
Enhancing MOEA/D with Guided Mutation and Priority Update for
Multi-objective Optimization

Chih-Ming Chen, Student Member, IEEE, Ying-ping Chen, Member, IEEE, and Qingfu Zhang, Senior Member, IEEE

Abstract—Multi-objective optimization is an essential and
challenging topic in the domains of engineering and computation
because real-world problems usually include several conflicting
objectives. Current trends in the research of solving multi-
objective problems (MOPs) require that the adopted optimization
method provides an approximation of the Pareto set such that the
user can understand the tradeoff between objectives and there-
fore make the final decision. Recently, an efficient framework,
called MOEA/D, combining decomposition techniques in math-
ematics and optimization methods in evolutionary computation
was proposed. MOEA/D decomposes a MOP to a set of single-
objective problems (SOPs) with neighborhood relationship and
approximates the Pareto set by solving these SOPs. In this paper,
we attempt to enhance MOEA/D by proposing two mechanisms.
To fully employ the information obtained from neighbors, we
introduce a guided mutation operator to replace the differential
evolution operator. Moreover, a update mechanism utilizing a pri-
ority queue is proposed for performance improvement when the
SOPs obtained by decomposition are not uniformly distributed
on the Pareto font. Different combinations of these approaches
are compared based on the test problem instances proposed for
the CEC 2009 competition. The set of problem instances include
unconstrained and constrained MOPs with variable linkages.
Experimental results are presented in the paper, and observations
and discussion are also provided.

I. INTRODUCTION

Handling multi-objective optimization problems (MOPs) is
a very important issue for real-world applications, because
in real-world applications, there are usually two or more
objectives which conflict with each other. These conflicting
objectives pose a challenge for optimization algorithm de-
velopers because there is no general rule to appropriately
combine these objectives into a single one and decision makers
may wish to know all the possible tradeoffs that they can
have. Traditionally in mathematics, the procedure to solve a
multi-objective problem is to firstly transform it into a single-
objective problem (SOP) by using weights on the objectives.
This method makes the problem solvable by many existing,
well-developed tools based on mathematics or heuristics.
However, such weights oftentimes cannot be pre-determined,
especially when the domain knowledge for the problem is
unavailable. Furthermore, the best solution to the transformed
single-objective problem is merely one solution on the Pareto

Chih-Ming Chen and Ying-ping Chen are with the Department of Computer
Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
TAIWAN (email: {ccming, ypchen}@nclab.tw). Qingfu Zhang is with the
Department of Computing and Electronic Systems, University of Essex,
Wivenhoe Park, Colchester, CO4 3SQ, UK (email: qzhang@essex.ac.uk).

front (PF) of the MOP. Hence, better optimization frameworks
must be developed to fulfill the need of solving MOPs.

Due to the limitation of traditional mathematical methods
for MOPs, more and more researchers try to solve MOPs in a
direct way and to approximate the PF as complete as possible.
Their goal is to provide a set of solutions which are partially
optimal. Many advanced multi-objective algorithms have been
proposed in the literature. Some of them try to approximate
the PF by using mathematical models [1], [2], and some are
developed based on evolutionary algorithms [3], [4], [5], [6],
[7], [8]. A hybrid framework makes use of decomposition
methods in mathematics and the optimization paradigm in
evolutionary computation was proposed and called MOEA/D-
SBX (simulated binary crossover) [9]. Later, a version of
MOEA/D employing the differential evolution (DE) operator,
MOEA/D-DE, was proposed and shown to perform well on
the MOPs with complicated Pareto set shapes [10].

MOEA/D uses a decomposition method to convert the given
MOP into a set of SOPs and tries to approximate the Pareto
front by solving these SOPs all together. According to the
employed decomposition method, we can calculate the abstract
distance between each SOP and define the neighborhood
relationship. The SOPs in one neighborhood are assumed to
have similar fitness landscapes, and their respective optimal
solutions may probably be close to each other. The goal
of this paper is to extend the framework of MOEA/D-DE
and enhance the utilization of the information shared among
neighbors. Firstly, we replace DE operator with a guided mu-
tation operator for reproduction and take the SOP’s neighbors,
as the guided target. Secondly, we propose a new update
mechanism with a priority order. The update mechanism can
improve MOEA/D’s performance when the SOPs obtained by
decomposition are not uniformly distributed on the Pareto
font. Finally, the set of test instances for the CEC 2009
competition is adopted to evaluate the performance of the
various combinations of these mechanisms.

