A Meta-Level Specification and Profile for Aspectd in UML

Joerg Evermann
Victoria University Wellington
Wellington, New Zealand

jevermann@mcs.vuw.ac.nz

ABSTRACT

Aspect-oriented programming (AOP) has become a mature
technology. Increasingly, calls for support of AOP on the
software model level are being voiced. This paper addresses
these calls by offering a meta-model of AspectJ in UML.
Using the UML extension mechanisms, this meta-model is
at the same time a profile to support AspectJ modelling
in UML. In contrast to previous work, this profile offers
complete meta-level integration of all AspectJ concepts. The
use of standard XMI based modelling allows the use of the
profile in commercially available CASE tools and supports
easy code generation.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specification—

Languages; D.2.2 [Software Engineering]: Design Tools
and Techniques; D.3.3 [Programming Languages|: Lan-
guage Constructs and Features

1. INTRODUCTION

While aspect-oriented programming (AOP) is rapidly ma-
turing, there is not yet any de-facto or de-jure standard for
aspect-oriented software modelling. The de-facto software
design language, UML [14], does not offer specific constructs
for aspects and their associated concepts. However, UML
does provide standardized extension mechanisms that can
be used to provide aspect modelling facilities. In UML 2.0
these extension mechanisms have the power to make any
meta-level model a profile.

In this paper, we present a meta-model of the AspectJ lan-
guage extensions. Using the powerful extension mechanisms,
this meta-level model is a UML profile. This approach offers
some advantages over existing proposals.

First, it is supported by UML 2.0 compliant modelling
tools. The extension requires no special software tool, and
allows aspect modelling to be used within mature software
tools. For example, the work described in this paper was
developed using the commercially available tool MagicDraw,

version 11.5. This is in contrast to earlier proposals, which
are not based on profiles and extend UML either by intro-
ducing new meta-model classes, or new notation elements,
or both. Those proposals cannot be used with available
modelling tools and require specific tool support.

Second, because the proposed technique is supported by
UML XMI model interchange facilities, the model exten-
sion, as well as any models it has been applied to, can be
exchanged between different MOF compliant UML tools.

Third, the proposal allows all aspect-related concepts to
be specified in meta-model terms, no textual specification is
necessary. This means that the models can be easily manip-
ulated or verified, without having to parse textual specifica-
tions.

Fourth, the proposal maintains strict separation of base-
model and crosscutting concerns in the models it is applied
to, the primary motivation behind AOP.

This proposal is not an aspect modelling extension for
generic AOP. The conceptual differences between different
aspect implementations, e.g. Aspect# and AspectJ are sub-
stantial. We have focused on providing a UML extension to
support AspectJ because of the maturity of the development
of AspectlJ.

2. RELATED WORK

An overview of some of the prior work for modelling as-
pects in UML is presented in [16]. The early work presented
at AOM 2002 is based on the extension mechanisms in UML
1.x versions. Because these mechanisms are not fully inte-
grated with the meta-model, the specification of advices and
pointcuts often remains in textual form. The connection be-
tween aspects and base-model is made as part of the model,
instead of an aspect extension to the model, thereby fore-
going the clear separation of base-model and crosscutting
concerns that is central to AOP.

Initial work presented in [1] proposed the specification of
aspects as stereotypes on classes and was later extended [2]
to include advice and pointcut specification. It models cross-
cutting associations to show which aspect features relate to
which base-model elements. The proposal in [15] is not de-
fined in meta-model terms and uses special keywords in a

Permission to make digital or hard copies of all or part of this work for A) - -
personal or classroom use is granted without fee provided that copies aretextual specification of roles to define pointcuts. It is lim-
not made or distributed for profit or commercial advantage and that copies ited to advice on method calls and field accesses. An aspect
bear this notice and the full citation on the first page. To copy otherwise, to stereotype for UML collaborations was developed in [11],
republish, to post on servers or to redistribute to lists, requires prior specific however without being fully defined in UML meta-model

permission and/or a fee. : .
Workshop AOM ‘07, March 12-13, 2007 Vancouver, British Columbia, Lcr™S- An earlier profile for AspectJ [17] represents advices
and pointcuts as stereotyped operations, and the connec-

Canada
Copyright 2007 ACM 1-59593-658-5/07/03 ...$5.00. tion to the base features is made via dependencies in the

model. Similarly, the proposal in [4] uses textual specifica-
tion of pointcuts, rather than being based on (meta-)model
elements. Later extensions to this in [6] are similar to our
proposal in that aspects are stereotyped classes. Again, be-
cause no meta-model based profile is developed, the connec-
tion between aspects and base-model is made as part of the
model, rather than an aspect extension to it. An inital pro-
posal for aspect modelling using UML 2.0 was presented in
[3], however without fully defining an extension profile, as
we do here.

