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Abstract. Locating Brain tumor segmentation within MR (magnetic
resonance) images is integral to the treatment of brain cancer. This seg-
mentation task requires classifying each voxel as either tumor or non-
tumor, based on a description of that voxel. Unfortunately, standard
classifiers, such as Logistic Regression (LR) and Support Vector Ma-
chines (SVM), typically have limited accuracy as they treat voxels as in-
dependent and identically distributed (iid). Approaches based on random
fields, which are able to incorporate spatial constraints, have recently
been applied to brain tumor segmentation with notable performance im-
provement over iid classifiers. However, previous random field systems
involved computationally intractable formulations, which are typically
solved using some approximation. Here, we present pseudo-conditional
random fields (PCRFs), which achieve accuracy similar to other random
fields variants, but are significantly more efficient. We formulate a PCRF
as a regularized discriminative classifier that relaxes the classification de-
cision for each voxel by considering the labels and features of neighboring
voxels.

1 Introduction

Segmenting brain tumors in magnetic resonance (MR) images involves classifying
each voxel as tumor or non-tumor [1–3]. This task, a prerequisite for treating
brain cancer using radiation therapy, is typically done by hand by expert medical
doctors, who find this process laborious and time-consuming. Replacing this
manual effort with a good automated classifier would save doctors time; the
resulting labels may also be more accurate, or at least more consistent.

We treat this as a binary classification task, using a classifier to map each
MR image voxel described as a vector of values x ∈ <d to a bit y ∈ {+1, −1},
corresponding to either tumor or non-tumor. We first learn this classifier from
a set of data instances {〈xi, yi 〉}i [4]. Here, we focus on probabilistic classifiers



that actually return a class likelihood value P ( y = +1 |x ) ∈ [0, 1] for each voxel;
our classifier can then return +1 (tumor) if P ( y = +1 |x ) ≥ 0.5. In general,
given an entire n × m image, our classifier will seek the most likely labeling
over {−1, +1}n×m: Y(∗) = argmaxY P (Y |X ) . (This use of probabilities
distinguishes these approaches from many other segmentation approaches, such
as those based on variational and level set techniques [5, 6].)

Standard machine learners, such as Näıve Bayes, logistic regression (LR), and
support vector machines (SVMs), produce effective classifiers in many domains
[7, 8]. However, these algorithms assume that the individual instances are iid.
This is appropriate if the instances correspond to, say, a patients in a study, as
finding that one patient responds well to some treatment does not mean that the
next patient will also respond well. However, this assumption is problematic in
our current situation, where each instance corresponds to a voxel: Here, finding
that one voxel is labeled a tumor strongly suggests that its neighbors will have
a similar label; similarly non-tumor voxels tends to be next to other non-tumor
voxels. Algorithms that assume the data is iid typically perform poorly when the
data is not, which is why these algorithms do relatively poorly at segmentation
tasks.

This has motivated researchers to apply Markov Random Fields (MRFs; [9])
and Conditional Random Fields (CRFs; [10]) to various segmentation tasks.
These techniques are able to represent complex dependencies among data in-
stances, giving them higher accuracy on the segmentation task than iid classi-
fiers [11, 12]. However, these random field approaches are based on computation-
ally intractable formulations. Although there are approximation techniques that
can deal with these computational challenges, CRF variants such as Discrimina-
tive Random Fields (DRFs) and Support Vector Random Fields (SVRFs) still
require computationally expensive learning procedures [11, 13].

In this paper, we present a novel supervised learning system, PCRF, that
can efficiently produce high-quality segmenters, incorporating spatial constraints
among MR image voxels. PCRF can be viewed as a regularized iid discriminative
classifier that is first trained assuming the data is iid; this makes the training
computationally efficient. It then relaxes the iid assumption during inference, by
including a regularizing term that uses the class labels and feature vectors of
neighboring voxels of a given voxel. We demonstrate that PCRF is robust and
efficient by illustrating its performance at segmenting MR images of the brains
of tumor patients. We show that PCRF is significantly more accurate than the
corresponding base iid classifiers, and is significantly more efficient that other
random field methods during training, while producing similar accuracy.

