
DesignCon 2003
System-on-Chip and ASIC Design Conference

A Programmable System with
Quick Reconfiguration

Roozbeh Jafari
Henry Fan
Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles

Abstract
This paper presents a Micro-Sequencer based reconfigurable system. We introduce the
concept of Quick Reconfiguration and compare it with existing “full reconfiguration”
schemes. In a typical scenario, reconfiguring a system from one application to another
does not require a “full” reconfiguration. Instead we can exploit similarities among
various applications to save on reconfiguration time. This task can be accomplished via
micro-programming of a micro-sequencer architecture. We show that a significant speed
up is gained by reconfiguring a system on a set of image processing benchmarks, which
takes hundreds of µseconds versus hours in traditional FPGA reconfigurations.
Furthermore, by using this architecture, it has been shown that other parameters of
system, for instance the size of data bus, can be easily modified to customize the system
for a specific application. This results in significant improvements in power consumption,
speed and silicon area. Experimental results show that power consumption and silicon
area are reduced by 72% and 77% respectively by using a customized 8-bit data bus
versus 64-bit data bus while the speed is improved by 157%.

Roozbeh Jafari
Roozbeh Jafari received his B.S. in Electrical Engineering in 2000 from the Sharif
University of Technology, Tehran, Iran. He joined the State University of New York at
Buffalo,NY in 2000 and received his M.S. in Electrical Engineering in 2001. His main
research focus was VLSI Testing and Verification. He also worked at IBM, Endicott, NY
on development of the IBM TestBench tool designed for VLSI Testing. He is currently
pursuing his Ph.D. degree in Computer Science at the University of California, Los
Angeles, CA. He is a member of the ER group working under the supervision of
Professor M. Sarrafzadeh.

Henry Fan
Henry Fan received his B.S. in 1998 from University of California at Berkeley. In 2001,
he joined the ER group in UCLA. He worked under the supervision of Professor Majid
Sarrafzadeh and received his M.S. in 2002. He research topics were mainly focused on
reconfigurable devices and high-level synthesis.

Majid Sarrafzadeh
Majid Sarrafzadeh (http://www.cs.ucla.edu/~majid) received his B.S., M.S. and Ph.D. in
1982, 1984, and 1987 respectively from the University of Illinois at Urbana-Champaign
in Electrical and Computer Engineering. He joined Northwestern University as an
Assistant Professor in 1987. In 2000, he joined the Computer Science Department at
University of California at Los Angeles (UCLA). His recent research interests lie in the
area of Embedded and Reconfigurable Computing, VLSI CAD, and design and analysis
of algorithms. Dr. Sarrafzadeh is a Fellow of IEEE for his contribution to "Theory and
Practice of VLSI Design". He received an NSF Engineering Initiation award, two
distinguished paper awards in ICCAD, and the best paper award in DAC. He has served
on the technical program committee of numerous conferences in the field.
Professor Sarrafzadeh has published approximately 250 papers, is a co-editor of the book
"Algorithmic Aspects of VLSI Layout" (1994 by World Scientific), and co-author of the
book "An Introduction to VLSI Physical Design" (1996 by McGraw Hill). Dr.
Sarrafzadeh is on the editorial board of the VLSI Design Journal, an Associate Editor of
ACM Transaction on Design Automation (TODAES) and an Associate Editor of IEEE
Transactions on Computer-Aided Design (TCAD).