Other prior work is based on defining new UML meta-
classes, instead of defining stereotypes for existing meta-
classes, which requires specialized tool support for the new
meta-classes. Instead of using the extends relationship type
in UML, these proposals use the generalization relation-
ship type to define the new aspect concepts. The research
in [8] introduces new UML meta-classes and therefore re-
quires specialized tools for their support. A meta-model for
generic AOP is offered in [5], but with no apparent mapping
to AspectJ and without describing an implementation. A
full meta-model based approach, similar to this proposal, is
found in [18]. However, rather than employing the standard
lightweight extensions of UML, this approach also introduces
new meta-classes, thus requiring specialized tools.

Other work on aspect modelling in UML proposes join
point annotations for UML [9]. A translation of aspect
UML to object-oriented Petri-nets is described in [12] but is
limited to pointcuts around method calls. Weaving on the
model level is presented in [10] as part of work on design-
by-contract. Code generation from aspect-extended UML
models is presented in [7] who opt against the XMI based
method proposed in this paper and instead use custom tool
extensions.

3. ASPECT UML EXTENSION

The main point of distinction of this work to previous
proposals is the focus on developing a complete and com-
prehensive meta-model of AspectJ. It also resolutely em-
ploys a meta-model based specification. For example, the
operations selected by a call join point are specified as oper-
ation elements of the model, not as a textual specification,
as previous work has done.

This allows the integration of aspect features with base-
model features on the meta-model level, rather than as part
of the model, as previous work was forced to do, and thereby
maintains strict separation of base and crosscutting con-
cerns. For example, the application of an aspect to a classi-
fier is not shown by any kind of relationship in the model.
Instead, analogous to the specification in AspectJ, pointcuts
of an aspect select specific operation elements or attribute
elements of the model (Sec. 4 and Figs. 5, 6).

This section presents a meta-model of the AspectJ con-
cepts. It is modelled on the UML meta-level, so that it is
usable as a profile (Fig. 1). Rather than specializing UML
meta-classes, as previous work has done, we extend the ex-
isting meta-classes. A UML stereotype is a meta-class which
enters into extends relationships with existing meta-classes
[14]. Visually, this is shown with the extended class in square
brackets (Fig. 1). Attributes that are modelled on stereo-
type meta-classes will translate to tags when the profile is
applied [14]. Similarly, values of stereotype attributes will
become values of tags when the profile is applied [14]. This
extension mechanism in UML 2.0 is therefore a very power-

ful way in which any meta-level model immediately becomes
usable as a profile. The following paragraphs present the
UML meta-model for each AspectJ construct.

CrossCuttingConcernwhile not directly specifiable in
AspectJ, we introduce the meta-class CrossCuttingConcern
as a way of grouping related aspects. CrossCuttingConcern
extends the UML meta-class Package, because a cross cut-
ting concern contains aspects in the same way as packages
contain classes. Because the UML meta-model already spec-
ifies that packages own classes, the CrossCuttingConcern
meta-class does not need to be associated with the Aspect
meta-class.

ASpecCt.An aspect contains both static features (that do
not specify behaviour), such as pointcuts, and dynamic fea-
tures (that specify behaviour), such as advices. Further-
more, aspects can be specialized, and can realize interfaces.
These characteristics are sufficiently close to the features of
a UML class, so that we model aspects using a meta-class
Aspect, which extends the meta-class Class. This makes
the Aspect meta-class a stereotype on the UML Class con-
struct.