The remainder of this paper is organized as follows. Sec-
tion II describes the formulation of multi-objective optimiza-
tion problems. Section III introduces the main MOEA/D
framework with the guided mutation operator and the priority
update mechanism. Experimental results and discussion are
given in section IV. Finally, section V concludes this paper.

II. MULTI-OBJECTIVE PROBLEMS

Most real-world problems are multi-objective optimization
problems (MOPs), of which single-objective problems are a

special case. For example, in many engineering problems,
there are usually at least two conflicting objectives, perfor-
mance and cost. Formally, a MOP can be stated as:

minimize F (x) = (f1(x), . . . , fm(x))

subject to

{
x ∈ Ω
C(x) = (c1(x), . . . , ct(x)) ≥ 0

, (1)

where Ω is called decision space or variable space, and Rm is
the objective space. C(x) represents the problem constraints
and defines the feasible regions in the decision space according
to problem properties [11]. F : Ω → Rm consists of m real-
valued objective functions. If Ω is a closed and connected
region in Rn and all the objective functions are continuous,
we call the problem a continuous MOP.

In order to consider the tradeoff between objectives, the
concept of domination between solutions is introduced. Let
u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Rm be two vectors.
u is said to dominate v if ui ≤ vi for all i = 1, . . . , m, and
u �= v. A point x∗ ∈ Ω is Pareto optimal if there is no x ∈ Ω
such that F (x) dominates F (x∗). The set of all the Pareto
optimal points, is called the Pareto set (PS). The set of all the
objective vectors corresponding to the PS is called the Pareto
front (PF), where PF = {F (x) ∈ Rm|x ∈ PS} [12].

Instead of searching for a single or just a few optimal
solutions as in solving single-objective problems, the goal of
handling multi-objective problems is to find the Pareto front
as well as the Pareto set of the problem. Given the limited
computational resource, including time and storage, how to
provide good solutions in terms of both quality and spread is
the key and challenging task for multi-objective optimization.

III. METHODOLOGY

In this section, we will firstly introduce the general frame-
work of MOEA/D for handling multi-objective optimization
problems. The new operator and updating mechanism pro-
posed in this paper for enhancing MOEA/D are then described
in the following sections.

A. MOEA/D Framework

One of the key ideas of MOEA/D is the use of a decom-
position method to transform a MOP into a number of single-
objective optimization problems (SOPs). MOEA/D attempts to
optimize these single-objective collectively and simultaneously
instead of trying to directly approximate the Pareto front as
many other evolutionary algorithms do because each optimal
solution to these SOPs is a Pareto optimal solution to the
given MOP. The collection of these optimal solutions is an
approximation of the Pareto front. Weighted sum, Tchebycheff
approach, boundary intersection, and any other decomposition
approaches can serve this purpose. In the present work, the
Tchebycheff approach [12] is adopted. A single-objective op-
timization problem obtained by decomposing the given MOP
can be represented as

minimize g(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |}
subject to x ∈ Ω

(2)

where λ = (λ1, . . . , λm) is a vector of weights, i.e., λi ≥ 0
for all i = 1, . . . , m and

∑m

i=1
λi = 1. z∗ = (z∗

1
, . . . , z∗m)

is the reference point, i.e., z∗i = min{fi(x)|x ∈ Ω} for each
i = 1, . . . , m.

Let λ1, . . . , λN be a set of N weight vectors. If we use
a large N and select the weight vectors properly, all the
optimal solutions of the SOPs from decomposition will well
approximate the Pareto front. Moreover, we can define a
neighborhood relationship for each of the SOPs by computing
Euclidean distances between weighted vectors. SOPs which
are considered neighbors will have similar fitness landscapes
and their optimal solutions should be close in the decision
space. MOEA/D exploits the information sharing among sub-
problems which are neighbors to accomplish the optimization
task effectively and efficiently. The framework of MOEA/D
can be described as follows:

• Global structure:

– a population of N search points x1, . . . , xN ∈ Ω,
where xi is the solution to the ith subproblem.

