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Abstract

Based on an example of translational motion, this report shows how to model
and initialize the Kalman Filter. Basic rules about physical motion are intro-
duced to point out, that the well-known laws of physical motion are a mere
approximation. Hence, motion of non-constant velocity or acceleration is mod-
elled by additional use of white noise. Special attention is drawn to the matrix
initialization for use in the Kalman Filter, as, in general, papers and books
do not give any hint on this; thus inducing the impression that initializing is
not important and may be arbitrary. For unknown matrices many users of the
Kalman Filter choose the unity matrix. Sometimes it works, sometimes it does
not. In order to close this gap, initialization is shown on the example of hu-
man interactive motion. In contrast to measuring instruments with documented
measurement errors in manuals, the errors generated by vision-based sensoring
must be estimated carefully. Of course, the described methods may be adapted
to other circumstances.
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1 Introduction

Computer vision has found growing interest during the last few years. One reason
may be the continuously falling expenses of hardware for image grabbing and pro-
cessing. If image processing deals with movable objects, it is a good choice to take
the Kalman Filter for predicting the motion.

This report emphasizes on the example of translational motion, how the Kalman
Filter should be modelled and how it should be initialized. Basic rules about physical
motion are introduced. The well-known laws of physical motion are an approximation
only. They only hold for motion with constant velocity or constant acceleration. If
the motion, however, comes from human interaction, there will be continuous change
in acceleration. Hence, motion with non-constant velocity or acceleration is modelled
by using white noise. A special interest is to show how the matrices of the Kalman
Filter should be determined and initialized.

This report only considers translational motion. The motion, that shall be tracked
and predicted, is the motion of human body parts like it appears in gesture recog-
nition systems [ZYK95, SKZ95, ARG97, Koh96, Koh97], for example. That kind of
motion is neither of constant velocity nor constant acceleration. The Kalman Filter
allows to model the acceleration or its derivative as white noise, which makes sense
for human motion. In this case the Kalman Filter is an ideal predictor. It operates
using the Maximum Likelihood estimation which yields in better results than least
square methods [Bro83, page 242-245]. The efficiency of the prediction is shown in
the ARGUS system [ARG97, Koh96, Koh97]. There the ideal motion is modelled
with constant velocity and the arbitrary acceleration is considered as white noise.
This keeps the system small, i. e. the matrices have small dimension. Further, as
image recognition is used in the ARGUS system the measurement directly comes
from a vision system. This is a two dimensional measurement and heavily depends
on segmentation and the overall brightness of the surrounding. You cannot get any
error boundaries from manuals but only from estimations.

There are some considerable reasons to use prediction in computer vision:

1. The time consuming and uncertain identification of the objects may be dropped
due to tracking and prediction. Once the objects are identified, the prediction
tells where they will appear in the next frames. As long as the objects do not
collide and the frame rate is high enough, the predictor will keep right.

2. Using prediction may considerably reduce computational cost. If the predictor
tells the position of the objects, only that certain parts of the image must be
processed. There is no need to scan the whole frame. Hence, tracking minimizes
the number of pixel operations.

3. If prediction is used to track an object, there is a predicted area in the next
frame where the object should come to lie. Only that small area will be pro-
cessed. Noise and other objects outside that area do not influence or even
disturb the processing.

4. If the predicted area is segmented, less colours or grey-levels occur in the his-
tograms. The histograms are more balanced and more bi-modal.



5. Tracking allows local segmentation. The threshold of a histogram based seg-
mentation adapts easily when the object moves to an area of different illumin-
ation.

Thus tracking and prediction of motion speeds up the image processing, improves
the independence of varying illumination and avoids most reactions on noise.

Generally, prediction works as described here briefly: For reasons of computational
cost, a few designated points are tracked and predicted. Of course, it is possible to
track all the boundary points of an object and even more. But generally, the center
of gravity or some other designated points will be tracked. If several points of one
object are tracked and the modelling of the motion allows to track each single point
separately, this should be done to minimize computational cost. Let us consider
the prediction for an object’s single point (e. g. the center of gravity of an object).
After a certain initialization and in every step the predictor tells a new position of
that certain point. Either in a surrounding of that prediction, the point must be
searched directly or the whole object should be searched in a surrounding around
the prediction, that must be large enough to cover the whole object, even if the
prediction might differ from the object’s real position. Thus, this prediction allows
to limit the search space. Only a surrounding of the point or the surrounding of the
object must be considered instead of the whole possible space. Now the object or the
object’s point must be detected and measured. This real measurement is introduced
into the Kalman Recursion and influences the blending factor (Kalman Matrix). The
Kalman Matrix “decides” whether the measurement will dominate the estimate or
the estimate will be weighted more in the next step.

