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Abstract 
This paper presents a Micro-Sequencer based reconfigurable system. We introduce the 
concept of Quick Reconfiguration and compare it with existing “full reconfiguration” 
schemes. In a typical scenario, reconfiguring a system from one application to another 
does not require a “full” reconfiguration. Instead we can exploit similarities among 
various applications to save on reconfiguration time. This task can be accomplished via 
micro-programming of a micro-sequencer architecture. We show that a significant speed 
up is gained by reconfiguring a system on a set of image processing benchmarks, which 
takes hundreds of µseconds versus hours in traditional FPGA reconfigurations. 
Furthermore, by using this architecture, it has been shown that other parameters of 
system, for instance the size of data bus, can be easily modified to customize the system 
for a specific application. This results in significant improvements in power consumption, 
speed and silicon area. Experimental results show that power consumption and silicon 
area are reduced by 72% and 77% respectively by using a customized 8-bit data bus 
versus 64-bit data bus while the speed is improved by 157%. 
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1. Introduction 
There exists two methods to execute algorithms on hardware. One is to use hard-wired 
technology such as Application Specific Integrated Circuit (ASIC) or a group of 
components to perform an algorithm in hardware. ASICs are designed to perform a given 
computation and thus they are very fast with specific applications using the exact 
designed computational units. However, they cannot be altered after the design and hence 
algorithms which require new operations (computational units) cannot be performed as 
fast as others. The other method is to use software-programmed microprocessors. 
Processors execute a set of instructions. This makes a system flexible and by changing 
the software, functionality of system alters. However, the downside of this flexibility 
results in performance decrease. To execute instructions, the tasks of fetching, decoding 
and execution have to be performed which creates in a high execution overhead.  
A programmable system fills the gap between hardware and software. It achieves a better 
performance than software while providing a more flexible solution than hardware 
implementation. Programmable devices including Field Programmable Gate Array 
(FPGA) contain an array of programmable computational units which can be 
programmed through the configuration bits. This gives us the flexibility of having 
dedicated hardware to perform specific computational units and meantime it can be 
designed with parallelism capability. 
Reconfigurable systems provide the flexibility and reuse of hardware for multiple 
applications. Reconfigurable hardware can be used to execute designs, which are larger 
than the available hardware resources. In such cases, a part of a large application is 
executed on the hardware. By reusing the reconfigurable hardware, the remaining tasks of 
the application can be loaded and executed on the hardware at runtime. This is known as 
runtime reconfiguration. Another issue that necessitates the integration of reconfiguration 
in a hardware platform is that some applications require reconfiguration in different 
abstraction levels of the system. For example, some applications require different 
variations of an algorithm to execute their task. A non-flexible hardware realization for 
such applications has to fit all required algorithm variations on the die. This, if possible, 
makes the design and fabrication processes more complicated and expensive. 
A major drawback of using runtime reconfiguration is the significant delay of 
reprogramming the hardware. The total runtime of an application includes the actual 
execution delay of each task on the hardware along with the total time spent for hardware 
reconfiguration between computations. The latter might dominate the total runtime, 
especially for classes of applications with a small amount of computation between two 
consecutive reconfigurations. Hardware reconfiguration often takes hundreds of 
milliseconds or longer based on the size of application. To reduce the reconfiguration 
overhead, some previous works have used different approaches. 
In many applications, only a small portion of the design changes at a time and the entire 
hardware does not have to be reconfigured. This has led the industry to add the capability 
of Partial Reconfiguration to some of their recent products. FPGAs are examples of such 
reconfigurable hardware and some of the recent FPGA devices have the capability of 
partial runtime reconfiguration. 
Another method used to gain speed up is called Configuration Prefetching [1]. This 
method tries to overlap the computation with reconfiguration of the hardware. Therefore, 