Section 2 reviews related work, including random field models. Section 3
introducing our framework and novel PCRF system. Section 4 presents experi-
ments that empirically demonstrate the efficiency and effectiveness of our model.



2 Background

We view brain tumor segmentation on a 2D MR image as classifying each image
voxel as either tumor or non-tumor. The challenge is finding the most likely
configuration of (tumor vs. non-tumor) labels Y = (y1, y2, . . . , yr) ∈ {−1, +1}r

for the voxels of a 2D MR image X = (x1,x2, . . . ,xr), where each set ranges
over the set of indices S of all voxels in the r = m×n image, each yi ∈ {−1, +1}
is the label for voxel i, and xi is the feature vector for voxel i.

A pair-wise MRF is formulated as

P (Y |X ) ∝ P (Y,X ) =
1

Z(X)
exp


∑

i∈S

D(xi, yi) +
∑

i∈S

∑

j∈Ni

V (yi, yj)


 (1)

where D(xi, yi) corresponds to the local log likelihood log(P (xi | yi )) of xi given
a class label yi; V (yi, yj) is a potential function that explicitly encodes the de-
pendencies between labels at i and its neighbor j, based on Ni, which is the set
of voxels neighboring xi. Z(X) is a normalizing factor to make the formulation a
probability distribution. We can read-off the MRF assumptions from Equation 1:
that the voxels are conditionally independent given their class labels, and that
spatial correlations are modelled based only on the labels of neighboring voxels
(yi and yj) but not on the observations (xi and xj). These factors limit the
advantages of using MRFs to model spatial dependencies in MR images [11–13].

CRFs attempt to overcome these disadvantages by relaxing the conditional
independence assumption and incorporating observations into the formulation
of spatial dependencies.

P (Y |X ) =
1

Z(X)
exp


∑

i∈S

A(yi,X) +
∑

i∈S

∑

j∈Ni

I(yi, yj ,X)


 (2)

where A(yi,X) corresponds to the conditional probability distribution (while
the MRF’s D(xi, yi) corresponds to the log conditional probability), and the
I(yi, yj ,X) term incorporates observations of data instances (unlike MRF’s V (yi, yj)
which does not). The Discriminative Random Field (DRF) is a variant of the
CRF that performs robustly in 2D image region classification problems [13]. The
Support Vector Random Field (SVRF) is a modification of DRFs that address
high dimensional feature vectors and imbalanced datasets effectively [11].

Unfortunately, DRFs and SVRFs are computationally expensive, especially
during learning, as their computations are exponential in the number of data
points. This is basically due to their need to compute the partition function,
corresponding to the Z(X) in Equation 2. (Note that Gaussian assumption of
MRF makes Z(X) in Equation 1 simpler.) This has led to many approximation
methods, such as pseudo-likelihood, contrastive divergence, and pseudo-marginal
approximation [10, 13, 14, 12]. Unfortunately these approximations reduce the
accuracy of the learned segementor. This motivated Decoupled Conditional Ran-
dom Fields (DCRFs [15]), which speed up the CRF-based computation by ap-
proximating a CRF as the combination of two classifiers that are each trained



separately. As the DCRF framework searches for the parameter values that op-
timize each model separately, the combined parameter values are not necessarily
globally optimal.

3 Pseudo Conditional Random Fields – PCRFs

The PCRF framework attempts to obtain the advantage of both the MRF and
CRF approaches by relaxing the iid assumption of a simple discriminative clas-
sifier by adding a regularization term. We want to find the most-likely labelling
Pθ(Y |X ) =

∏
i∈S Pθ( yi |X,Y − yi ). Given feature vectors (observations) xi

for each voxel i as well as the class labels yNi over neighboring voxels j ∈ Ni,
the PCRF formulation defines

