
Using the Kalman Filterto track Human Interactive Motion| Modelling and Initializationof the Kalman Filterfor Translational Motion |Markus Kohler �AbstractBased on an example of translational motion, this report shows how to modeland initialize the Kalman Filter. Basic rules about physical motion are intro-duced to point out, that the well-known laws of physical motion are a mereapproximation. Hence, motion of non-constant velocity or acceleration is mod-elled by additional use of white noise. Special attention is drawn to the matrixinitialization for use in the Kalman Filter, as, in general, papers and booksdo not give any hint on this; thus inducing the impression that initializing isnot important and may be arbitrary. For unknown matrices many users of theKalman Filter choose the unity matrix. Sometimes it works, sometimes it doesnot. In order to close this gap, initialization is shown on the example of hu-man interactive motion. In contrast to measuring instruments with documentedmeasurement errors in manuals, the errors generated by vision-based sensoringmust be estimated carefully. Of course, the described methods may be adaptedto other circumstances. Keywordsmotion, tracking, Kalman Filter.
�Universit�at Dortmund, Informatik VII, D-44221 Dortmund, Germanye-mail: kohler@ls7.informatik.uni-dortmund.de1



1 IntroductionComputer vision has found growing interest during the last few years. One reasonmay be the continuously falling expenses of hardware for image grabbing and pro-cessing. If image processing deals with movable objects, it is a good choice to takethe Kalman Filter for predicting the motion.This report emphasizes on the example of translational motion, how the KalmanFilter should be modelled and how it should be initialized. Basic rules about physicalmotion are introduced. The well-known laws of physical motion are an approximationonly. They only hold for motion with constant velocity or constant acceleration. Ifthe motion, however, comes from human interaction, there will be continuous changein acceleration. Hence, motion with non-constant velocity or acceleration is modelledby using white noise. A special interest is to show how the matrices of the KalmanFilter should be determined and initialized.This report only considers translational motion. The motion, that shall be trackedand predicted, is the motion of human body parts like it appears in gesture recog-nition systems [ZYK95, SKZ95, ARG97, Koh96, Koh97], for example. That kind ofmotion is neither of constant velocity nor constant acceleration. The Kalman Filterallows to model the acceleration or its derivative as white noise, which makes sensefor human motion. In this case the Kalman Filter is an ideal predictor. It operatesusing the Maximum Likelihood estimation which yields in better results than leastsquare methods [Bro83, page 242{245]. The e�ciency of the prediction is shown inthe ARGUS system [ARG97, Koh96, Koh97]. There the ideal motion is modelledwith constant velocity and the arbitrary acceleration is considered as white noise.This keeps the system small, i. e. the matrices have small dimension. Further, asimage recognition is used in the ARGUS system the measurement directly comesfrom a vision system. This is a two dimensional measurement and heavily dependson segmentation and the overall brightness of the surrounding. You cannot get anyerror boundaries from manuals but only from estimations.There are some considerable reasons to use prediction in computer vision:1. The time consuming and uncertain identi�cation of the objects may be droppeddue to tracking and prediction. Once the objects are identi�ed, the predictiontells where they will appear in the next frames. As long as the objects do notcollide and the frame rate is high enough, the predictor will keep right.2. Using prediction may considerably reduce computational cost. If the predictortells the position of the objects, only that certain parts of the image must beprocessed. There is no need to scan the whole frame. Hence, tracking minimizesthe number of pixel operations.3. If prediction is used to track an object, there is a predicted area in the nextframe where the object should come to lie. Only that small area will be pro-cessed. Noise and other objects outside that area do not in
uence or evendisturb the processing.4. If the predicted area is segmented, less colours or grey-levels occur in the his-tograms. The histograms are more balanced and more bi-modal.2



