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ABSTRACT
The invention of resistive-switching random access memory
(RRAM) devices and RRAM crossbar-based computing sys-
tem (RCS) demonstrate a promising solution for better per-
formance and power efficiency. The interfaces between ana-
log and digital units, especially AD/DAs, take up most of the
area and power consumption of RCS and are always the bot-
tleneck of mixed-signal computing systems. In this work, we
propose a novel architecture, MEI, to minimize the overhead
of AD/DA by MErging the Interface into the RRAM cross-
bar. An optional ensemble method, the Serial Array Adaptive
Boosting (SAAB), is also introduced to take advantage of the
area and power saved by MEI and boost the accuracy and
robustness of RCS. On top of these two methods, a design
space exploration is proposed to achieve trade-offs among ac-
curacy, area, and power consumption. Experimental results
on 6 diverse benchmarks demonstrate that, compared with
the traditional architecture with AD/DAs, MEI is able to
save 54.63%∼86.14% area and reduce 61.82%∼86.80% power
consumption under quality guarantees; and SAAB can fur-
ther improve the accuracy by 5.76% on average and ensure
the system performance under noisy conditions.

1. INTRODUCTION
Power Efficiency has become a major concern in modern

computing system design [1]. However, as the scaling down
of traditional CMOS technique is approaching the physical
limit, it is becoming more and more difficult for contempo-
rary digital systems to achieve substantial gains of power
efficiency in the predictably scaled technology node. Mean-
while, the memory bandwidth required by high-performance
CPUs has also increased beyond what conventional memo-
ry architectures can efficiently provide, leading to an ever-
increasing “memory wall” challenge to the efficiency of von
Neumann architecture [2]. Consequently, there is a growing
research interest of exploring emerging nano-devices and new
computing architectures to satisfy the continuously growing
requirement of power efficiency [3].

In recent years, the innovation of resistive-switching ran-
dom access memory (RRAM) devices and RRAM Crossbar-
based computing System (RCS) provides a promising solu-
tion to significantly boost the performance and efficiency of
computing systems. The ultra-high integration density en-
ables RRAM devices to support large amounts of signal con-
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nections within a small footprint [4]. More importantly, the
RRAM crossbar structure provides an innovative alternative
to the von Neumann architecture by changing the architec-
ture to combine computation and memory together and nat-
urally realize the matrix-vector multiplication [5]. For exam-
ple, an approximate computing framework based on the RCS
has demonstrated hundreds of times of power efficiency gains
compared with the CPU [6].

The interfaces between digital and analog units are always
the key consideration of RRAM crossbar-based computing
systems. The RRAM crossbar realizes matrix operations in
analog, and analog-to-digital and digital-to-analog converter-
s (AD/DAs) are usually required in the mixed-signal system
to bridge the digital part and the RRAM-based analog data
processing unit. However, compared with the high density
and efficiency of RRAM crossbar, AD/DAs not only take up
most of the chip area, but also consume much more pow-
er than RRAM devices and other analog peripheral circuits.
Consequently, the overhead of conversions significantly limits
the potential efficiency gains of RCS [7, 8].

In this paper, we present a novel solution to minimize the
overhead of AD/DAs by merging the interface into the R-
RAM crossbar structure. The technique is based on the idea
that we can try to make an RCS directly learn the relation-
ship between the binary arrays, which represent the input and
output digital data, instead of the analog value converted by
AD/DAs. The main contributions of this work include:

• We present MEI (MErging the Interface), a novel ar-
chitecture for reducing the interface overhead by in-
tegrating the AD/DA into the RRAM crossbar array.
Experimental results of 6 benchmarks show that MEI
is able to provide comparable accuracy and reduce up
to 86.14% area and 86.80% power consumption of RCS.
To the best of our knowledge, this is the first work that
proposes to use the RRAM crossbar itself to eliminate
the interface problem.

