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ON (GORENSTEIN) INJECTIVE AND (GORENSTEIN) FLAT

DIMENSIONS OF RIGHT DERIVED SECTION FUNCTOR OF

COMPLEXES

CYRUS JALALI

Abstract. Let (R,m) be a commutative Noetherian local ring, a be a proper ideal

of R and M be an R-complex in D(R). We prove that if M ∈ Df
❁(R) (respectively,

M ∈ Df
❂(R)), then idRRΓa(M) = idRM (respectively, fdRRΓa(M) = fdRM). Next,

it is proved that the right derived section functor of a complex M ∈ D❁(R) (R is not
necessarily local) can be computed via a genuine left-bounded complex G ≃ M of
Gorenstein injective modules. We show that if R has a dualizing complex and M is an
R-complex in Df

�
(R), then GfdRRΓa(M) = GfdRM and GidRRΓa(M) = GidRM .

Also, we show that if M is a relative Cohen-Macaulay R-module with respect to a

(respectively, Cohen-Macaulay R-module of dimension n), then GfdRH
htMa

a (M) =
GfdRM +n (respectively, GidRH

n
m(M) = GidRM −n). The above results generalize

some known results and provide characterizations of Gorenstein rings.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring, a is a proper ideal
of R and M is an R-complex. The category of R-complexes is denoted C(R), and
we use subscripts ❁, ❂ and � to denote genuine boundedness conditions. Also, the
derived category is denoted D(R), and we use subscripts ❁, ❂ and � to denote ho-
mological boundedness conditions. The symbol ≃ is the sign for isomorphism in D(R)
and quasi-isomorphisms in C(R). We also use superscript f to signify that the homol-
ogy modules are degreewise finitely generated. An R-complex I is semiinjective if the
functor HomR(−, I) converts injective quasiisomorphisms into surjective quasiisomor-
phisms. A semiinjective resolution of an R-complex M is a semiinjective complex I

and a quasiisomorphism M
≃

−→ I. For an R-complex M the injective dimension idRM
is defined as

idRM = inf
{
ℓ ∈ Z | ∃ semiinjective R−complex I such that

M≃I in D(R) and Iv=0 for all v<−ℓ

}
.

Several of the main results of this paper involve the hypothesis that R has a dualizing

complex. A complexD ∈ Df
�
(R) is dualizing forR if it has finite injective dimension and

the canonical morphism χR
M : R → RHomR(D,D) is an isomorphism in D(R). If R has

a dualizing complex D, we may consider the functor −† = RHomR(−,D). The notion
of Gorenstein injective module was introduced by E.E. Enochs and O.M.G. Jenda in
[6]. An R-module M is said to be Gorenstein injective, if there exists a HomR(I,−)
exact acyclic complex E of injective R-modules such that M = Ker(E0 → E−1). The
Gorenstein injective dimension, GidRM , of M ∈ D❁(R) is defined to be the infimum
of the set of integers n such that there exists a complex G ∈ C❁(R) consisting of
Gorenstein injective modules satisfying M ≃ G and Gn = 0 for n < −ℓ. Also, an
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R-complex F is semiflat if the functor − ⊗R F preserves injective quasiisomorphisms.
For an R-complex M the flat dimension fdRM is defined as

fdRM = inf
{
n ∈ Z | ∃ semiflat R−complex F such that

F≃M in D(R) and Fv=0 for all v>n

}
.

An R-module M is said to be Gorenstein flat, if there exists an I ⊗R − exact acyclic
complex F of of flat R-modules such that M = Ker(F0 → F−1). The Gorenstein flat
dimension, GfdRM , of M ∈ D❂(R) is defined to be the infimum of the set of integers
n such that there exists a complex F ∈ C❂(R) consisting of Gorenstein flat modules
satisfying M ≃ F and Gn = 0 for n < ℓ. Let M be an R-complex in D(R). The right
derived section functor of the complex M is defined as RΓa(M) = Γa(E), where E is a
semiinjective resolution of M (see [8] and [16]).

It has been shown in [7, Theorem 6.5] that the right derived section functor (with
support in any ideal a) sends complexes of finite flat dimension (respectively, finite
injective dimension) to complexes of finite flat dimension (respectively, finite injective
dimension). In section 2, as a main result, we prove that if (R,m) is a local ring andM ∈

Df
❁(R), then idRM and idRRΓa(M) are simultaneously finite, and that idRRΓa(M) =

idRM (see Theorem 2.6). Then, as a corollary, we provide a characterization of Goren-
stein rings which recovers [20, Corollary 2.7]. Also, in 2.10, we prove that if (R,m) is

a local ring and M is an R-complex in Df
❁
(R) with supRΓa(M) = infRΓa(M) = −n,

then idRM and idRH−n(RΓa(M)) (H−n(RΓa(M)) is considered as a module) are si-
multaneously finite and there is an equality idRH−n(RΓa(M)) = idRM − n. Notice
that, this result is a generalization of [20, Theorem 2.5].

