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ABSTRACT

With their blistering expansions in recent years, popular on-
line social sites such as Twitter, Facebook and Bebo, have
become some of the major news sources as well as the most
effective channels for viral marketing nowadays. However,
alongside these promising features comes the threat of mis-
information propagation which can lead to undesirable ef-
fects, such as the widespread panic in the general public due
to faulty swine flu tweets on Twitter in 2009. Due to the
huge magnitude of online social network (OSN) users and
the highly clustered structures commonly observed in these
kinds of networks, it poses a substantial challenge to effi-
ciently contain viral spread of misinformation in large-scale
social networks.

In this paper, we focus on how to limit viral propagation
of misinformation in OSNs. Particularly, we study a set of
problems, namely the 31.—Node Protectors, which aims to
find the smallest set of highly influential nodes whose decon-
tamination with good information helps to contain the viral
spread of misinformation, initiated from the set I, to a de-
sired ratio (1 — ) in T time steps. In this family set, we
analyze and present solutions including inapproximability
result, greedy algorithms that provide better lower bounds
on the number of selected nodes, and a community-based
heuristic method for the Node Protector problems. To ver-
ify our suggested solutions, we conduct experiments on real
world traces including NetHEPT, NetHEPT_WC and Face-
book networks. Empirical results indicate that our meth-
ods are among the best ones for hinting out those important
nodes in comparison with other available methods.
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INTRODUCTION

The huge number of online social networks together with
their diversity have drastically changed the landscape of com-
munications and information sharing in the cyber space nowa-
days. Many people have integrated popular online social
sites, such as Facebook and Twitter, into their everyday lives
and rely on them as one of their major news sources. For ex-
ample, the news of the hit on Bin Laden was first broke out
on Twitter long before the US president officially announced
it on the public media [1], or the recent event Occupy of Wall
Street has been spread out quickly and widely to a larger
population due to its Facebook page [2]. The popularity of
OSNs, as a result, is obtained from the convenience as well
as efficiency of information dissemination and sharing based
on the trust relationships built among their users. Unfortu-
nately, such trust relationships on social networks can pos-
sibly be exploited for distributing misinformation or rumors
that could potentially cause undesirable effects such as the
widespread panic in the general public. For instance, the
misinformation of swine flu was observed in Twitter tweets
at the outset of the large outbreak in 2009 [3], or the wide
spread of the false report that President Obama was killed
on the hacked Fox News’ Twitter feed in July 2011 [4].

In order for online social networks to serve as a trustworthy
channel for disseminating important information, it is cru-
cial to have an effective strategy to contain or limit the viral
effect of such misinformation. In particular, we aim to find a
tight set of users whose dissemination with “good informa-
tion” minimizes the devastating effects of misinformation,
or in other words, we want to to make sure that most of the
network users are aware of the good information by the time
the bad one reaches them. Here, the good information is an
authorized announcement to correct the corresponding mis-
information. In the above examples, good information could
be something simple such as “Swine flu rumor is not correct”
or “President Obama is still healthy”. However, from whom
should the good information be disseminated so that the viral
effect of misinformation can be contained in a timely man-
ner, especially when the infected sources are known (e.g.,
hacked Fox News’ Twitter feed) or unknown (e.g., tweets
about swine flu)?

Due to the huge magnitude of social network users and the
highly clustered structures commonly observed in these kinds
of networks, it poses a substantial challenge to efficiently
contain viral spread of misinformation in large OSNs. Con-
ventional wisdom mainly focuses on immunization which



chooses a set of nodes in the network to immunize in or-
der to disrupt the diffusion process from a graph-theoretic
standpoint. In the setting of containing misinformation in
OSNs, immunization of certain nodes requires inspecting
every message traversing them and stopping those suspected
of carrying misinformation. This process itself, however,
can be computationally expensive due to the enormous num-
ber of messages that spread in a large online social network,
e.g., Facebook or Twitter. For example, there were 177 mil-
lion tweets sent out in a single day on March 11, 2011 [5],
and inspecting a tiny URL embedded in a tweet for potential
misinformation can be time consuming and inaccurate [6].

Against this backdrop, in this study we consider a scheme
that takes a more offensive approach to fight against viral
spread of misinformation on social networks. Rather than
classifying messages spreading in a network as misinforma-
tion or not, this method relies on the similar diffusion mech-
anism adopted by the misinformation propagation in order to
contain it. The key difference, however, is that misinforma-
tion often starts from nodes that are less influential and its
propagation speed is thus constrained by the trust relation-
ships inherent in the diffusion process from these origins.
The containment methods we consider herein, by contrast,
aims to find a smallest set of influential people to decontam-
inate so that the “good” diffusion process starting from them
achieves the desirable effect on the spread of misinforma-
tion, i.e., the propagation of misinformation is contained in
a small fraction (1 — ) of the whole big network. We call
this problem 31.—Node Protector where 3 is the desired de-
contamination threshold, I is the initial infected set (either
known or unknown) and 7' is the time window (either con-
strained or unconstrained). Here, the superscript I or sub-
script T is shown only if I is known or 7' is constrained,
respectively

Some attempts on limiting misinformation have been made
in earlier works (see the Related Work). The most relevant
work to our effort is the one suggested by Budak et al. [7], in
which the authors formulated this as an optimization prob-
lem, proved its NP-hardness, and then provided approxima-
tion guarantees for a greedy solution based on the submod-
ularity property. However, the key differences between our
work and theirs are that (1) they impose a k-nodes budget,
i.e., the size of the selected set of nodes is constrained by k,
and (2) they assume the high effectiveness propagation, i.e.,
the probability for good information spreading is either one
or zero, whereas our decontamination model is more general
since it allows arbitrary spreading probabilities. Moreover,
we provide a far richer framework for studying the problem
of containing viral spread on OSNs, where we consider not
only whether the initial set of nodes contaminated by mis-
information are known to the defender, but also take into
account the time allowance for the defender to contain the
misinformation spread. We thus believe the results from this
work offer more insights into how to contain viral spread on
OSN s under diverse constraints in practice.