1. Introduction
There exists two methods to execute algorithms on hardware. One is to use hard-wired
technology such as Application Specific Integrated Circuit (ASIC) or a group of
components to perform an algorithm in hardware. ASICs are designed to perform a given
computation and thus they are very fast with specific applications using the exact
designed computational units. However, they cannot be altered after the design and hence
algorithms which require new operations (computational units) cannot be performed as
fast as others. The other method is to use software-programmed microprocessors.
Processors execute a set of instructions. This makes a system flexible and by changing
the software, functionality of system alters. However, the downside of this flexibility
results in performance decrease. To execute instructions, the tasks of fetching, decoding
and execution have to be performed which creates in a high execution overhead.
A programmable system fills the gap between hardware and software. It achieves a better
performance than software while providing a more flexible solution than hardware
implementation. Programmable devices including Field Programmable Gate Array
(FPGA) contain an array of programmable computational units which can be
programmed through the configuration bits. This gives us the flexibility of having
dedicated hardware to perform specific computational units and meantime it can be
designed with parallelism capability.
Reconfigurable systems provide the flexibility and reuse of hardware for multiple
applications. Reconfigurable hardware can be used to execute designs, which are larger
than the available hardware resources. In such cases, a part of a large application is
executed on the hardware. By reusing the reconfigurable hardware, the remaining tasks of
the application can be loaded and executed on the hardware at runtime. This is known as
runtime reconfiguration. Another issue that necessitates the integration of reconfiguration
in a hardware platform is that some applications require reconfiguration in different
abstraction levels of the system. For example, some applications require different
variations of an algorithm to execute their task. A non-flexible hardware realization for
such applications has to fit all required algorithm variations on the die. This, if possible,
makes the design and fabrication processes more complicated and expensive.
A major drawback of using runtime reconfiguration is the significant delay of
reprogramming the hardware. The total runtime of an application includes the actual
execution delay of each task on the hardware along with the total time spent for hardware
reconfiguration between computations. The latter might dominate the total runtime,
especially for classes of applications with a small amount of computation between two
consecutive reconfigurations. Hardware reconfiguration often takes hundreds of
milliseconds or longer based on the size of application. To reduce the reconfiguration
overhead, some previous works have used different approaches.
In many applications, only a small portion of the design changes at a time and the entire
hardware does not have to be reconfigured. This has led the industry to add the capability
of Partial Reconfiguration to some of their recent products. FPGAs are examples of such
reconfigurable hardware and some of the recent FPGA devices have the capability of
partial runtime reconfiguration.
Another method used to gain speed up is called Configuration Prefetching [1]. This
method tries to overlap the computation with reconfiguration of the hardware. Therefore,

to maximize this overlap, it seeks a way to minimize the chance that reconfiguration is
prefetched falsely.
Configuration Compression [2][3][4][5] is another approach to minimize the
reconfiguration time. In this method, the configuration delay is reduced by compressing
the data transferred from host computer to the programmable system.
A major portion of delay is due to the distance between host computer and programmable
device. Reconfiguration can be accelerated by using a fast memory (configuration cache)
near reconfigurable array. This method is called Configuration Cashing [6][7].
This paper presents a novel approach for quick reconfiguration via a micro-sequencer. In
this method (Micro-Sequencer based Quick Reconfiguration – MSQR), the
reconfiguration is performed by altering the algorithm loaded onto the memory of
proposed architecture. Also new instructions can be generated by modifying the
microcodes stored in the control unit. Further details on the architecture of micro-
sequencers will be given in Section 3. Furthermore, using micro-coded architecture in the
control unit of the micro-sequencer facilitates the parallelism and adding new
computational units to the datapath. In this case, the control unit needs the minimum
modification since it is highly regular compared to sequential machine based controllers.
In Section 2, our novel method for reconfiguration is introduced. Section 3 illustrates the
micro-sequencer architecture proposed for reconfiguration. Section 4 proposes a heuristic
for quick reconfiguration which increases the overall performance of the system by
providing flexibility in design and size of data bus/address bus. Moreover, the
experimental results are described in Section 4 and finally conclusion is discussed in
Section 5.

2. A NOVEL METHOD FOR RECONFIGURATION
The traditional computer consists of a central processing unit (CPU) and a main memory.
CPU is further divided into a control unit, a datapath and a memory. The structure of the
memory and data path unit is regular and well-organized while the control unit structure
is irregular and global. In this paper, we explore the regularity of the datapath for certain
algorithms. We will suggest that such regularity will help us to design a control unit by
which reconfiguration can be easily done.
 As we mentioned in Section 1, efficient reconfiguration of an FPGA is a critical issue
because of the time overhead of reconfiguration. Sometimes in order to reconfigure a
system from an algorithm to another, the processes of synthesis, placement and routing
have to be performed which are highly expensive in terms of CPU time and may take
hours to complete. In our micro-sequencer approach, when a system is to be
reconfigured, only the new algorithm has to be loaded onto the memory micro-sequencer.
Further, in case new instructions are required for the new algorithm, the control store of
control unit which has memory structure is updated. This method is called Micro-
Sequencer Based Quick Reconfiguration (MSQR). Since this method does not require
physical reconfiguration, a significant speed up is gained in the process of
reconfiguration versus full reconfiguration.

