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Abstract—Capacity scaling in wireless networks under homo-
geneous node placement and traffic demands has been widely
studied over the last decade. In general networks, however, both
the node placement and traffic demands can be highly non-
uniform. In this paper, we present a communication architecture
that operates a wireless network under such heterogeneous
settings. The proposed scheme includes the existing commu-
nication schemes for large wireless networks—multi-hopping,
cooperative communication, cooperative multi-hopping—as spe-
cial cases. We illustrate through a few specific wireless network
scenarios that the proposed scheme can perform significantly
better, even scaling-wise, than any of these previous schemes.

I. INTRODUCTION

Considerable progress has been made over the last decade

in quantifying performance in large wireless networks. Since

the capacity region is not known even for small networks

(e.g., a three-node relay network, or a four-node interference

network), this progress has been made by asking for less: In-

stead of determining the capacity region exactly, the objective

has been to find inner and outer bounds on this region that

have the same order of scaling as the network size increases.

Even for this simplified question, answers are only known

under a number of restrictive homogeneity assumptions on

the node placement and traffic demands. This limits the

applicability of these results to real networks, which are often

highly heterogeneous, and hence do not usually satisfy these

assumptions.

In this paper, we do away with all such homogeneity

assumptions and allow for arbitrary placement of nodes on

a square area of arbitrary size, and with arbitrary unicast or

multicast traffic demands between node pairs in the network.

We develop a general communication architecture that oper-

ates a wireless network under such heterogeneous conditions.

The proposed communication scheme incorporates existing

communication schemes for large wireless networks, such

as multi-hopping and multi-user cooperative communication,

in a common unifying framework. The scheme is, however,

more general than a mere combination of these schemes, as

it determines what specific strategy to deploy in different

regions of the network based on the level of heterogeneity

in the node placement and/or traffic demands at different
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scales of the network. We establish that the proposed scheme

achieves order-optimal capacity scaling in several scenarios.

A. Related Work

Consider an extended wireless network in which n nodes

are placed in the square region [0,
√

n]2 of area n and

communicate with each other over Gaussian fading channels

with path-loss exponent α ≥ 2. The objects of interest in

this paper are the unicast capacity region ΛUC(n) ⊂ R
n×n
+

and multicast capacity region ΛMC(n) ⊂ R
n×2n

+ , describing

achievable rates between all possible source-destination pairs.

The study of capacity scaling laws was initiated by Gupta

and Kumar in [1]. Under a protocol channel model, in

which interference is treated as noise and only point-to-

point communication is allowed, and under random source-

destination pairing with uniform traffic demands, the largest

achievable per-node rate is shown to scale like n−1/2±o(1).

Hence, under the protocol channel model, and assuming

random node placement, [1] provides the scaling behavior of

one point of the n × n-dimensional unicast capacity region

ΛUC(n).
Subsequent work in the information theory literature fo-

cused on removing the protocol channel model assumption

made in [1] and instead considered Gaussian fading channels.

In a series of papers [2]–[9], upper bounds on the achievable

rates for random source-destination pairing were derived. In

particular, Özgür et al. [8] have shown that for α ≥ 3 multi-

hop communication is indeed optimal, and hence the largest

uniformly achievable per-node rate scales like n−1/2±o(1).

On the other hand, in another stream of work [8], [10]–[13],

it is shown that for 2 ≤ α < 3 cooperative communication

schemes significantly outperform multi-hop communication.

In particular, [8] introduced a hierarchical cooperative com-

munication scheme achieving the order optimal per-node rate

scaling of n1−α/2±o(1). This provides scaling information,

now under the Gaussian fading channel model, but still

assuming random node placement and again about one point

in ΛUC(n).
The impact of the random node placement assumption on

achievable rates was investigated by Niesen et al. in [14],

where it is shown that for low path-loss exponent (α < 3),

the same uniform per-node rate of n1−α/2±o(1) is achievable

regardless of the node placement. On the other hand, in the



high path-loss regime (α ≥ 3), the regularity of the node

placement crucially affects achievable rates as well as the na-

ture of order-optimal communication schemes. In particular,

it is shown in [14] that there are node placements (containing

“gaps”) for which multi-hop communication is not order

optimal for any value of α, contrasting with the results for

random node placement where multi-hop communication is

order optimal for all α ≥ 3.