In a nutshell, our main contributions made in this work are
summarized as follows. First, we analyze GVS, an algo-

rithm for S—Node Protector that greedily adds nodes hav-
ing the best marginal influence to the current solution, and
show that this algorithm selects a small fraction of the total
nodes extra from the optimal solution by using the famous
(1 — 1/e) approximation factor (Theorem 1). This result,
indeed, provides us a better knowledge on the lower bound
of the optimal solution in comparison with the (1 + In @)

factor suggested in [8]. Second, we show that ﬁ%—Node
Protector is hard to approximate to a logarithmic factor. In
normal graphs, we apply GVS to the network restricted to 7-
hop neighbors of the initial set I and achieve a slightly bet-
ter bound for 3£ —Node Protector problems. Third, we pro-
pose an community-based algorithm which returns a good
selection of nodes to decontaminate in a timely manner. Fi-
nally, we conduct experiments on real-world traces including
NetHEPT, NetHEPT_WC and Facebook networks [9]. Em-
pirical results show that both the greedy and community-
based algorithms obtain the best results in comparison with
other available methods.

RELATED WORK

The information and influence propagation problem on so-
cial networks was first studied by Domingos and Richardson
in [10]. In this work, they designed viral marketing strate-
gies and analyze the diffusion processes using a data mining
approach. Later, Kempe et al. [11] formulated the influ-
ence maximization problem on a social network as an opti-
mization problem. In their seminal work, they focused on
the linear threshold and independence cascade models and
proposed a generalized framework for both of them, as well
as proving the problem of influence maximization with a k-
node budget admits a (1 — 1/e) approximation algorithm.
Leskovec et al. [12] studied the influence propagation un-
der the detection of outage break-out situation. In particular,
they aimed to find the set of nodes in networks to detect the
out-break, e.g., the spread of virus, as soon as possible. Chen
et al. [13] improve the efficiency of the greedy algorithm and
propose new degree discount heuristics that is much faster
and scalable.

Some attempts have been made in the light of containing the
spread of misinformation. For instance, the concept of us-
ing benign computer worms to fight against another species
has been studied in [14][15]. Most of these works focus on
analyzing the performance of active worm containment in
the traditional arena of worm propagation, where infectious
computers use scanning strategies to find new victims in the
IPv4 address space. Dubey et al. [16] conducted a study
under the form of a network game focusing on qasi-linear
model with various cost and benefit for competing firms.
Bharathi et al. [17] modified the independent cascade model
to better capture the competing campaigns in the network.
Kostka et al. [18], in a game theory point of view, show that
the first propagation spreading is not always advantageous.
Recently, Budak et al. [7] considered the strategy of using
“good” information dissemination campaign to fight against
misinformation propagation in social networks. They for-
mulated this as an optimization problem, proved that it is
NP-hard, and then provided approximation guarantees for a
greedy solution based on the submodularity property. This



problem, indeed, can be considered as one of the Node Pro-
tectors, particularly the 5;—Node Protector variant. In [8],
Goyal et al. study information dissemination on social net-
work. They provide an greedy algorithm and give a proof
of factor (1 + In ﬁTN) However, that algorithm is a bicri-
teria one with an addictive error € on the number of nodes,
whereas our analysis suggests a deterministic bound which
does not depend on any error parameter.

From the security perspective of OSNs, the information and
influence propagation plays an important role in analyzing
and designing strategies to counter misinformation such as
rumor and computer malware. In [19], for example, Yan et
al. conducted a comprehensive study of malware contain-
ment strategies, including both user-oriented and network
oriented ones, on a moderate-sized online social network.
Their work, albeit offering insights into the nature of mal-
ware propagation in realistic OSNs, was performed fully
from an empirical perspective, and considered only a simple
model for malware propagation. Tackling containment of
viral spread of misinformation in OSNs, however, demands
solutions with a stronger theoretic footing such that they are
applicable to a variety of online social network structures
and information dissemination models. Moreover, Xu et al.
considered the problem of detecting worm propagation in
online social networks, and showed that finding a minimal
set of nodes to monitor for the purpose of traffic correlation
analysis is an NP-complete problem [20]. Our work differs
from theirs as we focus on containing, rather than detection,
of misinformation propagation in OSNs.

DIFFUSION MODELS AND PROBLEM DEFINITION

In this section, we first define two models of influence prop-
agation in online social networks, as well as a mechanism
modeling how good information is disseminated in the net-
work in order to contain misinformation. Under these mod-
els, we further formulate the Bé — NodeProtector problem,
which aims to find the smallest set of highly influential nodes
in the decontamination campaign.