Aspects have some properties that are not already offered
by classes. These are modelled as attributes of the meta-
class, which will become tags when the profile is applied
to a model. A boolean attribute isPrivileged indicates
whether the aspect is privileged. A multi-valued attribute
declaredParents allows the declaration of generalizations
by the aspect ("declare parents: I extends J” in AspectJ).
Because the extension is on the meta-level, the data type for
this attribute is the meta-class Generalization in UML. In
other words, the values of this sterotype-tag pick out gen-
eralization model elements when this extension is applied.
Similarly, declaredImplements allows the declaration of in-
terface realizations ("declare parents: I implements J” in
AspectJ). The data type of this attribute is the UML meta-
class InterfaceRealization.

Because aspects can be instantiated per pointcut, the at-
tributes perType and perPointCut are used to specify the
type of aspect instantiation and associated pointcut. The
data type of perPointCut is the PointCut meta-class (i.e.
the stereotype) in this extension and the values for per-
Type are provided by the enumeration AspectInstantia-
tionType.

Aspect precedence is modelled as a recursive relationship
between aspects. Because the precedence ordering in As-
pectJ is total, each aspect has at most one directly preceding
and following aspect.

Advice. With Aspect being a meta-class that extends Class,
the dynamic features of aspects, i.e. advices, play the role
of class behavior: The meta-class Advice is an extension
on the meta-class BehavioralFeature. Behavioural features
include collaborations and state charts, implying that these
can also be used to specify advice implementations, as pro-
posed in [1, 2]. Because behavioral features are owned by
classes in the UML meta-model, Aspect does not have to
be associated with Advice. We add the constraint that the
«Advice» stereotype can only be applied to behavioral fea-
tures of classes that are stereotyped «Aspect».

The UML meta-model already associates operations with
signatures. Hence, our extension does not need to model

Mojagmojydad

Mmojydaad
1ebueiad
siyad

adA Juonenueisupdadsy
<<uohesawnua>>

[9an1ea4lean1dNAS]
nDIoduIyIIM
<<adA1034915>>

[24n1e94jRIN1ONAS]
nDuloduondadxy

[2an1e24[RUN1ONAS]

ndwlodmolid
<<adA103J315>>

adAjuonisodwodindiuiog : adAu

[2an1e24lRUN1ONAS]
ndiulodmorRgmoldd
<<adA1034915>>

—m_:umwu_m_:uus_umu
nDulogarisodwo)

10N INPVIBY.

10 ADIAPYR.I04aY

puy 3dIAPYPUNOIY

adA uoni JInJiulod| |adA Luonndsx3adiApy
<<uonesawnus>> <<uonesawnua>>

<<2dA1034315> > /

{paJapuo}[,~ 1] adAL : adA1-

<<adA1034915>>
[4neag[eindnis]
mnDuI0d4IndIuiod Susodwod- 0
<<3dA103J315>>
Agpa123)9s-
+70
9950dwod-
%0
1ND1UI04P3III|RS—

[4meag[eindnis]

INDUI04uUONeZI B NIUINEIS

<<adA1094915>>

[—¥

[24nyea4eiNdNNS]
mnDiujodadAy
<<3dA10a.1915> >

[24meaj[eamonans]
mnduiod

[9amea4eanidonns]
ndiulodebie]
<<adA1031915> >

[2amea4ean1donns]
nDiulodsbuy
<<adA10a1915> >

[s4n3e3a4jein1dnis]
nDuulodsiy L
<<3dAi0a1315>>

Agpapadaud-
°0

{pa4apao}[, 1] Bulns : saweNbIe-

[2an1e24[RUN1dNAS]

1nDutodbuisodx31xayuod)

<<adA1034915>>

0] uonezijeayade AU : syudwa|dw|paredap-

[+"0] UOIBZI[BIUN : SIUIBYPIIR|DBP-

[T0] InD1UI04 : InDUIOgad-

70
sapadaud-

[«0] @dALuonenueisupdadsy : adA)iad-
[1] uesjooq : paba

<<3dA1034335>>

[e6e3ded]

usadU0dbUMN)SS0ID
<<adA1031915>>

3dA1U0NNIAXIIIIAPY : UOIINDIXTIDIAPE-

T

nDrod-

[«"1] uonesadQ : uonesado-

[24meaj[eimdnans]
nDiuioduonessdo
<<adA1091915> >

[24nmeag[eimdnins]
ndlod|ed
<<adA1034215> >

[24nmea4[eindnis]
1ND1uI04uoNNdAXy
<<adA1094915> >

[24n1e24[RUN1ONAS]
InDul04apodull
<<2dA1024915> >

/N

%0

331Ape-

[34neaj[eloireyag]
DIAPY
<<3dA10a.1915> >

[9anyea4jRUNIdNAS]