to maximize this overlap, it seeks a way to minimize the chance that reconfiguration is 
prefetched falsely. 
Configuration Compression [2][3][4][5] is another approach to minimize the 
reconfiguration time. In this method, the configuration delay is reduced by compressing 
the data transferred from host computer to the programmable system.  
A major portion of delay is due to the distance between host computer and programmable 
device. Reconfiguration can be accelerated by using a fast memory (configuration cache) 
near reconfigurable array. This method is called Configuration Cashing [6][7].  
This paper presents a novel approach for quick reconfiguration via a micro-sequencer. In 
this method (Micro-Sequencer based Quick Reconfiguration – MSQR), the 
reconfiguration is performed by altering the algorithm loaded onto the memory of 
proposed architecture. Also new instructions can be generated by modifying the 
microcodes stored in the control unit. Further details on the architecture of micro-
sequencers will be given in Section 3. Furthermore, using micro-coded architecture in the 
control unit of the micro-sequencer facilitates the parallelism and adding new 
computational units to the datapath. In this case, the control unit needs the minimum 
modification since it is highly regular compared to sequential machine based controllers.  
In Section 2, our novel method for reconfiguration is introduced. Section 3 illustrates the 
micro-sequencer architecture proposed for reconfiguration. Section 4 proposes a heuristic 
for quick reconfiguration which increases the overall performance of the system by 
providing flexibility in design and size of data bus/address bus. Moreover, the 
experimental results are described in Section 4 and finally conclusion is discussed in 
Section 5. 
 
2. A NOVEL METHOD FOR RECONFIGURATION 
The traditional computer consists of a central processing unit (CPU) and a main memory. 
CPU is further divided into a control unit, a datapath and a memory. The structure of the 
memory and data path unit is regular and well-organized while the control unit structure 
is irregular and global. In this paper, we explore the regularity of the datapath for certain 
algorithms. We will suggest that such regularity will help us to design a control unit by 
which reconfiguration can be easily done. 
 As we mentioned in Section 1, efficient reconfiguration of an FPGA is a critical issue 
because of the time overhead of reconfiguration. Sometimes in order to reconfigure a 
system from an algorithm to another, the processes of synthesis, placement and routing 
have to be performed which are highly expensive in terms of CPU time and may take 
hours to complete. In our micro-sequencer approach, when a system is to be 
reconfigured, only the new algorithm has to be loaded onto the memory micro-sequencer. 
Further, in case new instructions are required for the new algorithm, the control store of 
control unit which has memory structure is updated. This method is called Micro-
Sequencer Based Quick Reconfiguration (MSQR). Since this method does not require 
physical reconfiguration, a significant speed up is gained in the process of 
reconfiguration versus full reconfiguration. 
 
2.1 MSQR IN IMAGE PROCESSING ALGORITHMS 
MSQR is applicable to those applications, where the types of computations do not vary 
substantially from one task to another. The motivation of this research is to enhance the 



reconfiguration process for image processing algorithms, hence, it has to be verified if 
image processing algorithms alter substantially during the reconfiguration process.  
Most of image processing algorithms are computationally intensive and should be 
executed on hardware resources to allow real time processing. Moreover, these 
algorithms change in nature and parameters, based on information available from targets. 
For instance, in feature tracking algorithm, the number of targets, their position and their 
distance to camera can change the algorithm (or its parameters) to increase the efficiency 
of tracking motions. Therefore, image-processing algorithms are proper candidates for 
mapping onto reconfigurable resources. This not only provides fast running time but also 
allows dynamic modification of the algorithm through run time reconfiguration. Both 
cannot be achieved by mapping this type of algorithms onto traditional fixed software or 
hardware platforms. 
Consequently, first it has to be verified that image processing algorithm are similar in 
terms of computational behavior i.e. they use similar computational units. A brief study 
on various MATLAB image processing functions verifies this. 
 

Function ( + ) ( * ) ( / ) 

area3D 33% 67% 0% 

PSNR 100% 0% 0% 

findCircles 78% 11% 11% 

rgb2ind 41% 45% 14% 

Opthr 50% 20% 30% 

Table 2.1 Instruction Breakdown for some image processing functions 
 
As shown above, image processing algorithms mostly use the same type of computational 
units. As a result, they are good candidates for MSQR. Also significant speed up can be 
gained by implementing parallel computation due to the nature of these algorithms. 
 