Propagation Models

We first describe two types of information diffusion in the
network, namely the Linear Threshold and Independence
Cascade models. These propagation models have received
a great attention since the seminal work of Kempe et al. [11]
and in this context, they are discussed using the same nota-
tions. For the sake of consistency, we call a node active if
it is influenced by the misinformation either initially or se-
quentially from one of its neighbors, or inactive otherwise.

Linear Threshold (LT) model

In this model, the chance for a node v to adopt the misin-
formation by a neighbor w is determined according to the
weight b, ,, that satisfies ZweN(v) by, < 1 forall win the
neighborhood N (v) of v. Initially, each node v € V inde-
pendently selects a threshold 6, € [0, 1] uniformly at ran-
dom. The goal of this threshold is to represent the weighted
fraction of v’s neighbors that must adopt the misinformation
active in order for v to become active. As we shall see next,

this threshold is related to a linear constraint of b, ,,’s, and
hence the name of the model. Now, given the chosen thresh-
olds for all nodes v’s in V, the propagation progresses from
an initial set of infected nodes I in as follows: in step ¢, all
active nodes in step ¢ — 1 remain active, and any inactive
node v for which the total weight of its active neighbors is at

least 0,,: Zwechm,ﬂ(v) byw > 0, is activated.

Independence Cascade (IC) model

In this model, any node v that became active in step ¢ will
have only one chance to activate each of its currently inactive
neighbor w, and the activation from v to a neighbor node
u succeeds with a probability p, ,,. This probability is a
parameter of the system and does not depend of the history
thus far. If node w has multiple newly activated neighbors,
they will try to activate w sequentially in an arbitrary order.
If any of these attempts succeeds, w is activated at time step
t + 1 and the same procedure continues further on w, i.e., w
will try to activate its inactive neighbors. Again, any node is
given only a single chance to influence its friends, thus if it
fails to do so in time t, it is not allowed to activate its friends
again in time ¢ + 1.

Decontamination mechanism

The decontamination mechanism in our problem is coinci-
dent with the misinformation spreading model. In particular,
once the good information spreads out from a particular set
of nodes Ay, each node u in Ay will try to spread out the
good information to its neighbor node v with the same in-
fluence probability p,, ., (as in the underlying IC model), or
with the same influence threshold 6, (as in the LT model).
We also assume that once a node is decontaminated with
good information, it will no longer be influenced by the mis-
information. Moreover, once good and misinformation reach
a node at the same time, the good information take effect
over the bad one. This assumption makes sense for online
social networks in reality since the good message could an-
nounce to accordingly fix a misinformation included within
itself.

Problem Definition

With the discussed independent cascade and linear threshold
models as well as the decontamination mechanism taken into
account, we consider the following problem in this paper:

DEFINITION 1. (35—Node Protector) Given an social
network represented by a directed graph G = (V, E) and
an underlying diffusion model (either LT or IC model). In
the presence of misinformation spreading out on G from an
either known or unknown initial set I, our goal is to choose
the set S C V of least nodes to decontaminate with good
information so that the expected decontamination ratio on
the whole network, after T time windows, is at least B. Here
T € Nand j € [0..1] are input parameters.

Based on the settings of the initial set I and the time window
T, we have the following four different variants of Node Pro-
tector (NP) problems whose NP-hardness properties can be
certified and are omitted here due to space limit.



1. 8—NP: I is unknown and 7 is unconstrained (7' = c0).
2. B —NP: I is known and T is unconstrained (7' = 00).
3. BL—NP: I is known and T is constrained (T’ < 00).

4. Bp—NP: I is unknown and T is constrained (7" < 00).

Notations

Let N = |V| be the total number of nodes in G. For any
node v € Vand any A C V, let o(v) and o(A) be the
expected number of nodes that will be influenced by v and
A, respectively, if v and A adopt the misinformation (or the
dissemination of good information). Note that ¢(A) and
> wea 0(v) are not necessarily be the same in general, and
o(v) can contain more nodes than just neighbors of v. In
[11], Kempe et al. proved that o() function is submodular
under both IC and LT models, and thus the problem of se-
lecting the set S of k nodes that maximizes o(S) admits an
(1 — 1/e)—approximation guarantee. Other works [7][21]
also study this type of problem in some different settings
and try to show the submodular property of the () function
in these cases, thus conclude the same guarantee factor.

In a different viewpoint, our problem is the complementary
of the previous one where we are given a desired decontam-
ination ratio § and the goal to find the set .S of least nodes.
We stress that while other studies try to prove the submod-
ular property to get the well-known (1 — 1/e) factor, we
indeed use this factor to provide a new point of view into
the problem. Specifically, we use this guarantee to derive a
better lower-bound on the number of nodes in the optimal
solution, as described in the next section.

A BOUNDED METHOD FOR 3—NODE PROTECTOR
When the initial infected set I is unknown and the time win-
dow T is unconstrained, S (or simply 8)—Node Protector
asks for the smallest set of nodes whose dissemination of
good information helps to achieve at least 3 percent decon-
tamination ratio at the end of the process, where no more
nodes get influenced or decontaminated. This is the most
general case that usually occurs in practice, especially on
large OSNSs, and is also the most difficult case to solve. The
main source of difficulty here is that the lack of knowledge
about the initial set I does not enable us to wisely choose
nodes to decontaminate, and thus, we have to do it blindly
with the hope that we could have a good solution. Moreover,
due to its NP-hardness, it seems unrealistic for one to expect
an optimal algorithm for this problem.