– z = (z1, . . . , zm), where zi is the best value found
so far for objective fi.

– a priority queue for subproblem indexes Q.

• Inputs:

– the multi-objective problem.
– stopping criteria.
– N : the number of subproblems.
– T : the number of neighbors for each subproblem.
– δ: the probability with which the parent solutions are

selected from the neighborhood.
– nr: the maximal copies of a new child in update.
– pm: the mutation ratio for SBX in guided mutation.

• Outputs:

– Approximation to the PS: x1, . . . , xN .
– Approximation to the PF: F (x1), . . . , F (xN).

• Procedure

– Step 1) Initialization

∗ Step 1.1) Compute the Euclidean distances be-
tween any two weight vectors and determine the
T closest weight vectors to each weight vector.
For each i = 1, . . . , N , set B(i) = {i1, . . . , iT },
where λi1 , . . . , λiT are the T closest weight vec-
tors to λi.

∗ Step 1.2) Generate an initial population x1, . . .,
xN by uniformly randomly sampling from Ω.
Calculate each fitness value F (xi).

∗ Step 1.3) Insert the subproblem indexes into Q at
random.

∗ Step 1.4) Initialize z = (z1, . . . , zm) by setting

zj = min
1≤i≤N

fj(x
i).

– Step 2) Update

∗ Step 2.1) Selection of targets: Generate a random
number r which is uniformly distributed in [0, 1]

and set

P =

{
B(i) if r < δ,
{1, . . . , N} otherwise.

∗ Step 2.2) Reproduction: Randomly select an
index from P as the guided target and generate
a new solution y by using guided mutation.

∗ Step 2.3) Repair: If an element of y is out of the
boundary of Ω, its value is reset to be a random
value within the range.

∗ Step 2.4) Update of reference point z: For each
j = 1, . . . , m, if zj > fi(y), set zj = fi(y).

∗ Step 2.5) Update of solutions: Set c = 0 and
for each index j of the subproblem in the priority
queue, conduct the following steps:

· 1) If g(y|λj , z) ≤ g(xj |λj , z), set xj = y and
c = c + 1.

· 2) If c = nr, go to Step 3.

– Step 3) Stopping criteria checking If the stopping
criterion is satisfied, stop and output x1, . . . , xN and
F (x1), . . . , F (xN). Otherwise, go to Step 2.

There are some structures to be maintained at each gener-
ation of MOEA/D, include the whole population, reference
point z, and priority queue Q. Each subproblem i in the
population has its own solution point xi, fitness value F (xi),
evaluation function with a weight vector λi, and a neighbor list
B(i). In step 1, solution points of generation 0 are initialized
by sampling in search space at random. The corresponding
fitness value and global z are determined accordingly. After
initialization, the evolutionary process begins from step 2.
For different operators, offspring are produced and repaired
to ensure the feasibility. The whole population and reference
point are updated by these newly created offspring in step 2.5.
If some stopping condition is satisfied in step 3, the algorithm
terminates. Otherwise, it goes back to step 2.1.

B. Guided Mutation

A reproduction operator is used in step 2.2 of the MOEA/D
framework. When MOEA/D was initially proposed, a simple
simulated binary crossover was adopted and implemented.
[10] introduces the differential evolution (DE) operator into
MOEA/D, and the integration is called MOEA/D-DE. In this
paper, we attempt to replace the DE operator with guided
mutation, which was proposed in [13]. The neighborhood
relationship is very important in MOEA/D because it models
and maintains the structure of those SOPs obtained by de-
composition. Such a property is considered highly compatible
with the operation of guided mutation. As aforementioned, the
optimal solutions of subproblems which are neighbors will
be close to each other, because their fitness landscapes are
similar. It is important to choose a neighbor as the guided
target when new solutions are created. At each operation of
guided mutation in step 2.2, a neighbor or a subproblem t is
selected from P based on the probability δ, and then a new

Fig. 1. Illustration of guided mutation

solution y can be generate according to Equation (4).