As the literature keeps silent about initializing the Kalman Filter, there is a long
discussion about this subject here. It is rather important to mention that if either
the matrix Qj, or Ry (see Section 2.4) are disarranged once, they keep disarranged,
will not be updated and the Kalman Process might give bad predictions. The matrix
P, however, and the state vector, will be updated during the recursion. Their
initialization is not as important as Q; and Ry.

The next Section shows the details about tracking with the Kalman Filter. It is split
into the Subsection 2.1, informing about basics in physics, Subsection 2.2, explaining
distributions and the Fourier Transform of a white noise spectral density function,
Subsection 2.3, modelling the translational motion with linear equations according
to the requirements of the Kalman Filter, Subsection 2.4, suggesting how to initialize
the covariance matrices and Subsection 2.5 showing the Kalman Recursion.

2 Tracking and Predicting Motion

The Discrete Kalman Filter [Bro83] is useful to predict positions of points in the
two dimensional image. We start to model a motion of a single point with the
Kalman Filter. To derive an appropriate model for the Kalman Filter the physical
background is mentioned first. A physical motion can be described by a position
vector s(t) that depends on the time t. The position vector may have from one to
three dimensions depending whether the motion is along a straight line, in a plane or
in a three dimensional space. As motion prediction is applied on images, the vector



used here will have two dimensions. At this state, however, it is irrelevant. Just
remember that s(¢) might be a vector or a scalar. The fact, that s(¢) might be a
vector, is marked by bold letters. All matrices and vectors are also marked bold and
matrices are, in contrary to vectors, in capitals. All equations should be regarded
carefully, as matrices might imply tensor products. Random variables are always
indicated by X or by X, if the random variable has vector type. Additional indices
show up, what the random variable represents. The index a is commonly used for
acceleration, v for the velocity, s for the position and e for error. A second index
may show the co-ordinate z, y.

In the following section basic rules about physics are introduced and there is a first
hint, how the motion will be modelled. This leads to the white noise, discussed
in the succeeding section. The section Discrete Time Model of the Kalman Filter
will explain how to model and calculate the recursion. A special interest is to show
how the matrices should be initialized. Generally papers and books keep silent about
initialization. This gives the impression that initializing is not important and may be
arbitrary. Users of the Kalman Filter often choose the unity matrix for the unknown
matrices. Often it works, but sometimes it does not. On behalf of closing this gap,
one way of initialization is shown in Section 2.4 for a human translational motion.
Of course, this must be adapted to other circumstances.

2.1 Physics

Let s(t) denote the time variant position of a single moving point. Derivating s(t)
yields the Taylor series

s(1) = s(0) + $(0)¢ + %g(ow +o (1)

where $(0) indicates the first, §(0) the second derivative of s at initial time ¢ = 0 etc.
The Taylor series is generally reduced to

s(1) = s(0) + §(0)¢ + % L5(0) - 12

in physics. It is well known that $(0) = v(0) is the velocity at time ¢ = 0 and
§(0) = a(0) is the acceleration at the initial time. However, this is a rather improper
notation of a translational motion. It only holds for very small ¢, due to generally
bad convergence of Taylor series, if v(0) or a(0) are not constant. If the acceleration
is constant all time, the third derivative of s(¢) will be zero. What does it mean,
that the acceleration is constant? It means, that the force F', moving the object of
mass m, is constant, because ' = m - a, with acceleration a. This may be true for
many vehicles and missiles. But considering human motion, forces keep changing
continuously. Only if the acceleration is constant, the well-know law follows

1
s(t) =s(0)+v(0)-t + 3 -a(0)-1* . (2)
If velocity is constant, §(¢) = v(¢) = a(t) is zero and Equation (2) may be written as

s(t) =s(0)+v(0)-¢. (3)



Probably motion of technical systems can be considered to have constant velocity or
constant acceleration after some initial time. However, no real object can start with
acceleration zero and end in a constant positive acceleration without continuously
changing the acceleration. Especially, human motion will scarcely be of constant
velocity or acceleration.