• We argue that the area and power consumption saved
by MEI can be used to boost the accuracy and robust-
ness. And we introduce SAAB (Serial Array Adaptive
Boosting), an ensemble method customized for RCS,
which is able to achieve up to 13.05% further improve-
ment of accuracy, and can simultaneously increase the
system robustness to different non-ideal factors.

• Because MEI is aimed to reduce the area and power
consumption, while SAAB boosts the accuracy at the
cost of consuming more energy and area, we propose a
flow to explore the design space and achieve trade-offs
among accuracy, area, and power consumption.

The rest of this paper is organized as follows. In Section 2,
we introduce the background knowledge and a motivation
example. Then Section 3 presents the proposed techniques
of MEI and SAAB. A design space exploration is proposed in
Section 4, and experimental results are provided in Section 5.
Finally, Section 6 concludes this work.
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Figure 1: (a). Physical model of RRAM device. (b). RRAM crossbar-based computing system (RCS). (c).
Basic idea of merging the interface (MEI). (d). Basic idea of serial array adaptive boosting (SAAB).

2. PRELIMINARIES AND MOTIVATION
2.1 RRAM Device Characteristics and

RRAM Crossbar-based Computing System
An RRAM device is a passive two-port element with vari-

able resistance states. Fig. 1(a) illustrates a 3D filament
model of the HfOx-based RRAM device [9]. Theoretically,
the resistance of an RRAM device can be changed to arbi-
trary state within a specific range.

The RRAM devices can be used to build the crossbar struc-
ture as shown in Fig. 1(b). The relationship between the

input voltage “vector” (~Vi) and output voltage “vector” ( ~Vo)
can be expressed as follows [10]:

Vo,j =
∑
k

ck,j · Vi,k (1)

where k (k = 1,2,..,N) and j (j = 1,2,..,M) are the indexes of
input and output ports of the crossbar. The parameter ck,j
can be represented by the conductivity of the RRAM device
(gk,j) and the load resistor (gs) as:

ck,j =
gk,j

gs +
N∑
l=1

gk,l

(2)

Therefore, the RRAM crossbar array is able to perform ana-
log matrix-vector multiplication and the parameters of the
matrix depend on the RRAM resistance states.

With the RRAM crossbar structure, an RRAM crossbar-
based computing system (RCS) can be implemented by real-
izing analog artificial neural networks (ANNs) [8]. Generally
speaking, an ANN processes the data by executing the fol-
lowing operations layer by layer:

~yj = f(Wij · ~xi + ~bi) (3)

where ~xi and ~yj represent the data in the ith and jth layer of
the network. Wij is the weight matrix between Layer i and
Layer j. f(x) is a nonlinear activation function, e.g., the sig-
moid function. It can be seen that the basic operations of an
ANN are the matrix-vector multiplication and the nonlinear
activation function, which can be implemented with RRAM
crossbar structures and analog circuits, respectively [8]. An
ANN can learn the relationship between the input and out-
put data automatically, which makes the RCS an efficient
and powerful tool to accomplish a wide range of tasks [11].
For example, an RCS can be configured as a power efficien-
t approximate computing system by learning to fit complex
numerical functions [6, 8].

2.2 Motivation
The RCS achieves significant power efficiency gains by tak-

ing advantage of the RRAM crossbar structure. As the RCS
processes data in analog, an interface, such as AD/DA, is
usually required to connect the RRAM crossbar-based ana-
log accelerator to digital systems. However, compared with
the high density and efficiency of RRAM analog units, the
interface is drastically area and power consuming.
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Figure 2: Normalized power and area consumption
for a 2×8×2 RCS with 8-bit accuracy for robotics.

For example, Fig. 2 demonstrates the power and area con-
sumption breakdowns for a 2×8×2 RCS1 which can be used
in robotics [7]. The data for power and area estimation are
referred to Ref. [7, 12, 13, 14] after we comprehensively an-
alyze the speed, power, and area of state-of-the-art devices.
The results demonstrate that AD/DAs contribute to a signif-
icant portion (>85%) of the area and power consumption of
RCS, while RRAM devices only account for ∼1% proportion
of the whole system. Consequently, the potential efficiency
gains of RCS are significantly limited by the interface over-
head. This observation motivates us to reduce the overhead
of AD/DA in RRAM crossbar-based computing systems.