In section 3, as a main result, a Gorenstein flat version of 2.6 is demonstrated. In-

deed, it is shown, in Theorem 3.5, that if (R,m) is a local ring and M ∈ Df
❂
(R),

then fdRM and fdRRΓa(M) are simultaneously finite, and that fdRRΓa(M) = fdRM .
Next, as an application of Theorem 3.5, we prove a Gorenstein flat version of 2.10 (see
Theorem 3.7). It has been proved in [4, Theorem 5.9] that if M ∈ D�(R), then

GidRM < ∞ ⇒ GidRRΓa(M) < ∞.

Moreover, if R has a dualizing complex, the above implication may be reversed if a is in

the Jacobson radical of R and M ∈ Df
�
(R). In Theorem 3.10, as a main result, we show

that if (R,m) is a local ring admitting a dualizing complex and M is an R-complex in

Df
�
(R), then GfdRRΓa(M) = GfdRM . Then, as a corollary, we prove that if M is a

relative Cohen-Macaulay R-module with respect to a, where is defined as in [20], and
that n = grade(a,M), then GfdRH

n
a (M) = GfdRM + n.

In section 4, we prove that if C is an Γa-acyclic R-complex in C❁(R), then RΓa(C) ≃
Γa(C) (see Theorem 4.5). As an application of this Theorem, in Corollary 4.7, we show
that, the right derived section functor of a complex M ∈ D❁(R) can be computed
via a genuine left-bounded complex G ≃ M of Gorenstein injective modules. Also,
as a main result, we show that if (R,m) is a local ring admitting a dualizing complex

and M is an R-complex in Df
�
(R), then GidRRΓa(M) = GidRM (see Theorem 4.10).

As a corollary, we provide a characterization of Gorenstein rings which recovers [20,
Corollary 3.10] and [19, Theorem 2.6]. Next, in Theorem 4.12, we prove a complex
version of 2.6 which improves [20, Theorem 3.8]. As a corollary, in 4.13, we deduce
that GidRH

n
m(M) = GidRM − n, wherever (R,m) is a local ring and M is a Cohen-

Macaulay R-module with dimRM = n (without assuming that R is Cohen-Macaulay).
This corollary improves [20, Corollary 3.9].
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2. right derived section functor and injective dimension

We recall the following lemma which shows that the right derived section functor
can be computed via Čech complexes.

Lemma 2.1. Let a be a proper ideal of R, and let M be an R-complex in D(R).
If x = x1, · · · , xr is a generating set for the ideal a and Čx the corresponding Čech
complex, then

RΓa(M) ≃ M ⊗L

R Čx.

Proof. see [15, Theorem 1.1(iv)]. �

The following proposition is one of the main results of this section which has led to
some interesting results.

Proposition 2.2. Let (R,m, k) be a local ring, and let M be an R-complex in D❁(R).
Then

RHomR(k,RΓa(M)) ≃ RHomR(k,M).

Proof. Let F be a semifree resolution of the residue field k. Let x = x1, · · · , xr be a
generating set for the ideal a and Čx be the Čech complex with respect to x. Then, in
view of [2, Theorem 4.4.5(a)], there are isomorphisms

RHomR(k,M ⊗L

R Čx) ≃ RHomR(k,M) ⊗L

R Čx

≃ RHomR(k,M) ⊗L

k (k ⊗L

R Čx)

in D(R). But, as in the proof of [11, Lemma 2.4], there exists a quasiisomorphism
F ⊗R Čx ≃ F in C(R). Hence k ⊗L

R Čx ≃ k, and so

RHomR(k,M ⊗L

R Čx) ≃ RHomR(k,M).

The result therefore follows from the fact that M ⊗L

R Čx ≃ RΓa(M). �

Corollary 2.3. Let (R,m, k) be a local ring, and let M be an R-complex in D❁(R).
Then the following statements hold.

(i) depthRRΓa(M) = depthRM .
(ii) If R admits a dualizing complex D, then

widthRRΓa(M)† = widthRM
†.