Thus the motion is considered to be the superposition of an ideal basic motion
with, for example, constant velocity and white noise. The white noise illustrates the
acceleration that is (highly) time varying. Such a model needs to be written down
with differential equations. That is done in section 2.3. Before, the expression “white
noise” will be explained.

2.2 White Noise

White noise is defined to be a stationary random process having a constant spectral
density function. The term “white” is an obvious carryover from optics where white
light is light containing all visible frequencies. Let X,(¢) be a random variable that
describes the acceleration, that shall have the characteristics of white noise (random
variables will be denoted by a bold or non-bold capital X with an index). The
corresponding autocorrelation function of X,(¢) is defined as

Ra(ty,1y) = E[Xo(t1)Xa(t2)] -

We may assume that the autocorrelation of X,(t) is independent from the exact time
value (t; or t3) but only depends on the time difference 7 = 3 — #;. This is meant
by the term “stationary”. If we denote t; as just ¢t and ¢ as t + 7, it can be written
as

R.(1)= FE[X(t)X(t+7)].
In [Bro83, chapter 2.9] it is shown that

Rq(7) = ab(7) (4)

for a stationary random process having the density function S,(s) = a (here, 6(7)
is the Dirac delta impulse, a denotes the white noise spectral amplitude). If @ = 1,
we say it is unity white noise. From Fourier theory and theory about distributions
[BSG196, page 414] it is well known, that S,(s) = F{R,}, F{-} denoting the Fourier
transform. Besides, it seems to be intuitive that a random variable of white noise is
not autocorrelated for 7 # 0, hence, R,(7) = 0 for all 7 # 0. Considering a motionless
object that starts to move in an arbitrary way and stops again after a time within
a closed 3D space, the vector integral of the acceleration over that time interval
is zero. Hence, the motion is of zero mean acceleration (any acceleration must be
compensated by a negative acceleration). Thus subsampling X,(¢) at discrete time
points will deliver a time-wise uncorrelated zero-mean sequence (i. e. a discrete
process with zero autocorrelation function except for 7 = 0). This is a requirement
for the discrete model [Bro83, page 189]. The knowledge about white noise will be
used in a later step.



2.3 Discrete Time Model of the Kalman Filter

As mentioned above the Taylor series of Equation (1) approximates the motion at
most in a rather small surrounding of t = 0, if velocity or acceleration is not constant.
A better way to describe motion is the usage of differential equations. Therefore
phase variables are introduced:

P = S(t),p2 = é(t),p3 = é(t)v <. (5)

As we model the acceleration by the random variable, it is ps = §(¢) = X, (). Let
X (t) be a white noise process with maximum acceleration a (for all components of
Xa(t); X4(t) is a random vector containing a random acceleration for each dimension.
This simplification is possible because any human motion either vertical or horizontal
will have same characteristics), then S,(s) = a. Knowing that p; = py, Py = ps, - -

yields
o 0 1 1 0
) -(0o)() ol )

We define w(t) := (0,X,(¢))T and I is the identity matrix. The endpoint values are
P1(0) =s(0),py(0) = v(0). Experiments with the human computer interaction sys-
tem ARGUS [ARG97, Koh96, Koh97] showed, that modelling motion with constant
velocity and considering acceleration as white noise (Equation (6)) is sufficient.

According [Bro83, page 189] the solution x(¢) of Equation (6) at time {444 can be
written as
tht1
X(t11) = Bl b)x(t) + [ @1, TG w(r)dr
tg
while G(7) = I. The vector x(-) = (py,P,)" is composed of the actual position

and the velocity (Equation (5)). An abbreviated notation using xj := x(t), ®x :=
q)(tk+1,tk) and

tht1
W = / ®(tyy1,7)G(T)W(T)dT (7)
tg
provides
Xpr1 = Prxp + Wy . (8)

As x(-) consists of the position and velocity, @ is the matrix that relates x; to
Xp+1 in absence of a forcing function, i. e. it describes how a new position at time
tx+1 depends on the previous position and the velocity at time 7z, and how the new
velocity at time #54q relates to the previous velocity (in our case velocity is constant
and, of course, independent from the position).

