2006, 2007; van Werkhoven et al., 2009; P. Reed,
D. Hadka, J. Herman, J. R. Kasprzyk, and J. B. Kollat, Evo-
lutionary multiobjective optimization in water resources:
The past, present, and future, submitted to Advances in
Water Resources], and was chosen in this work due to its
effectiveness and computational efficiency for the large
number of optimization runs required to calibrate all 392
MOPEX catchments. Two unique characteristics of the
"-NSGAII are that it adaptively sizes its evolving popula-
tion commensurate with search progress, and that it stores
the solutions found throughout the run in an "-dominance
[Laumanns et al., 2002] archive. Initially, a small popula-
tion is used to precondition the search at a low computa-
tional cost. As Pareto solutions are found, they are stored in
an "-dominance archive. During later stages of the search,
a concept termed ‘‘time continuation’’ [Goldberg, 2002] is
used to reinvigorate the search by injecting top performing
solutions that have been found throughout the run from the
"-dominance archive. The "-dominance archive stores Par-
eto solutions found throughout the search according to
"-dominance precision settings specified for each calibration
objective. These epsilon settings are critical for performing
the nondomination sorting of candidate parameterizations
using a meaningful precision as was discussed in section 1.

[19] The "-NSGAII utilizes "-dominance archiving in
order to prevent the deterioration of the search [Hanne,
1999], a phenomenon where MOEAs that utilize fixed pop-
ulations can lose nondominated solutions from early gener-
ations. A key benefit of- "-dominance archiving is that it
allows the user to specify a precision at which to evaluate
each of their objectives, which can have dramatic benefits
for reducing the computational demands and ensuring
numerically meaningful results [Kollat and Reed, 2007]. In
Figure 3A, a hypothetical example trade-off between NSE
and TRSME is shown. This trade-off is also referred to as
the Pareto front [Pareto, 1896a, 1896b]. However, in most
multiobjective model calibrations, it is computationally in-
tractable to find the true Pareto optimal set, so the set found
by the MOEA is typically referred to as the Pareto approxi-
mate set. In Figure 3A, the trade-off represents the full preci-
sion case, meaning that it computes NSE and TRMSE at
high levels of precision. Although numerical implementation
of the hydrologic model and the error calculations are highly
precise (i.e., double precision), users must contemplate at
what ‘‘significant’’ precision these calculations are meaning-
ful. We propose that the- "-dominance concept (beyond its
advantages for searches) provides an effective means to
understanding and utilizing meaningful precisions in multi-
objective calibration problems.

[20] When a meaningful precision is specified according to
the "-precision values for each objective shown in Figure 3A,
precision ‘‘blocks’’ are defined where only a single solution
is allowed. In Figure 3A, those blocks containing multiple
solutions are immediately ‘‘thinned’’ (i.e., the red x’s desig-
nating eliminated solutions). Only the single solution
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closest to the lower-left corner of each epsilon block is
allowed to remain. Figure 3B illustrates that the next step is
‘‘block-based’’ "-nondomination sorting. In Figure 3B,
gray shading is used to show the regions that are dominated
by solutions 1, 2, and 3. Note that when these solutions-
dominated regions intersect, the shading is darker. Solution
1 dominates all of the solutions with the NSE less than 1
and the TRMSE greater than 0.15. Likewise, solution 2
dominates all of the solutions with the NSE less than 0.99
and the TRMSE greater than 0.05. Finally, solution 3 domi-
nates the region where the NSE is less than 0.97 and the
TRMSE is greater than 0. The red x’s in Figure 3B show
which solutions from 3A are eliminated in the block nondo-
mination sorting. Finally, panel C shows the user defined
‘‘meaningful’’ Pareto front based on "-precision values of
NSE ¼ 0.01 and TRMSE ¼ 0.05. These settings mean we
are only interested in differentiating NSE and TRMSE at
the levels of 0.01 and 0.05, respectively. A key contribution

of this is study will be the demonstration of the benefits of
using "-dominance to attain bounded and meaningful
hydrologic model calibration trade-offs.

3. Experiment
3.1. MOPEX Data

[21] For this study, 10 yrs of precipitation, temperature,
and streamflow data were used to calibrate each of the mod-
els. A 1-yr warm-up period was specified, in which the four
calibration objectives were not calculated, requiring a total
of 11 yr of data for each catchment. Analysis of the 438
available MOPEX catchments [Duan et al., 2006] revealed
that 392 of the watersheds had 11 complete years of data
from the period 1 October 1961 to 30 September 1972. Con-
sequently, our study considers only the 392 MOPEX catch-
ments that contained complete data for this 11-yr period. The
map in Figure 4 shows the 392 MOPEX catchments

Figure 3. Demonstration of "-dominance applied to a two-objective calibration problem. A shows
the full precision Pareto approximate set and meaningful "-precision blocks. B shows ‘‘block-based’’
"-nondomination sorting. C shows the user defined ‘‘meaningful’’ Pareto front based on the specified
"-precision.