A bounded algorithm

We analyze GVS (Greedy Viral Stopper), a greedy solution
for 5—Node Protector utilizing a modification of the well-
known Hill-Climbing (HC) algorithm [22]. At each round
of the algorithm, we include a node v adding the maximal
marginal gain o (S + v) — o (.5) to the current set S until the
B fraction of safe nodes is obtained. By doing so, we can
show that this solution is within a small amount extra from
the optimal solution (Theorem 1). Alg. 1 describes GVS.

Algorithm 1 GVS algorithm for 5—Node Protector
Input: Network G = (V, E), threshold 8 € (0, 1];

Output: A set S C V satisfies o(S) > B|V|;

1: k+1;

Sk +— 0;

. while (o(Sy) < B|V]) do

: v+ argmaxyev\s, 10(Sk +u) —o(Sk)}

3
4
5: k<« k+1;
6
7
8:

[\

Sk« Sk Uw;
. end while
Return S.

THEOREM 1. Alg. I returns a solution S of K nodes for
[8—Node Protector problem that expectedly satisfies

K <|OPT)| +Inax{0,65—N - % +1},
€

where N = |V| is the total number of nodes in the network,
A= ﬁN—O’(SKfl), 0= mini:L“,K,Q{U(SiJrl) —O’(Sl)}
and OPT is an optimal solution set for B—Node Protector.

PROOF. Let us first describe the notations used in this
proof. Let S; (i = 1...K) be the set produced at the ‘"
step of Alg. 1 (note that S = Sk by this definition). For
any integer k, let Opt, (k) be the maximum value of o(A)
over all sets A C V of |A| = k nodes, i.e., Opt,(k) =
maxcv,a|=k{0(A)}. Furthermore, let ¢ = |Q| where Q
is the optimal solution set with the lowest () that exceeds
BN, ie., Q) = argmin 4 s ay opT, O'(A)Z,BN{O.(A)}' It follows
from the above definitions that

(i) ¢ = |OPT| for any optimal solution set OPT'.

(ii) Opty() and o() are nondecreasing functions, and VA C
V,o(A) < Opty(|A]).

(iii) There lie no Opt,(k)’s (Vk = 1...K) strictly between
BN and o(Q) (otherwise it will violate the definition
of Q).

We are now ready to prove the theorem. Since Alg. 1 termi-
nates at the K *" step, it follows that o(Sx_1) < BN. We
consider the following cases:

Case I1: Opt, (K —1) < BN. When Opt, (K —1) < BN, it
implies that any set with even K — 1 nodes is not sufficient to
achieve the desired disinfection goal. Therefore, the optimal
solution () must contain ¢ > K — 1 nodes. Moreover, ¢ <
|S| = K since S is a regular solution. This means |Q| = K,
which in turns implies that S is also an optimal solution.

Case 2: N < Opt,(K —1) < 0(Q). By the definitions of
Q, Opt,(-) and due to (iii), this case can only be valid either
when Opt, (K —1) = SN or Opt,(K — 1) = 0(Q).

When Opt,(K — 1) = 8N, it follows that the optimal so-
lution () must span exactly SN nodes since (@) is the
closest to SN. This also implies BN = Opt,(K — 1) =

Opty(K —2)=...=Opty(q) = 0(Q).
When Opt, (K — 1) = o(Q), it again infers that o(Q) =
Opts(q) = ... = Opt,(K — 1) due to (ii). Now, if ¢ =

K — 1, this greedy algorithm will incur just one more node



than the optimal solution. Otherwise, the analysis of Case
3 can be applied in a very similar manner and consequently,
we obtain the same result K < g + (%V — % + 1) for both

situations.

Case 3: o(Q) < Opt,(K—1) < N. This is our main case to
handle. What we know in this case is |OPT| =¢ < K — 1,
implying Opt,(q) < Opt,(K — 1). We need to bound the
size difference between Sk _; and S, or in other words,
bounding K — 1 — ¢. To do so, we will use the (1 — 1)
approximation result in [22] (note that all K steps of Alg. 1
follow the HC algorithm, and hence, this guarantee follows
naturally), giving (1 — 1)Opt,(q) < 0(S;) < 0(Sk-1) =
BN — A. Therefore, 0(Sk—1) — 0 (Sy) < (BN —A)—(1—
1)Opt+(q). In addition, since Opt,(q) > o(Q) > BN, the
above inequality becomes o(Sx—_1) —0(Sy) < (BN —A)—
(1-HpN =N _ A

In order to lower bound o(Sk_1) — o(S,), we observe that
every time a node v is added into the solution set S;, the
expected number of decontaminated nodes increases at least
by min{o(S;+1) — 0(S;)} > d fori = ¢, .., K — 2. Hence
(K—1—-¢q)0 < o(Sk-1) —0(S,) < %V — A, which
implies |S| = K < |[OPT| + (Y — & 4 1). This bound
also concludes the proof. [

Remarks

Theorem 1 implies the solution returned by GVS is within
a linear factor of SN extra from the optimal solution, given
the desired decontamination ratio 3. Intuitively, the abitrary
selection of any SN nodes in the network is always suffi-
cient for our problem; however, this lower bound implies
that GVS, indeed, selects at most % ~ 36% of this many
nodes extra from the optimal solution. Moreover, the bigger
S, i.e., the smaller the number of misinformation nodes we
allowed, the more nodes we have to protect, and vice versa.
The bound in Theorem 1 nicely reflects this intuition: when
[ is bigger, the range for K in the right hand side (RHS) gets
larger, which allows K to gets bigger as more nodes needed
to be decontaminated. Vice versa, when [ gets smaller, the
range for K reduces as fewer nodes need to be protected.