The vector x; = (sk,vk)T is called the process state vector at time t; with the
estimated position s, := s({x) and the estimated velocity vi := v({x). Generally
X} is a tensor vector. The transition matriz ®; describes the motion of the object.
With At := 1541 — 5 this yields the matrix

1 At
e (13,



This especially means that
(1t
D(t1,13) = ( 0 1 ) . (9)

For further calculations w; will be evaluated now to

R+l

1 ¢ 1 — T 0
o /(0 ) () o
ttf (tge1r — 7)Xo(7) dr

= k41

tf X (r)dr

The following definition will be used later

i1
J (tpgr — 7)Xo(7) dr

W,k o tg 10

( Wy, & ) T tk+1 ( )

tf X, (7) dr

Of course, none of the integrals w,  or w,, ; can be determined as X, () is a random
variable of time ¢. Only statistical moments like the expected value or the variance
may be determined by the distribution of X,(¢).

Until this point we did a lot of modelling. Now look at Equation (8): The vector
X} consists of the position s; at time # in its first component and the velocity vy
at time t; in its second component. The multiplication with ®, tells that the new
position, that is the first component of x4 without noise, arises from s + At - vi.
This is nothing else than Equation (3) for constant velocity during the time interval
[tk,tkt1]. The new velocity, that is the second component of the vector xzi is
constant and identical to vg, if the white noise is not regarded. Indeed, ®j just
relates the position and velocity at time ¢z to the new position and velocity at time
tx+1 without regarding the white noise wy of the random process.

This was the main part of modelling the Kalman Filter. For the random process
a model must be introduced, what we did until now. During the recursion of the
Kalman Filter each prediction will be followed by a measurement. Entering this
measurement into the recursion, it will influence the next prediction. This is best
described in [dP67]. So the Kalman Filter “learns” the data included by the meas-
urement.

The measurement of the random process occurs in time at discrete points in accord-
ance with the linear relationship

zr. = Hipxp + e (11)

where zj, is the vector measurement and Hy gives the ideal (noiseless) connection
between the measurement and the state vector at time ;. Hence, the Kalman



Recursion considers that the internal state vector of the model may not directly
be measured. To explain this, think about a 3D motion that is observed by a video
camera. If we want to measure the real 3D motion and if we accordingly modelled the
Kalman Filter with a state vector containing three component position and velocity,
we only get 2D measurement data (screen coordinates) of the projected position.
In this case Hy will be the perspective projection matrix that extracts the first
component of x;, which is the 3D position, and projects it to 2D screen coordinates.
Furthermore, in Equation (11) ey is the measurement error and also should have
white characteristic.

If people decide to model the Kalman Filter and hence the state vector with the
position and velocity, they sometimes try to extract both position and velocity from
the measurement. Tracking on the screen, however, allows to measure the position
or its projection only. It makes no sense to calculate the velocity out of the difference
in position, because this is the task of the Kalman Filter. Therefore, the matrix Hy
of Equation (11) links the position or its projection to the state vector. Mostly, Hy
is no square matrix. In order to track the 2D motion directly on the screen, the state
vector will be modelled to consist of a 2D position and a 2D velocity. Therefore, Hy,
shall only extract the position (first component) from the state vector which is done
by
Hy=(10).

Coming into details, the process state vector holds a 2D position and a 2D velocity
modelling the position and velocity in screen coordinates. Thus, using sj ., Sk,y, Vi,
and vy, for the z- and y-position resp. velocity (note they are all scalar) of the
process state vector, Equation (8) takes the form

Sk41,z 1 0 At 0 Skr
Sk_l_Ly 0 1 0 At 8k7y

= 12
Ukt 00 1 0 e | T (12)
Vk41,y 0 0 0 1 Vg y

Consider Equation (8) and (12) carefully to understand the tensor products that
were applied. The tensor vector is