Figure 4. Map of the 392 MOPEX catchments used in this study [Duan et al., 2006]. Labels are pro-
vided for five catchments that are explored in detail later in Figure 10 and its associated discussion.
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calibrated in this study. Note that many catchments are
actually sub-basins of larger catchments (occurring particu-
larly frequently for catchments located in the Appalachian
range).

3.2. HYMOD and HBV Calibration Parameters

[22] There are a total of eight calibrated parameters in
the HYMOD model (three of which are related to the
degree-day snow module). The calibration ranges of each
of the HYMOD parameters are shown in Table 1 and are
based largely on the maximum range sampled from several
recent studies [de Vos et al., 2010; Kokkonen et al., 2006;
McIntyre et al., 2005; Moore, 2007; Wagener et al., 2004].
In HBV, a total of 14 parameters were calibrated (five of
which are related to the degree-day snow module). The cal-
ibration ranges of each of the HBV parameters are also
shown in Table 1 and are again based on the maximum
sampled range from prior studies [Harlin and Kung, 1992;
Kokkonen et al., 2006; Lawrence et al., 2009; Liden and
Harlin, 2000; Ogden et al., 2010; Seibert, 1997; Singh,
2010; Zhang and Lindstrom, 1996]. The reader may note
that HBV’s Ks, Km, and Kq parameters were allowed to
overlap in their sampled ranges, introducing the possibility
that the flow components of the HBV model may not be
clearly distinguished once calibrated for a specific catch-
ment. However, since we are examining such a large num-
ber of catchments (392), we felt it necessary to allow these
parameters to vary over an adequate range in order to cap-
ture the large range of geographic and climatic conditions
present across the conterminous U.S. Additionally, this
study does not focus on the resulting parameterizations of
the models for each catchment, but rather on the perform-
ance of the model simulated streamflow and associated
objective values.

3.3. e-Precision Specification

[23] The "-precision specified for the NSE objective was
specified as "NSE ¼ 0:01, representing our interest in per-
formance differences that were at least 0.01 or greater (i.e.,
0.99 versus 0.98). This selection was based on numerical
analysis that revealed that for high-performing catchments
(in terms of NSE), this would capture an error level of at

least 1 mm d�1 for the streamflow time series. The
"-precision specified for the TRMSE objective was based
on analysis of the Box-Cox transformation used in this
objective calculation. This analysis revealed that a value of
"TRMSE ¼ 0:0025 achieved an error level of �1 mm d�1 for
the streamflow time series. The ROCE objective was formu-
lated specifically as a percent error (see equation (3)). One
percent differences (or "ROCE ¼ 1:0) were specified for the
ROCE objective. The SFDCE objective was also formulated
as a percent error (see equation (4)) with "-precision specified
for 1% differences ("SFDCE ¼ 1:0). In general, the "-precision
values of the performance objectives that we have selected
for this work are conservative in the sense that they quantify
relatively small changes in the objectives relative to the
uncertainties present in the system.

3.4. Parameterization of the e-NSGAII

[24] Parameters related to the "-NSGAII algorithm
include an Simulated Binary Crossover (SBX) probability
of 100% with an SBX distribution index of 15 [Deb and
Agrawal, 1995]. The polynomial mutation probability was
specified differently for each the HYMOD and HBV cali-
bration runs using the rule-of-thumb 1=X ; where X is the
number of real coded variables [Deb, 2001]. Hence, the
mutation probability for the HYMOD runs was set to
12.5% and for the HBV the runs were set to 7.14%, both
with a distribution index of 20.

[25] The population size of the "-NSGAII was initially
set at 12 individuals, and was permitted to grow to an upper
bound of 10,000 individuals. Run length was set to 50 gen-
erations per run, whereby after 50 generations of evolution,
25% of the "-dominance archive was injected into a subse-
quent larger population (composed of 75% new random
solutions). To prevent preconvergence for catchments that
exhibited significantly collapsed trade-offs (i.e., there may
exist only one solution in the collapse trade-off), a lower
bound of 100 individuals was specified following the first
run (or the first 50 generations of evolution), so that a suffi-
cient population size could be used to evolve the calibration
trade-off. Each model and catchment was run for a total du-
ration of one million evaluations per run over 50 random
seed trials (to account for variability in the initialization of
the "-NSGAII). This represents a total of 50 million evalua-
tions for each of the 392 MOPEX catchments for each
HYMOD and HBV.

[26] In total, the runs for this experiment encompassed
39.2 billion model evaluations (i.e., model simulations for
the 10 yr calibration period) and were performed on Penn-
sylvania State University’s CyberStar cluster. The CyberStar
cluster is composed of 2048 processing cores (1536 quad-
core Intel Nehalem 2.66 GHz processors and 512 quad-core
AMD Shanghai processors), each with access to at least
3GB of RAM.