3. THE PROPOSED METHOD
3.1 MEI: MErging the Interface

Fig. 1(c) demonstrates the basic idea of MEI. The tech-
nique is based on the idea that, instead of using an RCS to
approximate the function between the analog value convert-
ed by AD/DA, we can try to make it directly learn the rela-
tionship between the binary 0/1 arrays which represent the
input and output digital data. For example, for a traditional
2× 8× 2 RCS equipped with 8-bit AD/DAs as described in
Section 2.2, MEI will directly set 2×8 = 16 ports in both the
input and output layers of RCS. Digital 0/1 signals, instead
of the analog signals converted by DA, will be set to the 16
input ports in parallel, and MEI will directly calculate the
corresponding 16 digital outputs. Therefore, MEI is able to
directly connect to digital systems without AD/DA.

An important difference between the proposed architecture
and the original RCS with AD/DAs is that, after all the input
and output ports are exposed, they will be independent with
each other and we can treat each port differently to increase
the performance and efficiency of MEI.

To be specific, we propose to pay more attention to the
ports that represent the most significant bits (MSB) of a bi-
nary number. If we can reduce of error rate of MSBs, we may
significantly decrease the error rate of the whole system. This
technique is realized by carefully modifying the loss function
of the training algorithm. As described in Section 2.1, an RC-
S realizes different tasks by realizing an RRAM-based ANN.
The training process of an ANN can be described as adjust-

1
An I×H×O RCS represents that the RCS consists of a 3-layer ANN

with I nodes in the input layer, H nodes in the hidden layer and O
nodes in the output layer.



ing the network weights (Wij in Eq. (3)) to minimize the
difference between the target and actual outputs by solving
the following optimization problem [15]:

min
∑
n

∑
p

[tp(n)− op(n)]2 (4)

where n represents the index of the training sample and p is
the port index of the output “vector”. tp is the target output
of the network, e.g., the label of the input training sample.
And op is the actual output of the network by executing a
series of Eq. (3).

In order to suppress the error rate of the MSB and in-
crease the accuracy of MEI, we revise the loss function of the
training optimization problem as follows:

min
∑
n

∑
p

[wp · (tp(n)− op(n))]2 (5)

where wp is the weight of each output port. We set larger
weights to the MSBs while the least significant bits (LSBs)
will be given smaller weights. For example, we exponentially
increase the weight of each bit and set the MSB and LSB
weights in an 8-bit output array to 20 and 2−7, respectively.
By using the revised loss function, an error from the MSB
will lead to a much lager penalty than the error of LSB. So
the training process will put more effort to suppress the MSB
error and the accuracy of MEI will be improved.

Fig. 3 demonstrates a comparison of different architecture
performance. We use a 1×N×1 RCS to perform approximate
computing by fitting the calculation of f(x) = exp(−x2) [6,
7]. We randomly generate 10,000 samples within the range
of (0, 1) to train the RCS and test it with another 1,000 sam-
ples. It can be seen that the revised training algorithm not
only helps significantly improve the accuracy of the proposed
architecture, but also can even achieve better performance
than the traditional RCS with AD/DAs.

A major side effect of MEI is that the number of input and
output ports and the crossbar size will increase massively.
However, due to the ultra-high integration density and effi-
ciency of RRAM devices, which can be more than hundreds
of times better than AD/DA, MEI still significantly reduces
the area and power consumption of RRAM crossbar-based
computing systems. A minor problem is that the outputs of
the proposed architecture are continuous analog signals. We
use flip-flop buffers or analog comparators (to work as 1-bit
ADCs) to convert them to discrete binary digital signals.