Sk, Sk,
. ( Sk ) . Sky Sky
Xp = =

Vi Vk,x VE, &

R

/Uk,y /Uk7y

Sk, + At VE, &
Sky T At Vi y

VE, &
Vk,y

Thus, the tensor matrix product has the form
Sk,
1 At . Sk.,y
0 1 vk,l’
Vky

1 0 At 0 Sk,z
~ 01 0 At Sk.y
o 0 0 1 0 Vk.o

0 0 0 1 Vk,y



Regard, that wj has the same dimension as the process state vector and is also
a tensor vector, i. e. wjy = (W57k,WU7k)T as defined in Equation (10). Further,
denoting the measurements of the  and y positions by z; = (Sfo, Sny)T and the z,

y measurement errors by ej, = (ex ., ex,)7 Equation (11) constitutes

Sk,

s}jjl, {1 0 00 Sky €Lz
( Sny ) o ( 01 0 0 ) VE, & + €Ly ) (13)
Vk,y

Physically, forces that induce acceleration and velocities do not influence each other,
if they are perpendicular (orthogonal). Any translational force, acceleration and
velocity in 2D or 3D space is a superposition of two resp. three orthogonal forces,
accelerations or velocities. Hence, every two z and y components of Equation (12)
and Equation (13) are uncorrelated and the linear systems may be split up into two
independent systems:

Sk41,x _ 1 At Sk, + Ws kx
VE+1,2 B 0 1 VE, & Wy, kx
Skly | _ (1 Al Sky | L[ Wskw
Vi+1,y 0 1 VE,y Wy, k,y

whereas the linear system for the measurement takes the form

()= (o) (e ) wens
()= (o) (3 ) e

This holds for w,; = (w57k7$,w57k7y)T and w, ; 1= (wuk’x,wuk’y)T. Thus, for two
dimensional prediction two separate Kalman Recursions are evaluated. If several
objects in the plane are tracked it is highly recommended to split up the system,

because it is then more time efficient as matrix inversion and operations take less
time.

and

and

As we now understood the Kalman Filter, we are able to calculate the covariance
matrices on which the Kalman Recursion is based.

2.4 Determining Error Covariance Matrices

The Kalman Filter only works correctly, if

Elww!] = {(‘j’k 2 (14)
el = {1174
Elwrel] = 0 Vi, k.



Because X,(t) (the random variable describing the acceleration) has a zero auto-
correlation for two different time-steps, it is obvious that E[wyw!] = 0 for i # k.
The sequence consisting of ey is also a white (white noise), and hence, two samples
at different times are uncorrelated. This means a measurement error at a time g
should not have any influence on a later measurement. Further, an acceleration at
time t; should not influence a later acceleration. Both is true, as the user will just
act without thinking what acceleration he did before.

In the last Section 2.5 about the Kalman Recursion we will see that there are three
matrices that enter the Kalman Recursion. It is Q, Ry and Pg. Further an initial
estimate of the state vector is required. As both, P, and the state vector, will be
updated during the recursion, they are less important than Q; and Ry. If either the
matrix Qj or Ry are disarranged, they keep disarranged, will not be updated and
the Kalman Process might not give any good prediction.

2.4.1 Covariance Matrix of the Measurement Error

We start to determine the covariance matrix Ry. Let X, .(¢) and X ,(¢) denote the
random variable that describes the measurement error. Hence, e, = X, »({) and
eky = Xey(ty) for all k. The error measurement covariance is

Ri = El(Xealte) Xew(te) (Xealtr), Xey(te)]
EIXea(th) Xew(th)] E[Xeo(1k) Xey(th)]
[(Xe () Xey(1)]