3. MICRO-SEQUENCER ARCHITECTURE 
Micro-sequencer makes use of microcode architecture for design of the control unit. In 
this approach, the relation between inputs and outputs are treated as a memory system. 
Control signals are stored as words in a microcoded memory. At each clock tick during 
instruction execution, the appropriate (micro) control word is fetched from microprogram 
memory to supply the control signals. 
The concept of microcoded control units originated early in the history of computing. 
Maurice Wilkes proposed the concept in 1951, as a way of simplifying the control logic 
of a computer. Although Wilkes did construct a machine, the EDSAC2, with a 



microcoded control unit, it was not until the early 1960s that IBM made the concept 
popular with the entirely programmed 360 line of computers [8]. 
The microcode control unit itself is a small stored program computer. It has a micro PC, a 
microprogram memory, and a microinstruction word, which contains the control signals 
and sequencing information. The action of the microcode control unit is exactly like that 
of a general purpose computer: fetch a microinstruction, execute it (by applying the 
control signals in the control word to the computer’s datapath), determine the address of 
the next microinstruction, and fetch the next instruction [9][10]. 
Figure 3.1 shows a block diagram of a typical design of a microcoded control unit. 

 

 
 

Table 3.1 Block Diagram of Microcoded Control Unit 
 
The µPC contains the address of the next microinstruction to be fetched from the control 
store, a fast local memory that contains the control words. The control word is copied 
into the µIR, the microinstruction registers. Control store consists of microinstructions 
which control the datapath directly. The format of microinstructions will be presented in 
Section 3.2. 
 
3.1. IS MICRO-SEQUENCER A GOOD SOLUTION? 
The goal of this study is to perform quick reconfiguration in image processing 
applications. In section 2.1, it was shown that image processing algorithms have similar 
computational behavior. Consequently, it can be inferred that the capabilities of datapath 
satisfies the new algorithm and it does not have to be modified. However, since the 
algorithm changes, the opcode part of the micro-sequencer which contains the 
instructions for a specific algorithm has to be updated. This process can be simply done 
by writing the new algorithm (the new instructions) onto the memory. This approach 
gains a significant speed up compared to traditional physical reconfiguration. Sometimes, 
due to the constraints of new algorithms, the order of utilization of components in 
datapath may have to be altered ,or further, instantiation of a new computational unit may 
be ineviTable. In this case, the micro-codes in control unit can be easily modified to 
satisfy the new requirements. Meantime, a new computational unit is added to the 
datapath. This achieves higher performance because of utilizing parallelism in 
computational intensive algorithms. Therefore, MSQR is effective both in terms of 
providing flexibility and performance. 
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3.2 MICROINSTRUCTION FORMAT 
Microinstructions are an important portion of the controller and have to be defined the 
way that the maximum flexibility is gained for reconfiguration. There are two types of 
microinstructions: Horizontal and Vertical. In the horizontal microcode, each bit 
represents a control signal for a component in datapath. In the vertical microcode, 
however, the control of similar components in datapath is compacted in a group of bits in 
microinstructions. This requires a local decoder to generate all control signals usable for 
components in datapath. The advantage of the horizontal microinstructions is its lower 
access time to reach the designated component in datapath. However, as the size of the 
datapath grows, the number of control bits increases resulting in larger Very Large 
Instruction Word (VLIW) as microinstructions [11][12][13]. 
Table 3.2 shows the microinstruction format for our architecture. A few more bits are 
reserved for newly inserted components in the datapath. 
 

µIR 
Index 

Signal Name 

00 ENDbit 
01 PCena 
02 Cout 
03 MDout 
04 Rout 
05 MAin 
06 MDin 
07 Cin 
08 PCin 
09 IRin 
10 Ain 
11 Rin 
12 INC4 
13 RD 
14 WR 
15 ADD 
16 GRa 
17 GRb 
18 GRc 

 
Table 3.2 Horizontal Microcode Format 

 
3.3 ASSEMBLER AND OPCODE STRUCTURE 
The instruction set format of our design is very similar to RISC instruction set. It has a 
fixed 32-bit instruction width. The detail of the instruction format is shown in Figure 3.3. 
The first field is the operation code (op-code) by which the type of operation is 
determined. The second, third and forth fields are the register indices. Some instruction, 
for example, ADD, SUB, and BRL have three indices, but some only have one. 