Proof. (i) Immediate from Proposition 2.2. (ii) By [2, Theorem 4.4.6(a)] and Proposi-
tion 2.2, there are isomorphisms

k ⊗L

R RHomR(RΓa(M),D) ≃ RHomR(RHomR(k,RΓa(M)),D)

≃ RHomR(RHomR(k,M),D)

≃ k ⊗L

R RHomR(M,D)

in D(R). The result now follows by definition of width. �

The following corollary, which is an immediate consequence of [10, Corollary 3.4.4]
and 2.2, determines the i -th Bass number µi(p,RΓa(M)) := µi

Rp
(RΓa(M)p) ofRΓa(M),

where is defined as in [2].

Corollary 2.4. Let (R,m, k) be a local ring, and let M be an R-complex in D❁(R).
Then µi

R(RΓa(M)) = µi
R(M) for all i ∈ Z; In particular, for every p ∈ V(a) there is

an equality µi(p,RΓa(M)) = µi(p,M) for all i ∈ Z.

Next, we recall the following lemma which is needed in the proof of Theorem 2.6.
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Lemma 2.5. Let M be a complex in D(R). Then

(i) idRM = sup{−infRHomR(T,M) | T is a cyclic R-module}; and
(ii) If M ∈ D❁(R), then

idRM = sup{m ∈ Z | ∃p ∈ SpecR : µm
Rp

(Mp) 6= 0}.

Proof. Parts (i) and (ii) have been proved in [2, Theorem 5.1.6] and [2, Lemma 6.1.19],
respectively. �

The following theorem, which is one of the main results of this section, provides a
comparison between the injective dimensions of a complex and its right derived section
functor.

Theorem 2.6. Let (R,m, k) be a local ring, and let M be an R-complex in D❁(R).

(i) If idRM < ∞, then idRRΓa(M) < ∞.

(ii) The converse holds whenever M ∈ Df
❁
(R).

Furthermore, if M ∈ Df
❁
(R), then idRRΓa(M) = idRM .

Proof. (i) Let s := idRM < ∞. Then, in view of Lemma 2.5(ii) and Corollary 2.4,
µi+s(p,RΓa(M)) = 0 for all p ∈ SpecR and for all i > 0. Therefore, it follows from
Lemma 2.5(ii) that idRRΓa(M) ≤ s.

(ii) Let t := idRRΓa(M) < ∞. Then, by Lemma 2.5(i), infRHomR(T,RΓa(M)) ≥
−t for all cyclic R-module T . Hence, in view of Proposition 2.2, there are isomorphisms

H−t−i(RHomR(k,M)) ∼= H−t−i(RHomR(k,RΓa(M))) ∼= 0

for all i > 0. Therefore −infRHomR(k,M) ≤ t, and so idRM ≤ t < ∞ by [2, Theorem
6.1.13]. The final assertion is a consequence of (i) and (ii). �

The following corollary, which recovers [20, Corollary 2.7], is an immediate conse-
quence of the previous Theorem.

Corollary 2.7. Let (R,m) be a local ring. Then the following statements are equivalent:

(i) R is Gorenstein;
(ii) idRRΓa(R) < ∞ for any ideal a of R;
(iii) idRRΓa(R) < ∞ for some ideal a of R.

Remark 2.8. Note that if M is an R-complex in D(R) such that supRΓa(M) =
infRΓa(M) = −n, then there is an isomorphism RΓa(M) ≃ H−n(RΓa(M)) in D(R).
Hence ΣnRΓa(M) is equivalent to the module ΣnH−n(RΓa(M)) in the category of
R-modules. We will abbreviate ΣnH−n(RΓa(M)) to Hn

a (M) when supRΓa(M) =
infRΓa(M) = −n.

Example 2.9. Let (R,m) be a Gorenstein local ring with dim(R) = d, and let M be
the R-complex

0 −→
⊕

p∈Spec(R)
htp=0

E(R/p) →
⊕

p∈Spec(R)
htp=1

E(R/p) → · · · → E(R/m) −→ 0.

Since M ≃ R, idRM = d. On the other hand, RΓm(M) ≃ H−d(RΓm(M)), and so
ΣdRΓm(M) ∼= E(R/m). Therefore

idRRΓm(M) = d = idRM.

The following theorem, which is an immediate consequence of Theorem 2.10, is a
generalization of [20, Theorem 2.5].
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Theorem 2.10. Let (R,m) be a local ring, and let n be an integer. Suppose that M is
an R-complex in D❁(R) such that supRΓa(M) = infRΓa(M) = −n.

(i) If idRM < ∞, then idRH
n
a (M) < ∞.

(ii) The converse holds whenever M ∈ Df
❁(R).

Furthermore, if M ∈ Df
❁
(R), then idRH

n
a (M) = idRM − n.