2.1 MSQR IN IMAGE PROCESSING ALGORITHMS
MSQR is applicable to those applications, where the types of computations do not vary
substantially from one task to another. The motivation of this research is to enhance the

reconfiguration process for image processing algorithms, hence, it has to be verified if
image processing algorithms alter substantially during the reconfiguration process.
Most of image processing algorithms are computationally intensive and should be
executed on hardware resources to allow real time processing. Moreover, these
algorithms change in nature and parameters, based on information available from targets.
For instance, in feature tracking algorithm, the number of targets, their position and their
distance to camera can change the algorithm (or its parameters) to increase the efficiency
of tracking motions. Therefore, image-processing algorithms are proper candidates for
mapping onto reconfigurable resources. This not only provides fast running time but also
allows dynamic modification of the algorithm through run time reconfiguration. Both
cannot be achieved by mapping this type of algorithms onto traditional fixed software or
hardware platforms.
Consequently, first it has to be verified that image processing algorithm are similar in
terms of computational behavior i.e. they use similar computational units. A brief study
on various MATLAB image processing functions verifies this.

Function (+) (*) (/)

area3D 33% 67% 0%

PSNR 100% 0% 0%

findCircles 78% 11% 11%

rgb2ind 41% 45% 14%

Opthr 50% 20% 30%

Table 2.1 Instruction Breakdown for some image processing functions

As shown above, image processing algorithms mostly use the same type of computational
units. As a result, they are good candidates for MSQR. Also significant speed up can be
gained by implementing parallel computation due to the nature of these algorithms.

3. MICRO-SEQUENCER ARCHITECTURE
Micro-sequencer makes use of microcode architecture for design of the control unit. In
this approach, the relation between inputs and outputs are treated as a memory system.
Control signals are stored as words in a microcoded memory. At each clock tick during
instruction execution, the appropriate (micro) control word is fetched from microprogram
memory to supply the control signals.
The concept of microcoded control units originated early in the history of computing.
Maurice Wilkes proposed the concept in 1951, as a way of simplifying the control logic
of a computer. Although Wilkes did construct a machine, the EDSAC2, with a

microcoded control unit, it was not until the early 1960s that IBM made the concept
popular with the entirely programmed 360 line of computers [8].
The microcode control unit itself is a small stored program computer. It has a micro PC, a
microprogram memory, and a microinstruction word, which contains the control signals
and sequencing information. The action of the microcode control unit is exactly like that
of a general purpose computer: fetch a microinstruction, execute it (by applying the
control signals in the control word to the computer’s datapath), determine the address of
the next microinstruction, and fetch the next instruction [9][10].
Figure 3.1 shows a block diagram of a typical design of a microcoded control unit.

Table 3.1 Block Diagram of Microcoded Control Unit

The µPC contains the address of the next microinstruction to be fetched from the control
store, a fast local memory that contains the control words. The control word is copied
into the µIR, the microinstruction registers. Control store consists of microinstructions
which control the datapath directly. The format of microinstructions will be presented in
Section 3.2.

3.1. IS MICRO-SEQUENCER A GOOD SOLUTION?
The goal of this study is to perform quick reconfiguration in image processing
applications. In section 2.1, it was shown that image processing algorithms have similar
computational behavior. Consequently, it can be inferred that the capabilities of datapath
satisfies the new algorithm and it does not have to be modified. However, since the
algorithm changes, the opcode part of the micro-sequencer which contains the
instructions for a specific algorithm has to be updated. This process can be simply done
by writing the new algorithm (the new instructions) onto the memory. This approach
gains a significant speed up compared to traditional physical reconfiguration. Sometimes,
due to the constraints of new algorithms, the order of utilization of components in
datapath may have to be altered ,or further, instantiation of a new computational unit may
be ineviTable. In this case, the micro-codes in control unit can be easily modified to
satisfy the new requirements. Meantime, a new computational unit is added to the
datapath. This achieves higher performance because of utilizing parallelism in
computational intensive algorithms. Therefore, MSQR is effective both in terms of
providing flexibility and performance.