1NDIUI04UORNIAXTIDIAP

<<2dA1094915> >

[« 1] Asadoud : play-

[2amea4lean1dNAS]
mnDiurodAriadosd
<<2adA1034915>>

[\

[« 1] 9dAL : adAjuo-

[sse|D]
1adsy
<<2dA1094915> >

[24nyea4]

24mea46umnIssosddners

[24n1ea4eimdnis]
nDiujoduonezijeniu|
<<2dA1094915> >

[24nmea4[eimdnns]
ndiulodquonezieniuRid
<<adA1034215> >

<<adA1031915>>

noadse
<<3|yoid>>

[4meagjeindnis]
ndulodivs
<<adA1034915>>

[24meag[eamdnans]
nulodwd
<<2dA1004915>>

AspectJ profile for UML

Figure 1

<<stereotype>>
StaticCrossCuttingFeature
[Feature]

0..* -staticCrossCuttingFeature

-aspect

<<stereotype>>
Aspect
[Class]

-isPrivileged : boolean

Figure 2: Alternate model for Static Crosscutting
Features

signatures for advices. When applying the «Advice» stereo-
type to an operation, we get parameters, return values, and
raised exceptions automatically.

Advice code can be executed before, after, or instead of
(around) a pointcut. We model adviceExecution as an at-
tribute of the Advice meta-class. The values are provided
by the enumeration AdviceExecutionType. Because each
advice has a signature by virtue of being an operation, the
signature implies whether an ”after” advice is "after return-
ing” or "after throwing” by examining the operation’s return
parameter and raised exception.

Static Crosscutting Features\spects may introduce new
features to existing classes and types. Because such cross-
cutting features can be static or dynamic, the meta-class
StaticCrossCuttingFeature extends the UML meta-class
Feature, which is the superclass of both Property and Op-
eration. The cross cutting features are owned by the as-
pect (by virtue of the ownership of attributes and operations
by classes), there is no need to associate StaticCrossCut-
tingFeature with Aspect. We add the constraint that the
«StaticCrossCuttingFeature» stereotype can only be ap-
plied to features of classes that are stereotyped «Aspect».

To specify on which types the crosscutting feature is to
be introduced, the StaticCrossCuttingFeature meta-class
possesses a multi-valued attribute onType whose data type
is the UML meta-class Type.

We have chosen to model crosscutting features as owned
by the aspect, rather than by the classifier they are intro-
duced on. While this requires the extra meta-model ele-
ment onType, it enforces the separation of base-model and
crosscutting concerns that is fundamental to AOP. The al-
ternative would be to associate the meta-class Aspect with
the meta-class Feature so that the aspect can pick out any
feature owned by any classifier in the model (Fig. 2). The
application of this alternate meta-model in Fig. 3 shows that
in this case the static crosscutting features are visually mod-
elled as part of the base-model element rather than the as-
pect, thereby giving up the clear separation of concerns into
the aspects.

PointCut. A pointcut does not specify dynamic behaviour.
Hence, the meta-class PointCut extends the UML meta-
class StructuralFeature. We add the constraint that the
«PointCut» stereotype can only be applied to features of
classes that are stereotyped «Aspect». PointCut is an ab-
stract meta-class: This stereotype cannot be applied to the

BaseClass

< <StaticCrossCuttingFeature>> +CrosscutOperation(){aspect = ExampleAspect}

1

<<CrossCuttingConcern>>
CrosscuttingConcern

<<Aspect>>
ExampleAspect

Figure 3: Alternate application of Static Crosscut-
ting Features

attributes of an aspect; only its non-abstract sub-classes,
such as CallPointCut or ExecutionPointCut can.

Rather than specifying the type and AspectJ textual dec-
laration of pointcuts as attributes on PointCut, we subclass
the PointCut meta-class to allow different attributes to be
modelled for different pointcuts.

OperationPointCut is a superclass to describe pointcuts
that select operation-related join points. Hence, this meta-
class has a multi-valued attribute operation for this pur-
pose, whose data type is the UML meta-class Operation.
Because UML does not distinguish between operations and
constructors, both InitializationPointCut and PreIni-
tializationPointCut are subclasses of OperationPointCut
and inherit the operation attribute.