5. Tracking allows local segmentation. The threshold of a histogram based seg-mentation adapts easily when the object moves to an area of di�erent illumin-ation.Thus tracking and prediction of motion speeds up the image processing, improvesthe independence of varying illumination and avoids most reactions on noise.Generally, prediction works as described here brie
y: For reasons of computationalcost, a few designated points are tracked and predicted. Of course, it is possible totrack all the boundary points of an object and even more. But generally, the centerof gravity or some other designated points will be tracked. If several points of oneobject are tracked and the modelling of the motion allows to track each single pointseparately, this should be done to minimize computational cost. Let us considerthe prediction for an object's single point (e. g. the center of gravity of an object).After a certain initialization and in every step the predictor tells a new position ofthat certain point. Either in a surrounding of that prediction, the point must besearched directly or the whole object should be searched in a surrounding aroundthe prediction, that must be large enough to cover the whole object, even if theprediction might di�er from the object's real position. Thus, this prediction allowsto limit the search space. Only a surrounding of the point or the surrounding of theobject must be considered instead of the whole possible space. Now the object or theobject's point must be detected and measured. This real measurement is introducedinto the Kalman Recursion and in
uences the blending factor (Kalman Matrix). TheKalman Matrix \decides" whether the measurement will dominate the estimate orthe estimate will be weighted more in the next step.As the literature keeps silent about initializing the Kalman Filter, there is a longdiscussion about this subject here. It is rather important to mention that if eitherthe matrix Qk or Rk (see Section 2.4) are disarranged once, they keep disarranged,will not be updated and the Kalman Process might give bad predictions. The matrixPk , however, and the state vector, will be updated during the recursion. Theirinitialization is not as important as Qk and Rk.The next Section shows the details about tracking with the Kalman Filter. It is splitinto the Subsection 2.1, informing about basics in physics, Subsection 2.2, explainingdistributions and the Fourier Transform of a white noise spectral density function,Subsection 2.3, modelling the translational motion with linear equations accordingto the requirements of the Kalman Filter, Subsection 2.4, suggesting how to initializethe covariance matrices and Subsection 2.5 showing the Kalman Recursion.2 Tracking and Predicting MotionThe Discrete Kalman Filter [Bro83] is useful to predict positions of points in thetwo dimensional image. We start to model a motion of a single point with theKalman Filter. To derive an appropriate model for the Kalman Filter the physicalbackground is mentioned �rst. A physical motion can be described by a positionvector s(t) that depends on the time t. The position vector may have from one tothree dimensions depending whether the motion is along a straight line, in a plane orin a three dimensional space. As motion prediction is applied on images, the vector3



used here will have two dimensions. At this state, however, it is irrelevant. Justremember that s(t) might be a vector or a scalar. The fact, that s(t) might be avector, is marked by bold letters. All matrices and vectors are also marked bold andmatrices are, in contrary to vectors, in capitals. All equations should be regardedcarefully, as matrices might imply tensor products. Random variables are alwaysindicated by X or by X, if the random variable has vector type. Additional indicesshow up, what the random variable represents. The index a is commonly used foracceleration, v for the velocity, s for the position and e for error. A second indexmay show the co-ordinate x; y.In the following section basic rules about physics are introduced and there is a �rsthint, how the motion will be modelled. This leads to the white noise, discussedin the succeeding section. The section Discrete Time Model of the Kalman Filterwill explain how to model and calculate the recursion. A special interest is to showhow the matrices should be initialized. Generally papers and books keep silent aboutinitialization. This gives the impression that initializing is not important and may bearbitrary. Users of the Kalman Filter often choose the unity matrix for the unknownmatrices. Often it works, but sometimes it does not. On behalf of closing this gap,one way of initialization is shown in Section 2.4 for a human translational motion.Of course, this must be adapted to other circumstances.2.1 PhysicsLet s(t) denote the time variant position of a single moving point. Derivating s(t)yields the Taylor series s(t) = s(0) + _s(0)t+ 12�s(0)t2 + : : : (1)where _s(0) indicates the �rst, �s(0) the second derivative of s at initial time t = 0 etc.The Taylor series is generally reduced tos(t) = s(0) + _s(0)t+ 12 � �s(0) � t2in physics. It is well known that _s(0) = v(0) is the velocity at time t = 0 and�s(0) = a(0) is the acceleration at the initial time. However, this is a rather impropernotation of a translational motion. It only holds for very small t, due to generallybad convergence of Taylor series, if v(0) or a(0) are not constant. If the accelerationis constant all time, the third derivative of s(t) will be zero. What does it mean,that the acceleration is constant? It means, that the force F , moving the object ofmass m, is constant, because F = m � a, with acceleration a. This may be true formany vehicles and missiles. But considering human motion, forces keep changingcontinuously. Only if the acceleration is constant, the well-know law followss(t) = s(0) + v(0) � t + 12 � a(0) � t2 : (2)If velocity is constant, �s(t) = _v(t) = a(t) is zero and Equation (2) may be written ass(t) = s(0) + v(0) � t : (3)4