H = (H1, . . . , Hm)

where Hi =

{
N(0, 1) with probability pm

0 with probability 1− pm

(3)

y = x + 0.5(t− x)×N(0, 1) + R ∗H

where R =

{
0.1|t− x| if 0.1|t− x| > μ
μ otherwise.

(4)

New solution y is composed of three components. The first
part is the current position of x. The second part is the guided
vector derived from target t, and it is also the main direction
of search. However, the new solution will get stuck in some
local optimum if x is very close to t. For the third part, we
attempt to avoid the situation by appending a simple mutation.
The mutation step R here is decided by distance, |t − x|,
and bounded by parameter μ. Figure 1 illustrates how a new
solution is generated. The ellipse represents the contour line
of equal probability density.

C. Priority Update

The original update mechanism in MOEA/D is to randomly
pick an index from P in step 2.1 and do the update checking.
Parameter nr limits the maximal time of success updates, so it
is possible that some subproblem is not updated for indefinitely
many generations. Such a situation is similar to the issue of
“starvation” in the process scheduling in operating systems and
may lead those subproblems to be far away from other search
points of the population in the decision space. The probability
to update them will become lower and lower. A uniform update
mechanism should be able to take care of this problem. In the
present work, a new update mechanism is introduced. Initially,
all subproblems are randomly allocated in a priority queue.
When each time we update the best solution to a subproblem,
the element at the head of the queue will be checked first
and then others in the order specified by the queue. If the
best solution of any subproblem is successfully updated, the
subproblem will be moved back to the tail of the queue,
similar to the process adopted in the priority-scheduling using

(a)

(b)

Fig. 2. (a) The update queue is initialized at random, and the processing
order is shown; (b) The queue state is shown after two successful updates

in operating systems. Another difference of this mechanism
lies in the selection of parent solutions. For each evaluation,
we take the element at the queue tail, which is the newly
updated one, as a parent, because we are more interested in
the area close to the newly generated individual. Figure 2(a)
shows the initialization and processing flow of priority update.
Figure 2(b) displays the queue state change of Figure 2(a) after
some SOPs are updated.

IV. EXPERIMENTAL RESULTS

For a fair comparison, a new set of test problem instances
is used to verify the MOEA/D enhancements proposed in
this paper. We extend MOEA/D-DE to MOEA/D-GM and
adopt the new update mechanism. There are four combinations
shown in Table I tested in the series of experiments. In
section IV-A, we firstly introduce the test problem instances
designed for the CEC 2009 competition. Section IV-B de-
scribes all the parameter settings used in the experiments and
provides some guidelines of these parameters. Section IV-C
shows the experimental results, and finally some discussion
are given in section IV-D.

A. Test Instances of the CEC 2009 Competition

In order to develop robust, effective, and efficient evolution-
ary algorithms to solve multi-objective optimization problems,
we are in need of various problem models. There have been
several test problem sets proposed in the literature. Contin-
uous multi-objective problems with geometrical shape of the
Pareto set were widely used in early days [14], [15], [16].
However, most of their PS shapes are strikingly simple. Some
researchers started to consider that the test instances with more
complicated PS shapes are necessary for simulating real-world
problems and that variable linkages should be introduced
into the test instances [17], [18], [19]. For the CEC 2009
competition, Zhang et al. propose a new set of test problem

TABLE I
COMBINATIONS OF DIFFERENT OPERATORS AND UPDATE MECHANISM

Legend Description
DE MOEA/D with differential evolution [10]
GM MOEA/D with guided mutation
QDE MOEA/D-DE + priority update
QGM MOEA/D-GM + priority update

TABLE II
GENERAL SETTINGS FOR THE PARAMETERS

Parameter Value
T 0.1N
δ 0.9

pm 1/M
nr 2

μ 0.005

instances, including constrained and unconstrained problems
with complicated PS shapes [20]. Each problem explicitly
defines the objective functions, variable dimensions, search
spaces, and constraint conditions. By adopting the benchmark,
we compare different approaches proposed in the study in
terms of a performance metric called IGD value. Let P ∗ be a
set of points uniformly distributed on the Pareto front and A be
the approximation obtained by the algorithm. IGD represents
the average distance from P ∗ to A and is defined as

IGD(A,P ∗) =

∑
v∈P∗ d(v,A)

|P ∗|
, (5)

where d(v,A) is the minimum Euclidean distance between v
and the points in A. If the points in set P ∗ can appropriately
represents the Pareto front, IGD can measure both the diversity
and convergence of set A. Obviously, set A with a low IGD
value must closely fit the Pareto front and may not miss any
part of the whole Pareto front.