Proof. Parts (i) and (ii) follow from Theorem 2.6 in view of Remark 2.8.
For the final assertion, we notice that, since RΓa(M) ≃ H−n(RΓa(M)), there are

equalities

idRRΓa(M) = idRΣ
−n(ΣnH−n(RΓa(M)))

= idRΣ
nH−n(RΓa(M)) + n.

Then, in view of Remark 2.8, idRH
n
a (M) = idRRΓa(M)−n. The desired equality now

follows from Theorem 2.6. �

3. right derived section functor and (Gorenstein) flat dimension

The following proposition is one of the main results of this section which has led to
some interesting results.

Proposition 3.1. Let (R,m, k) be a local ring, and let M be an R-complex in D(R).
Then

k ⊗L

R RΓa(M) ≃ k ⊗L

R M.

Proof. Let x = x1, · · · , xr be a generating set for the ideal a and Čx be the Čech

complex with respect to x. Then, there exists an isomorphism k ⊗L

R Čx ≃ k in D(R)
(see 2.2). Hence, we have

k ⊗L

R Čx ⊗
L

R M ≃ k ⊗L

R M.

But Čx ⊗
L

R M ≃ RΓa(M). Therefore k ⊗L

R RΓa(M) ≃ k ⊗L

R M as desired. �

Corollary 3.2. Let (R,m, k) be a local ring. Suppose that M and N are R-complexes
in D(R). Then the following statements hold.

(i) widthRRΓa(M) = widthRM .
(ii) If N is an R-complex in D❁(R) and M ∈ D❂(R), then

depthRRHomR(RΓa(M), N) = depthRRHomR(M,N).

In particular, If R admits a dualizing complex D, then

depthRRΓa(M)† = depthRM
†.

Proof. (i) Immediate from Proposition 3.1. (ii) A straightforward application of [2,
Proposition 5.2.6], part (i) and Corollary 2.3(i). �

The following corollary, which is an immediate consequence of [10, Corollary 3.4.4]

and 3.1, determines the i -th Betti number βi(p,RΓa(M)) := β
Rp

i (RΓa(M)p) ofRΓa(M),
where is defined as in [2].

Corollary 3.3. Let (R,m, k) be a local ring, and let M be an R-complex in D(R).
Then βR

i (RΓa(M)) = βR
i (M) for all i ∈ Z; In particular, for every p ∈ V(a) there is

an equality βi(p,RΓa(M)) = βi(p,M) for all i ∈ Z.

Next, we recall the following lemma which is needed in the proof of Theorem 3.5.

Lemma 3.4. Let M be a complex in D(R). Then
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(i) fdR M = sup{sup T ⊗L

R M | T is a cyclic R-module}; and
(ii) There is an equality

fdR M = sup{m ∈ Z | ∃p ∈ SpecR : β
Rp

m (Mp) 6= 0}.

Proof. Parts (i) and (ii) have been proved in [2, Theorem 5.1.9] and [2, Lemma 6.1.15],
respectively. �

Theorem 3.5, which is a flat version of 2.6, is one of the main results of this section.
This theorem recovers some interesting results that have currently been appeared in
the literature.

Theorem 3.5. Let (R,m, k) be a local ring, and let a be a proper ideal of R. Suppose
that M is an R-complex in D(R).

(i) If fdRM < ∞, then fdRRΓa(M) < ∞.

(ii) The converse holds whenever M ∈ Df
❂(R).

Furthermore, if M ∈ Df
❂
(R), then fdRRΓa(M) = fdRM .

Proof. (i) Let s := fdRM < ∞. Then, in view of Lemma 3.4(ii) and Corollary 3.3,
βi+s(p,RΓa(M)) = 0 for all p ∈ SpecR and for all i > 0. Therefore, it follows from
Lemma 3.4(ii) that fdRRΓa(M) ≤ s.

(ii) Let t := fdRRΓa(M) < ∞. Then, by Lemma 3.4(i), supT ⊗L

R RΓa(M)) ≥ t for
all cyclic R-module T . Hence, in view of Proposition 3.1, there are isomorphisms

Ht+i(k ⊗L

R M) ∼= Ht+i(k ⊗L

R RΓa(M)) ∼= 0

for all i > 0. Therefore supk⊗L

R M ≤ t, and so fdRM ≤ t < ∞ by [2, Theorem 6.1.13].
The final assertion is a consequence of (i) and (ii). �

Example 3.6. Let (R,m) be a Gorenstein local ring with dim(R) = d, and let M be
as in 2.9. Since M ≃ R, fdRM = 0. On the other hand, RΓm(M) ≃ H−d(RΓm(M)),
and so ΣdRΓm(M) ∼= Hn

m(R). Hence, by [21, Corollary 3.4], fdRRΓm(M) + d = d.
Therefore

fdRRΓm(M) = 0 = fdRM.