Probably motion of technical systems can be considered to have constant velocity orconstant acceleration after some initial time. However, no real object can start withacceleration zero and end in a constant positive acceleration without continuouslychanging the acceleration. Especially, human motion will scarcely be of constantvelocity or acceleration.Thus the motion is considered to be the superposition of an ideal basic motionwith, for example, constant velocity and white noise. The white noise illustrates theacceleration that is (highly) time varying. Such a model needs to be written downwith di�erential equations. That is done in section 2.3. Before, the expression \whitenoise" will be explained.2.2 White NoiseWhite noise is de�ned to be a stationary random process having a constant spectraldensity function. The term \white" is an obvious carryover from optics where whitelight is light containing all visible frequencies. Let Xa(t) be a random variable thatdescribes the acceleration, that shall have the characteristics of white noise (randomvariables will be denoted by a bold or non-bold capital X with an index). Thecorresponding autocorrelation function of Xa(t) is de�ned asRa(t1; t2) = E[Xa(t1)Xa(t2)] :We may assume that the autocorrelation of Xa(t) is independent from the exact timevalue (t1 or t2) but only depends on the time di�erence � = t2 � t1. This is meantby the term \stationary". If we denote t1 as just t and t2 as t+ � , it can be writtenas Ra(�) = E[Xa(t)Xa(t+ �)] :In [Bro83, chapter 2.9] it is shown thatRa(�) = a�(�) (4)for a stationary random process having the density function Sa(s) = a (here, �(�)is the Dirac delta impulse, a denotes the white noise spectral amplitude). If a = 1,we say it is unity white noise. From Fourier theory and theory about distributions[BSG+96, page 414] it is well known, that Sa(s) = FfRag, Ff�g denoting the Fouriertransform. Besides, it seems to be intuitive that a random variable of white noise isnot autocorrelated for � 6= 0, hence, Ra(�) = 0 for all � 6= 0. Considering a motionlessobject that starts to move in an arbitrary way and stops again after a time withina closed 3D space, the vector integral of the acceleration over that time intervalis zero. Hence, the motion is of zero mean acceleration (any acceleration must becompensated by a negative acceleration). Thus subsampling Xa(t) at discrete timepoints will deliver a time-wise uncorrelated zero-mean sequence (i. e. a discreteprocess with zero autocorrelation function except for � = 0). This is a requirementfor the discrete model [Bro83, page 189]. The knowledge about white noise will beused in a later step. 5



2.3 Discrete Time Model of the Kalman FilterAs mentioned above the Taylor series of Equation (1) approximates the motion atmost in a rather small surrounding of t = 0, if velocity or acceleration is not constant.A better way to describe motion is the usage of di�erential equations. Thereforephase variables are introduced:p1 = s(t);p2 = _s(t);p3 = �s(t); : : : (5)As we model the acceleration by the random variable, it is p3 = �s(t) = Xa(t). LetXa(t) be a white noise process with maximum acceleration a (for all components ofXa(t);Xa(t) is a random vector containing a random acceleration for each dimension.This simpli�cation is possible because any human motion either vertical or horizontalwill have same characteristics), then Sa(s) = a. Knowing that _p1 = p2; _p2 = p3; : : :yields  _p1_p2 ! =  0 10 0 ! � p1p2 !+ I 0Xa(t) ! : (6)We de�ne w(t) := (0;Xa(t))T and I is the identity matrix. The endpoint values arep1(0) = s(0);p2(0) = v(0). Experiments with the human computer interaction sys-tem ARGUS [ARG97, Koh96, Koh97] showed, that modelling motion with constantvelocity and considering acceleration as white noise (Equation (6)) is su�cient.According [Bro83, page 189] the solution x(t) of Equation (6) at time tk+1 can bewritten as x(tk+1) = �(tk+1; tk)x(tk) + tk+1Ztk �(tk+1; �)G(�)w(�)d� ;while G(�) = I. The vector x(�) = (p1;p2)T is composed of the actual positionand the velocity (Equation (5)). An abbreviated notation using xk := x(tk);�k :=�(tk+1; tk) and wk := tk+1Ztk �(tk+1; �)G(�)w(�)d� (7)provides xk+1 = �kxk +wk : (8)As x(�) consists of the position and velocity, �k is the matrix that relates xk toxk+1 in absence of a forcing function, i. e. it describes how a new position at timetk+1 depends on the previous position and the velocity at time tk , and how the newvelocity at time tk+1 relates to the previous velocity (in our case velocity is constantand, of course, independent from the position).The vector xk = (sk ;vk)T is called the process state vector at time tk with theestimated position sk := s(tk) and the estimated velocity vk := v(tk). Generallyxk is a tensor vector. The transition matrix �k describes the motion of the object.With �t := tk+1 � tk this yields the matrix�k =  1 �t0 1 ! :6