Xey
EIXea(tk) Xey(tr)] E[Xey(te)Xey
The random variables X, .(¢) and X ,(¢) are zero-mean and uncorrelated, i. e. that
there is no dependence between an occuring error of the 2z and y measurement.
Obviously, integrating the product X .(¢)X.,(f) over some time interval positive
and negative values will accumulate to zero. As the characteristics of the meas-
urement do not change, this is true for any large enough time interval and thus
EIXc »(ts)Xey(te)] = 0. The expression E[X ()X, 5(tr)] is the square of the
standard deviation of the random variable X .(¢). Measurement errors will cer-
tainly occur in any physical system. Sometimes they are known and sometimes
they must be estimated. Measuring the voltage of a device will depend on an error
of the measurement equipment. The measurement error is usually reported in the
manual as a certain percentage of the voltage. Using a vision based measurement
with cameras segmentation is necessary to extract the measurable features. Usually,
segmentation and thus the measurement will heavily depend on the average bright-
ness. Shadows can throw certain pixels to the background. I. g. trying to recognize
skin colour some pixel of the skin coloured object might wrongly disappear and some
background might be added to the object. The object’s boundary will increase or
decrease. Generally, if the smallest diameter of the object appears in the image of a
certain thickness, then the measurement error should keep below that value. Here,
we are going to create a complete filter model for the gesture recognition example.
Because gesture recognition is driven near the lower resolution boundary to achieve
a bigger interaction area [Koh97, Section Assembly of ARGUS in a Home Environ-
ment], it is a prerequisite, that the measurement error should be below one pixel.
Assuming that the measurement error appears to be an error of plus and minus one

10



pixel with the same probability, we get the square of the standard deviation

1 2
E[Xe,x(tk)Xe,x(tk)] = § ) ((_1)2 + 0? + (+1)2) = § :
The same holds for E[X ,(tx)Xc ,(tx)] = 2/3. Now the matrix can be written as

2 1 0
et (30) w

More general, if the square standard deviation of the x resp. y measurement er-
ror is E[X. . (tp)Xex(tr)] = 02, and E[X, ,(tp)Xcy(tr)] = 02y and the z and y

e,r e,
measurement are completely independent, the matrix is

sz 0
Rk — ( 0 O'éy VEk .

This seems to be a good assumption for the measurement error covariance. Notice
that this matrix is related on the unit “pixel”, because measurement is done in pixels.
The matrix Rg = Ry, is the covariance matrix of e, and is constant over the whole
time. The time independence of the measurement error is often given in physical
data measuring.

2.4.2 Covariance Matrix Q, of the White Acceleration

Next the initial estimate of Q, is described. According Equation (7) and (14) we get

Q, = Elwiwj]
R+l tht1 T
= F / B(tpr1, u)G(u)w(u)du / B(tpy1,0)G(v)W(v)dy
= / / B(tpq1, u)G(u)E[w(w)w(v) 1G0)T &ty v)  du dv (16)

After Equation (6) the vector w(t) = (0,X,(¢))7 is defined to be a 2 x 1 tensor
vector, which yields

swomort = ({41 i)

(o1 0-1
0T EX,(u)X,(v)T]
For the reason of superposition principle, the 2 and y random acceleration X, »(+), X4 (-)

are orthogonal and, hence, independent. In the special case of tracking a 2D move-
ment (see Section 2.2 and Equation (4))

E
ERG(Xa0)] = (E[Xalymxa;(v)] E[Xa,yw)Xavy(v)J)

ll
2
[}
S
—~~
=
|
<
~—
-



Hence, with G(u) = G(v) = I we conclude
G(u) Elw(u)w(v)G(0)T = ( 0T e o)1 )

azé(u—v)-(g:i OI'I) (17)

where I is the 2 x 2 identity matrix. The integration of Equation (16) under consid-

eration of (17) may be written as

1 gkt
I(tpy1 — w)(tptr —0) I(tpgr — )
= du dv
Qk / / ( I(tk_|_1 — ?}) I
tg
Four integrals Iy,...I; representing the four components of the matrix must be

solved. Therefore, theory about distributions is needed [BBNSR&7], especially

/ t)dt = /f {f(o) fora<0and b>0

0 for a,b < 0ora,b>0.

—00
Hence, only the solutions are presented here:

$h+1 k1

L = / / (u—v)Idudv=0a*-At-1-s (18)
17

R+l tk+1

I, = Z / (u—v) I (tgy1 — u)du dv (19)

= 5 (AT (20)
L = I (21)
th41 k41

I, = / / (w—v) I (tgq1 — u)(tpp1 — v)du dv
tk

= 3 (A1 T1-s (22)

where At = t;11 — 1 as previously defined. Finally,

a?At [ 21(At)? 31At
6 3IAt 61 J°

Q=

while a is the spectral amplitude of the white noise (s is the unit seconds). As
the acceleration is identified as white noise, a is the amplitude of the “accelerating
frequencies”. This matrix may be applied for any filter models with translational
motion of constant velocity and random acceleration.