 



 

 
Figure 3.3 Instruction Set Format 

 
In order to support the template generation, we suggest another instruction format. The 
format has four register index operands. The op-code of this instruction is specified by 
the template generator. In order to support the quick reconfiguration, our micro-
sequencer machine needs to support the new instruction set whenever there is a new 
hardware implementation. Figure 3.4 shows the fields of the new instruction format. The 
first field is the op-code of the instruction. The second to the fifth fields are the indices of 
the operand registers. 

 
Figure 3.4 New Instruction Set Format 

 
Also we implemented an assembler for our proposed instruction set. The syntax is chosen 
such that parsing will be minimized. Figure 3.5 shows some common RISC assembly 
instructions and their translation into our assembler format. 
 

 

ld 4 1 0 128 = ld r4, [128+r1] 

ld 5 1 0 124 = ld r5, [124+r1] 

add 3 4 5 0 = add r3, r4, r5 

st 3 1 0 128 = st r3, [128+r1] 

Figure 3.5 Syntax of the Assembler 

 
Op Ra Rb Rc Rd

Microprocessor 
Opcode

Operand 1

Operand 2

Operand 3

Operand 4

 
Op Ra Rb c2

Op Ra c1

Op Ra

Op Rb

Op Ra Rb

Op Ra Rb

Op Ra Rb

Op Ra Rb

Op

Rc

Rc

Rc

Rc

Rc

Cond

Cond

Count

UNUSED

LD, ST, LA, ADDI, ANDI ORI

LDR, STR, LAR

NEG, NOT

BR

BRL

ADD, SUB, AND, OR

SHR, SHRA, SHL

SHC

NOP, STOP



4. EXPERIMENTAL RESULTS 
As described before, we have implemented a micro-sequencer in VHDL. The code is 
written structured and generic so that size of data bus/address bus can be easily modified 
[14]. 
The reconfiguration times of two image processing algorithms were measured once using 
the traditional physical reconfiguration and once using the novel method of MSQR on 
WILDSTAR™ /PCI board. The results are shown in Tables 4.1, 4.2 and 4.3. 
 
 

Algorithm 
Process 

Feature 
Selection 

Background 
Subtraction

Synthesis 
(sec) 176 54 

Placement 
and Routing 

(sec) 
1514 270 

Programming 
FPGA 
(msec) 

621 220 

 
Table 4.1 Traditional Reconfiguration Time Breakdown 

 
 

Algorithm Feature 
Selection 

Background 
Subtraction

# of 
Instructions 387 131 

MSQR Time
(µsec) 42 30 

 
Table 4.2 Quick Reconfiguration Time 

 
 

 

Algorithm Feature 
Selection 

Background 
Subtraction 

Traditional 
Reconfiguration 

Time 
(sec) 

1690.621 322.220 

MSQR Time 
(µsec) 42 30 

 
Table 4.3 Reconfiguration Time vs. Quick Reconfiguration Time 



As shown in Table 4.3, it is apparent that a significant speed up is gained by using our 
novel approach of MSQR.  
To show the flexibility of our proposed architecture, a background subtraction algorithm 
which requires 8 bit data bus has been implemented on various micro-sequencers with 8, 
16, 32, 64 and 128 bit data buses. The goal is to measure power, area and longest path 
delay for all above variations. This experiment has been done using Synopsys® Power 
Compiler. The measured power, area and data arrival times are shown in Figures 4.4, 4.5 
and 4.6. 
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Figure 4.4 Power Consumption 
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Figure 4.5 Area 
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Figure 4.6 Longest Path Delay 

 



 
 
5. CONCLUSION 
A micro-sequencer based architecture enhances the efficiency of reconfiguration on 
FPGA. The experimental results prove that the time needed to reconfigure the control 
unit of a system is far less than the time taken to physically reconfigure the whole system. 
Besides the reconfiguration time, the micro-sequencer based system provides flexibility 
for data bus/ address bus design. We demonstrated this point by modifying the size of 
data bus for a specific application. Such features can be exploited when the algorithms 
are unknown at the stage of micro-sequencer design. A significant improvement in power 
consumption, speed and silicon area is gained by providing this flexible feature. 
Moreover, MSQR provides an efficient way for reconfiguration with considerable speed 
up in reconfiguration process versus the traditional physical reconfiguration.  
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