4. Results and Discussion
[27] Following the calibration runs for each of the 392

MOPEX catchments, results from all 50 random seed trials
were combined and "-nondomination sorting was performed
over the 50 trials to create a ‘‘best-known’’ Pareto approxi-
mate set for each model and each catchment. The Pareto
approximate sets reported throughout the remainder of

Table 1. Summary of Calibration Parameter Ranges Sampled for
Both HYMOD and HBV

Parameter (Units) HYMOD Range HBV Range

Cmax (mm) 0.0–2000.0 0.0–2000.0
LP (-) – 0.3–1.0
�(-) 0.0–7.0 0.0–7.0
�(-) 0.0–1.0 –
Kq (d) 1.0–7.0 0.5–20.0
Km (d) – 1.0–100.0
Ks (d) 7.0–20,000 10.0–20,000
L (mm) – 0.0–100.0
PERC (mm d�1) – 0.0–100.0
MaxBas (d) – 24.0–120.0
DDF (mm �C�1 d�1) 0.0–20.0 0.0–20.0
Tt (�C) �3.0–3.0 �3.0–3.0
Tb (�C) �3.0–3.0 –
CFR (-) – 0.0–1.0
CWH (-) – 0.0–0.8
TTI (�C) – 0.0– 7.0
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section 4 reflect these best-known trade-offs resulting from a
total of 50-million model simulations for each catchment.

4.1. What is a Meaningful Trade-Off?

[28] In order to illustrate how "-dominance is critical
to attaining bounded and meaningful hydrologic model

calibration trade-offs, in Figure 5 we demonstrate the appli-
cation of "-dominance to a commonly studied catchment,
the Leaf River near Collins, Mississippi, which has fre-
quently been shown in the literature to exhibit trade-offs
between many of the common calibration objectives
[de Vos and Rientjes, 2008; Gupta et al., 1998; Tang et al.,

Figure 5. Demonstration of "-dominance applied to HBV calibration results for the Leaf River catch-
ment near Collins, Mississippi. A shows the ‘‘full precision’’ version of the Pareto approximate parame-
ter set with NSE and TRMSE plotted on the X and Y axes, SFDCE plotted as color, and ROCE plotted
using the size of the markers (arrows point toward the preferred region of the space). B demonstrates
how the "-precision settings shown in the top right corner of the panel applied to each of the performance
objectives results in 300 Pareto approximate parameter sets. C demonstrates how these "-precision set-
tings can be further refined (to the meaningful precision defined in section 3.3) to result in a single, high-
performing Pareto approximate solution.
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2006; Vrugt et al., 2003; Yapo et al., 1998]. In each of the
plots, NSE and TRMSE are plotted on the X- and Y-axes.
SFDCE is plotted using color where blue represents low
SFDCE and red high SFDCE. ROCE is plotted using
the size of the markers where small markers represent
low ROCE and large markers represent large ROCE. In Fig-
ure 5A, the multiobjective calibration results attained using
HBV and the "-NSGAII with the parameter settings
described in section 3.4, and highly precise "-precision val-
ues of 1.0E-7 for each of the calibration objectives are
shown. Note that these precisions represent commonly
employed values in the prior literature [Gupta et al., 1998;
Tang et al., 2006, 2007; van Werkhoven et al., 2009; Yapo
et al., 1998]. These ‘‘full-precision’’ settings result in
65,699 Pareto approximate parameter sets, similar to results
shown by van Werkhoven et al. [2009]. Moreover, careful
examination of the relative ranges of each of the calibration
objectives reveals that the trade-off shown may not actually
be meaningful (e.g., NSE ranges between 0.898 and 0.905
in Figure 5A).

[29] Figure 5B shows what the full precision calibration
problem shown in Figure 5A would look like if precision
settings of NSE ¼ 0.001, TRMSE ¼ 0.001, ROCE ¼ 0.01,
and SFDCE ¼ 0.01 were applied to each of the calibration
objectives. The grid associated with the NSE and TRMSE
"-precision values is shown within the plot in Figure 5B. In
this case, the full precision set is reduced to 300 Pareto ap-
proximate parameter sets. However, this still represents a
level of precision that is more precise than is necessary
given the uncertainty present in the observations and
model. In other words, we need to ask the question: Is
resolving NSE to the 0.001 level in the presence of the
other objectives meaningful?