According to experiments in the ARGUS project, we estimate the acceleration to

pmel
a < 11— ~ 1225

12



for fast human movements (the assumption was, that the motion mainly takes place
in the maximum interaction area of 3,45 m).

At this point it is worth to remark that At may be measured in seconds or in
frames (that means one time unit is the time interval needed to process one frame
completely). So we get three more applicable accelerations

a= 49-2ZL for a frame rate of 5 frames per second
frame
a= 12fpm612 for a frame rate of 10 frames per second
rame
a= 5fpm612 for a frame rate of 15 frames per second
rame

2.4.3 Covariance Matrix P; of the Estimation Error

Before determining the covariance matrix Py, we need some further notation. We
assume at this point that we have an initial estimate of the process at some point in
time {j, and that this estimate is based on all of our knowledge about the process
prior to ¢. This prior (or a priori) estimate will be denoted as X, where the “hat”
denotes estimate, and the “super minus” is a reminder that this is our best estimate
prior to assimilating the measurement at {;. The estimation error is then xp — X,
and the associated error covariance matrix

P, = E[(xk — %, )(xx — %, )]

The vector x;, is the ideal process state vector. As the real measurement of data
is erroneous and the Kalman Process can only make estimates from errorness data
the ideal process state vector generally differs from the estimated state vector, that
is updated by the recursion. The covariance of the deviation of the unknown ideal
process state vector and the calculated process state vector is held in the matrix P .

As P, will be updated during the Kalman Recursion it is sufficient to determine Pg.
Generally, this is a difficult task. We can only refer to a special application, that is
the ARGUS system [ARG97, Koh96, Koh97]. Even there, it is still rather difficult

to get an estimation for the initial value of Py .

In the Kalman Model described by Section 2.3, the matrix Py takes the form

2 2
P = Us,s Us,v
o - 0.2 0.2 .
50 Vv

The value o5 is the standard deviation of the position estimation error. Further,
o2, = E[(sk —8; )(vi — ¥} )71, because x; = (s, vx)T. Over some time E[sy —§;] =
Elvi — v, ] = 0. We assume, that the position and velocity estimation errors are
independent and uncorrelated, even if there is no soundness reason. This leads to
0sy = 0. The standard deviation of the velocity estimation error o, , and o, are
discussed later.

As the tracking process in ARGUS starts as soon as motion is detected, the position
of the motion (its center of gravity) may be taken as a first estimate for the position
component of the process state vector x,. There is no good way to determine the
velocity component of X5 . There is only one thing that we know about the velocity
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of an object, which is detected by means of motion recognition: The velocity is not
zero, otherwise it would not be detected by motion recognition.

Motion recognition is done by difference images. Thus a fast moving object appears
as two domains in the difference image. If we assume that the action mostly takes
place such that the hands appear near the resolution boundary, the maximal distance
between the domains is approximately

s = 25 pizel at a frame rate of 5 frames per second, (23)
s = 6 pizel at a frame rate of 10 frames per second, (24)
s = 3 pizel at a frame rate of 15 frames per second, (25)

and the maximal velocity will be

v = 49% at a frame rate of 5 frames per second, (26)
v = 12%;;[6 at a frame rate of 10 frames per second, (27)
v = 5% at a frame rate of 15 frames per second. (28)

If two domains appear and, as well, if the two domains collapse, the true center of
gravity of the moving object will have at most half of the maximal distance from the
estimated center of gravity. The estimated center of gravity can only be set to the
center of gravity of the two domains'. Therefore the maximal error in the position
component (first component) of x; — X, will be 5/2 with one of the values of s of
Equation (23)-(25). Because the user does a lot more slow than fast motion, we
agssume that the distances are distributed according to the Gauss distribution with
standard deviation 205, = s/2 (this means that approximately 1-6 % of the motion
will be that fast, that the first estimation error is s/2).