3.2 SAAB: Serial Array Adaptive Boosting
With MEI, we can save the area and power consumption of

AD/DAs. We argue that we can use these saved resources to
integrate more RRAM devices and analog peripheral circuits
and further boost the accuracy and robustness of the RCS.
The first step is to choose a proper method. The experimen-
tal results of MEI provide us with the following observations:

• As shown in Fig. 3, although the proposed architec-
ture may perform better than the traditional RCS with
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Figure 3: Comparison of the performance of different
architectures when approximating f(x) = exp(−x2).

Algorithm 1: Serial Array Adaptive Boosting

Input: Training Samples: X = {(~x1, ~y1), ..., (~xN , ~yN )},
Bits for Comparison: BC, Boost Times: K, Non-Ideal Factors: ~σ
Output: Trained RCSs {R1, ..., RK} with weights {αi, ...., αK}

1 Initialize weights of training samples wn = 1/N ;
2 for k = 1→ K do
3 Normalize the distribution of samples: pn = wn/

∑
n
wn;

4 Generate training samples sk with X and distribution pn;
5 Train the RCS Rk with sk;
6 Evaluate the error rate of Rk with Non-Ideal Factors ~σ :

εk =
∑
n
pn · [Rk(~xn, ~σ)BC 6= ~y

BC
k ]∗ ;

7 Calculate the weight of Rk: αk = 1
2 ln[ 1−εε ];

8 Update weights of training samples:

wn = wn×
{
e−αk if the first B bits of Rk(~xn, ~σ) are correct
eαk else

9 end
10 Output: h(~x) = arg max

~y∈Y

∑
k

αk · [Rk(~x) = ~y];

11 * [Rk(~xn, ~σ)B 6= ~yBk ] represents the operation of comparing the
most significant B bits of Rk(~xn, ~σ) and ~yk.

AD/DAs, it may also require a larger hidden layer to
support more output ports and achieve a good result.

• It can be also observed that there’s a bottleneck of the
RCS performance. The accuracy begin to stall after we
increase the size of the hidden layer to a certain value.

• The RRAM devices may suffer from different non-ideal
factors [10], such as the signal fluctuation and the pro-
cess variation. The robustness of an RCS is important
for physical realization.

Based on the above observation, the ensemble method be-
comes a promising solution to boost the accuracy and robust-
ness of the RCS. Compared with the traditional redundancy
method, an ensemble method uses a series of learning ma-
chines (learners) with different parameters to provides bet-
ter results. We propose SAAB, which uses Serial Array to
Adaptive Boost the performance of an RRAM crossbar based
computing system as shown in Fig. 1(d).

To be specific, SAAB is inspired by the AdaBoost method
[16]. The basic idea of AdaBoost, which is also its major
advantage, is to train a series of learners sequentially, and
every time we train a new learner, the method will increase
the weights of examples that are incorrectly classified by pre-
vious trained learners and force the new learner to focus on
these“hard”examples with wrong answers in the training set.
Compared with the original AdaBoost, SAAB is customized
to MEI by relaxing the error calculation, focusing on the MS-
Bs and introducing the impact of non-ideal factors.

Algorithm 1 demonstrates the basic flow of SAAB. We
maintain a distribution (pn) of training samples according
to their weights (wn), which reflect the “hardness” of a sam-
ple, i.e., a larger weight will represent that the corresponding
sample is more likely to be misclassified by previous learners.
Each time we need to train a new RCS, we use this distribu-
tion to generate a customized training data (sk), where the
“hard” examples that are incorrectly classified by previous
learners will have a greater proportion in the training set to
make the new learner (Rk) pay more attention to these sam-
ples (Line 4− 5). After the training process of a learner fin-
ishes, the algorithm will test the learner’s performance (εk),
calculate its contribution to the system (αk), and update the
weights wn according to the training results (Line 6− 8).

In order to enhance the robustness of RCS, in Line 6, we al-
so introduce the non-ideal factors when evaluating the perfor-
mance of a trained RCS to find out the “sensitive” samples as
well as the “hard” ones under noisy conditions. Moreover,we
relax the error calculation by only comparing the most sig-
nificant BC bits, e.g., the first 4-6 bits in an 8-bit array, of



the RCS in Line 6. Otherwise, most of the training samples
will be either sensitive or “hard” in the algorithm, and the
performance of SAAB may significantly decrease.