The following theorem, which is an immediate consequence of Theorem 3.5, is a flat
version of 2.10.

Theorem 3.7. Let (R,m) be a local ring, and let n be an integer. Suppose that M is
an R-complex in D(R) such that supRΓa(M) = infRΓa(M) = −n.

(i) If fdRM < ∞, then fdRH
n
a (M) < ∞.

(ii) The converse holds whenever M ∈ Df
❂
(R).

Furthermore, if M ∈ Df
❂
(R), then fdRH

n
a (M) = fdRM + n.

Proof. Parts (i) and (ii) follow from Theorem 3.5 in view of Remark 2.8.
For the final assertion, we notice that, since RΓa(M) ≃ H−n(RΓa(M)), there are

equalities

fdRRΓa(M) = fdRΣ
−n(ΣnH−n(RΓa(M)))

= fdRΣ
nH−n(RΓa(M))− n.

Then, in view of Remark 2.8, fdRH
n
a (M) = fdRRΓa(M)+n. The desired equality now

follows from Theorem 3.5. �

In the rest of this section, we make a comparison between the Gorenstein flat dimen-
sions of a complex and its right derived section functor.
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Proposition 3.8. Suppose that M is an R-complex in D�(R). Then

GfdRRΓa(M) ≤ GfdRM.

Proof. Notice that if GfdRM = ∞, then there is nothing to prove. So, we may assume
that GfdRM < ∞. Hence, it follows from [4, Theorem 5.9] that GfdRRΓa(M) < ∞.
Now, by [9, Theorem 8.8], there exists p ∈ V(a) such that

GfdRRΓa(M) = depthRp − depthRp
(RΓa(M))p.

But, by [10, Corollary 3.4.4] and Corollary 2.3(i), depthRp
(RΓa(M))p = depthRp

Mp.

It follows, again by [9, Theorem 8.8], that

GfdRRΓa(M) = depthRp − depthRp
Mp ≤ GfdRM

as desired. �

Proposition 3.9. Let (R,m, k) be a local ring, and let M be an R-complex in Df
�
(R)

such that GfdRM < ∞. Then

GfdRM ≤ GfdRRΓa(M).

Proof. By [4, Theorem 5.9], GfdRRΓa(M) < ∞. Hence, by [9, Theorem 8.7] and
Corollary 2.3(i), there are equalities

sup(E(k)⊗L

R RΓa(M)) = depthR− depthRRΓa(M)

= depthR− depthRM = sup(E(k) ⊗L

R M).

Since M ∈ Df
�
(R), sup(E(k) ⊗L

R M) = GfdRM . The result now follows from the fact

that GfdRRΓa(M) ≥ sup(E(k) ⊗L

R RΓa(M)) (see [4, Corollary 3.6]). �

The following theorem, which is a Gorenstein flat version of Theorem 3.5, is one of
the main results of this section.

Theorem 3.10. Let (R,m) be a local ring, and let M be an R-complex in Df
�
(R).

(i) If GfdRM < ∞, then GfdRRΓa(M) = GfdRM .
(ii) If R admits a dualizing complex, then GfdRRΓa(M) = GfdRM .

Proof. (i) A straightforward application of Proposition 3.8 and Proposition 3.9.
(ii) In view of part (i), we may assume that GfdRRΓa(M) < ∞. Hence, by [4,

Theorem 5.9], GfdRM < ∞. The desired equality now follows from Proposition 3.8
and Proposition 3.9. �

The next theorem is a Gorenstein flat version of Theorem 3.7.

Theorem 3.11. Let (R,m) be a local ring admitting a dualizing complex, and let n

be an integer. Suppose that M is an R-complex in Df
�
(R) such that supRΓa(M) =

infRΓa(M) = −n.

(i) If GfdRM < ∞, then GfdRH
n
a (M) = GfdRM + n.

(ii) If R admits a dualizing complex, then GfdRH
n
a (M) = GfdRM + n.

Proof. Follows from Theorem 3.10 in view of Remark 2.8. �

Corollary 3.12. Let (R,m) be a local ring. Suppose that M is relative Cohen-Macaulay
with respect to a and that n = grade(a,M). Then GfdRH

n
a (M) = GfdRM + n.

Proof. Notice that (R̂, m̂) is a local ring admitting a dualizing complex and M⊗R R̂ is a

relative Cohen-Macaulay R̂-module with respect to aR̂ and that grade(aR̂,M ⊗R R̂) =
n. Hence, in view of [3, Theorem 4.27], we may assume that R is complete; and so it
has a dualizing complex. The result therefore follows from Theorem 3.11. �
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4. right derived section functor and Gorenstein injective dimension

In this section the category of R-modules is denoted C(R). Recall from [1, Exercise
4.1.2] that the local cohomology modules of R-module M with respect to a can be
calculated by an Γa-acyclic resolution of M . First, we prove the complex version of this
exercise.