General traffic patterns were considered in [15] under ran-

dom node placement. For α > 5, a scaling characterization of

the entire n×n-dimensional unicast capacity region ΛUC(n)
and the entire n × 2n-dimensional multicast capacity region

ΛMC(n) are provided. For 2 ≤ α ≤ 5 the scaling of all but

2n dimensions of ΛUC(n) and ΛMC(n) is characterized.

If arbitrary node placement as well as arbitrary traffic

patterns are allowed, the problem becomes considerably

harder to deal with. To the best of our knowledge, no scaling

results for this general wireless network setting are known.

B. Organization

The remainder of this paper is organized as follows. We

start in Section II with an example to motivate the need

for a more general communication architecture to address

the combined non-uniformity in node placement and traffic

demands. In Section III, we describe the network and the

channel models. We present the main results of this paper in

Section IV. Section V contains discussions and concluding

remarks.

Due to space constraints, proofs are omitted in this paper.

II. A MOTIVATING EXAMPLE

Consider the node placement in Fig. 1 of area n. V1, V2,

and V3 are three sets of n/3 nodes, and the nodes V of

the wireless network are the union of {Vi}3
i=1. {ui}3

i=1 and

{wi}3
i=1, as shown in the figure, are nodes in V . Each node

u ∈ V is source for only one destination node w chosen

randomly from among the other nodes V \ {u}; this results

in n source-destination pairs. We assume that the rate at

which different source-destination pairs want to communicate

depends only on which of the sets {Vi} they are in. For

example, if u, ũ ∈ V1 and w, w̃ ∈ V3, and u, ũ are the sources

for w, w̃, respectively, then they both want to communicate

at the same rate. The nodes communicate over a Gaussian

fading channel with path-loss exponent α > 2, i.e., power

decays as r−α over distance r.

Let {(ui, wi)}3
i=1 be three source-destination pairs. Fur-

thermore, assume a path-loss exponent α ∈ (3, 4). For

the source-destination pair (u1, w1), it can be shown that

the order-optimal communication strategy is multi-hop com-

munication, in which each message is encoded, sent to a

close-by neighbor, where it is decoded and re-encoded for

the next hop. On the other hand, for the source-destination

pair (u2, w2), the order-optimal communication strategy is

cooperative communication, in which the node u2 establishes

a distributed antenna array consisting of order n transmitters

(the node u2 and its n/18 neighbors in the upper right

corner of V1) and order n receivers (the node w2 and its
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Fig. 1. Node placement illustrating the impact or location and traffic
heterogeneity on the order-optimal communication scheme. The sets V1,
V2, V3 contain n/3 uniformly placed nodes each.

n/3 neighbors in V2). The message is then sent from the

source u2 to its destination w2 in one direct hop using

this virtual multiple-input multiple-output (MIMO) channel.

Finally, for the source-destination pair (u3, w3), the order-

optimal communication strategy is cooperative multi-hop

communication, in which a message is routed from u3 to w3

using hops of length n1/4 and each hop is implemented via

cooperative communication of order n1/4 nodes. From this,

we see that in a efficient communication strategy different

regions in the network need to use different communication

schemes.

Assume now that u1 is the source node for destination node

w3, and let α > 4. An order optimal communication strategy

is to route the message from u1 through V1 and V2 using

multi-hop communication, and then use cooperative multi-

hop communication to carry the message to the node w3 in

V3. Thus various different communication schemes may need

to be interconnected to carry traffic over the network.

Finally, assume again that u1 is source node for desti-

nation node w3, but consider α ∈ (2, 4). An order-optimal

communication strategy is then to directly communicate be-

tween u1 and w3, using cooperative communication. In other

words, the behavior of the optimal routes depend strongly

on whether α < α⋆ or α > α⋆ with α⋆ = 4. Moreover,

by slightly altering the node placement, the threshold α⋆ for

abrupt changes of the order-optimal routes can be made to

take any value between 3 and 4. Thus the optimal routes over

the network depend strongly and in a rather subtle manner on

the node placement and the value of the path-loss exponent

α.