Output Data Input Data

µInstruction Word

Control Store

Data Path

Op-codes for an Algorithm

PLA (computes the start address of the micro-

MUX

µPC

3.2 MICROINSTRUCTION FORMAT
Microinstructions are an important portion of the controller and have to be defined the
way that the maximum flexibility is gained for reconfiguration. There are two types of
microinstructions: Horizontal and Vertical. In the horizontal microcode, each bit
represents a control signal for a component in datapath. In the vertical microcode,
however, the control of similar components in datapath is compacted in a group of bits in
microinstructions. This requires a local decoder to generate all control signals usable for
components in datapath. The advantage of the horizontal microinstructions is its lower
access time to reach the designated component in datapath. However, as the size of the
datapath grows, the number of control bits increases resulting in larger Very Large
Instruction Word (VLIW) as microinstructions [11][12][13].
Table 3.2 shows the microinstruction format for our architecture. A few more bits are
reserved for newly inserted components in the datapath.

µIR
Index

Signal Name

00 ENDbit
01 PCena
02 Cout
03 MDout
04 Rout
05 MAin
06 MDin
07 Cin
08 PCin
09 IRin
10 Ain
11 Rin
12 INC4
13 RD
14 WR
15 ADD
16 GRa
17 GRb
18 GRc

Table 3.2 Horizontal Microcode Format

3.3 ASSEMBLER AND OPCODE STRUCTURE
The instruction set format of our design is very similar to RISC instruction set. It has a
fixed 32-bit instruction width. The detail of the instruction format is shown in Figure 3.3.
The first field is the operation code (op-code) by which the type of operation is
determined. The second, third and forth fields are the register indices. Some instruction,
for example, ADD, SUB, and BRL have three indices, but some only have one.

Figure 3.3 Instruction Set Format

In order to support the template generation, we suggest another instruction format. The
format has four register index operands. The op-code of this instruction is specified by
the template generator. In order to support the quick reconfiguration, our micro-
sequencer machine needs to support the new instruction set whenever there is a new
hardware implementation. Figure 3.4 shows the fields of the new instruction format. The
first field is the op-code of the instruction. The second to the fifth fields are the indices of
the operand registers.

Figure 3.4 New Instruction Set Format

Also we implemented an assembler for our proposed instruction set. The syntax is chosen
such that parsing will be minimized. Figure 3.5 shows some common RISC assembly
instructions and their translation into our assembler format.

ld 4 1 0 128 = ld r4, [128+r1]

ld 5 1 0 124 = ld r5, [124+r1]

add 3 4 5 0 = add r3, r4, r5

st 3 1 0 128 = st r3, [128+r1]

Figure 3.5 Syntax of the Assembler

Op Ra Rb Rc Rd

Microprocessor
Opcode

Operand 1

Operand 2

Operand 3

Operand 4

Op Ra Rb c2

Op Ra c1

Op Ra

Op Rb

Op Ra Rb

Op Ra Rb

Op Ra Rb

Op Ra Rb

Op

Rc

Rc

Rc

Rc

Rc

Cond

Cond

Count

UNUSED

LD, ST, LA, ADDI, ANDI ORI

LDR, STR, LAR

NEG, NOT

BR

BRL

ADD, SUB, AND, OR

SHR, SHRA, SHL

SHC

NOP, STOP

4. EXPERIMENTAL RESULTS
As described before, we have implemented a micro-sequencer in VHDL. The code is
written structured and generic so that size of data bus/address bus can be easily modified
[14].
The reconfiguration times of two image processing algorithms were measured once using
the traditional physical reconfiguration and once using the novel method of MSQR on
WILDSTAR™ /PCI board. The results are shown in Tables 4.1, 4.2 and 4.3.