TypePointCut is a superclass to describe pointcuts that
select type-related join points. Therefore, it contains an
ordered, multi-valued attribute Type, whose data type is the
UML meta-class Type.

AdviceExecutionPointCut describes a pointcut that se-
lects all advice execution.

PointCutPointCut is a superclass for those types of point-
cuts that select another pointcut. Hence, it is associated
with the meta-class PointCut to specify the selected point-
cuts.

PropertyPointCut is a superclass of those types of point-
cuts that select fields. Therefore, it possesses a multi-valued
attribute with data type Property.

ContextExposingPointCut is an abstract superclass of those
types of pointcuts that can expose context in an advice. It
contains an ordered, multi-valued attribute argNames that
holds the names of the exposed arguments. This collec-
tion is ordered, so that the corresponding type can be dis-
cerned from the collection type specified for the TypePoint-
Cut meta-class.

In AspectJ, pointcuts can be composed of primitive point-
cuts. Therefore, we have introduced the meta-class Compos-
itePointCut, which is itself a subclass of PointCut, but also
associated with PointCut to express those pointcuts of which
it is a composite. The attribute compositionType specifies
the boolean operator used for the composition.

We have chosen to make all references to joint points
that are selected by pointcuts multi-valued (the operation,
field, and type attributes on OperationPointCut, Proper-
tyPointcut and TypePointCut respectively) to reduce the
complexity of the resulting model. The alternative would

FigureElement Figure

SampleException

+setXY(newX : int, newY :int) :int +makeLine() : Line
+draw() +makePoint() : Point

. mylmplementation
N

H . A
myObserver Line Point Drawable(")
-p1l: Point -x :int
-p2 : Point -y :int

|

Drawing| Package SampleCrossCuttingConcern;

privileged aspect SampleAspect {
declare parents: Figure extends Drawing;
declare parents: FigureElement implements Drawable;

pointcut setXYPointCut (): (
set(private int Point.x) ||
set(private int Point.y));

pointcut TwoIntArgsPC (int inX, int inY):
args(inX, inY);

pointcut observePointPC (int inX, int inY): (
(set(private int Point.x) ||
set(private int Point.y)) &&

<<CrossCuttingConcern>>
SampleCrossCuttingConcern

args(inX, inY));

<<Aspect>>

SampleAspect
{isPrivileged,
declaredimpl -

pointcut makeLinePointCut (O: (
call(public Line Figure.makeLine ()));

FifEn) before(int inA, int inB) throws SampleException

declaredParents = }

: observePointPC(inA, inB) {}

<<StaticCrossCuttingFeature>>-theObservers : myObserver{onType = Line, Point}
< <SetPointCut>>-setXYPointCut{field = x, y, composite = observePointPC}

< <CallPointCut>>-makeLinePointCut{operation = makeLine}

<<ArgsPointCut>>-TwolntArgsPC{type = int, int, argNames = inX, inY, composite = observePointPC}
<<CompositePointCut>>-observePointPC{compositionType = And, composee = setXYPointCut, TwolntArgsPC}

before() : makelLinePointCut() {}

private myObserver Line.theObservers;
private myObserver Point.theObservers;
public int Line.addObserver (myObserver paraml) {};

<<StaticCrossCuttingFeature>>+removeObserver(paraml : int){onType = Line, Point}

<<Advice> > +newLine(){pointCut = makeLinePointCut, adviceExecution = BeforeAdvice}

<<StaticCrossCuttingFeature>>+addObserver(paraml : myObserver) : intfonType = Line, Point}

<<Advice>>+pointChange(inA : int, inB : int){adviceExecution = BeforeAdvice, pointCut = observePointPC}

public int Point.addObserver (myObserver paraml) {};
public void Line.removeObserver (int paraml) {};
public void Point.removeObserver (int paraml) {};

(a) Base-model and crosscutting concern

(b) Generated AspectJ code

Figure 4: Application of AspectJ profile

force the modeller to use pointcut composition using logical
?or”. When multiple features are specified for pointcuts, e.g.
multiple values of the operation attribute of a Exeuction-
PointCut instance, the assumption during code generation
(Sect. 5) is that they are composed using logical "or”.
Because pointcuts are used by advices, the meta-class
PointCut is associated with the meta-class Advice.