Note that multi-hop communication, cooperative commu-

nication, and cooperative multi-hop communication can all be

understood as cooperation at various scales in the wireless

network. In multi-hop communication, nodes cooperate only

at local scale; in cooperative communication, nodes cooperate



at global scale; in cooperative multi-hop, nodes cooperate

at intermediate scale between these two extremes. Thus,

the three observations made above suggest the following

communication architecture. Decompose the network into

(overlapping) subsets at various scales. In each subset, per-

form cooperative communication at that scale. To send a

message from a source to its destination, route it over such

subsets (at possibly different scales), using in each subset the

corresponding communication scheme. By optimizing over

the routes, we ensure that the proper communication strategy

is used in each region of the network.

As we will see in the following, the communication

scheme in each subset Ṽ ⊂ V of nodes can be conveniently

described as a graph GṼ . These graphs can be connected,

resulting in a larger graph G. Routing over subsets can

then equivalently be understood as routing over this graph

G. Thus, the graph G captures the relevant parts of the

heterogeneity of the node placement.

III. MODELS AND NOTATION

Consider a wireless network consisting of n nodes V (n) ⊂
A(n) placed in an arbitrary fashion on the square region A(n)
of area

|A(n)| , nν .

The parameter ν couples the growth of the network area with

the growth of the number of nodes n. Two special cases are

worth mentioning: For ν = 1 this results in an extended

wireless network for which the network area scales linearly

with the number of nodes; for ν = 0 this results in a dense

network for which the network area is constant regardless of

the number of nodes. In general, ν can be any nonnegative

real number. Note that we make no probabilistic assumption

for the node placement, but rather allow for any arbitrary

(deterministic) node placement. Denote by ru,v the Euclidean

distance between nodes u and v in V (n). Moreover, for

subset W ⊂ V (n) and node u ∈ V (n), define

rW , max
u,w∈W

ru,w.

The nodes in the wireless network communicate with each

other over the wireless channel modeled as follows. The

baseband-equivalent received signal yv[t] at node v at time t
is given by

yv[t] ,
∑

u∈V (n)\{v}

hu,v[t]xu[t] + zv[t]. (1)

Here, xu[t] is the transmitted signal by node u at time t,
and we impose an average unit power constraint on xu[t].
hu,v[t] is the channel gain between the nodes u and v and

is assumed to be of the form

hu,v[t] , r−α/2
u,v exp(

√
−1θu,v[t]), (2)

where the constant α ≥ 2 is the path-loss exponent, and

θu,v[t] is the phase shift between nodes u and v at time t.
As a function of the nodes (u, v), the phase shifts {θu,v[t]}u,v

are assumed to be independently and identically distributed

(i.i.d.) uniform random variables on [0, 2π). As a function of

time t, the phase shifts {θu,v[t]}t are assumed to be stationary

and ergodic. All phase shifts {θu,v[t]}u,v are assumed to be

known causally at all nodes in the network, i.e., every node u
knows all n2 channel gains {θu,v[t]}u,v at time t. Since the

network is static (i.e., ru,v does not vary as a function of t),
this implies that full causal channel state information (CSI)

is available at all the nodes in the network. Finally, zv[t] in

(1) is additive noise at node v at time t. We assume that

{zv[t]}v,t is i.i.d. circularly symmetric Gaussian with mean

zero and variance one, independent of the transmitted signals

and the channel gains.

Making the assumption of i.i.d. phase fading in (2), i.e.,

the independence of {θu,v[t]}u,v as a function of the nodes

(u, v), requires some care. In particular, it is shown in [9],

[16], [17] that the i.i.d. phase fading assumption is only valid

if the wavelength λc of the carrier frequency of commu-

nication, which is not explicitly captured in the baseband-

equivalent channel model (1), satisfies λc ≤ |A(n)|1/2/n.

In the following, we assume that the network operates in the

regime in which this condition is satisfied, so that the channel

model (1)–(2) is valid.

IV. MAIN RESULTS

This section contains the main results of the paper. We first

define a directed capacitated (noiseless) graph G = (VG, EG)
such that V (n) ⊂ VG. This construction is described in

Section IV-A. We then argue that G is implementable in

the wireless network. More precisely, if messages can be

routed at rates λ over G, then these messages can also be

reliably transmitted over the wireless network. The resulting

inner bounds for the unicast and multicast capacity regions

ΛUC(n) and ΛMC(n) of the wireless network are presented

in Sections IV-B and IV-C, respectively.