Definition 4.1. (see [17]) Let F : C(R) → C(R) be a left exact functor, and assume
that M is an R-complex in C❁(R). If 0 → M → C∗,0 → C∗,1 → · · · → C∗,q → is a
Cartan-Eilenberg injective resolutions of M , where is defined as in [13], define Ri(FM)
to be Hi(Tot(FC)).

Lemma 4.2. Let M and Ḿ be two R-complexes in C❁(R), and let ζ : M → Ḿ be a
morphism of R-complexes. Suppose that 0 → M → C∗,0 → C∗,1 → · · · → C∗,q → and

0 → Ḿ → Ć∗,0 → Ć∗,1 → · · · → Ć∗,q → are Cartan-Eilenberg injective resolutions of

M and Ḿ , respectively. Then there exists a sequence {ζ∗,q}q∈N0
of morphisms ζ∗,q :

C∗,q → Ć∗,q of R-complexes over ζ.

Proof. A straightforward application of [12, Theorem 19]. �

Lemma 4.3. Let F : C(R) → C(R) be a left exact functor, and let M and Ḿ be two
R-complexes. Then

(i) Any quasiisomorphism ζ : M → Ḿ induces isomorphism

R
i(FM) ∼= R

i(FḾ )

for all i ∈ Z; and
(ii) If M is F-acyclic R-complex in C❁(R), that is, Mi is F-acyclic for all i ∈ Z, then

R
i(FM) = Hi(FM)

for all i ∈ Z.

Proof. Straightforward verification similar to the proof of [17, Corollary 5.7.7]. �

The following theorem, which is one of the main results of this section, provide us
to prove some interesting results.

Theorem 4.4. Let F : C(R) → C(R) be a left exact functor, and let M be an F-acyclic
R-complex in C❁(R). Assume that I is F-acyclic and F(I) is injective for every injective
R-module I. Then F(M) ≃ F(E), for every semiinjective resolution E ∈ C❁(R) of M .

Proof. Let E be a semiinjective resolution of M with Ev = 0 for v > supM , and let

ζ : M
≃

−→ E be an quasiisomorphism. By [13, Theorem 10.45], there exist Cartan-
Eilenberg injective resolutions 0 → M → C∗,0 → C∗,1 → · · · → C∗,q → and 0 →

E → Ć∗,0 → Ć∗,1 → · · · → Ć∗,q →. Hence, in view of Lemma 4.2, there is a sequence
{ζ∗,q}q∈N0

of morphisms of R-complexes such that the diagram

0 −−−−→ E −−−−→ Ć∗,0 −−−−→ Ć∗,1 −−−−→ · · · −−−−→ Ć∗,q −−−−→
xζ

xζ∗,0

xζ∗,1

xζ∗,q

0 −−−−→ M −−−−→ C∗,0 −−−−→ C∗,1 −−−−→ · · · −−−−→ C∗,q −−−−→

commutes in C(R). By Lemma 4.3(ii), R
p(F(M)) = Hp(F(M)) for all p ∈ Z, so

that the natural morphism F(M) → Tot(F(C)) is a quasiisomorphism. Similarly,

R
p(F(E)) = Hp(F(E)) for all p ∈ Z, so that the natural morphism F(E) → Tot(F(Ć))
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is a quasiisomorphism. Thus, by [2, Proposition 3.3.5(a)], there exists a quasiisomor-

phism Tot(F(Ć)) → F(E), since F(E) is injective.
But, by Lemma 4.3(i), there are isomorphisms Rp(F(M)) ∼= R

p(F(E)) for all p ∈ Z.

Hence the morphism ζ∗ : Tot(F(C)) −→ Tot(F(Ć)) is a quasiisomorphism, where

ζn =
∑

p+q=n

F(ζp,q) : Tot(F(C))n → Tot(F(Ć))n

for all n ∈ Z. Therefore, there are quasiisomorphisms

F(M)
≃
−→ Tot(F(C))

≃
−→ Tot(F(Ć))

≃
−→ F(E).

Now F(M) ≃ F(E) as desired. �

The next theorem, which offers an application of the previous theorem, is a complex
version of [1, Exercise 4.1.2].

Theorem 4.5. Let C be an Γa-acyclic R-complex in C❁(R). Then RΓa(C) ≃ Γa(C).