B. Parameter Settings

All control parameters in the MOEA/D framework are listed
in Table II. Suggestion values are also provided. T defines
the number of neighbors of one SOP, and the value is highly
dependent on the decomposition size N as well as the shape
of the Pareto front. According to the assumption, the fitness
landscapes of neighbors should be similar. If a larger N is
adopted and the SOPs distributes among the PF uniformly,
there are more SOPs with similar problem structures. We can
use a larger T value for promoting information sharing. δ
is the probability used to decide whether the candidate of
parents comes from only the neighbors or from all the SOPs.
In other words, it controls the weight of exploitation and
exploration. Mutation rate pm is a control factor for simulated
binary crossover. It indicates probability that each variable xi

is changed or not. We set the value 1/M for expecting at
least one dimension is mutated in a uniform way. nr limits
the maximum time of the successful updates. Another effect
of nr is to control the number of copies of the offspring in
next generation. Clearly, a large nr leads to fast convergence,

TABLE III
IGD VALUES FOR THE UNCONSTRAINED PROBLEMS IN THE 30 INDEPENDENT RUNS (SMALLEST/MEAN/LARGEST/STANDARD DEVIATION)

DE GM QDE QGM
UF1 0.0048/0.0052/0.0062/0.00036 0.0048/0.0063/0.0090/0.00102 0.0048/0.0053/0.0066/0.00047 0.0051/0.0062/0.0104/0.00113
UF2 0.0097/0.0125/0.0203/0.00231 0.0059/0.0067/0.0102/0.00078 0.0085/0.0106/0.0134/0.00131 0.0056/0.0064/0.0074/0.00043
UF3 0.0044/0.0230/0.0509/0.01221 0.0096/0.0561/0.2725/0.06593 0.0044/0.0094/0.0308/0.00622 0.0122/0.0429/0.1707/0.03407
UF4 0.0576/0.0716/0.0882/0.00618 0.0475/0.0517/0.0578/0.00262 0.0616/0.0723/0.0848/0.00634 0.0442/0.0476/0.0535/0.00222
UF5 0.1881/0.3455/0.7071/0.16121 0.9435/1.4395/2.0877/0.31818 0.2313/0.4734/0.6431/0.10724 0.6847/1.7919/2.7039/0.51240
UF6 0.1559/0.4085/0.8160/0.20139 0.0770/0.4719/0.8200/0.19595 0.1661/0.5135/0.8242/0.19437 0.3649/0.5563/0.8210/0.14701
UF7 0.0052/0.0192/0.3251/0.05794 0.0063/0.0077/0.0095/0.00091 0.0047/0.0655/0.5042/0.14380 0.0060/0.0076/0.0109/0.00094
UF8 0.0956/0.1189/0.2065/0.02048 0.0863/0.1325/0.2594/0.04404 0.0974/0.1328/0.2323/0.03548 0.0974/0.2446/0.3428/0.08542
UF9 0.0827/0.1642/0.1984/0.03586 0.0688/0.1702/0.2153/0.04411 0.0874/0.1739/0.2011/0.02549 0.0771/0.1878/0.2325/0.02872
UF10 0.3511/0.4982/0.7577/0.08300 0.4003/0.5021/0.7277/0.06963 0.3593/0.5250/0.7512/0.08757 0.4091/0.5646/0.8796/0.10165

TABLE IV
IGD VALUES FOR THE CONSTRAINED PROBLEMS IN THE 30 INDEPENDENT RUNS (SMALLEST/MEAN/LARGEST/STANDARD DEVIATION)