A. Construction of G

For each ℓ ∈ N, partition the area A(n) into 4ℓ subsquares

{A1
ℓ,i}4ℓ

i=1 of equal size. In the following, we will be inter-

ested in values of ℓ between 0 and1

L(n) ,
1

2
ν log(n),

i.e., for subsquares varying in size from nν [for ℓ = 0] to

1 [for ℓ = L(n)]. The sidelength of the subsquare A1
ℓ,i is

nν/22−ℓ. Assume we “shift” the way the subsquares at level

ℓ are defined by 1
2nν/22−ℓ to the right. Call {A2

ℓ,i}2 the

resulting partition of A(n). Note that the subsquares A2
ℓ,i at

the boundary of A(n) will now have size that is only half of

the ones in the center, and hence the number of subsquares

is now 4ℓ + 2ℓ. For j ∈ {3, 4}, define {A2
ℓ,i}j similarly by

“shifts” of length 1
2nν/22−ℓ to either the top or both to the

right and the top, respectively. The number of subsquares is

4ℓ + 2ℓ and 4ℓ + 2ℓ + 1. Denote by

V j
ℓ,i , V (n) ∩ Aj

ℓ,i

the nodes in the subsquare Aj
ℓ,i.

1All logarithms are to base 2.
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Ṽ
}

Fig. 2. Construction of the graph G
Ṽ

. Ṽ is a subset of the nodes V (n)
of the wireless network; v

Ṽ
is an additional node not in V (n). Each edge

in G
Ṽ

is undirected with capacity min{1, |Ṽ |r−α

Ṽ
}.

Let ℓ ∈ {0, . . . , L(n)}, and consider the nodes V j
ℓ,i.

For ease of notation, we will denote the nodes V j
ℓ,i by Ṽ .

Construct the graph GṼ as follows. The nodes GṼ are the

union of Ṽ and an additional node vṼ that is not part of

V (n). For each u ∈ U , add an undirected edge e between u
and vṼ with edge capacity

c(e) , c(u, vṼ ) , min{1, |Ṽ |r−α

Ṽ
}.

This construction is illustrated in Fig. 2.

The construction of GṼ can intuitively be understood as

follows. The node vṼ represents the collection of nodes Ṽ .

Routing along the edge from u ∈ Ṽ to vṼ in GṼ is equivalent

to distributing a message from u to all other nodes in Ṽ
in the wireless network. We will argue that this is possible

at a per-node rate of essentially min{1, |Ṽ |r−α

Ṽ
}, where the

|Ṽ | term accounts for the multi-user gain and where r−α

Ṽ
accounts for the power loss of communicating over distance

rṼ . Routing along the edge from vṼ to w ∈ Ṽ is equivalent

to concentrating a message distributed over the nodes Ṽ onto

the node w. We will argue that this is again possible at a per-

node rate up to essentially min{1, |Ṽ |r−α

Ṽ
}.

The graph G is then constructed as the union of the

graphs {GṼ } for every Ṽ , V j
ℓ,i, ℓ ∈ {0, . . . , L(n)},

i ∈ {1, . . . , 4ℓ + 2ℓ + 1}, j ∈ {1, . . . , 4}. This is illustrated

in Fig. 3. Note that, unlike what the appearance of Fig. 3

may suggest, the graph G is actually quite small as well as

sparse. First, there are n nodes in V (n) and an additional at

most 8nν nodes of the form vṼ . Thus G has at most

|VG| ≤ n + 8nν (3)

nodes, i.e., VG has polynomial size in n. Second, each node

u ∈ V (n) is connected in G to at most 4(1 + L(n)) =
4 + 2ν log(n) nodes. Hence the total number of edges in G
is at most

|EG| ≤ 4n + 2νn log(n);

in other words, G is quite sparse.

B. Unicast Capacity Region

In this section, we consider general unicast traffic, modeled

as follows. A unicast traffic matrix λUC ∈ R
n×n
+ associates

ℓ = L(n)

ℓ = 2

ℓ = 1

ℓ = 0

Fig. 3. Construction of the graph G as union of subgraphs {G
Ṽ
}. For

simplicity a one-dimensional network is shown.

with each pair of nodes (u, w) ∈ V (n) × V (n) the non-

negative rate λUC
u,w at which the source node u wants to

transmit a message to the destination node w. There are n
ways to choose the source node u and n ways to choose

the destination w, and hence the traffic matrix λUC is a

n2-dimensional matrix. We assume that the messages for

distinct (u, w) pairs are independent. However, the same

node u can be source for several (independent) messages to

be sent to distinct destination nodes w1, w2, . . . at possibly

different rates. Similarly, the same node w can be destination

for several (independent) messages sent from distinct source

nodes u1, u2, . . . at possibly different rates. Furthermore,

each node can be both source as well as destination for

several (again independent) messages.