Finally, SAAB will provide a balanced output by a weight-
ed voting of different RCSs as described in Line 10. Com-
pared with the training process, in which a series of RCSs
are configured in sequence, each trained RCS can predict the
output of a given input in parallel. And the weighted voting
operation of the outputs of different RCSs can be execut-
ed by the digital system directly connected to these RRAM
crossbar-based computing systems.

4. DESIGN SPACE EXPLORATION
4.1 Area and Power Estimation

The area and power consumption are both mainly deter-
mined by the architecture and the size of ANN in an RCS.
For example, the area of a traditional I ×H × O RCS with
AD/DAs can be estimated as follows:

Aorg ≈ I ·ADA +O ·AAD +H ·AP + 2(I +O)H ·AR (6)

where ADA, AAD, AP, AR are the circuit size for a cell of
DAC, ADC, analog peripheral circuits and RRAM devices,
respectively. The area of RRAM devices are doubled because
two crossbar are required to represent a matrix with both
positive and negative parameters as described in Section 2.1.

And for the proposed I ′×H ′×O′ RCS with MEI and B-bit
accuracy, the area estimation should be modified to:

AMEI ≈ H ′ ·AP +B · 2(I ′ +O′)H ′ ·AR (7)

Moreover, Eq. (6) & (7) can also be used to evaluate the
power consumption by replacing the area parameters, such
as AAD and ADA, with parameters for power estimation.

4.2 Accuracy and Robustness Evaluation
As RCS is based on the analog realization of ANN, the

accuracy and robustness of an RCS are usually both deter-
mined by the scale of the system [15]. Therefore, we discuss
them together when exploring the design space.

As discussed in Section 3.2, there are two methods to scale
up an RCS which may result in accuracy and robustness im-
provement of the system: 1). increasing the scale of a single
RCS; and 2). combining several RCSs together with SAAB.
Because the dimensions of input and output data are usually
determined by the application, the size of the hidden layer
in an RCS, and the number of RCSs combined with SAAB,
become the two major parameters that can be configured to
boost accuracy and robustness in the design space.

It should be noted that, it will be very difficult, if not im-
possible, to directly predict that SAAB will achieve better ac-
curacy or robustness to non-ideal factors than the increasing-
hidden-layer method. Therefore, we keep both the methods
when exploring the design space.

4.3 Exploring the Design Space
Because MEI is aimed to reduce the area and power con-

sumption of an RCS, while SAAB boost the accuracy at the
cost of consuming more power and area, there will be a trade-
off among power, area, and accuracy in an RCS equipped
with MEI and SAAB. Therefore, we propose a design space
exploration flow to help convert a traditional RCS to the pro-
posed architecture with MEI and achieve better trade-offs.

Algorithm 2 demonstrates the technical flow for exploring
the design space. As shown in Line 1, for each specific ap-
plication, the first step is to determine a proper hidden layer
size of a single RCS. Inspired by the results shown in Fig. 3,
we search a proper hidden layer size by gradually increasing
the size (with linear or exponential searching steps) until the
absolute change rate of the error rate or accuracy becomes

Algorithm 2: Design Space Exploration

Input: Training and Testing Samples: X and T ;
Initial RCS Size: I ×Hi ×O;
Required Bit-Length: Br; Non-Ideal Factors: ~σ;
Error Rate Requirement: ε; Robustness Requirement: γ;
Output: Trained RCS R with a size of BinI ×H × BoutO;

1 Search a proper Hidden Layer Size H from Hi for the RCS;
2 Calculate the Maximum SAAB Number Kmax with H and

Eq. (9);
3 Train the RCS R1 with a size of BrI ×H × BrO with X;
4 Test the error rate εs and robustness γs of R1 with T and ~σ;
5 if εs < ε && γs > γ then
6 R ← R1;
7 end
8 else
9 Calculate α1, the weight of R1, with ~σ as Algorithm 1;