ALGORITHMS FOR 3/ — AND B%— NODE PROTECTORS

In this section, we study 35, —Node Protector problems where
the initial infected set I is known and the time step 7' is ei-
ther constrained or unconstrained. Due on its NP-hardness,
it seems unrealistic for one to find an optimal solution for
B{F—NP in a timely manner. We further show, by Theorem 2,
that this problem in general is hard to approximate to a log-
arithmic factor via a similar reduction from Set Cover and
proof techniques as in [23]. This result tells us how difficult
this problem is since it implies the nonexistence of any log-
arithmic approximation algorithms for 3% —Node Protector,
under the assumption that P # N P.

THEOREM 2. B§7Node Protector can not be approxi-
mated in polynomial time to a factor of cln N, where c is
some constant and N is the number of vertices in the graph,
under the assumption P # NP.

We next present solutions for 3/ — and 3% —Node Protectors
on general networks. The spirit of our approaches for this
case is also based on HC algorithm, however, the search-
ing space is significantly reduced due to the knowledge of
the initial set /. In particular, we apply GVS algorithm on
the network restricted to 7-hop neighbors of the initial set
I. This provides a slightly better term extra from the opti-
mal solution in comparison with the case of 5—Node Pro-
tector. Our approach is based on the following crucial ob-
servation: once the infected set is known, the total set of
nodes possibly influenced by I is reduced to Np(I) while
the nodes in V\ N (I) will never be active, where N (I) =
Uwer Nr(u) and

{v € V|u can reach v within T hops}, T < o0
{v € V|u can reach v}, T =00

Nr() = {
Hence, once given an initial infected set I and the desired
disinfection ratio 3 in 7" time windows, the algorithm first
identifies N7 (I) and then executes GVS (Alg. 1) on the
induced graph G[Nr(I)] with the new disinfection ratio

N — [Nr(1)]

N )
since these N — |Np(I)| nodes are out of reach of I. If
B’ <0, it means that the fraction of nodes outside of N (1)
is itself sufficient and thus, we do not have to execute the
algorithm. Therefore, we focus on the case 5’ > 0. By using

the similar analysis as in the case of 5—Node Protector, we
can derive the following result

B =p-

THEOREM 3. Alg. I on the induced graph G (1) re-
turns a solution S of K nodes for B}—Node Protector that
expectedly satisfies

"\Np(I A’
K < |OPT|+ max {0, AINc(D] _ A +1},
de )
where 6 = min;—1 . g—2{c(Siy1) —0(S;)}, A = 'N —
o(Sk_1), and OPT is an optimal solution set for 3£.—Node
Protector problem.

EXPERIMENTAL RESULTS

In this section, we show the experimental results of GVS
algorithm on three real networks including the NetHEPT,
NetHEPT_WC and the Facebook social networks. We want
to demonstrate the followings (1) how GVS algorithm works
on 3— and 3£ —Node Protector problems via some practical
settings in comparison to other available methods (2) the ex-
pected lower bounds of the optimal solutions between ours
and those suggested by the (1 + In @) factor [8].

We also planned to compare our results to those of [7]. How-
ever, since the dissemination probabilities in our models are
distributed in the range [0,1] (as of the diffusion model),
whereas [7] assumes the high effectiveness property (i.e.,
good information spreads out with an absolute probability,
i.e., pu,» = 1 if there is an edge from u to v, and zero other-
wise), it does not seem appropriate to do so. In what follows
we assume the IC information propagation model.



Datasets

NetHEPT and NetHEPT_WC

The NetHEPT network is a widely-used dataset for testing
information diffusion purpose [21][24]. This dataset con-
tains information, mostly the academic collaboration from
the “High Energy Physics - Theory” section on arXiv where
nodes stand for authors and links represent the coauthorship.
In their deliverable, the NetHEPT networks contain 15233
nodes and 31398 links, and the probabilities on edges are
assigned by either uniformly at random (for NetHEPT) or
by weighted cascade (for NetHEPT_WC) where p(u,v) =
1/d;n (v) with d;y, (v) is the indegree of a node v. Note that
WC is a special case of IC model when the probability for
each edge is predetermined.

Facebook network

This dataset contains friendship information among New Or-
leans regional network on Facebook, spanning from Septem-
ber 2006 to January 2009 [9]. To collect the information, the
authors created several Facebook accounts, joined each to
the regional network, started crawling from a single user and
visited all friends in a breath-first-search fashion. The data
set contains more than 63K nodes (users) connected by more
than 1.5 million friendship links with an average node degree
of 23.5. In our experiments, the propagation probability for
each link connecting to users u and v is proportional to the
communication frequency between v and v, normalized on
the whole network.