The following example illustrates this definition of a

unicast traffic matrix.

Example 1. Consider a network with n = 4 nodes, V (n) =
{vj}4

j=1. Assume node v1 has to send a message m1,3 to

node v3 at rate 1 bits per channel use. Node v2 has to

send a message m2,1 to node v1 at rate 2 bits per channel

use and a message m2,3 to node v3 at rate 3 bits per

channel use. Assume all messages are independent. This

traffic requirement can be described by the traffic matrix

λUC ∈ R
4×4
+ with λUC

v1,v3
= 1, λUC

v2,v1
= 2, λUC

v2,v3
= 3, and

λUC
u,w = 0 for all other (u, w). Note that node v2 is source

for two messages, node v3 is destination for two messages,

and node v1 is both source and destination. Node v4 acts as

neither source nor destination in this example, and can be

understood as a helper node. ♦

The unicast capacity region ΛUC(n) ⊂ R
n×n
+ of the

wireless network V (n) is the closure of the collection of

all achievable unicast traffic matrices λUC ∈ R
n×n
+ . In other

words, λUC ∈ ΛUC(n) if all the n2 source-destination pairs

(u, w) ∈ V (n) × V (n) can simultaneously and reliably

transmit an independent message from u to w at rate λUC
u,w.

For the graph G constructed in Section IV-A, define

Λ̂UC
G (n) ,

{

λUC ∈ R
n×n
+ :

∑

u∈S∩V (n)

∑

w∈V (n)\S

λUC
u,w ≤

∑

u∈S

∑

v∈VG\S

c(u, v),

∀S ⊂ VG

}

. (4)



In words, Λ̂UC
G (n) is the collection of all unicast traffic

matrices λUC on V (n) ⊂ VG such that, for every cut S in

the graph G, the total traffic

∑

u∈S∩V (n)

∑

w∈V (n)\S

λUC
u,w

across the cut S is not more than the sum of the capacities

∑

u∈S

∑

v∈VG\S

c(u, v)

of edges in G crossing S. Or, put differently, Λ̂UC
G (n) is the

collection of unicast traffic matrices that satisfy all the cut-set

bounds on the graph G.

The next theorem states that (appropriately scaled) Λ̂UC
G (n)

is an inner bound for the unicast capacity region ΛUC(n) of

the wireless network.

Theorem 1. For all α > 2, ν ∈ R+, there exists b̂(n) ≥
n−o(1) such that for any n ∈ N, and any node placement

V (n) on A(n) with area nν ,

b̂(n)Λ̂UC
G (n) ⊂ ΛUC(n).

Theorem 1 provides an analytic inner bound to the unicast

capacity region ΛUC(n) of the wireless network. Whereas

ΛUC(n) is not computable, the region Λ̂UC
G (n) is explicitly

defined in (4). However, the set Λ̂UC
G (n) has the disadvantage

of being difficult to handle from a computational point of

view. In fact, (4) defines Λ̂UC
G (n) through an exponential

(in the size of the network n) number of linear inequalities.

We next argue that Λ̂UC
G (n) can be efficiently approximated

through a linear program. Together with Theorem 1, this

yields a less explicit, but computationally more efficient,

inner bound on the unicast capacity region ΛUC(n) of the

wireless network.

Denote by ΛUC
G (n) ⊂ R

n×n
+ the unicast capacity region of

G for traffic between nodes in V (n) ⊂ VG under routing.

In other words, λUC ∈ ΛUC
G (n) if simultaneously for every

node pair (u, w) ∈ V (n) × V (n) we can route data from u
to w over G at rate λUC

u,w. The capacity region ΛUC
G (n) of

G under routing can be described by a linear program of

polynomial size in |VG| and therefore is readily computed,

as is described next.

For a unicast traffic matrix λUC ∈ R
n×n
+ , define

φ⋆
λUC(n) , max

{

φ : φλUC ∈ ΛUC
G (n)}.