[30] Figure 5C shows what the full precision multiobjec-
tive calibration problem shown in Figure 5A would look
like if precision settings of "NSE ¼ 0:01, "TRMSE ¼ 0:025,
"ROCE ¼ 1:0, and "SFDCE ¼ 1:0 were applied to each of the
calibration objectives (i.e., the settings established for this
study in section 3.3). These settings correspond with
resolving the relative percent error in ROCE and SFDCE to
the 1% level. In addition, we could think of the epsilon
applied to the NSE objective as resolving NSE to levels
of 0.90, 0.91, 0.92, etc. In this case, we have to ‘‘zoom
out’’ from the original plot in Figure 5C to show what
this "-precision actually represents (see the large grid in

Figure 5C). When we do this, we find that given these
‘‘meaningful precision’’ settings, the original set containing
65,699 Pareto approximate solutions collapses to a single
solution with NSE ¼ 0.9001%, TRMSE ¼ 0.2322%,
ROCE ¼ 0.0020%, and SFDCE ¼ 0.0086%. This represents
an extremely high-performing parameter combination, but
eliminates the other 65,698 solutions that are representative
of an overly precise quantification of the calibration objec-
tives. In terms of model performance, Figure 5C designates a
full collapse of the four-objective problem to its minimum
geometry (i.e., a zero dimensional single point satisfying all
objectives). It could be argued that the "-precision values
used in this study may still be too precise.

[31] Figure 6 shows the actual calibrated simulation
results associated with each of the Pareto approximate sets
shown in Figures 5A–5C. Recall that each individual
marker on the plots in Figure 5 represents a Pareto approxi-
mate model parameter set for HBV. Figure 6 shows a por-
tion of the runoff time series for the Leaf River catchment
during the calibration year 1967 with the observed runoff
shown in blue, and the precipitation shown as black bars at
the top of the plot. The range of the simulations produced
by the 65,699 Pareto approximate parameter sets associated
with the ‘‘full precision’’ multiobjective calibration shown
in Figure 5A is shown in pink. The range of the 300 simula-
tions produced using the medium precision settings from Fig-
ure 5B is shown in light red. Finally, the single-calibration
parameter set associated with the "-precision settings used
in this study (see Figure 5C) is shown using a dark red line.
This figure demonstrates that while there are 65,699 Pareto
approximate parameter sets in the full precision calibration
case, the range of performance that these parameter sets
actually produces is very small (illustrated by the narrow
pink band in the plot). Additionally, the simulation pro-
duced using the single parameter set generated using a rea-
sonable "-precision setting performs very well, and would
likely be of significant interest to the modeler without the
confounding information of the remaining 65,698 solutions
as well as the severe computational challenge posed by the
full precision multiobjective calibration [Kollat and Reed,
2007].

4.2. Meaningful e-Precision and Trade-Off Collapse

[32] Recall that ideally, multiobjective trade-offs should
not exist for hydrologic models. Figure 7 demonstrates

Figure 6. Streamflow plot showing the simulations associated with the full (pink), medium (light red),
and reasonable precision (dark red) Pareto approximate sets from Figures 5A, 5B, and 5C along with the
observed runoff time series (blue dashed line) and precipitation (black bars) for 8 months during calibra-
tion year 1967.
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these points by showing how reasonable "-precision applied
to the multiobjective calibration objectives results in a col-
lapse of the calibration trade-offs with slight increases in
model complexity. In many catchments, the additional
degrees of freedom (additional model parameters) present
in the HBV model allow it to outperform the simpler
HYMOD model. Figure 7A shows the HYMOD and HBV
Pareto approximate parameter sets for Beaver Creek near
Beaver City, Nebraska with NSE and ROCE plotted on the
X- and Y-axes, TRMSE plotted using color, and SFDCE
plotted using the size of the markers. Here the increased
complexity of the HBV model clearly allows it to fit more
accurately the runoff time series for this catchment. Addi-
tionally, reasonable "-precision values facilitate the col-
lapse of the HBV trade-off due to its increased ability to
satisfy the full suite of high flow, low flow, water balance,
and flashiness objectives. In Figure 7A, only two Pareto ap-
proximate parameter sets exist at this level precision. The
two HBV parameterizations themselves are not strongly
distinguishable and actually could be considered analogous
to one another. Figure 7B similarly shows the HYMOD and
HBV Pareto approximate parameters sets for a different

catchment, Tug Fork near Kermit, West Virginia, but with
NSE and TRMSE plotted on the X- and Y-axes, SFDCE
plotted using color, and ROCE plotted using size. Figure
7B further illustrates the structural collapse afforded by the
more complex HBV model. Both Figures 7A and 7B
clearly illustrate improved model identification with the
slight increase in model complexity when transitioning
from HYMOD to HBV. Epsilon-dominance is well-suited
for capturing this dimensional collapse of trade-offs, which
would be hidden in numerical noise when an unnecessarily
high level of precision is utilized. Epsilon-dominance ulti-
mately provides a straightforward conceptual approach for
assessing dimensional collapse in the resulting Pareto ap-
proximate sets for HBV and HYMOD.