DE GM QDE QGM
CF1 0.0054/0.0106/0.0207/0.00304 0.0056/0.0110/0.0169/0.00279 0.0054/0.0103/0.0170/0.00297 0.0076/0.0108/0.0175/0.00250
CF2 0.0030/0.0155/0.0341/0.01054 0.0025/0.0126/0.0345/0.01318 0.0029/0.0127/0.0361/0.01039 0.0025/0.0080/0.0343/0.00999
CF3 0.0638/0.2838/0.6422/0.13444 0.1919/0.4336/0.5650/0.11548 0.1408/0.4096/0.6409/0.15647 0.4138/0.5134/0.6525/0.07143
CF4 0.0268/0.0408/0.1112/0.02022 0.0326/0.0556/0.3220/0.05579 0.0261/0.0488/0.2607/0.04749 0.0166/0.0707/0.5287/0.10144
CF5 0.0433/0.2872/0.5505/0.13048 0.0927/0.4645/0.6766/0.18780 0.1187/0.4348/0.5649/0.12327 0.0472/0.5446/0.7017/0.17231
CF6 0.2070/0.2072/0.2075/0.00014 0.2069/0.2071/0.2072/0.00010 0.2070/0.2072/0.2075/0.00013 0.2070/0.2071/0.2074/0.00010
CF7 0.2322/0.4120/0.6089/0.10696 0.2892/0.5003/0.6674/0.09402 0.2197/0.4199/0.8006/0.15710 0.3956/0.5356/0.7533/0.10030
CF8 0.2410/0.3942/0.7052/0.10749 0.2389/0.4061/0.6635/0.11071 0.2607/0.3822/0.5646/0.09630 0.2220/0.4056/0.7168/0.12824
CF9 0.1046/0.1304/0.1572/0.01364 0.1145/0.1408/0.1650/0.01493 0.1003/0.1303/0.1657/0.01664 0.1034/0.1519/0.2754/0.04125

CF10 0.1897/0.2982/0.5427/0.08157 0.2024/0.2854/0.6062/0.08603 0.2115/0.3154/0.6630/0.12300 0.1849/0.3139/0.6330/0.10384

and the population will probably lose diversity in a sort time.
μ defines the lower bound of the step size of guided mutation.
The functionality of μ is to avoid ineffective searching in a
local region when the guided target is very close to the parent.

C. Results

The detailed definition of the CEC 2009 multi-objective test
instances is presented in [20], and the set P ∗ ∈ PF for IGD
calculation is also available. Tables III and IV record the final
results after 300,000 function evaluations in 30 independent
runs. The four values listed in a column are the smallest, mean,
largest and standard deviation of the IGD values. Furthermore,
we show the final approximation set with the smallest IGD
value in Figures 3 and 4. The computing environment is a
Windows PC with 1.8Ghz AMD CPU and 2GB RAM. Both
the algorithm and test instances are programmed in C++. We
also compare the CPU time in Table V.

D. Discussion

In this section, we will discuss some observations of the
results. There are four combinations with different operators
and update methods. None of them outperforms the others on
all test instances. In the test set, each test instance has very
different properties as well as PS shapes. Some instances are
well handled by MOEA/D-DE, but some are better handled by
MOEA/D-GM. The main difference of GM from DE is that
GM can generate offspring in a broader region. GM embeds a
random factor in the mutation step and appends a simple muta-
tion for the other dimensions. GM is therefore more flexible to
approximate the PS as a complicated curve like instance UF2,

TABLE V
MEAN CPU TIME FOR EACH TEST INSTANCE (SECONDS)

Instance DE GM QDE QGM
UF1 6.507 5.468 13.052 12.159
UF2 7.083 6.062 13.870 12.915
UF3 7.657 7.373 14.320 13.387
UF4 7.135 6.062 13.941 12.921
UF5 6.638 5.567 12.062 12.246
UF6 7.309 6.630 13.342 12.980
UF7 6.847 6.454 13.007 13.313
UF8 15.212 19.658 28.196 27.069
UF9 14.601 19.475 28.419 27.343