It should be noted that the following corollary, as an application of Theorem 4.5,
follows from the result of J. Lipman in [10, Corollary 3.4.3]; however, the proof below
is different from his.

Corollary 4.6. Let f : R → R′ be a ring homomorphism of commutative Noetherian
rings, and let ⌈R: C(R′) → C(R) to denote the functor obtained from restriction of
scalars (using f). Suppose that M ′ is an R′-complex in D❁(R

′). Then there is an
isomorphism

RΓa(M
′⌈R) ≃ RΓaR′(M ′)⌈R

in D(R). In particular, H−i(RΓa(M
′⌈R)) ∼= H−i(RΓaR′(M ′))⌈R for all i ∈ Z.

Proof. Let I ′ ∈ C❁(R
′) be an injective resolutions of M ′. Note that M ′⌈R≃ I ′⌈R. But,

by [1, Theorem 4.1.6], I ′⌈R is Γa-acyclic R-complexes in C❁(R), and so, by Theorem
4.5, there is an isomorphism

RΓa(M
′⌈R) ≃ Γa(I

′⌈R)

in D(R). The result now follows, since Γa(I
′⌈R) = ΓaR′(I ′)⌈R. �

It has been proved in [14, Corollary 3.3] that if R admits a dualizing complex and
M ∈ D❁(R), then GidRRΓa(M) ≤ GidRM . The next corollary together with [14,
Theorem 3.2] recover this result. Also, notice that [14, Theorem 3.4] is an immediate
consequence of 4.7.

Corollary 4.7. Let M be an R-complex in D❁(R), and let G ∈ C❁(R) be an R-complex
of Gorenstein injective modules such that M ≃ G. Then RΓa(M) ≃ Γa(G).

Proof. Since by [18, Lemma 1.1] every Gorenstein injective module is Γa-acyclic, the
result follows from Theorem 4.5. �

The following proposition together with [4, Theorem 5.9] recover [14, Corollary 3.3].

Proposition 4.8. Suppose that M is an R-complex in D❁(R) such that GidRRΓa(M) <
∞. Then

GidRRΓa(M) ≤ GidRM.
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Proof. Notice that if GidRM = ∞, then there is nothing to prove. So, we may assume
that GidRM < ∞. By [5, Theorem 2.2], there exists p ∈ V(a) such that

GidRRΓa(M) = depthRp − widthRp
(RΓa(M))p.

But, by [10, Corollary 3.4.4] and Corollary 3.2(i), widthRp
(RΓa(M))p = widthRp

Mp.
It follows, again by [5, Theorem 2.2], that

GidRRΓa(M) = depthRp − widthRp
Mp ≤ GidRM

as desired. �

Proposition 4.9. Let (R,m) be a local ring, and let M be an R-complex in Df
�
(R)

such that GidRM < ∞. Then

GidRM ≤ GidRRΓa(M).

Proof. By [4, Proposition 6.3], there is an inequality

GidRRΓa(M) ≥ depthR− widthRRΓa(M).

But, by Corollary 3.2(i), widthRRΓa(M) = widthRM . Thus, we have

GidRRΓa(M) ≥ depthR− widthRM

= depthR− inf M.

The result therefore follows from [5, Corollary 2.3]. �

The following theorem, which is a Gorenstein injective version of Theorem 2.6, is
one of the main results of this section.

Theorem 4.10. Let (R,m) be a local ring admitting a dualizing complex, and let M

be an R-complex in Df
�
(R). Then GidRRΓa(M) = GidRM .

Proof. A straightforward application of [4, Theorem 5.9], Proposition 4.8 and Proposi-
tion 4.9. �

In [20, Corollary 3.10] a characterization of a Gorenstein local ring R is given. The
next corollary recovers that characterization. Also, notice that Corollary 4.11 together
with Corollary 2.7 recover [19, Theorem 2.6].

Corollary 4.11. Let (R,m) be a local ring admitting a dualizing complex. Then the
following statements are equivalent:

(i) R is Gorenstein;
(ii) GidRRΓa(R) < ∞ for any ideal a of R;
(iii) GidRRΓa(R) < ∞ for some ideal a of R.

Proof. A straightforward application of Theorem 4.10 and [3, Proposition 3.11]. �

The next theorem, which is a Gorenstein injective version of Theorem 2.10, recovers
[20, Theorem 3.8].

Theorem 4.12. Let (R,m) be a local ring admitting a dualizing complex, and let n

be an integer. Suppose that M is an R-complex in Df
�
(R) such that supRΓa(M) =

infRΓa(M) = −n. Then GidRH
n
a (M) = GidRM − n.