[33] This type of analysis can be extended across the cal-
ibration results of all 392 MOPEX catchments as shown in
Figure 8. Figures 8A and 8B show maps of the Pareto ap-
proximate parameter set sizes generated by HYMOD and
HBV for each of the 392 MOPEX catchments. The color-
ing of the catchments indicates the Pareto approximate pa-
rameter set size with red indicating more than 1000 Pareto
approximate parameter sets and blue indicating complete

Figure 7. Plots demonstrating the Pareto approximate parameter set collapse resulting from both the
models’ abilities to simulate the streamflow, and the application of reasonable "-precision to the calibra-
tion objectives. A shows the Pareto approximate parameter sets for HYMOD and HBV (circled) applied
to the Beaver Creek, Nebraska catchment with NSE and ROCE plotted on the X and Y axes, TRMSE
plotted as color, and SFDCE plotted using the size of the markers. B shows the Pareto approximate sets
for HYMOD and HBV (circled) for the Tug Fork, West Virginia catchment where NSE and TRMSE are
plotted on the X and Y axes, SFDCE plotted as color, and ROCE plotted using the size of the markers.
Arrows in both panels point toward the preferred region of the space.
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collapse to a single Pareto approximate parameter set. The
calibration results for HYMOD ranged between 1 and
1471, and for HBV between 1 and 818 Pareto approximate
parameter combinations in each set. Also shown on each
map is a cumulative distribution function (CDF) plot of
MOPEX catchment count versus Pareto approximate set
size for both HYMOD and HBV. The most notable contrast
between Figures 8A and 8B is that the HBV model clearly
exhibits more collapse in its Pareto approximate parameter
sets (shown both in terms of the maps, and the CDFs),

indicating that HBV’s additional complexity is typically
beneficial in more accurately reproducing the streamflow
of each catchment. However, there is clearly a geographical
influence in the performance of both models, as it appears
to be particularly difficult for both HYMOD and HBV to
simulate catchments along parts of the Appalachian Range
(i.e., the Pareto approximate set sizes in this region tend to
be large).

[34] Additional analysis was performed by combining
the Pareto approximate parameter sets of both HYMOD

Figure 8. Maps of Pareto approximate parameter set sizes for the 392 MOPEX catchments generated
by both HYMOD and HBV. Red represents large Pareto sets (1000þ parameter sets), while blue repre-
sents small (or collapsed) Pareto sets (one optimal parameter set). A cumulative distribution function
plot of the MOPEX catchment count versus Pareto approximate set size for HYMOD and HBV is shown
in the corner of each map.
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and HBV to examine the relative contributions of each
model to the ‘‘global Pareto approximate parameter set’’
produced by combining the results from both models for
each catchment. This analysis concluded that of the global
Pareto approximate parameter sets generated for the 392
MOPEX catchments, there are only 24 (6.1%) where
HYMOD actually contributes to the best known Pareto ap-
proximate sets and of these, there are only 17 (4.3%) where
HYMOD contributes more Pareto approximate parameter
sets than HBV. Additionally, for the 73 catchments (or
18.6% of the MOPEX catchments), where HYMOD’s Par-
eto approximate parameter set size is smaller than HBV’s,
HBV results actually dominate the collapsed HYMOD sets
in all but nine catchments (2.3%). In these nine catchments,
there tends to be a mixed contribution from both HYMOD
and HBV, indicating that both models are attaining highly
similar levels of performance. In cases where both HBV
and HYMOD made significant contributions to their joint
Pareto approximate set, the models are largely equivalent
in their performance.

[35] Figure 9 provides cumulative distributions functions
(CDFs) for both the HYMOD and HBV models across their
calibration objectives (Figure 9A) and their parameters
(Figure 9B). The CDF for HYMOD is shown as a dashed
red line and for HBV as a solid green line. These CDFs
were produced by aggregating the Pareto approximate pa-
rameters sets generated by each model across all 392
MOPEX catchments. This represents a sample size of
20,640 Pareto approximate parameter sets for HYMOD
and 5639 Pareto approximate parameter sets for HBV (the
sample size is obtained by summing the Pareto set sizes on
the maps shown in Figure 8). For the calibration objectives,
the preferred or optimal side of the plot is always shown
to the left (note that although NSE is maximized, the
X-axis for this plot increases from right to left).

[36] In terms of performance across the calibration
objectives, HBV generally outperforms HYMOD most in
terms of NSE (see Figure 9A), although it tends to slightly
outperform HYMOD in ROCE and SFDCE as well. The
distributions for TRMSE are similar across both models.
The distributions of the model parameters shown in Figure
9B for both HYMOD and HBV are indicative of the applic-
ability of the sampled range of each parameter. For many
parameters, we see that they occur throughout their
sampled range across the 392 catchments. Notable devia-
tions to this include the percolation parameter (PERC) for
the HBV model, which tends toward lower values (<25%)
for most catchments. Interestingly, for most parameters
that have been identified as functionally similar across
HYMOD and HBV, their CDFs appear similar, confirming
the stance that HYMOD represents essentially a subset of
the more complex HBV structure. The only deviation to
this is for the parameter �, which suggests that the way in
which model components are connected to other parts of a
model can have an impact on their functional role in the
model (see discussion by Clark et al. [2008]). Since some
of the modules (e.g., evaporation, runoff, etc.) that make up
the overall structures of HYMOD and HBV differ from one
another, the functional role of the soil moisture module
(which utilizes the � parameter) may differ between the
two even though it is structurally similar, especially when
compared over a large number of catchments.