This especially means that �(t1; t2) =  1 t1 � t20 1 ! : (9)For further calculations wk will be evaluated now towk = tk+1Ztk  1 tk+1 � �0 1 ! � 0Xa(�) ! d�= 0BBBB@ tk+1Rtk (tk+1 � �)Xa(�) d�tk+1Rtk Xa(�) d� 1CCCCAThe following de�nition will be used later ws;kwv;k ! := 0BBBB@ tk+1Rtk (tk+1 � �)Xa(�) d�tk+1Rtk Xa(�) d� 1CCCCA (10)Of course, none of the integrals ws;k or wv;k can be determined as Xa(t) is a randomvariable of time t. Only statistical moments like the expected value or the variancemay be determined by the distribution of Xa(t).Until this point we did a lot of modelling. Now look at Equation (8): The vectorxk consists of the position sk at time tk in its �rst component and the velocity vkat time tk in its second component. The multiplication with �k tells that the newposition, that is the �rst component of xk+1 without noise, arises from sk +�t � vk.This is nothing else than Equation (3) for constant velocity during the time interval[tk ; tk+1]. The new velocity, that is the second component of the vector xk+1 isconstant and identical to vk, if the white noise is not regarded. Indeed, �k justrelates the position and velocity at time tk to the new position and velocity at timetk+1 without regarding the white noise wk of the random process.This was the main part of modelling the Kalman Filter. For the random processa model must be introduced, what we did until now. During the recursion of theKalman Filter each prediction will be followed by a measurement. Entering thismeasurement into the recursion, it will in
uence the next prediction. This is bestdescribed in [dP67]. So the Kalman Filter \learns" the data included by the meas-urement.The measurement of the random process occurs in time at discrete points in accord-ance with the linear relationship zk = Hkxk + ek (11)where zk is the vector measurement and Hk gives the ideal (noiseless) connectionbetween the measurement and the state vector at time tk . Hence, the Kalman7



Recursion considers that the internal state vector of the model may not directlybe measured. To explain this, think about a 3D motion that is observed by a videocamera. If we want to measure the real 3D motion and if we accordingly modelled theKalman Filter with a state vector containing three component position and velocity,we only get 2D measurement data (screen coordinates) of the projected position.In this case Hk will be the perspective projection matrix that extracts the �rstcomponent of xk , which is the 3D position, and projects it to 2D screen coordinates.Furthermore, in Equation (11) ek is the measurement error and also should havewhite characteristic.If people decide to model the Kalman Filter and hence the state vector with theposition and velocity, they sometimes try to extract both position and velocity fromthe measurement. Tracking on the screen, however, allows to measure the positionor its projection only. It makes no sense to calculate the velocity out of the di�erencein position, because this is the task of the Kalman Filter. Therefore, the matrix Hkof Equation (11) links the position or its projection to the state vector. Mostly, Hkis no square matrix. In order to track the 2D motion directly on the screen, the statevector will be modelled to consist of a 2D position and a 2D velocity. Therefore, Hkshall only extract the position (�rst component) from the state vector which is doneby Hk = � 1 0 � :Coming into details, the process state vector holds a 2D position and a 2D velocitymodelling the position and velocity in screen coordinates. Thus, using sk;x; sk;y ; vk;xand vk;y for the x- and y-position resp. velocity (note they are all scalar) of theprocess state vector, Equation (8) takes the form0BBB@ sk+1;xsk+1;yvk+1;xvk+1;y 1CCCA = 0BBB@ 1 0 �t 00 1 0 �t0 0 1 00 0 0 1 1CCCA0BBB@ sk;xsk;yvk;xvk;y 1CCCA+wk (12)Consider Equation (8) and (12) carefully to understand the tensor products thatwere applied. The tensor vector isxk =  skvk ! = 0BBBB@  sk;xsk;y ! vk;xvk;y ! 1CCCCA �= 0BBB@ sk;xsk;yvk;xvk;y 1CCCA :Thus, the tensor matrix product has the form 1 �t0 1 ! �0BBBB@  sk;xsk;y ! vk;xvk;y ! 1CCCCA = 0BBBB@  sk;x + �t vk;xsk;y + �t vk;y ! vk;xvk;y ! 1CCCCA�= 0BBB@ 1 0 �t 00 1 0 �t0 0 1 00 0 0 1 1CCCA0BBB@ sk;xsk;yvk;xvk;y 1CCCA8