Setup

We compare GVS algorithm with the following algorithms
(1) Random: Include nodes at random to the current solution
until the stopping criterion is met (2) High degree: Include
nodes with the highest weighted degree to the solution un-
til the stopping criterion is met (3) DiscountIC: A method
based on the weighted discount for IC model suggested in
[21] and (4) Page Rank: Include nodes to the solution based
on their importance.

In all experiments, the Monte Carlo simulation for estimat-
ing expected influence is averaged over 1000 runs for consis-
tency. Since the execution of the GVS method is expensive
as shown in the running time analysis, we just conduct test
cases on small values of /3, ranging from 0.01 to 0.37. At
any value of 3, we run all methods independently and report
the number of selected nodes suggested by each of them.

Number of selected nodes

Results on [3—Node Protector

Recall that the ultimate goal of our problem is to choose the
set of least nodes so that at least 3 dissemination ratio on the
whole network is achieved, therefore, the smaller number of
nodes we have to choose, the better. Left charts of Figures
1(a), (b) and (c) report the performance on 5—Node Protec-
tor problem of all methods in different datasets. As depicted
in those figures, the number of selected nodes returned by
GVS algorithm is the smallest among all competitors. In
particular, GVS is roughly 24% better than the second best
method DiscountIC, is 75% better than the Highest Degree,
and is more than 1.5x better than the Random method.
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Figure 1. Results of GVS algorithm for 3—Node Protector on real so-
cial networks (left figures) and the expected lower bounds of the opti-
mal solution (right figures)

We observe that the behavior of all methods are nearly the
same on the two NetHEPT and NetHEPT_WC datasets al-
though the number of selected nodes on the NetHEPT_WC
data is slightly smaller. Moreover, the number of selected
nodes tends to curve up as the dissemination fraction 3 gets
larger. On Facebook dataset, GVS, again, outperforms other
methods in term of size of the selected seeds set and is much
better than Random and Highest Degree methods. While
Random, not surprisingly, performs the worst in the pool, we
had expected Highest Degree to have a better performance.
Its poor performance can be explained by the sparseness of
the real network: the highest degree nodes could influence
more nodes, however, they are not necessarily the most in-
fluential ones possibly because they have a little chance to
influence each of their neighbors. In fact, this is the case
since edges with high probabilities mostly connect low de-
gree nodes in Facebook network. In addition, unlike in other
datasets, the numbers of nodes returned by all methods on
Facebook network increases linearly as 3 becomes bigger.

Results on 31 and 1. —Node Protectors

We next look at the behavior of GVS and other methods un-
der 31 and 3L —Node Protector settings. In particular, we
randomly choose 15% of the total number of nodes to be
1, the initial source of misinformation propagation, and set
T = 5and T' = oo time windows. We restrict the scope
of GVS algorithm on the reduced network G[Np(I)], and
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Figure 2. Results of GVS algorithm for 65{ —Node Protector on real
social networks (left figures) and the expected lower bounds of the op-
timal solution (right figures)

provide [ as part of the input for other methods. The num-
bers of nodes - edges contained in these restricted networks
G[Nr(I)]’s of L —Node Protector (resp. 3—) are 6645
- 18236 (resp. 7315 - 22189) for NetHEPT, 8647 - 21091
(resp. 9745 - 26352) for NetHEPT _WC and 21816 - 865930
(resp. 26816 - 1M) for Facebook dataset, respectively.

The results are reported in left charts of Figures 2(a), (b) and
(c). As expected, the numbers of selected nodes returned by
the GVS algorithm on the reduced networks outperform the
other competitors with bigger gaps between them. In aver-
age, GVS is 64% better than DiscountIC method, 1.2x better
than the Highest Degree method and up to 2.3x better than
the worst Random method. The behaviors of all methods are
also consistency with what have been observed in the previ-
ous test case. We also notice the reduction on numbers of
nodes to be selected of all methods, particularly for GVS.
The number of nodes chosen by GVS algorithm is reduced
by at least one half for three cases. Of course, this is what
one should expect once the knowledge of I is provided, and
especially when the sizes of the restricted network are much
smaller. The empirical result charts for 37 —Node Protector
are highly similar to those visualized and discussed above
and thus, are excluded for simplicity.

There are rooms for improvement here, such as how to wisely

choose nodes when [ is the set of some specific targets such
as high-degree nodes, or nodes with low or average degrees.
While they do sound interesting, we believe that is out of
what we are aiming at, and thus, would be included in our
future work.

Lower bounds of the optimal solutions

We further investigate on how big the size of the optimal so-
Iution set would expectedly be once we are provided with
the greedy solution S of GVS. Recall that our result is | S| =
K < |OPT| + max{0, (52 — & 4+ 1)}. Goyal et al. [8]
states that K < (1 + In B?N)|OPT|, where € > 1 is the
additive error to the number of nodes to be decontaminated.
Given a solution S of GVS algorithm, both this result and
ours provide the knowledge on the lower-bound of the opti-
mal solution O PT. Theoretically, none of them dominates
the other on all network instances (for example, a clique with
(1 — n) probabilities on all edges is more suitable for the

(1+In ﬁTN)-factor while social networks are more suitable
for ours, as we shall see below). Of course, a larger and
tighter value for this lower bound is of desire since it tells us
how large the size of the optimal solution should be. Thus,
we also want to know how the two results look like in real-
world networks. Here, ¢ = 1 since in term of nodes, this
error should be an integer greater or equal to one.