In words, φ⋆
λUC(n) is the largest multiplier φ such that the

scaled traffic matrix φλUC can be routed over G. Clearly,

λUC ∈ ΛUC
G (n) if and only if φ⋆

λUC(n) ≥ 1. Moreover, since

the capacity region Λ̂UC
G (n) is convex, knowledge of φ⋆

λUC(n)
for all λUC completely characterizes ΛUC

G (n).

φ⋆
λUC(n) can be computed as the solution to the following

linear program:

max φ

s.t.
∑

p∈Pu,w

fp ≥ φλUC
u,w, ∀ u, w

∑

u∈V (n)

∑

w∈V (n)

∑

p∈Pu,w:
e∈p

fp ≤ c(e), ∀ e ∈ EG

fp ≥ 0, ∀ u, w, p ∈ Pu,w

(5)

where Pu,w is the collection of all paths from u to w in G,

and where the maximization is over φ and the flow variables

{fp} between nodes u and w over path p ∈ Pu,w. The linear

program (5) solves for the maximal φ such that the total flow

for each source-destination pair (u, w) is at least a multiple

φ of the traffic demand λUC
u,w, and such that the total flow

over each edge e of G is at most the capacity c(e) of that

edge.

While the number of paths Pu,w from u to w in the graph

G could be exponential in the number of nodes |VG| of G,

(5) can nevertheless be solved in polynomial time in |VG|.
This can be seen by reformulating it in terms of per-edge

flow variables. By (3), G has only polynomially many nodes

in n, and hence the linear program (5) can also be solved

in polynomial time in the size of the wireless network n.

Therefore, the region ΛUC
G (n) can be efficiently characterized

through its equivalent description φ⋆
λUC (n).

The next theorem states that the unicast capacity region

ΛUC
G (n) of G under routing yields an inner bound to the

unicast capacity region ΛUC(n) of the wireless network.

Theorem 2. For all α > 2, ν ∈ R+, there exists b(n) ≥
n−o(1) such that for any n ∈ N, and any node placement

V (n) on A(n) with area nν ,

b(n)ΛUC
G (n) ⊂ ΛUC(n).

Theorem 2 shows that if traffic can be routed over the

graph G, then approximately the same traffic can be transmit-

ted reliably over the wireless network. Given the description

of ΛUC
G (n) through the linear program (5), this provides an

efficiently computable inner bound to the unicast capacity

region ΛUC(n) of the wireless network.

Moreover, Theorem 2 suggests a communication architec-

ture for heterogeneous wireless networks. Given a wireless

network, construct its graph G. This construction of G han-

dles the heterogeneity of the node placement. Given a traffic

matrix λUC for the wireless network, find the optimal routing

over G by solving the linear program (5). By Theorem 2

and the construction of G as described in Section IV-A, the

optimal routes found for G can be used to transmit data over

the wireless network. This process of optimal routing handles

the heterogeneity of the traffic pattern.

Using an approximate max-flow min-cut result for unicast

traffic on undirected capacitated graphs [18], it can be shown

that

ΛUC
G (n) ⊂ Λ̂UC

G (n) ⊂ O(log(n))ΛUC
G (n).

Hence, the inner bounds in Theorems 1 and 2 are equivalent

for scaling purposes.



While Theorems 1 and 2 provide only inner bounds on the

capacity region for general heterogeneous wireless networks,

matching (in the scaling sense) outer bounds can be found

for several important special cases. In particular, this is the

case for dense wireless networks with arbitrary node place-

ment and traffic pattern, for random node placement with

random source-destination pairing on a square of arbitrary

area, and random node placement with arbitrary “symmet-

ric” traffic among others. Prior order-optimal communica-

tion schemes proposed for large wireless networks under

certain homogeneity assumptions (as opposed to the general

heterogeneous wireless networks considered in this paper)

can be understood as a specific routing strategy over G.

The proposed communication architecture thus unifies these

various communication strategies. Moreover, in many cases

with heterogeneous node placement or traffic demands, the

additional degrees of freedom offered by allowing arbitrary

routing over G is crucial for optimal operation of the wireless

network. In fact, it is easy to construct scenarios with

heterogeneous node placements or traffic patterns, similar to

the Example in Section II, where the proposed scheme is

optimal in the scaling sense and neither of the previously

known schemes achieves the correct scaling exponent.