4. PROFILE APPLICATION

‘We show an application of the proposed profile as proof of
concept (Figure 4) and to identify benefits and shortcomings
of the proposed UML extension. Rather than using a com-
plex case study, we show a simple example to demonstrate
the use of the profile’s during modelling.

Recall that in UML, meta-classes that extend existing
meta-classes become stereotypes, and attributes of extend-
ing meta-classes become tags.

Crosscutting concerns become packages that are stereo-
typed «CrossCuttingConcern» and the aspects of this cross-
cutting concern are classes that are stereotyped «Aspecty,
contained in the package. The isPrivileged attribute of
the meta-class Aspect becomes the tag isPrivileged of the
stereotype «Aspect». In this example, the aspect declares a
generalization and an interface realization relationship. Be-
cause of the meta-model integration, the values of the de-
clareParents and declaredImplements tags are the rela-
tionships elements specified in the model. The UML gener-
alization meta-class is not a subclass of the NamedElement
meta-class, so that no name is shown for the value of the de-
clareParents tag, but the interface realization dependency
between FigureElement and Drawable is named, and this
name appears as the value of the declaredImplements tag
of the aspect. As Figs. 5 and 6 show, these are not textual

specifications but refer to actual model elements.

Pointcuts are stereotyped attributes of the aspect, because
they are defined as meta-class extensions of the StaticFea-
ture meta-class. For example, the setXYPointCut attribute
is stereotyped as a «SetPointCut». Its meta-class attribute
field becomes a tag that provides a list of fields selected by
this pointcut. The values of the fields are the attribute ele-
ments in the model (the CASE tool does not show the fully
qualified name). Because of the meta-model integration,
the CASE tool allows selection of the appropriate model el-
ements as values, shown in Fig. 5. The figure shows the fully
qualified names of the model elements that are the values of
the tag field. Fig. 6 shows that the values of the tags can
be picked out from the actual model elements. An example
of a pointcut that exposes context variables is given with
the TwoIntArgsPC example, selecting all operations taking
two arguments of type int.

Static crosscutting features can be either atttributes or
operations. Examples of both are shown as stereotyped
«StaticCrossCuttingFeature». The meta-level attribute
onType of the meta-class StaticCrossCuttingFeature be-
comes, on the model level, a tag with (multiple) values ref-
erencing the classes of the model. For example, the aspect
introduces a public operation addObserver (myObserver)

int on the types Line and Point.

Advices are operations that are stereotyped «Advicey.
The Advice meta-class is associated with the Pointcut meta-
class. Therefore, each advice in the aspect advises a point-
cut, specified as the value of the tag pointCut.

5. CODE GENERATION

Because the model is compliant with standard UML XMI
format and is fully specified in terms of the meta-model,

Property - setXYPointCut

B = History :| @ -setXYPointCut [sampleApplication::SampleCr T]

@ -setXYPointCut [Tags
Q Documentatic Profile: =~ <ALL>

& Relations [%) Property:

e (== BB B8 "

& Constraints

B «» <<PointCut>> Value
@ advice : Advice[0..* @ -x:int [sampleApplicat P
@ composite = observe, & -Y:int{sampleApplicat P
@ selectedBy : PointCut

B «» <<PropertyPointCut>>
€]

S —

Remove Value | Edit Value

Close) Bac orward Help

Figure 5: Tag values referring to model elements

Select Elements

All data:
Data
g UML Sta
{Q aspect)
= sampleApplicatic
-7 Relations
SampleCross Add
] Drawing

Selected objects:

[=xm]Selected objects
O -x:int
O -y:int

FigureElemer
=] Line

-7 Relations Add Recursively
O -pl:san
O -p2 :san

-2 Point

-7 Relations
o Em
O -y:int

=] SampleExcep
—(Drawable
& sampleApplic

Remove All)

, .

oK) Cancel [Help

Figure 6: Selecting model elements as tag values

code can easily be generated. As a proof-of-concept, a brief
XSLT has been implemented that generates valid AspectJ
code (Fig. 4). Existing CASE tools already support code
generation for the traditional parts of the model, so that the
XSLT only generates code for the aspect. To give an indica-
tion of the complexity of the transformation, code generation
is implemented in approx. 580 lines of XSLT code. Most of
the complexity in the transformation stems from ensuring
robustness. The XSLT is available from the author.