10 K ← 1;
11 while εs > ε || γs < γ do
12 K++;
13 if K > Kmax then
14 Return Mission Impossible;
15 end
16 Train RK and αK as Algorithm 1;
17 Test the error rate εs and robustness γs of the ensemble

of {R1, ..., RK} with weights {α1, ..., αK} with T and ~σ;
18 Train an RCS R0 with a size of BrI ×HK × Br;
19 Compare the error rate and robustness of R0 and the

ensemble of {R1, ..., RK}, and set H and R according to
the better one;

20 end

21 end
22 Prune the least significant bits in the input and output layer of R

to Bin and Bout;
23 Return R;

lower than a certain value (e.g. 5%). The absolute change
rate of the ith training result can be defined as follows:

η = | εi − εi−1

εi−1
| (8)

where ε can be error rate, mean square error (MSE) or any
other index that can be used to evaluate the performance of
a trained RCS.

After a proper hidden layer size is determined, the max-
imum number of RCSs that can be used for SAAB can be
estimated to reduce the design space as described in Line 2.
In our design, both the circuit area and power consumption
of an RCS with MEI should not be larger than the original
architecture with AD/DA. Therefore, the maximum SAAB
number will be bounded by the following expression:

KSAABmax = min{ Aorg

AMEI
,
Porg

PMEI
} (9)

where KSAABmax is the maximum number of RCSs can be
used in SAAB. Porg and PMEI are the power consumption
estimation for the original and proposed architectures, re-
spectively, and they can be estimated as Eq. (6) & (7).

After achieving the basic RCS scale and the maximum
SAAB number, the algorithm will begin to explore the design
space by gradually adding new learner to the organization of
RCSs with SAAB until the requirements of accuracy and ro-
bustness (such as the error rate under noisy conditions) are
both satisfied (Line 13− 17).

As discussed in Section 4.2, we retain both SAAB and the
increasing-hidden-layer method to enhance the robustness of
an RCS. Therefore, in Line 18 − 19, the algorithm will al-
so train a single RCS with the same hidden layer size of K
trained RCSs with SAAB, and then compare their perfor-
mance. The algorithm will select a better one as the final
output candidate. In addition, as an I ×HK × O RCS can
save 2(K − 1)O RRAM devices and (K − 1)O analog pe-
ripheral circuits in the output ports compared with K RCSs
with a size of I ×H ×O, the increasing-hidden-layer method
will be preferred if the performance of these two methods are
similar.



Table 1: Benchmark Description and Results

Name Type
Digital/ Pruned MSE MSE MSE

Error
Error Error Error

Area Power
AD/DA MEI Digital AD/DA MEI

Metric
Digital AD/DA MEI

Saved Saved
Topology Topology ANN RCS RCS ANN RCS RCS

FFT
Signal

1×8×2 (1·7)×16×(2·8) 0.0046 0.0071 0.0052
Average

6.03% 10.72% 8.87% 74.24% 87.23%
Processing

Relative
Error

Inversek2j Robotics 2×8×2 (2·8)×32×(2·8) 0.0038 0.0053 0.0067
Average

6.57% 9.07% 10.45% 54.63% 73.73%Relative
Error

Jmeint 3D Gaming 18×48×2 (18·6)×64×(2·1) 0.0117 0.0258 0.0262
Miss

7.19% 9.50% 9.96% 69.67% 61.82%
Rate

JPEG Compression 64×16×64 (64·6)×64×(64·7) 0.0081 0.0153 0.0142
Image

6.89% 11.44% 9.73% 86.14% 79.58%
Diff

K-Means
Machine

6×20×1 (6·6)×32×(1·8) 0.0052 0.0081 0.0094
Image

3.59% 7.59% 8.13% 67.00% 70.25%
Learning Diff

Sobel
Image

9×8×1 (9·6)×16×(1·1) 0.0024 0.0028 0.0026
Image

3.71% 4.00% 3.77% 85.99% 86.80%
Processing Diff

A special technique in the algorithm is that we propose to
prune the least significant bits (LSBs) of a trained RCS to
further reduce the area and power consumption. Traditional
AD/DAs require time and energy to convert analog signals
from/to the LSBs of the output/input binary number. This
operation is fixed in the AD/DA architecture but may con-
tribute little to the performance of RCS. However, thanks to
MEI, each individual bit of the interface is exposed indepen-
dently and this gives us a chance to easily remove the bits of
little importance. Therefore, we propose to prune the LSBs
of the input and output ports of MEI and this technique is
demonstrated in Line 22.