UF10 15.418 16.380 28.466 28.139
CF1 5.024 4.145 11.887 10.793
CF2 5.277 4.469 12.268 11.063
CF3 5.454 4.606 11.774 10.873
CF4 5.436 4.395 11.989 10.949
CF5 5.460 4.517 12.078 11.188
CF6 5.453 4.563 12.143 11.090
CF7 5.456 4.557 11.716 10.852
CF8 7.596 9.492 24.706 24.170
CF9 10.015 11.891 28.658 28.512
CF10 9.593 11.538 27.895 27.226

UF4, and UF7. For UF3, the PS shape is a simple curve,
and DE can efficiently handle this problem. For the update
mechanism proposed in this paper, according the results, we
can find that priority update also helps MOEA/D to get
better performance in certain test instances. From observations,
MOEA/D has a weakness caused by decomposition when
the SOPs are not uniformly distributed on the Pareto front.
Figure 5 illustrates such a situation. The distances between

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) GM-UF1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) GM-UF2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) GM-UF3
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d) GM-UF4

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(e) GM-UF5
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(f) GM-UF6
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) GM-UF7

0

0.5

1

1.5

0

1

2

3
0

0.5

1

1.5

(h) GM-UF8

0
2

4
6

8
10

0

5

10

15
0

0.5

1

1.5

(i) GM-UF9

0

2

4

6

0

2

4

6
0

2

4

6

8

(j) GM-UF10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k) GM-CF1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(l) GM-CF2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(m) GM-CF3
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(n) GM-CF4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(o) GM-CF5
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(p) GM-CF6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(q) GM-CF7

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(r) GM-CF8

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(s) GM-CF9

0

0.5

1

1.5

0

20

40

60
0

0.5

1

1.5

(t) GM-CF10

Fig. 3. The plot of the final approximation set with the smallest IGD value in the objective space of GM in the 30 independent runs

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) QDE-UF1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) QDE-UF2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) QDE-UF3
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d) QDE-UF4

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(e) QDE-UF5
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(f) QDE-UF6
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) QDE-UF7

0
0.5

1
1.5

2

0

2

4

6

8
0

0.5

1

1.5

2

(h) QDE-UF8

0
2

4
6

8
10

0

0.5

1

1.5

2
0

0.5

1

1.5

(i) QDE-UF9

0
5

10
15

20
25

0

1

2

3
0

5

10

15

20

25

(j) QDE-UF10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k) QDE-CF1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(l) QDE-CF2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(m) QDE-CF3
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(n) QDE-CF4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(o) QDE-CF5
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(p) QDE-CF6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(q) QDE-CF7

0

0.5

1

1.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

(r) QDE-CF8

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5
0

0.5

1

1.5

(s) QDE-CF9

0
1

2
3

4
5

0

20

40

60

80
0

0.5

1

1.5

(t) QDE-CF10

Fig. 4. The plot of the final approximation set with the smallest IGD value in the objective space of QDE in the 30 independent runs

0.5

1

1

−0.5

0

0.5

−0.5

0

0.5

1

Fig. 5. Pareto set of UF2 with non-uniform decomposition

these SOPs are not similar, even if we uniformly divide the
weights of objectives. Moreover, the difficulty degree of these
SOPs will also not be identical. There are two points in the
update. One is to update the population with a priority order,
and the other is to take the latest individual as the parent in
reproduction. If a SOP which is rarely updated, it stays in
front of the queue and gets more chances to be verified by a
new child. Sometimes a few SOPs are so simple that they got
the optimal solutions and will not be updated any more. Only
the latest individual can reproduce offspring in this situation.
Computational resource will be automatically re-allocated, and
each SOP costs different numbers of evaluations based on
the difficulty. We can observe the situation in Table V as the
additional cost of new updates takes more CPU time.