Pθ( yi |xi,xNi , yNi ) = ψθ(xi, yi)×
∏

j∈Ni

φo(xi,xj)× φc(yi, yj), (3)

where the potential functions φo(xi,xj) quantifies the similarity of the feature
vectors for voxels i and j, and φc(yi, yj) models the interactions between the two
class labels yi and yj . We can adjust φc(.) to alter the degree of continuity with
respect to class labels expected by the model; e.g., if we set φc to give high weight
when neighboring voxels share the same class label, then the resulting PCRF
will prefer having the same class labels among neighboring voxels. Alternatively,
setting φo ≡ 1 and φc ≡ 1 would remove all spatial dependencies, leading to
an iid classifier. Note we use a fixed pair of potential functions: here we set
φo(xi,xj) = xT

i xj , as the similarity measure between neighboring voxels; note
this measure is maximum value when the two vectors are co-linear. We also set
φc(yi, yj) = α if yi ≡ yj , and 1− α otherwise, where α weighs the continuity of
identical class labels. Here we used α = 0.6.

For now, we define ψθ(xi, yi) = σ(θT xi) = 1
1+exp(−θT xi)

as a simple logistic
regression classifier. We chose a discriminative approach rather than a generative
one because the former empirically shows better performance than the latter [8].

Learning Learning the PCRF parameters is more efficient than for other CRF
variants as a PCRF needs to fit only the parameter vector θ for a local po-
tential function ψθ(.), which does not involve any spatial interactions. Here,
we use the standard way to maximize the conditional log-likelihood θ(∗) =
arg maxθ

∑
i∈S

[
yi log σ(θT xi) + (1− yi) log(1− σ(θT xi))

]
.

Inference The PCRF inference process incorporates regularization based on
neighbor relationships. In general, the objective of inference is to maximize the
log likelihood:

Y∗ = arg max
Y

log P (Y |X )

= arg max
Y

∑

i∈S

log ψθ(xi, yi) +
∑

i∈S

∑

j∈Ni

log φc(xi,xj) + log φo(yi, yj) (4)



The graph cuts algorithm solves image pixel classification tasks by minimizing
an energy function when spatial correlations among pixels are independent of the
observations; this involves using linear programming to find the max-flow/min-
cut on a graph whose nodes correspond to voxels and edges correspond to connec-
tions between neighboring voxels [16]. We reformulate this graph cuts approach
to apply to our PCRF framework (Equation 4), where neighbor relationships are
dependent on both the labels and the observations (feature vectors).

4 Brain Tumor Segmentation

We applied our PCRF model to the challenging real world problem of segmenting
brain tumors in MR images. Since a PCRF can be viewed as a regularized
discriminative iid classifier, we first show the differences between PCRF and its
degenerate iid classifier – LR.

To quantify the performance of each model, we used the percentage Jaccard
score J = 100× TP

(TP+FP+FN) , where TP denotes the number of true positives,
FP false positives, and FN false negatives, taken over the entire image. We used
this score for brain tumor segmentation task as this data is very imbalanced in
that only a small percentage of voxels are in the “tumor” class; hence scores like
“accuracy” would be high as the “true negative” class is typically huge.

We applied several different models – LR, PCRF, SVRF – to the task of clas-
sifying MR image slices, where each slice is defined with 258 by 258 pixels, each
of which is described using 33 features [17]. We considered data from 11 patients
with brain tumors; for each patient, we annotated each voxel with values based
on three different MR imaging modalities: T1, T2, and T1 with gadolinium con-
trast(“T1c”). We focus on 2D images; this is sufficient to illustrate the challenges
as the neighborhood structure here involves cycles, which makes both inference
and learning procedures computationally challenging5. Testing and training were
done in a patient-specific manner: for each patient, each algorithm was trained
on a subset of the patient’s data, then tested on another (disjoint) subset. This
is similar to the approach taken in many other studies of automatic brain tumor
segmentation such as [18–21].

Our systems attempted to segment the “enhancing” tumor area — the re-
gion that appears bright on T1c images. Note that it is not sufficient to simply
threshold T1c images by “brightness” because other tissues can have the same
range of intensities. In the case of glioblastomas with necrotic cores, which ap-
pear dark on T1 images, we defined the enhancing rim of the tumor as well as
the dark necrotic core as the target tumor region.