4.3. Precision and Trade-Off Collapse: What Does it
All Mean?

[37] Figure 10 provides detailed streamflow plots for five
examples of MOPEX catchments for the period October
1969 through September 1971 of the 10-yr calibration. The
observed runoff is shown as a dashed blue curve, the pre-
cipitation as black bars, and the Pareto approximate param-
eter set simulations associated with HYMOD and HBV are
shown in red and green, respectively. Figures 10A through
10C show catchments where the trade-offs do not collapse
for either model (i.e., both models exhibit difficulty simu-
lating the streamflow). Figures 10D and 10E show catch-
ments where the trade-offs collapse for both models due to
generally good performance.

[38] In Figure 10A, both models exhibit difficulty model-
ing the Cheat River located at Rowlesburg, West Virginia
(see gage 03070000 in Figure 4). HBV’s trade-off is com-
posed of 259 parameter sets and HYMOD’s is composed of
174. Careful examination of the plot reveals ‘‘peaking’’
behavior in both models that is simply not present in the
observed streamflow. The Cheat River Basin is character-
ized by the existence of maze caves and single conduit caves
[Springer et al., 1997], indicating that complex subsurface
flow conditions likely exist that neither HYMOD nor HBV
are equipped to model. In Figure 10B, we show a snowmelt
dominated catchment located on the North Fork Gunnison
River near Somerset, Colorado (see gage 09132500 in
Figure 4). This catchment is entirely dominated by spring
snowmelt that neither HYMOD’s nor HBV’s simple degree-
day snow model is sufficient to capture. These simple snow
modules fail to capture the complex elevation-dependent
snowmelt scenarios that occur in this catchment. As a result,
both models exhibit significant trade-offs due to their inabil-
ity to accurately represent the system. In fact, the perform-
ance of both HYMOD and HBV at many snowmelt-
dominated catchments in mountainous regions of the U.S.
are similarly characterized by large trade-offs, while their
performance in lower elevation regions, where snow occurs,
is generally much improved (i.e., collapsed). This is likely
reflective of their inability to effectively model the complex-
ities that exist in elevation-dependent snowmelt release tim-
ing and magnitude. Figure 10C shows a catchment located
at the Elm Fork Trinity River near Carrollton, Texas that is
clearly influenced by reservoir releases (see gage 08055500
in Figure 4). This gage is located downstream from the Lew-
isville Dam, resulting in a highly regulated flow at the gage
due to reservoir operations. This example demonstrates that,
while the increased complexity of the HBV model greatly
improves its ability to reproduce the streamflow (HBV’s
Pareto approximate trade-offs collapse to 208 parameter sets
while HYMOD’s trade-offs remain at 1231 parameter sets),
it is still fundamentally lacking model structural components
that would allow it to more accurately reproduce the runoff
given this anthropogenic disturbance (see Figure 4).

[39] Alternatively, Figure 10D provides an example of a
catchment where both HYMOD and HBV achieve an
excellent fit, and hence their Pareto approximate calibration
trade-offs collapse to a single solution. The Great Miami
River at Hamilton, Ohio (see gage 03274000 in Figure 4)
is minimally regulated at low flow, and contains five retard-
ing basins upstream of the gage to control flood flow
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[U.S. Geological Survey (USGS), 2010]. The geology, cli-
mate, and nature of the anthropogenic influence on this
catchment apparently combine to form ideal modeling con-
ditions for both HYMOD and HBV. Figure 10E is meant to
provide a contrast to the Cheat River shown in 10A, as the
South Fork Holston River near Damscas, Virginia (see gage

03473000 in Figure 4) is located southwest of the Cheat
River, and at the southern end of the Appalachian Range. It
is clear from this figure that the subsurface flow issues pres-
ent at the Cheat River are not shared by this catchment.