As revealed in the right charts of Figures 1, 2 (a), (b) and (c),
our lower bounds (indicated in red circles) are usually larger
than that of [8] in all test cases, and consequently provide a
more meaningful insight into the expected size of the opti-
mal solution: for any given 3, the size of the optimal solution
should lie somewhere in between the region induced by the
GVS solutions and our lower bounds. This also provides a
new point of view into the problem as it ensures that the op-
timal solution is not too far away from the one returned by
the greedy algorithm. Note that our result does not necessar-
ily imply the existence of any constant or logarithmic factor
approximation algorithms.

A COMMUNITY-BASED HEURISTIC ALGORITHM

As described in the experiments, GVS algorithm provides
very good solutions for both 3— and 3L —Node Protector
problems in comparison with other methods. However, one
of its down sides is the extremely slow execution due to the
expensive task of estimating the marginal influence when
a node is added to the current solution. Even with avail-
able speed-up provided in [21][24][25] for estimating this
marginal gain, GVS still takes a long time to finish its tasks,
especially on Facebook social networks (more than 5 hours).
This means GVS, despite its very good outcome, might not
be the best method for analyzing large-scale online social
networks, particularly when the execution time is also a con-
straint. This drives the need for a more desirable approach
which can return a good solution set in a timely manner.

To derive a good heuristic method for Node Protector prob-
lems on large OSNs, we take into account a notable phe-
nomenon that commonly exhibits among them: the property
of containing community structure, i.e., they naturally di-
vide into groups of vertices with denser connections inside



each group and fewer connections crossing groups, where
vertices and connections represent network users and their
social interactions, respectively. Roughly speaking, a com-
munity on social networks usually consists of people sharing
common interests who tend to interact more frequently with
other members in the same community than with the outside
world. The knowledge of network community structure, as
a result, provides us a much better understanding about its
topology well as organization principles. Community detec-
tion methods and algorithms can be found in an excellent
survey of Fortunato et al. [26].

Social-based and community-based algorithms utilizing net-
work communities have been shown to be effective, espe-
cially when applied to online social networks [27][28][29].
Taking into account this great advantage of community struc-
ture, we propose a community-based heuristic method that
can return a reasonable solution in an timely manner. Specif-
ically, our method consists of two main phases (1) Commu-
nity detection phase to quickly reveal the network commu-
nity structure and (2) Influence node selection phase to effec-
tively select nodes of high influence. The detailed algorithm
is described in Alg. 2.

Algorithm 2 A community-based algorithm for S—Node

Protector

Input: Network G = (V, E), threshold 8 € (0, 1];

Output: A set S C V satisfies o(S) > S|V|;

1: Use Blondel’s algorithm [30] to find community structure in G; Let C
{C1,C2, ..., Cp} be the network communities with |C1| > |C2| > ---
[Cpl;

IVl

2: S « 0

3: for i from 1 to p do

4: S+ 0

5: while (o(S;) < B|C;|) do
6: v 4 argmax,evis; 10(S; +u) — o (Si)};
7: Si « S; U{v};

8:  end while

9: S« SuSsy

10:  ifo(S) > B|V| then

11: break;

12: end if

13: end for

14: Return S.

Community detection

As described in Alg. 2, detecting the network communities
is the first phase and also is an important part of our method.
A precise community structure that naturally reflects the net-
work topology will help the selection of influential nodes in
each community to be more effective. Because the detection
of network communities is not our focus in this paper, we
utilize an community detection method proposed by Blondel
et al. [30] whose performance has been verified thoroughly
in the literature [31].

There are some good features of this detection algorithm that
nicely suite our purposes. First, it returns a community struc-
ture whose links within a single community are usually of
high probabilities, and those who coming across communi-
ties are often of low probabilities. This is to say, the influ-
ence propagation within each community is of high proba-
bility whereas the chance for misinformation to spread out
between communities are relatively small. Second, the size

of each community is much smaller in comparison with the
whole network, and nodes in each community are usually
(weakly) connected to each other. Moreover, they are often
of small distances, i.e., they can reach each other within a
few hops. Finally, it execution time is reasonably fast, which
means it would not add more time to our process as a whole.

High influential node selection

As soon as the first phase finishes, we are provided with a
community structure C as partition of V' into disjoint sub-
sets C1, Cy, ..., Cp, and we need to select nodes from these
subsets so that the 8 dissemination ratio is achieved. For
simplicity, we assume that the communities are sorted in a
non-increasing order of their cardinalities.

Since edges crossing between communities are of usually
low probabilities, it follows that a node from a community
often has a little chance to spread out misinformation (or
good information if it is decontaminated) to another node
in a different community. Therefore, our problem can be
regarded as the selection of nodes in each community to de-
contaminate so that 3 percent of inactive nodes is achieved
within each community, and hence achieving the total 8 per-
cent on the whole network. Intuitively, one would think of
applying the GVS algorithm to each community to find the
set of influential nodes to decontaminate. In fact, that is the
approach we adopt here. At each community C;, we greed-
ily select nodes providing the maximal marginal gain and
add it to S; as well as the final solution S, until the stop-
ping criterion is met. The motivation behind our approach
is due to the stronger of influence within each community
and the much smaller size of each community in comparison
with the whole the network. Thus the selection of influential
nodes should not be too expensive as it used to be.