C. Multicast Capacity Region

In this section, we consider general multicast traffic. A

multicast traffic matrix λMC ∈ R
n×2n

+ associates with each

pair of source node u ∈ V (n) and destination group W ⊂
V (n) the nonnegative rate λMC

u,W at which the source node

u wants to transmit the same message to all the destination

nodes w ∈ W . There are n ways to choose the source node u
and 2n ways to choose the destination group W , and hence

λMC is a n × 2n-dimensional matrix. We assume that the

messages for distinct (u, W ) pairs are independent. However,

the same node u can be source for several (independent)

messages to be sent to distinct destination groups W1, W2, . . .
at possibly different rates. Similarly, the same subset of nodes

W can be destination group for several (independent) mes-

sages sent from distinct source nodes u1, u2, . . . at possibly

different rates.

The following example illustrates this definition of a

multicast traffic matrix.

Example 2. Consider again a network with n = 4 nodes

V (n) = {vj}4
j=1. Assume node v1 has to send a message

m1,{2,3} to nodes {v2, v3} at rate 1 bit per channel use and

a message m1,{2,3,4} to nodes {v2, v3, v4} at rate 2 bits per

channel use. Node v2 has to send a message m2,{1} to just

node v1 at rate 3 bits per channel use. And node v4 has

to send a message m4,{2,3} to nodes {v2, v3} at rate 4 bits

per channel use. Assume all messages are independent. This

traffic requirement can be described by the multicast traffic

matrix λMC ∈ R
4×24

+ with λMC

v1,{v2,v3}
= 1, λMC

v1,{v2,v3,v4}
=

2, λMC

v2,{v1}
= 3, λMC

v4,{v2,v3}
= 4, and λMC

u,W = 0 for all

other (u, W ). Note that node v1 is sources for two messages,

subset {v2, v3} is destination for two messages. The message

m1,{2,3,4} is to be sent from node v1 to all other nodes and

can hence be understood as a broadcast message. Moreover,

the message m2,{1} can be understood as a unicast message;

thus unicast traffic can be recovered as a special case of

multicast traffic. ♦

Similar to the unicast case, the multicast capacity region

ΛMC(n) ⊂ R
n×2n

+ of the wireless network V (n) is defined as

the closure of the collection of all achievable multicast traffic

matrices λMC ∈ R
n×2n

+ . In other words, λMC ∈ ΛMC(n)
if all the n × 2n source–destination-group pairs (u, W )
can simultaneously reliably transmit an independent message

from u to W at rate λMC
u,w.

In analogy to the unicast case, define

Λ̂MC
G (n) ,

{

λMC ∈ R
n×2n

+ :

∑

u∈S∩V (n)

∑

W⊂V (n):
W\S 6=∅

λMC
u,W ≤

∑

u∈S

∑

v∈VG\S

c(u, v),

∀S ⊂ VG

}

. (6)

In words, Λ̂MC
G (n) is the collection of all multicast traffic

matrices λMC on V (n) ⊂ VG such that for every cut S in the

the graph G the total traffic

∑

u∈S∩V (n)

∑

W⊂V (n):
W\S 6=∅

λMC
u,W

across the cut S is not more than the sum of capacities of

the edges across S. Note that, unlike the unicast case, we

count traffic λMC
u,W to be crossing the cut S if the source u is

in S and there exists at least one destination w ∈ W that is

not in S. The next theorem states that (appropriately scaled)

Λ̂MC
G (n) is an inner bound for the multicast capacity region

ΛMC(n) of the wireless network.

Theorem 3. For all α > 2, ν ∈ R+, there exists b̂(n) ≥
n−o(1) such that for any n ∈ N, and any node placement

V (n) on A(n) with area nν ,

b̂(n)Λ̂MC
G (n) ⊂ ΛMC(n).

Theorem 3 provides an analytic inner bound to the mul-

ticast capacity region ΛMC(n) of the wireless network, with

the inner bound Λ̂MC
G (n) explicitly defined in (6). However,

as in the unicast case, Λ̂MC
G (n) is difficult to evaluate com-

putationally. We next provide an alternative inner bound that

is computationally more manageable.