[40] Solving the multiobjective calibration problem
using four calibration objectives inherently allows for the

Figure 9. Cumulative distribution functions (CDFs) of the objectives and model parameters across all
Pareto approximate parameter sets generated for the 392 MOPEX catchments. CDFs for HYMOD are
shown as red dashed lines and for HBV are shown as solid green lines. The full range of the ROCE and
SFDCE CDFs were trimmed to 100% error for visualization purposes.
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Figure 10. Detailed streamflow plots for five MOPEX catchments. Each plot displays the observed
time series in blue, precipitation as black bars, and the simulations associated with HYMOD’s and
HBV’s Pareto approximate parameter sets in red and green, respectively (for the period October 1969
through September 1971). A shows a groundwater dominated catchment (the Cheat River, WV) that is
extremely difficult for both models. B shows a snowmelt dominated catchment in Colorado. C shows an
anthropogenically impacted catchment in Texas. D and E show catchments in OH and VA, respectively,
for which HYMOD and HBV both perform reasonably well resulting in collapse of their Pareto approxi-
mate parameter sets.
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analysis of any of the subproblems from which it is com-
posed. To illustrate, while we optimized the calibration
problem using four objectives, we have at the same time
also solved four three-objective calibration problems,
six two-objective calibration problems, and four single-
objective problems, for a total of 15 problems. Beginning
with the Pareto preference ordering work of Das [1999],
and extending to the work by Khu and Madsen [2005] and
di Pierro [2006], it has been shown that exploring the sub-
problems within the larger multiobjective problem can be
of value in identifying the significance of the conflicts that
exist as well as determining which solutions are optimal in
the most subproblems. For example, multiobjective calibra-
tion subproblems that include the NSE objective may result
in larger trade-offs for some catchments, while calibration
subproblems that include the SFDCE objective may result
in larger trade-offs for others. This results in a changing
degree of conflict that exists between pairs of objectives
across individual catchments that differ in their controlling
processes.

[41] For each of the subproblems contained within the
full four-objective calibration problem, we now analyze
where the most significant conflicts exist in order to identify
meaningful patterns. To accomplish this, "-nondomination
sorting was performed on the moderately large (20 or more)
Pareto approximate parameter sets generated by HBV using
the "-precision settings established in section 3.3 to focus
on the presence or absence of trade-offs for each of the 11
subproblems within the full four objective calibration prob-
lem (i.e., there are no trade-offs associated with the four
single-objective problems). Hierarchical clustering using a
Euclidean distance metric [Hastie et al., 2009] was then per-
formed according to the Pareto approximate parameter set
sizes across the 11 subproblems. For the clustering analysis,
the Pareto approximate set sizes of each subproblem were
standardized to mean zero and a standard deviation of 1.

[42] Figure 11A shows a ‘‘heat map’’ of the clustering of
the 52 catchments where HBV identified four-objective
trade-offs containing 20 or more Pareto approximate pa-
rameter sets. The rows of the heat map represent each of
the 52 catchments and the columns of the heat map repre-
sent the 11 subproblems as labeled. The coloring of the
heat map represents the standardized Pareto set size, where
red indicated large or noncollapsed sets and blue indicates
small or relatively collapsed sets. The results of the cluster
analysis revealed the existence of two primary clusters as
denoted in Figure 11A. We define the ‘‘blue cluster’’ as
being the one characterized by large trade-offs in the NSE-
TRMSE-ROCE combination of objectives and limited
trade-offs in the NSE-ROCE-SFDCE combination (refer to
the dashed boxes in the ‘‘blue cluster’’ portion of the heat
map). We define the ‘‘red cluster’’ as being characterized
by large trade-offs in the NSE-ROCE-SFDCE combination,
but small trade-offs in the NSE-TRMSE-ROCE combina-
tion (again refer to the dashed boxes). The red and blue
clusters represent the first level of clustering into two
groups for the hierarchical clustering analysis.

[43] Figure 11B maps the catchments associated with
each of the red and blue clusters, where we can see that the
red cluster members occur predominantly in the Midwest
and the blue cluster members occur predominantly around
the Appalachian Range. Previously, in Figure 10A we

identified the Cheat River in West Virginia as exhibiting
significant surface to subsurface flow interactions where
both models failed to reproduce the peaking behavior of
the observed streamflow. This mode of failure would result
in severe water balance errors and this is consistently what
we see in the blue cluster catchments (larger trade-offs in
subproblems, including ROCE). However, in the red cluster
catchments located throughout the Midwest, we observe
more difficulty in fitting the ‘‘flashiness’’ of the time series,
as the subproblems that include the SFDCE objective tend
to exhibit larger trade-offs. Recent analysis of the MOPEX
catchments conducted by Wang and Hejazi [2011] suggests
that the red cluster catchments predominantly occur in
regions heavily impacted by agricultural use. Overall,
Figure 11 supports our contention that the presence and ab-
sence of trade-offs can be used as a diagnostic for model
selection and the identification of structural deficiencies.

5. Conclusions
[44] In this study, we applied a four-objective calibration

strategy focusing on peak flows (Nash-Sutcliffe efficiency),
low flows (Box-Cox transformed root-mean-square error),
water balance (runoff coefficient error), and flashiness
(slope of the flow duration curve error) to 392 model param-
eter estimation experiment (MOPEX) watersheds across the
United States using the relatively simple HYMOD, and the
slightly more complex HBV hydrologic models, both of
which are widely used. The calibration runs were conducted
for each model and each catchment by aggregating 50-mil-
lion total evaluations using the "-dominance nondominated
sorted genetic algorithm II ("-NSGAII). Our analysis was
designed to answer the following key question: When are
multiobjective calibration trade-offs in hydrologic models
meaningful?