Because it is impossible to measure velocity of objects with difference images and
because the mean of the velocity is zero, we set the initial velocity of the process
state vector x; to zero, even if it is very obvious that it is not zero. Hence, there is
an error in that first estimation and we get a positive standard deviation o,,. We
take the same Gauss distribution that yields 20, , = v/2. Again there is no obvious
way to do this. However, it is not worth to spend too much time on it, as the Kalman
Recursion will immediately update the value.

Finally, we take the covariance matrix of the estimation error as

_ 1 20
et (78]

The initial value of the process state vector is set to

where sy is the center of gravity of the (two) domains of an object detected by the
motion recognition.

!Generally it is not possible to find the exact position of the moving object from the difference
image.
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2.5 The Kalman Recursion

In the Kalman Recursion special symbols like the “super minus” and the “hat” are
used, that are explained at the beginning of Section 2.4.3. The matrices P, Ry and
Q, must be initialized previously as well as the x;. It is important to find good
values for Ry and Q. If the values of x;, or P; are incorrect they will generally
converge towards the expected values. Next the Kalman Recursion is evaluated

1. Compute gain (blending factor)
K = P, H{(H,P,H + Ry,)™"'

The matrix Ky acts like a blending factor in the update estimate X, (see
item 2.). If the measurement error is “large” (unreliable measurement), then
the covariance matrix Ry influences Ky such, that some components of Ky get
small. Thus, the influence of the measurement z; in the update estimate gets
small. This is discussed later.

2. Update estimate
Xy = )A(]; + Kk(Zk —H; )A(];)
Remember that z; often has a different dimension than xj and X, (generally
less dimension). Thus, z;,—Hj X, is the difference of the real measurement and
the measurable components of the process state vector. Further, the matrix
K must have the dimension of H} .

3. Update error covariance matriz

P, = (I — Kka)PI;

4. Project ahead
)A(I;-l—l = ®.x;

5. This yields the best estimate of the error covariance matriz

P, = ®P® +Q;.

The Kalman Recursion is documented in [Bro83, pages 195-200]. It is worth to
shortly discuss the blending factor and the update estimate: Let us assume that the
motion is rather inaccurate, i. e. the white noise of the model (the acceleration) and
the estimation error dominate the measurement error?, then it is ||Ry|| << [|Qyl|
and ||Rg|| << ||P;||- To shortly explain, what happens, assume at that very point
that Ry = 0, and that we are able to measure all the components of the process state
vector. Then z; has the same dimension as x; and Hy = I. In this case it is

Kp,=1

2This means that the motion was not modelled all right. We had better taken the acceleration
into the process state vector instead of considering it as white noise.
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and the update estimate 2. results in

Xp = )A(]; + Kk(Zk —H; )A(];)
= zj. (29)

It needs further detailed analysis (for the one dimensional case see [dP67]). But it
seems obvious by this example that if the measurement error is considerably small
compared to the estimation errors of the Kalman Filter, the process state vector X’
adopts the value of the measurement.

On the other hand, if the measurement error dominates the white noise of the model
(the acceleration) and the estimation error, then it is ||Rg|| >> ||Q,|| and thus
IRE|| >> [|PL|]. To make it easier to understand let us now assume that P, = 0.
Then the Kalman Matrix is

Ky=0

and the update x;, is set to x; .

Considering a single point that is predicted with the Kalman Recursion, we get
a best estimate for the next position of the point. Due to the estimation error,
a surrounding of that prediction must be searched. The extension of that search
environment is best determined by experiments. The larger it is, the slower will be
the search. The smaller it is, the more will the measurement fail, because it does
not find the predicted point in that environment. If several points of an object are
tracked and predicted, also a search environment must be set around the predicted
object.

3 Conclusion

This report was inspired by the fact, that the literature keeps silent about how to
initialize the Kalman Filter. Most practically oriented books show how to model the
Filter, but there was no book, that described the initialization on a practical example.
Theoretically based books like [Bro83] are not easy to read and understand. However,
they give theoretical hints, how the matrices could be initialized. This report shows
the modelling of the Kalman Filter for a rather often appearing pure translational
motion. Further its intention is to give a guide on the example of ARGUS [Koh97],
how to solve the initialization problem and what is important about initializing the
covariance matrices. Basic knowledge like the dependence of the physical laws for
motion on the Taylor series was discussed as well as the white noise and its spectral
density function.
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