The code generation currently relies on the modeller to
develop models that are valid representations of AspectlJ.
Some examples of this are the following:

The modeller must ensure that the signature of an Advice
matches the context exposed on any referenced ContextEx-
posingPointCut.

Another example of this onus on the modeller is the choice
between a return parameter and a thrown exception on an
advice. The XSLT will generate after ... returning
when a return parameter is included in the advice signa-
ture, and will generate after ... throwing when a raised
exception is modelled for the advice. However, it is valid in

UML to model both.

While TargetPointCut and ThisPointCut have, in the in-
terest of a simple meta-model, been modelled as subclasses
of TypePointCut, they, in contrast to the other subclasses
of TypePointCut, should only refer to a single type. When
generating code, additional type references in the model are
ignored.

Combining context-exposing primitive point cuts using
multiple boolean operations can lead to very complex struc-
tures with no easily discernible signature. In the current
implementation, the pointcut signature is generated from
the signatures of the primitive ContextExposingPointCuts
in a CompositePointCut using simple union. It is up to
the modeller to ensure that this transforms to valid AspectJ
code.

When an advice signature contains a return parameter,
the XSLT will interpret this parameter depending on the
value of the adviceExecution tag. For a BeforeAdvice, the
return parameter type is ignored, for an AroundAdvice it is
interpreted as the type of the value returned by the advice
(generating "type around(...):”), while for an AfterAd-
vice it is interpreted as the type of the value returned by the
operation (generating "after(...) returning (type):”).

These examples of potential pitfalls when generating code
highlight the need for future work to include OCL-based
constraint specifications as part of the profile. Such con-
straints, if enforced, would be able to significantly reduce
the complexity of the code generation. However, current
UML modelling tools lack the ability to enforce OCL speci-
fications.

6. DISCUSSION

We have shown an AspectJ profile for UML which, in
contrast to previous work, is based completely on the exist-
ing UML meta-model, employing standard UML extension
mechanism. This section discusses strengths and weaknesses
of the proposal.

From a theoretical perspective, the strength of this pro-
posal is a complete specification of AspectJ in UML. The
model completely specifies AspectJ in terms of the UML
meta-model and does not rely on textual descriptions or
annotations that must be parsed for model application or
verification. To our knowledge, this is the first complete
proposal.

From a practitioner’s perspective, using the lightweight,
meta-model based extension mechanisms of UML 2.0 makes
the theoretically important AspectJ meta-model practically
useful as a profile. The profile can be used with existing,
commercially available UML CASE tools!. Aspects can be
exchanged using UML XMI model interchange mechanism
and applied to both new and existing UML models. The
modular way in which UML 2.0 allows profiles to be ex-
changed and applied means that AspectJ model extensions
can be applied to existing UML models, just as AspectJ
extensions are woven into existing Java software.

However, some words of caution are in order. The lack of
pattern based, textual specification implies that each AO-
feature refers to a specific model element that must be ex-
plicitly specified by the modeller (Figs. 5, 6). This is in
contrast to the Aspect]J language where patterns are used

Tt has been implemented in the MagicDraw tool from No-
Magic, Inc.

to select join points for pointcuts. The power of pattern
specifications is not available in UML. Having to explicitly
specify each pointcut requires that the modeller be aware
of the complete base-system model. This also is in con-
trast to AspectJ where AO-features can be specified using
pattern expressions without full knowledge of the specific
join points or types selected by a pattern. However, this
type of pattern-based specification, while convenient, also
opens the door to inadvertent selection of unintended join
points. In this respect, the explicit specification required by
the presented profile is safer and the meta-model integration
allows easier model checking and verification. Moreover, if
patterns were to be specified using textual attributes in the
UML model, special tools would be required to resolve such
specifications on the model level, e.g. as part of model-level
weaving. This would preclude the use of commercially avail-
able CASE tools for AspectJ modelling.

While one may argue that explicit specification of all AO-
features creates a model almost as complex as if the cross-
cutting functionality had been included using non-aspect
methods, the use of the proposed profile retains the main
advantage of AO-modelling, namely that of modularization
and encapsulation of crosscutting concerns.