[45] First, in addressing this question we have shown
that the block-based nondomination sorting implicit to "-
dominance is critical to attaining bounded and meaningful
hydrologic model calibration trade-offs as was demon-
strated on the commonly examined Leaf River catchment
near Collins, Mississippi. Here we showed that traditional
nondomination sorting using highly precise error calcula-
tions yields a severe growth of the Pareto approximate pa-
rameter sets (65,000 in the Leaf River example), but the
trade-offs had extremely small effective ranges for each of
the calibration objectives. The Leaf River Pareto approxi-
mate set ‘‘collapsed’’ to a single optimal solution using
‘‘meaningful’’ "-precision for each calibration objective.
This example suggests that when calibrating at an appropri-
ate precision, multiobjective trade-offs are far less frequent
than prior literature has suggested. In fact, for the MOPEX
catchments, 80% of HBV’s and 55% of HYMOD’s Pareto
approximate parameter sets collapse to 10 or fewer parame-
ter sets when using the "-precision settings of this study. In
the majority of cases, the trade-offs probably are not mean-
ingful and reflect a significant dimensional collapse relative
to the theoretical potential for a large, four-objective Pareto
front geometry.

[46] When trade-offs do exist at meaningful precision, we
have demonstrated that they can be used as a diagnostic for
model selection and for assessing structural failures in mod-
els. Our analysis explored the influence of model structure
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by analyzing how the multiobjective calibration trade-offs
for the lower complexity HYMOD and the moderately
higher-complexity HBV hydrologic models compared over
the 392 MOPEX catchments. We showed several detailed
cases where the additional complexity of HBV was sufficient
to produce a trade-off collapse to a well-identified single so-
lution, whereas the simpler HYMOD was unable to achieve
similar performance. Additional detailed analysis of both
catchments exhibiting collapsed and noncollapsed trade-off

surfaces revealed that in many cases, model structural fail-
ings could be easily attributable to factors such as ground-
water interactions, snowmelt scenarios, and anthropogenic
influences. In summary, multiobjective calibration trade-offs
should be the exception and not the rule when they are eval-
uated at an appropriate precision for multiple candidate
hydrologic models across diverse hydro-climatic conditions.

[47] At first sight, the methodology proposed in this paper
might seem to be opposing the generally accepted problem

Figure 11. Hierarchical clustering analysis of the 52 catchments for which HBV generated Pareto
approximate parameter sets with 20 or more solutions. A shows the first level clustering of these catch-
ments based on the 11 subproblems with the rows being the 52 catchments, the columns being the 11
subproblems, and the coloring is the standardized Pareto set size for each subproblem. B shows a map of
the blue and red cluster catchments from Figure 11A.
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of equifinality [Beven, 2006; Beven et al., 2011]. Our
approach collapses similarly performing calibration parame-
ter sets to a single representative one, while approaches to
the equifinality problem often keep all possible parameter
sets that could represent the system under study. The reason
for this dissimilarity is a difference in study goal. From an
optimization point of view, the solutions within our multi-
objective "-precision-defined ranges can be considered
equal in the calibration objective space for the calibration
period used. There is, therefore, no significant performance
trade-off present and we can collapse them to a single solu-
tion. We do not claim that the actual parameter sets underly-
ing these solutions are identical, or that these parameter sets
might not produce greater performance differences for data
periods that differ in their climatic regime. If our goal was
to identify those parameter sets that are possible representa-
tions of the watershed, then this approach is not applicable.
However, since we are only concerned with the level of
trade-off present, we believe that our strategy provides a
conceptually and computationally simple metric for assess-
ment. Our approach is therefore not inconsistent with strat-
egies like the limits of acceptability method [Blazkova and
Beven, 2009; Dean et al., 2009], or related approaches that
we have promoted ourselves [Yadav et al., 2007; Zhang
et al., 2008] to identify all suitable parameter sets.

[48] Some readers might also find the choice of "-precision
values to be somewhat arbitrary. The values we chose were
based on rough estimates that would remain consistent with
a relatively low level of error in the streamflow observa-
tions. However, these "-precision values should probably
be significantly larger if they were based on assumed errors
in the observations of model forcing and response [Liu
et al., 2009; Westerberg et al., 2010; Krueger et al., 2009;
Kuczera et al., 2010; Vrugt et al., 2008]. Our values are
therefore very conservative estimates, which makes our
conclusions all the more significant showing that even for
small "-precision values, we find that significant trade-offs
do not exists for many watersheds.
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