Node selection results

In this subsection, we report the simulation results of the
heuristic algorithm in comparison with the aforementioned
methods. We demonstrate the followings (1) the number of
selected nodes and (2) the execution time. The experimental
setup is still kept the same as in Section . The numbers of
communities detected by Blondel’s algorithm on NetHEPT,
NetHEPT_WC and Facebook are 1841, 1839 and 260, re-
spectively. We remove Random method from the charts due
to its poor performance and to make the plots more visible.

Simulation results are reported in Figure 3. As depicted
in these subfigures, the numbers of nodes selected by the
community-based method (Community - in red circles) are
highly competitive in comparison with those of other meth-
ods, if not to say they tend to get much better as more and
more nodes need to be immunized with the misinformation.
In particular, this quantity is a little big lag behind the oth-
ers for small values of 3 € [0...0.18] on both NetHEPT
and NetHEPT_WC datasets and 8 € [0...0.9] on Facebook
network, however, it becomes much better than other meth-
ods as the dissemination ratio /3 gets larger. In average, the
community-based method is roughly 16%, 41% and 22%
better than GVS, High Degree and DiscountIC methods for
B € [0.2...0.35] on NetHEPT and NetHEPT_-WC, and is
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Figure 3. Results of the community based method on social networks
nearly 10% better than the greedy method on Facebook for Table 1. Runnine fime of f N
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that NetHEPT, NetHEPT_WC and Facebook, in fact, feature
only a few large-size communities while containing a lot of
small-size ones, most of which are of cardinalities 6 and 8
(Note that this is not a surprising observation since it intu-
itively agrees with the finding of [26][32]). Moreover, the
most influential nodes are usually scattered among differ-
ent communities. Therefore, when the number of required
nodes is small, GVS algorithm can freely pick up these in-
fluential nodes while the Community algorithm has to obey
selecting influential nodes in larger communities. That ex-
plain the down sides of this method in the smaller range of
5. However, on the other hand, when there are more and
more nodes need to be immunized, Community algorithm
can simply pick up most influential nodes from smaller-size
communities (where each of which can easily influence the
whole community), where GVS algorithm might have to se-
lect more nodes from other places to satisfy the criterion.

We next investigate the effect of network communities in
our problems. In the general belief, while the local stars are
ideal for vaccination, the dissemination should also target on
nodes that are accross communities since (1) they are typi-
cally a small population, and (2) decontaminating them will
keep any misinformation within small circles. However, that
is not the case observed in our experiment. The reason can
be explained as follow: since the discovered communities
are of high internal (and low external) propagation proba-
bilities within each community (and between multiple com-
munities), the bridge nodes are generally of little chances
to spread out the misinformation to their neighbor commu-
nities, whereas the local stars preserve much higher impact
and thus should be included in the solution. This is, perhaps,
our most interesting finding that is somewhat in contradic-
tion with the general belief.

Running time

We next take a look at the running time of the Commu-
nity algorithm (community detection time is also included)
and other methods. In compensation for its good perfor-
mance, GVS consumes a huge amount of time on each of
the datasets, especially on Facebook network where it takes
more than 5 hours to find out the solution. While other meth-
ods take fair amounts of time (from 1 to 21 minutes) for ana-
lyzing these average-sized datasets, they pose potential pos-
sibilities to consume much more time on larger social net-
works. The community-based method, thanks to the advan-
tage of the network community structure, is able to reduce
the huge processing time (from hours to minutes) and fin-
ishes its tasks in a timely manner, while maintaining a com-
petitive performance. However, unlike GVS, this algorithm
does not provide any guarantee on the optimal solution.

In conclusion, we believe that GVS is one of the best infor-
mative methods for finding highly influential nodes on small
social networks where running time is not a requirement,
whereas the community-based method can be regarded as a
good heuristic method for hinting out those important nodes
on large-scale social networks.

CONCLUSION AND DISCUSSION

We study 31.—Node Protector problems which aim to find
out the set of least nodes whose decontamination with “good”
information provides at least 3 disinfection ratio on the whole
network. We analyze GVS (Greedy Viral Stopper), an algo-
rithm for S—Node Protector that greedily adds nodes with
the best influence gain to the current solution, and show that
this algorithm selects a small fraction of the total nodes extra
from the optimal solution. We apply GVS to the network re-
stricted to T'-hop neighbors of the initial set I and achieve
a slightly better bound for 3% —Node Protector problems.



We propose an community-based algorithm which returns
a good selection of nodes to decontaminate in a timely man-
ner. Finally, we verify our approaches on real-world traces
including NetHEPT, NetHEPT_WC and Facebook networks.

There are some open issues that are worth discussing here.
Firstly, we assume that once a user is disseminated with the
good information, he will spread it out to all of his friends.
However, in reality, how would we persuade a highly in-
fluential node (probably a star) to adopt the good informa-
tion and spread it out on the social network? Secondly, we
assume that the dissemination and misinformation diffusion
models are coincident. It would make more sense, in prac-
tice, if we use different probabilities for them since the good
information may spread out with a faster rate than the misin-
formation. Nevertheless, we find these issues interesting and
would be included in our research directions in the future.
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