The present work can be extended in multiple directions
in future work. First, it does not yet fully take into ac-
count generics and annotations in Java 5 and 6. UML has
the TemplateableElement concept and is therefore able to
express Java generics. Java annotations may be modelled
as stereotypes in UML. While the proposed profile can be
applied to stereotyped and templated model elements, the
code generating XSLT transformation needs to be extended
to develop corresponding Java 5 code.

Second, in the context of the model driven architecture
(MDA) process [13], two extensions can be developed. UML
profiles can be developed for other aspect-oriented languages,
such as Aspect#, to allow the development of platform spe-
cific models ("PSM” in MDA terminology). The aspect-
oriented features can also be abstracted into a language-
agnostic UML profile for generic AOM (platform indepen-
dent models, "PIM” in MDA terminology). Transformations
can then be developed to transform the language-agnostic
aspect oriented models ("PIM”) into language specific aspect-
oriented models ("PSM”) and from there to code.

Third, OCL constraints can be developed to ensure the va-
lidity of the models. For example, the signature of advices
needs to match the context exposed by ContextExposing-
PointCuts, so that valid AspectJ code is ensured.

Finally, usability studies need to be conducted. In this
context, it is also feasible to explore the impact of various
design decisions for this profile, e.g. textual specification of
join points versus the present meta-model based specifica-
tion, or the modelling of static crosscutting features with the
aspect as presented here, or with the base model element.

7. REFERENCES

[1] O. Aldawud, T. Elrad, and A. Bader. A UML profile
for aspect oriented modeling. In Proceedings of
OOPSLA 2001, 2001.

[2] O. Aldawud, T. Elrad, and A. Bader. UML profile for
aspect-oriented software development. In Proceedings
of the AOM workshop at AOSD, 2003, 2003.

[3] E. Barra, G. Genova, and J. Llorens. An approach to
aspect modelling with UML 2.0. In Proceedings of the

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

AOM workshop at AOSD, 2004, 2004.

M. Basch and A. Sanchez. Incorporating aspects into
the UML. In Proceedings of the AOM workshop at
AOSD, 2003, 2003.

C. Chavez and C. Lucena. A metamodel for
aspect-oriented modeling. In Proceedings of the AOM
with UML workshop at AOSD, 2002, 2002.

L. Fuentes and P. Sanchez. Elaborating UML 2.0
profiles for AO design. In Proceedings of the AOM
workshop at AOSD, 2006, 2006.

I. Groher and S. Schulze. Generating aspect code from
UML models. In Proceedings of the AOM workshop at
AOSD, 2003, 2003.

J. Grundy and R. Patel. Developing software
components with the UML, Enterprise Java Beans
and aspects. In Proceedings of ASWEC 2001,
Canberra, Australia, 2001.

W. Harrison, P. Tarr, and H. Ossher. A position on
considerations in UML design of aspects. In
Proceedings of the AOM with UML workshop at
AOSD, 2002, 2002.

J.-M. Jezequel, N. Plouzeau, T. Weis, and K. Geihs.
From contracts to aspects in UML design.

M. Kande, J. Kienzle, and A. Strohmeier. From AOP
to UML - a bottom-up approach. In Proceedings of the
AOM with UML workshop at AOSD, 2002, 2002.

F. Mostefaoui and J. Vachon. Formalization of an
aspect-oriented modeling approach. In Proceedings of
Formal Methods 2006, Hamilton, ON, 2006.

Object Management Group. MDA Guide, June 2003.
Document omg/2003-06-01.

Object Management Group. Unified Modeling
Language: Superstructure, Aug. 2005. Document
formal/05-07-04.

R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry,
L. Seinturier, and L. Martelli. A UML notation for
aspect-oriented software design. In Proceedings of the
AOM with UML workshop at AOSD, 2002, 2002.

A. Reina, J. Torres, and M. Toro. Towards developing
generic solutions with aspects. In Proceedings of the
AOM workshop at AOSD, 2004, 2004.

D. Stein, S. Hanenberg, and R. Unland. Designing
aspect-oriented crosscutting in UML. In Proceedings of
the AOM with UML workshop at AOSD, 2002, 2002.
H. Yan, G. Kniesel, and A. Cremers. A meta model
and modeling notation for AspectJ. In Proceedings of
the AOM workshop at AOSD, 2004, 2004.