Regard, that wk has the same dimension as the process state vector and is alsoa tensor vector, i. e. wk = (ws;k ;wv;k)T as de�ned in Equation (10). Further,denoting the measurements of the x and y positions by zk = (smk;x; smk;y)T and the x,y measurement errors by ek = (ek;x; ek;y)T Equation (11) constitutes smk;xsmk;y ! =  1 0 0 00 1 0 0 !0BBB@ sk;xsk;yvk;xvk;y 1CCCA+  ek;xek;y ! : (13)Physically, forces that induce acceleration and velocities do not in
uence each other,if they are perpendicular (orthogonal). Any translational force, acceleration andvelocity in 2D or 3D space is a superposition of two resp. three orthogonal forces,accelerations or velocities. Hence, every two x and y components of Equation (12)and Equation (13) are uncorrelated and the linear systems may be split up into twoindependent systems: sk+1;xvk+1;x ! =  1 �t0 1 ! sk;xvk;x !+  ws;k;xwv;k;x !and  sk+1;yvk+1;y ! =  1 �t0 1 ! sk;yvk;y !+  ws;k;ywv;k;y !whereas the linear system for the measurement takes the form� smk;x � = � 1 0 � sk;xvk;x !+ ek;xand � smk;y � = � 1 0 � sk;yvk;y !+ ek;yThis holds for ws;k := (ws;k;x; ws;k;y)T and wv;k := (wv;k;x; wv;k;y)T . Thus, for twodimensional prediction two separate Kalman Recursions are evaluated. If severalobjects in the plane are tracked it is highly recommended to split up the system,because it is then more time e�cient as matrix inversion and operations take lesstime.As we now understood the Kalman Filter, we are able to calculate the covariancematrices on which the Kalman Recursion is based.2.4 Determining Error Covariance MatricesThe Kalman Filter only works correctly, ifE[wkwTi ] = ( Qk i = k0 i 6= k (14)E[ekeTi ] = ( Rk i = k0 i 6= kE[wkeTi ] = 0 8i; k : (15)9



Because Xa(t) (the random variable describing the acceleration) has a zero auto-correlation for two di�erent time-steps, it is obvious that E[wkwTi ] = 0 for i 6= k.The sequence consisting of ek is also a white (white noise), and hence, two samplesat di�erent times are uncorrelated. This means a measurement error at a time tkshould not have any in
uence on a later measurement. Further, an acceleration attime tk should not in
uence a later acceleration. Both is true, as the user will justact without thinking what acceleration he did before.In the last Section 2.5 about the Kalman Recursion we will see that there are threematrices that enter the Kalman Recursion. It is Qk;Rk and Pk . Further an initialestimate of the state vector is required. As both, Pk and the state vector, will beupdated during the recursion, they are less important than Qk and Rk. If either thematrix Qk or Rk are disarranged, they keep disarranged, will not be updated andthe Kalman Process might not give any good prediction.2.4.1 Covariance Matrix of the Measurement ErrorWe start to determine the covariance matrix Rk. Let Xe;x(t) and Xe;y(t) denote therandom variable that describes the measurement error. Hence, ek;x = Xe;x(tk) andek;y = Xe;y(tk) for all k. The error measurement covariance isRk = E[(Xe;x(tk); Xe;y(tk))T (Xe;x(tk); Xe;y(tk))]=  E[Xe;x(tk)Xe;x(tk)] E[Xe;x(tk)Xe;y(tk)]E[Xe;x(tk)Xe;y(tk)] E[Xe;y(tk)Xe;y(tk)] !The random variables Xe;x(t) and Xe;y(t) are zero-mean and uncorrelated, i. e. thatthere is no dependence between an occuring error of the x and y measurement.Obviously, integrating the product Xe;x(t)Xe;y(t) over some time interval positiveand negative values will accumulate to zero. As the characteristics of the meas-urement do not change, this is true for any large enough time interval and thusE[Xe;x(tk)Xe;y(tk)] = 0. The expression E[Xe;x(tk)Xe;x(tk)] is the square of thestandard deviation of the random variable Xe;x(t). Measurement errors will cer-tainly occur in any physical system. Sometimes they are known and sometimesthey must be estimated. Measuring the voltage of a device will depend on an errorof the measurement equipment. The measurement error is usually reported in themanual as a certain percentage of the voltage. Using a vision based measurementwith cameras segmentation is necessary to extract the measurable features. Usually,segmentation and thus the measurement will heavily depend on the average bright-ness. Shadows can throw certain pixels to the background. E. g. trying to recognizeskin colour some pixel of the skin coloured object might wrongly disappear and somebackground might be added to the object. The object's boundary will increase ordecrease. Generally, if the smallest diameter of the object appears in the image of acertain thickness, then the measurement error should keep below that value. Here,we are going to create a complete �lter model for the gesture recognition example.Because gesture recognition is driven near the lower resolution boundary to achievea bigger interaction area [Koh97, Section Assembly of ARGUS in a Home Environ-ment], it is a prerequisite, that the measurement error should be below one pixel.Assuming that the measurement error appears to be an error of plus and minus one10