Algorithm
Process

Feature
Selection

Background
Subtraction

Synthesis
(sec) 176 54

Placement
and Routing

(sec)
1514 270

Programming
FPGA
(msec)

621 220

Table 4.1 Traditional Reconfiguration Time Breakdown

Algorithm Feature
Selection

Background
Subtraction

of
Instructions 387 131

MSQR Time
(µsec) 42 30

Table 4.2 Quick Reconfiguration Time

Algorithm Feature
Selection

Background
Subtraction

Traditional
Reconfiguration

Time
(sec)

1690.621 322.220

MSQR Time
(µsec) 42 30

Table 4.3 Reconfiguration Time vs. Quick Reconfiguration Time

As shown in Table 4.3, it is apparent that a significant speed up is gained by using our
novel approach of MSQR.
To show the flexibility of our proposed architecture, a background subtraction algorithm
which requires 8 bit data bus has been implemented on various micro-sequencers with 8,
16, 32, 64 and 128 bit data buses. The goal is to measure power, area and longest path
delay for all above variations. This experiment has been done using Synopsys® Power
Compiler. The measured power, area and data arrival times are shown in Figures 4.4, 4.5
and 4.6.

Power Consumption (µW)

0
10

20
30
40

50
60

70
80

8 bit 16 bit 32 bit 64 bit 128 bit

Figure 4.4 Power Consumption

Area

0

50000
100000

150000
200000

250000
300000

350000

8 bit 16 bit 32 bit 64 bit 128 bit

Figure 4.5 Area

Longest Path Delay (ns)

0

50

100

150

200

250

8 bit 16 bit 32 bit 64 bit 128 bit

Figure 4.6 Longest Path Delay

5. CONCLUSION
A micro-sequencer based architecture enhances the efficiency of reconfiguration on
FPGA. The experimental results prove that the time needed to reconfigure the control
unit of a system is far less than the time taken to physically reconfigure the whole system.
Besides the reconfiguration time, the micro-sequencer based system provides flexibility
for data bus/ address bus design. We demonstrated this point by modifying the size of
data bus for a specific application. Such features can be exploited when the algorithms
are unknown at the stage of micro-sequencer design. A significant improvement in power
consumption, speed and silicon area is gained by providing this flexible feature.
Moreover, MSQR provides an efficient way for reconfiguration with considerable speed
up in reconfiguration process versus the traditional physical reconfiguration.

6. REFERENCES
[1] S. Hauck, “Configuration prefetch for single context reconfigurable

coprocessors”, ACM/SIGDA International Symposium on FPGAs,65–74, 1998a.
[2] S. Hauck, “The roles of FPGAs in reprogrammable systems”, Proc. IEEE 86, 4,

615–638, 1998b.
[3] S. Hauck, W. D. Wilson, “Runlength compression techniques for FPGA

configurations”, Dept. of ECE Technical Report, Northwestern Univ., 1999
[4] Z. Li, S. Hauck, “Don’t care discovery for FPGA configuration compression”,

ACM/SIGDA International Symposium on FPGAs, 91–98, 1999.
[5] A. Dandalis, V.K. Prasanna, “Configuration compression for FPGA-based

embedded systems”, ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 173–182, 2001.

[6] D. Deshpande, A. K. Somani., A. Tyagi, “Configuration caching vs data caching
for striped FPGAs”, ACM/SIGDA International, Symposium on FPGAs, 206–
214, 1999.

[7] Z. Li, K. Compton, S. Hauck, "Configuration caching for FPGAs", IEEE
Symposium on Field-Programmable Custom Computing Machines, 22–36, 2000.

[8] V.P. Heuring, H.F. Jordan, “Computer Systems Design and Architecture”, ISBN:
0-8053-4330-X, Addison Wesley Longman, 1997

[9] C.P.Tsang, S.E.Smith, “Designing a Microcode Synthesis System”, IEEE Region
10 Conference on Computer, Sep. 1990, Hong Kong

[10] C. Iseli, E. Sanchez, “A high-level Microprogrammed Processor”, IEEE, 1990
[11] T. Phillips, J.B. Michael, Z. Abuhamdeh, “MicroCode Generation for the Control

of a Massively Computer’’, IEEE, 1998
[12] R. Rauscher, “A new approach in Microcode Optimization”, IEEE, 1994
[13] M. Benmimmed, A. Rahmoune, “Automatic Generation of Reprogrammable

Microcoded controllers within a high-level synthesis environment”, IEE Proc-
Comput. Digit. Tech., Vol 145, No. 3, May 1998

[14] B.W. Bomar, “Implementation of Microprogrammed Control in FPGAs”, IEEE
Transaction on Ind. Elecetronics, Vol. 94, No. 2, April 2002