To be specific, for the input ports, we treat all groups of
the input ports the same and keep reducing the LSBs of each
group together until the performance becomes worse than
the requirement. For example, an original RCS may require
3 analog input ports. And there will be 3 groups of 8 input
ports, i.e., 24 input ports in total, for a proposed architecture
with 8-bit accuracy. We will try to remove the ports for the
least significant 1, 2, ... bits of each group simultaneously,
test the pruned architecture’s performance, and finally reach
the minimum size of the input layer. The pruning of the
output layer is much easier and will be executed after the
size of the input layer is determined. The algorithm will first
compare the accuracy of the LSBs and the performance, such
as the mean square error (MSE), of the trained network, and
then try prune to the LSBs whose weights are much smaller
than the RCS error. For example, the LSB of an 8-bit fixed-
point binary number may account for a value of 2−8, and we
can try to remove it once the MSE of the RCS is ∼ 2−10 or
larger. It should be noted that the algorithm only prunes the
LSBs of a given bit-length (Br), and we set the bit-length to
the same as AD/DA in this work.

Finally, by combing the above steps, we can convert a tradi-
tional RCS to MEI and SAAB, and achieve trade-offs among
accuracy, area, power consumption and even robustness.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

In the experiment, 6 different benchmarks from a wide
range of applications are used to evaluate performance of
the proposed method. The benchmarks are the same as that
described in Ref. [1, 7] and they are used to test the per-
formance of an analog neural processing unit. The data for
the area and power estimation of analog peripheral circuit-
s RRAM devices and are taken from Ref. [7, 12, 13, 14] as
discussed in Section 2.2. For the accuracy and robustness
emulation, an RRAM device model packed in Verilog-A [9] is
used to build up the SPICE-level crossbar array. We choose
the 90nm technology node to build the interconnection of the
crossbar array and reduce the impact of IR drop [17]. The
configuration of RCS is referred to Ref. [6, 7, 8], where both

the accuracy of AD/DA and the basic bit-length requirement
of MEI (Br) are both set to 8-bit.

5.2 Results of MEI and SAAB
Table 1 summarizes the results of different methods. In or-

der to reflect the performance of MEI, SAAB is not used in
this section. The ‘Digital’ method refers to an ideal ANN per-
formed by CPU with 32-bit floating-point numbers, and the
‘AD/DA’ method represents the traditional RRAM crossbar-
based computing system with 8-bit AD/DAs as interfaces.
For the ‘Pruned MEI Topology’, a (D · B) value represents
that there are D groups of B ports in the input/output lay-
er, and each group stands for the most significant B bits of
a binary number.

Compared with the traditional architecture, the proposed
technique significantly reduces more than half of the area and
power consumption in all the 6 benchmarks. It can be seen
that our method can achieve approximate, or even better,
error rate compared with the traditional architecture. More-
over, although the required RRAM devices and analog pe-
ripheral circuits both increased in the proposed architecture,
this overhead is still well compensated by the high density
and efficiency of RRAM devices compared with the AD/DA
interface. More specifically, the proposed merging the inter-
face method demonstrates to benefit more to the application
with a larger ratio of the interface size to the hidden layer
size, such as the ‘JPEG’ and ‘Sobel’.

On the contrary, for the application like ‘Inversek2j’ and
‘Jmeint’, where more hidden nodes are required in the RCS,
the gains of the proposed method may decrease. Finally, the
topology results of MEI, except the ‘Inversek2j’, demonstrate
that the LSBs in both input and output ports of many appli-
cations can be pruned to further reduce the area and power
consumption, which verifies the feasibility and effectiveness
of the proposed design space exploration flow.