Proof. Follows from Theorem 4.10 in view of Remark 2.8. �
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Let (R,m) be a local ring, and let M be an R-module. As a result, it has been shown
in [20, Corollary 3.9] that if R and M are Cohen-Macaulay with dimRM = n, then
GidRH

n
m(M) = GidRM − n. We show that [20, Corollary 3.9] holds without assuming

that R is Cohen-Macaulay.

Corollary 4.13. Let (R,m) be a local ring, and let M be a Cohen-Macaulay R-module
with dimRM = n. Then the following statements hold.

(i) Gid
R̂
RΓ

aR̂
(M ⊗R R̂) = GidRM .

(ii) GidRH
n
m(M) = GidRM − n.

Proof. Notice that (R̂, m̂) is a local ring admitting a dualizing complex and M ⊗R R̂ is

a Cohen-Macaulay R̂-module of dimension n.
(i) A straightforward application of Theorem 4.10 and [3, Theorem 3.24].
(ii) It follows, by Remark 2.8, that

Gid
R̂
RΓm̂(M ⊗R R̂) = Gid

R̂
Hn

m̂
(M ⊗R R̂) + n

But, in view of [14, Lemma 3.6], Gid
R̂
Hn

m̂
(M ⊗R R̂) = GidRH

n
m(M). The result now

follows from part (i). �

References

[1] M. P. Brodmann and R. Y. Sharp, Local cohomology: An algebraic introduction with geometric

applications, Cambridge University Press, Cambridge, (1998).
[2] L.W. Christensen, H-B. Foxby, Hyperhomological Algebra with Applications to Commutative Rings

12 Dec 2006, (2006).
[3] L.W. Christensen, H-B. Foxby, and H. Holm, Beyond totally reflexive modules and back, In:

Noetherian and Non-Noetherian Perspectives, edited by M. Fontana, S-E. Kabbaj, B. Olberding
and I. Swanson, Springer Science+Business Media, LLC, New York, 2011, 101-143.

[4] L.W. Christensen, A. Frankild, H. Holm, On Gorenstein projective, injective and flat dimensions-

A functorial descripotion with aplications, J. Algebra, 302(2006), 231–279.
[5] L. W. Christensen and S. Sather-Wagstaff, Transfer of Gorenstein dimensions along ring homo-

morphisms, J. Pure Appl. Algebra 214 (2010), no. 6, 982-989.
[6] E.E. Enochs and O.M.G. Jenda, Relative homological algebra, de Gruyter, Berlin, (2000).
[7] H-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149-172.
[8] S. I. Gelfand and Yu. I. Manin, Homological Algebra, Springer-Verlag, Berlin, (1999).
[9] S. Iyengar, S. Sather-Wagstaff, G-dimension over local homomorphisms. Applications to the Frobe-

nius endomorphism, Illinois J. Math. 48 (1) (2004) 241–272. MR2048224.
[10] J. Lipman, Lectures on local cohomology and duality, in: Local cohomology and its applications,

volume 226 of Lecture Notes in Pure and Appl. Math., pages 39–89. Dekker, New York, (2002).
[11] W. Mahmood, P. Schenzel, On invariants and endomorphism rings of certain local cohomology

modules, J. Algebra 372 (2012) 56-67.
[12] D. G. Northcott, An Introduction to Homological Algebra, Cambridge University Press, (1960).
[13] J.J. Rotman, An Introduction to Homological Algebra, Springer Science+Business Media LLC

(2009).
[14] R. Sazeedeh, Gorenstein injective of the section functor, Forum Mathematicum, 22 (2010) 1117-

1127.
[15] P. Schenzel, Proregular sequences, local cohomology, and completions, manuscript, (1999).
[16] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988).
[17] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, New York,

(1994).
[18] S. Yassemi, A generalization of a theorem of Bass, Comm. Algebra, 35 (2007) 249-251.
[19] T. Yoshizawa, On Gorenstein injective of top local cohomology modules, Proc. Amer. Math. Soc,

140 (2012) 1897-1907.
[20] M. R. Zargar, H. Zakeri, On injective and Gorenstein injective dimensions of local cohomology

modules, to appear in Algebra Colloquium.



12 C. JALALI

[21] M. R. Zargar, H. Zakeri, On flat and Gorenstein flat dimensions of local cohomology modules,
arXiv: 1302.6395v2.

C. Jalali, Faculty of mathematical sciences and computer, Kharazmi University, 599
Taleghani Avenue, Tehran 15618, Iran

E-mail address: c.jalali@yahoo.com


	1. Introduction
	2. right derived section functor and injective dimension
	3. right derived section functor and (Gorenstein) flat dimension
	4. right derived section functor and Gorenstein injective dimension
	References