pixel with the same probability, we get the square of the standard deviationE[Xe;x(tk)Xe;x(tk)] = 13 � ((�1)2 + 02 + (+1)2) = 23 :The same holds for E[Xe;y(tk)Xe;y(tk)] = 2=3. Now the matrix can be written asRk = 23 � 1 00 1 ! 8kMore general, if the square standard deviation of the x resp. y measurement er-ror is E[Xe;x(tk)Xe;x(tk)] = �2e;x and E[Xe;y(tk)Xe;y(tk)] = �2e;y and the x and ymeasurement are completely independent, the matrix isRk =  �2e;x 00 �2e;y ! 8k :This seems to be a good assumption for the measurement error covariance. Noticethat this matrix is related on the unit \pixel", because measurement is done in pixels.The matrix R0 = Rk is the covariance matrix of ek and is constant over the wholetime. The time independence of the measurement error is often given in physicaldata measuring.2.4.2 Covariance Matrix Qk of the White AccelerationNext the initial estimate of Qk is described. According Equation (7) and (14) we getQk = E[wkwTk ]= E8>><>>:264 tk+1Ztk �(tk+1; u)G(u)w(u)du375264 tk+1Ztk �(tk+1; v)G(v)w(v)dv375T9>>=>>;= tk+1Ztk tk+1Ztk �(tk+1; u)G(u)E[w(u)w(v)T ]G(v)T�(tk+1; v)Tdu dv (16)After Equation (6) the vector w(t) = (0;Xa(t))T is de�ned to be a 2 � 1 tensorvector, which yieldsE[w(u)w(v)T ] = E ( 0 � I 0 � I0 � I Xa(u)Xa(v)T !)=  0 � I 0 � I0 � I E[Xa(u)Xa(v)T ] !For the reason of superposition principle, the x and y random accelerationXa;x(�); Xa;y(�)are orthogonal and, hence, independent. In the special case of tracking a 2D move-ment (see Section 2.2 and Equation (4))E[Xa(u)Xa(v)T ] =  E[Xa;x(u)Xa;x(v)] E[Xa;x(u)Xa;y(v)]E[Xa;y(u)Xa;x(v)] E[Xa;y(u)Xa;y(v)] !=  a2�(u� v) 00 a2�(u� v) != a2�(u� v) � I :11



Hence, with G(u) = G(v) = I we concludeG(u)E[w(u)w(v)T ]G(v)T =  0 � I 0 � I0 � I a2�(u� v) � I != a2�(u� v) �  0 � I 0 � I0 � I I ! (17)where I is the 2� 2 identity matrix. The integration of Equation (16) under consid-eration of (17) may be written asQk = tk+1Ztk tk+1Ztk a2�(u� v) I(tk+1 � u)(tk+1 � v) I(tk+1 � u)I(tk+1 � v) I !du dvFour integrals I1; : : : I4 representing the four components of the matrix must besolved. Therefore, theory about distributions is needed [BBNSR87], especially1Z�1 f(t)�(t)dt = bZa f(t)�(t)dt = ( f(0) for a < 0 and b > 00 for a; b < 0 or a; b > 0 :Hence, only the solutions are presented here:I1 := tk+1Ztk tk+1Ztk a2�(u� v) I du dv = a2 ��t � I � s (18)I2 := tk+1Ztk tk+1Ztk a2�(u� v) I (tk+1 � u)du dv (19)= a22 � (�t)2 � I � s (20)I3 = I2 (21)I4 := tk+1Ztk tk+1Ztk a2�(u� v) I (tk+1 � u)(tk+1 � v)du dv= a23 � (�t)3 � I � s (22)where �t = tk+1 � tk as previously de�ned. Finally,Qk = a2�t6  2I(�t)2 3I�t3I�t 6I ! swhile a is the spectral amplitude of the white noise (s is the unit seconds). Asthe acceleration is identi�ed as white noise, a is the amplitude of the \acceleratingfrequencies". This matrix may be applied for any �lter models with translationalmotion of constant velocity and random acceleration.According to experiments in the ARGUS project, we estimate the acceleration toa < 11ms2 � 1225pixels212