Fig. 1 shows one example of segmentation results. One test and its correct
label (”ground truth”) slice are shown in first two columns respectively. The
result from LR, shown in third from Fig. 1, indicates that LR correctly classifies
the tumor region but that it also misclassifies several small non-tumor regions

5 We are beginning to explore extending this approach to 3D, which involves simply
redefining the neighborhood structure.



(a) Testing Slice (b) Ground Truth (c) LR(J=66.45) (d) PCRF(J=71.11)

Fig. 1. Classification results. The PCRF shows almost 4% improvement of Jaccard
score over LR.
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Fig. 2. Jaccard Scores (percentage)

as “tumor”. PCRF’s result, which appears on the far right, is more accurate.
(See [22] for the complete set of larger images.)

Fig. 2(a) presents the Jaccard percentage scores from the 11 studies, where
points above the diagonal line denote instances in which the PCRF performed
better than its degenerative model, LR. Overall, the PCRF’s accuracy was sta-
tistically significantly higher than LR’s at p < 0.005 on a paired sample t-test.

We also compared our PCRF system with the state-of-the-art CRF vari-
ant, the Support Vector Random Field (SVRF [11]), whose potential func-
tions are based on Support Vector Machines (SVMs). Here, we implemented
PCRF(SVM), which differed from the PCRF system only by using an SVM to
compute the ψ(x, y) (from Equation 4) which models the relationship between
a voxel’s feature vector and its label. An SVM produces the distance between
a hyperplane and a data instance as its decision value fSV M (xi) ∈ (−∞,+∞).
To normalize this unbounded range, we fit this value to a sigmoid function:
gβ0,β1(x) = P ( y = +1 |x ) = 1

1+exp(β0+β1(x)) , estimating the parameters β0 and
β1 from the training data {(fSV M (xi), yi)}i [11]. Figure 2(b) compares the per-



centage Jaccard scores of PCRF(SVM)6 vs SVRF. It is clear that PCRF(SVM)
is comparable with SVRF.

We next considered the timing. As our PCRF did not need to learn param-
eters for its spatial correlation model, we anticipated it would be significantly
faster during the learning stage. The learning times (average across 11 patients,
in seconds) confirm this:

DRF SVRF DCRF PCRF
Tumor segmentation 1697 1276 63 38

Our PCRF was over 40 times faster than the DRF and over 30 times faster
than the SVRF (p < 10−37 and p < 10−29, paired-samples t-tests for DRFs
and SVRFs, respectively). Even DCRF, known as the fastest CRF variant, is
significantly slower than our PCRF (p < 10−26).

5 Conclusion

We found that the PCRF(SVM) system, which uses a linear SVM to map from
voxel to label, worked effectively. We might be able to obtain further performance
improvements by using a non-linear kernel function. In addition, we might be
able to produce a more robust model by incorporating a prior P ( θ ) over θ
to further reduce the possibility of overfitting. We are extending this work to
develop effective systems to overcome the limitations of patient-specific training,
by taking advantage of semi-supervised learning principles.

Contributions This paper has presented the Pseudo Conditional Random Field
(PCRF) model, a CRF-inspired formulation that incorporates a specified poten-
tial function to model the relationships between neighboring voxels. Our PCRF
is fast to train as it does not need to fit parameters that model the neighbor
relationships. It can be viewed as a regularized iid classifier, whose classification
decisions for each pixel involve the labels and features of neighboring voxels.
Thus, during inference, PCRF avoids the iid assumption, which is inappropriate
for image segmentation tasks. We demonstrate that PCRF is effective by showing
it can effectively segment brain tumors from MR images, achieving state-of-the-
art segmentation results, but at a small fraction of the training time.

Acknowledgments R. Greiner is supported by NSERC and the Alberta In-
genuity Centre for Machine Learning (AICML). C-H Lee is supported by the
AICML. M. Brown is supported by Alberta Cancer Board. Our thanks to Dale
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6 PCRF(SVM) outperformed the SVM, which is a robust i.i.d. classifier (p < 0.001);
see [22] for details.
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