V. CONCLUSIONS

This paper proposed extensions of the MOEA/D framework.
We used the guided mutation operator as the reproduction
method to replace differential evolution in MOEA/D-DE.
Guided mutation makes use of neighborhood information
efficiently. We also modified the update step and proposed a
new method utilizing a priority order implemented as a queue
structure. Different approaches were implemented and tested
for performance on the test instances designed for the CEC
2009 competition. The experimental results indicated that none
of the combinations outperforms the others on all problems.
MOEA/D-GM gained some performance improvement on the
problems with a curvy Pareto set. Priority update enhanced the
ability of the MOEA/D framework to handle the non-uniform
distribution of SOPs on the Pareto set. It is a critical issue
because we have no idea or information of the Pareto set before
attempting to solve the problem. MOEA/D uses an identical
way to decompose all MOPs with different Pareto set shapes.
Furthermore, there are still many test instances difficult to han-
dle, especially the ones with discontinuous Pareto fronts and
the constrained problems. In such cases, simple decomposition
techniques like Tchebycheff are not applicable. Hence, along
this line, developing flexible decomposition methods should
be considered an important future research direction.

ACKNOWLEDGMENTS

The work was supported in part by the National Science
Council of Taiwan under Grant NSC-96-2221-E-009-196.
The authors are grateful to the National Center for High-
performance Computing for computer time and facilities.

REFERENCES

[1] M. M. Wiecek, W. Chen, and J. Zhang, “Piecewise quadratic approx-
imation of the non-dominated set for bi-criteria programs,” Journal of
Multi-Criteria Decision Analysis, vol. 10, no. 1, pp. 35–47, 2001.

[2] S. Ruzika and M. Wiecek, “Approximation methods in multiobjective
programming,” Journal of Optimization Theory and Applications, vol.
126, no. 3, pp. 473–501, 2005.

[3] G. B. Lamont and D. A. V. Veldhuizen, Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.

[4] K. C. Tan, E. F. Khor, and T. H. Lee, Multiobjective Evolutionary
Algorithms and Applications (Advanced Information and Knowledge
Processing). Springer-Verlag, 2005.

[5] C. A. Coello Coello, “An updated survey of ga-based multiobjective
optimization techniques,” ACM Computing Surveys, vol. 32, no. 2, pp.
109–143, 2000.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[7] H. Lu and G. G. Yen, “Rank-density-based multiobjective genetic
algorithm and benchmark test function study,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 4, pp. 325–343, 2003.

[8] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling mul-
tiple objectives with particle swarm optimization,” IEEE Transactions
on Evolutionary Computation, vol. 8, no. 3, pp. 256–279, 2004.

[9] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[10] H. Li and Q. Zhang, “Multiobjective optimization problems with com-
plicated pareto set, MOEA/D and NSGA-II,” IEEE Transactions on
Evolutionary Computation, 2008, in press.

[11] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems
for multi-objective evolutionary optimization,” in First International
Conference on Evolutionary Multi-Criterion Optimization. Springer
Verlag, 2001, pp. 284–298.

[12] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Aca-
demic, 1999.

[13] C.-T. Hsieh, C.-M. Chen, and Y.-p. Chen, “Particle swarm guided
evolution strategy,” in Proceedings of ACM SIGEVO Genetic and
Evolutionary Computation Conference 2007 (GECCO-2007), 2007, pp.
650–657.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proceedings of IEEE Congress
on Evolutionary Computation (CEC 2002), 2002, pp. 825–830.

[15] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary Computation,
vol. 8, no. 2, pp. 173–195, 2000.

[16] V. L. Huang, A. K. Qin, K. Deb, E. Zitzler, P. N. Suganthan, J. J.
Liang, M. Preuss, and S. Huband, “Problem definitions for performance
assessment of multi-objective optimization algorithms: Special session
on constrained real-parameter optimization,” Nanyang Technological
University, Singapore,” Technical Report, 2007.

[17] K. Deb, A. Sinha, and S. Kukkonen, “Multi-objective test problems, link-
ages, and evolutionary methodologies,” in Proceedings of ACM SIGEVO
Genetic and Evolutionary Computation Conference 2006 (GECCO-
2006), 2006, pp. 1141–1148.

[18] H. Li and Q. Zhang, “A multiobjective differential evolution based on
decomposition for multiobjective optimization with variable linkages,”
in Proceedings of the 9th International Conference on Parallel Problem
Solving from Nature (PPSN IX), 2006, pp. 583–592.

[19] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.

[20] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari,
“Multiobjective optimization test instances for the CEC 2009,” Depart-
ment of Computing and Electronic Systems, University of Essex, UK,”
Working Report, 2008.