for fast human movements (the assumption was, that the motion mainly takes placein the maximum interaction area of 3,45 m).At this point it is worth to remark that �t may be measured in seconds or inframes (that means one time unit is the time interval needed to process one framecompletely). So we get three more applicable accelerationsa = 49 pixelframe2 for a frame rate of 5 frames per seconda = 12 pixelframe2 for a frame rate of 10 frames per seconda = 5 pixelframe2 for a frame rate of 15 frames per second2.4.3 Covariance Matrix P�0 of the Estimation ErrorBefore determining the covariance matrix P�0 , we need some further notation. Weassume at this point that we have an initial estimate of the process at some point intime tk , and that this estimate is based on all of our knowledge about the processprior to tk . This prior (or a priori) estimate will be denoted as x̂�k where the \hat"denotes estimate, and the \super minus" is a reminder that this is our best estimateprior to assimilating the measurement at tk . The estimation error is then xk � x̂�kand the associated error covariance matrixP�k = E[(xk � x̂�k )(xk � x̂�k )T ]The vector xk is the ideal process state vector. As the real measurement of datais erroneous and the Kalman Process can only make estimates from errorness datathe ideal process state vector generally di�ers from the estimated state vector, thatis updated by the recursion. The covariance of the deviation of the unknown idealprocess state vector and the calculated process state vector is held in the matrix P�k .As P�k will be updated during the Kalman Recursion it is su�cient to determine P�0 .Generally, this is a di�cult task. We can only refer to a special application, that isthe ARGUS system [ARG97, Koh96, Koh97]. Even there, it is still rather di�cultto get an estimation for the initial value of P�0 .In the Kalman Model described by Section 2.3, the matrix P�0 takes the formP�0 =  �2s;s �2s;v�2s;v �2v;v ! :The value �s;s is the standard deviation of the position estimation error. Further,�2s;v = E[(sk� ŝ�k )(vk� v̂�k )T ], because xk = (sk ;vk)T . Over some time E[sk� ŝ�k ] =E[vk � v̂�k ] = 0. We assume, that the position and velocity estimation errors areindependent and uncorrelated, even if there is no soundness reason. This leads to�s;v = 0. The standard deviation of the velocity estimation error �v;v and �s;s arediscussed later.As the tracking process in ARGUS starts as soon as motion is detected, the positionof the motion (its center of gravity) may be taken as a �rst estimate for the positioncomponent of the process state vector x̂�0 . There is no good way to determine thevelocity component of x̂�0 . There is only one thing that we know about the velocity13



of an object, which is detected by means of motion recognition: The velocity is notzero, otherwise it would not be detected by motion recognition.Motion recognition is done by di�erence images. Thus a fast moving object appearsas two domains in the di�erence image. If we assume that the action mostly takesplace such that the hands appear near the resolution boundary, the maximal distancebetween the domains is approximatelys = 25 pixel at a frame rate of 5 frames per second, (23)s = 6 pixel at a frame rate of 10 frames per second, (24)s = 3 pixel at a frame rate of 15 frames per second, (25)and the maximal velocity will bev = 49 pixelframe at a frame rate of 5 frames per second, (26)v = 12 pixelframe at a frame rate of 10 frames per second, (27)v = 5 pixelframe at a frame rate of 15 frames per second. (28)If two domains appear and, as well, if the two domains collapse, the true center ofgravity of the moving object will have at most half of the maximal distance from theestimated center of gravity. The estimated center of gravity can only be set to thecenter of gravity of the two domains1. Therefore the maximal error in the positioncomponent (�rst component) of xk � x̂�k will be s=2 with one of the values of s ofEquation (23){(25). Because the user does a lot more slow than fast motion, weassume that the distances are distributed according to the Gauss distribution withstandard deviation 2�s;s = s=2 (this means that approximately 1{6 % of the motionwill be that fast, that the �rst estimation error is s=2).Because it is impossible to measure velocity of objects with di�erence images andbecause the mean of the velocity is zero, we set the initial velocity of the processstate vector x̂�0 to zero, even if it is very obvious that it is not zero. Hence, there isan error in that �rst estimation and we get a positive standard deviation �v;v . Wetake the same Gauss distribution that yields 2�v;v = v=2. Again there is no obviousway to do this. However, it is not worth to spend too much time on it, as the KalmanRecursion will immediately update the value.Finally, we take the covariance matrix of the estimation error asP�0 = 116 �  s2 00 v2 ! :The initial value of the process state vector is set tox̂�0 =  s�00 !where s�0 is the center of gravity of the (two) domains of an object detected by themotion recognition.1Generally it is not possible to �nd the exact position of the moving object from the di�erenceimage. 14