Fig. 4 illustrates the comparison of different methods2.
MEI cannot achieve better performance for all benchmarks.
It seems that MEI will be more suitable for the application

2
In SAAB method, we boost the system performance with the Max-

imum SAAB Number. For example, the area and power saved in the
‘JPEG’ benchmark are 86.14% and 79.58%, and we use 4 RCSs in
SAAB according to Eq. (9).
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Figure 4: Comparison of different methods.
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Figure 5: System performance under different noisy
conditions.

where the output changes more“slowly”with the input, espe-
cially for the LSBs, like ‘JPEG’. And for the application like
‘Inversek2j’ in which many LSBs in the output results change
sensitively with the input data, the relationship between the
input and output 0/1 binary array may be much more com-
plex than that between the converted analog value. It will be
more difficult for MEI to approximate the relationship bet-
ter than the traditional architecture with AD/DA. In that
case, the performance of MEI may be worse than ‘AD/DA’.
However, although the accuracy may decrease, the perfor-
mance of MEI is still within the acceptable range and may
be compensated by increasing the bit requirement of MEI to
from 8 10, 12 or a higher level. Moreover, compared with
MEI, SAAB is able to further boost the accuracy of all the
benchmarks with an average improvement of 5.76%.

5.3 Impact of Non-Ideal Factors
We also evaluate the impact of different non-ideal factors

to the proposed architecture and compare it with previous
methods. In this paper, we mainly focus on two major non-
ideal factors in the RRAM crossbar-based computing system-
s: the process variation (PV) and the signal fluctuation (SF)
[10]. The process variation reflects the degree of the RRAM
device deviating from the required resistance state, and the
signal fluctuation represents the impact of noise to the electri-
cal signal, such as the input signal. To fully demonstrate the
impact of the these non-ideal factors, the lognormal distribu-
tion is used to generate variations of different levels. Under
each noisy condition, we evaluate the system performance
1,000 times and statistically analyze the average result. The
simulation results3 are demonstrated in Fig. 5.

It can be seen that both SAAB and the increasing-hidden-
layer method can improve the robustness of the RCS to non-
ideal factors. But as discussed in Section 3.2, it is difficult to
predict which method will perform better than the other in
each specific application. For example, SAAB benefit more to
the ‘Inversek2j’ benchmark while the increasing-hidden-layer
method is more suitable for the ‘JPEG’. And in ‘Sobel’, they
perform almost the same. This result motivates us to keep
both methods in the design space exploration (Line 18− 19
in Algorithm 2). In addition, as MEI only requires discrete

3
We evaluate all the 6 benchmarks and 3 group of results are presented

in this paper as they are enough to reflect all the simulation results.

inputs of 0/1 signals, the proposed architecture with MEI
demonstrates much better robustness to the signal fluctua-
tion than the traditional method with AD/DA. Such results
suggest that the MEI architecture will be more easier to be
physically realized.

6. CONCLUSION AND FUTURE WORK
The RRAM crossbar-based computing system (RCS) pro-

vides a promising solution to boost performance and power
efficiency. In this paper, we propose a novel architecture,
MEI, as well as an ensemble method, SAAB, to minimize
the overhead of AD/DA and further improve the system per-
formance. A design space exploration is introduced to help
convert a traditional RCS to the proposed architecture and
achieve trade-offs among accuracy, area, and power consump-
tion. We envision that MEI and SAAB can be generally ap-
plied to a broad range of applications and a large number of
followup work, such as reducing the IR drop for a larger RCS
under smaller technology node, are needed for this emerging
architecture. In addition, we set the basic bit-length of MEI
according to AD/DA, e.g. 8-bit, in order to convert a tradi-
tional RCS to the proposed architecture. In future work, we
may directly use higher bit-level or even floating-point format
in MEI to further improve the system performance.
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