Similar to the unicast case, denote by ΛMC
G (n) ⊂ R

n×2n

+

the multicast capacity region of G for traffic between nodes

in V (n) ⊂ VG under routing. In other words, λMC ∈ ΛMC
G (n)

if simultaneously for every source u ∈ V (n) and destination-

group W ⊂ V (n) we can route data from u to every node

w ∈ W over G at rate λMC
u,W .

The next theorem states that the multicast capacity region

ΛMC
G (n) of G under routing yields an inner bound to the

multicast capacity region ΛMC(n) of the wireless network.



Theorem 4. For all α > 2, ν ∈ R+, there exists b(n) ≥
n−o(1) such that for any n ∈ N, and any node placement

V (n) on A(n) with area nν ,

b(n)ΛMC
G (n) ⊂ ΛMC(n).

While the unicast capacity region ΛUC
G (n) of G can be

conveniently described by a linear program, the same is

not true for the multicast capacity region ΛMC
G (n). However,

using a result by Räcke [19], ΛMC
G (n) can be efficiently

approximated. In fact, [19] shows that any graph G can

be approximated by a collection of tree graphs {Ti}, called

decomposition trees. Each leaf node in Ti corresponds to a

node in G, and each internal node in Ti corresponds to a

subset S of nodes in G. Each edge e in Ti corresponds to a

cut in the graph G, and the capacity of e in Ti is equal to

the capacity of the cut in G.

This decomposition of G into trees {Ti} can be found in

polynomial time in |VG| and hence, by (3), also in n. This

algorithm also produces nonnegative weights {ωi} summing

to one and corresponding to the decomposition trees {Ti}.

Approximately optimal routes for multicast traffic in G can

then be computed as follows. Find the optimal routes for the

multicast traffic λMC for each tree Ti. Since Ti is a tree, this is

trivial. The routes in Ti for λMC induce routes in G for λMC.

We time share between these routes computed according to

Ti with weight ωi, i.e., for a fraction ωi of time we route

according to Ti. [19] shows that this procedure is close to

optimal for the graph G up to a factor O(log(n)).
Since this algorithm yields approximately optimal routes

for multicast traffic in G, it can be used to approximately

evaluate the region ΛMC
G (n). In other words, by loosing an

additional factor of order log(n), the inner bound ΛMC
G (n)

in Theorem 4 can be efficiently evaluated. Moreover, as in

the unicast case, this procedure suggests a communication

architecture for multicast traffic in heterogeneous wireless

networks. As in the unicast case, the construction of G han-

dles heterogeneity in the node placement, and optimal routing

handles heterogeneity in the traffic demands. In addition to

the procedure in the unicast case, the decomposition of the

graph G into trees {Ti} is used to handle the “heterogeneity”

of having to deal with multicast traffic.

The result by Räcke also shows that

ΛMC
G (n) ⊂ Λ̂MC

G (n) ⊂ O(log(n))ΛMC
G (n).

Thus, for multicast traffic over undirected graphs, an approx-

imate max-flow min-cut result holds. This implies that the

inner bounds in Theorems 3 and 4 are equivalent for scaling

purposes.

As in the unicast case, the inner bounds given by Theorems

3 and 4 can be shown to be tight in the scaling sense for

several important special cases. As before, the flexibility of

choosing various levels of cooperation in different areas of

the network can be shown to be necessary under heteroge-

neous node placements and traffic patterns.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of quantify-

ing performance in heterogeneous wireless networks, where

both the node placements and user traffic demands can be

highly non-uniform. We have developed a general commu-

nication architecture to overcome such heterogeneities. The

proposed scheme deploys a suitable combination of multi-

hopping and cooperative communication at different scales

to efficiently operate a wireless network under non-uniform

node placement and traffic demands. We have established

that the proposed scheme performs as well as any existing

communication scheme for large wireless networks—multi-

hopping, multi-user cooperative communication, cooperative

multi-hopping, among others. Further, for scenarios with het-

erogeneous node placements or traffic patterns, the proposed

scheme can perform strictly better (even in terms of the

scaling exponent) than the known schemes.

While the inner bound on the capacity region derived in

this paper can be shown to be tight in the scaling sense in

several important special cases, it is not clear whether this is

the case in general. Deriving tight outer bounds on the scaling

of the capacity region under both node placement and traffic

demand non-uniformities is hence of interest. The currently

known techniques, such as those used in [8] and [15], work

well under homogeneous node placement, but have limited

applicability to the arbitrary setting.
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