2.5 The Kalman RecursionIn the Kalman Recursion special symbols like the \super minus" and the \hat" areused, that are explained at the beginning of Section 2.4.3. The matrices P�0 ;R0 andQ0 must be initialized previously as well as the x̂�0 . It is important to �nd goodvalues for Rk and Qk . If the values of x̂�0 or P�0 are incorrect they will generallyconverge towards the expected values. Next the Kalman Recursion is evaluated1. Compute gain (blending factor)Kk = P�k HTk (HkP�kHTk +Rk)�1The matrix Kk acts like a blending factor in the update estimate x̂�k (seeitem 2.). If the measurement error is \large" (unreliable measurement), thenthe covariance matrix Rk in
uences Kk such, that some components of Kk getsmall. Thus, the in
uence of the measurement zk in the update estimate getssmall. This is discussed later.2. Update estimate x̂k = x̂�k +Kk(zk �Hk � x̂�k )Remember that zk often has a di�erent dimension than xk and x̂�k (generallyless dimension). Thus, zk�Hk �x̂�k is the di�erence of the real measurement andthe measurable components of the process state vector. Further, the matrixKk must have the dimension of HTk .3. Update error covariance matrixPk = (I�KkHk)P�k4. Project ahead x̂�k+1 = �kx̂k5. This yields the best estimate of the error covariance matrixP�k+1 = �kPk�Tk +Qk :The Kalman Recursion is documented in [Bro83, pages 195{200]. It is worth toshortly discuss the blending factor and the update estimate: Let us assume that themotion is rather inaccurate, i. e. the white noise of the model (the acceleration) andthe estimation error dominate the measurement error2, then it is kRkk << kQkkand kRkk << kP�k k. To shortly explain, what happens, assume at that very pointthat Rk = 0, and that we are able to measure all the components of the process statevector. Then zk has the same dimension as xk and Hk = I. In this case it isKk = I2This means that the motion was not modelled all right. We had better taken the accelerationinto the process state vector instead of considering it as white noise.15



and the update estimate 2. results inx̂k = x̂�k +Kk(zk �Hk � x̂�k )= zk : (29)It needs further detailed analysis (for the one dimensional case see [dP67]). But itseems obvious by this example that if the measurement error is considerably smallcompared to the estimation errors of the Kalman Filter, the process state vector x̂�kadopts the value of the measurement.On the other hand, if the measurement error dominates the white noise of the model(the acceleration) and the estimation error, then it is kRkk >> kQkk and thuskRkk >> kP�k k. To make it easier to understand let us now assume that P�k = 0.Then the Kalman Matrix is Kk = 0and the update x̂k is set to x̂�k .Considering a single point that is predicted with the Kalman Recursion, we geta best estimate for the next position of the point. Due to the estimation error,a surrounding of that prediction must be searched. The extension of that searchenvironment is best determined by experiments. The larger it is, the slower will bethe search. The smaller it is, the more will the measurement fail, because it doesnot �nd the predicted point in that environment. If several points of an object aretracked and predicted, also a search environment must be set around the predictedobject.3 ConclusionThis report was inspired by the fact, that the literature keeps silent about how toinitialize the Kalman Filter. Most practically oriented books show how to model theFilter, but there was no book, that described the initialization on a practical example.Theoretically based books like [Bro83] are not easy to read and understand. However,they give theoretical hints, how the matrices could be initialized. This report showsthe modelling of the Kalman Filter for a rather often appearing pure translationalmotion. Further its intention is to give a guide on the example of ARGUS [Koh97],how to solve the initialization problem and what is important about initializing thecovariance matrices. Basic knowledge like the dependence of the physical laws formotion on the Taylor series was discussed as well as the white noise and its spectraldensity function.References[ARG97] Projektgruppe 277: ARGUS. Ein ergonomisches Dialogsystem zurSteuerung von technischen Systemen in Wohnbereichen mittels Gesten-erkennung | Abschlu�bericht. Technical report, Informatik VII, Uni-versity of Dortmund, 1997. 16
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