TWOACK: Preventing Selfishness

in Mobile Ad

Hoc Networks

Kashyap Balakrishnan
Security Services Group
Deloitte & Touche LLP
McLean, VA 22102
kbalakrishnan @deloitte.com

Abstract— Mobile Ad hoc Networks (MANETS) operate on the
basic underlying assumption that all participating nodes fully
collaborate in self-organizing functions. However, performing
network functions consumes energy and other resources. There-
fore, some network nodes may decide against cooperating with
others. Providing these selfish nodes, also termed misbehaving
nodes, with an incentive to cooperate has been an active research
area recently. In this paper, we propose two network-layer
acknowledgment-based schemes, termed the TWOACK and the
S-TWOACK schemes, which can be simply added-on to any
source routing protocol. The TWOACK scheme detects such
misbehaving nodes, and then seeks to alleviate the problem by
notifying the routing protocol to avoid them in future routes.
Details of the two schemes and our evaluation results based on
simulations are presented in this paper. We have found that, in
a network where up to 40% of the nodes may be misbehaving,
the TWOACK scheme results in 20% improvement in packet
delivery ratio, with a reasonable additional routing overhead.

I. INTRODUCTION

Mobile Ad Hoc Network (MANET) can be described as
an autonomous collection of mobile nodes (users) that com-
municate over relatively low capacity wireless links, without
a centralized infrastructure. In these networks, nodal mobility
and the wireless communication links may lead to dynamically
changing and highly unpredictable topologies. All network
functions such as routing, multi-hop packet delivery, and mo-
bility management have to be performed by the member nodes
themselves, either individually or collectively. So, network
performance becomes highly dependent on collaboration of
all member nodes. MANETS find applications in diverse fields
ranging from low-power military wireless sensor networks to
large-scale civilian applications, and emergency search/rescue
operations.

There are two types of MANETS: open and closed [12]. An
open MANET comprises of different users, having different
goals, sharing their resources to achieve global connectivity, as
in civilian applications. This is different from closed MANETS
where the nodes are all controlled by a common authority,
have the same goals, and work toward the benefit of the
group as a whole. Open environment of a MANET may
lead to misbehaving nodes. Misbehaving nodes come into
existence in a network due to several reasons: (a) Mobile
hosts lack adequate physical protection (due to the open
communication medium), making them prone to be captured

Jing Deng
Department of CS
University of New Orleans
New Orleans, LA 70148
jing@cs.uno.edu

Pramod K. Varshney
Department of EECS
Syracuse University

Syracuse, NY 13244

varshney @ecs.syr.edu

and compromised; (b) Usually mobile hosts are resource-
constrained computing devices. Performing network functions
consumes significant energy of participating nodes, as com-
munication is relatively costly. Selfish nodes are unwilling
to spend their precious resources for operations that do not
directly benefit them. MANETS lack a centralized monitoring
and management point, making it a challenging task to detect
such misbehaving nodes effectively.

Non-cooperative actions of misbehavior are usually termed
as selfishness, which is notably different from malicious be-
havior. Selfish nodes use the network for their own communi-
cation, but simply refuse to cooperate in forwarding packets
for other nodes in order to save battery power. A selfish node
would thus utilize the benefits provided by the resources of
other nodes, but will not make available its own resources to
help others. They have no intention of damaging the network.
Malicious nodes injected by adversaries, on the other hand,
will actively spend battery power to cause harm to the entire
network. Providing nodes with an incentive to cooperate (by
either rewarding them for active cooperation or punishing them
for a lack of such cooperation) becomes an interesting research
issue.

In [10], three types of selfish nodes related to routing such
as Dynamic Source Routing (DSR) [7] are defined:

« Selfish Nodes Type 1 (SN1) — These nodes participate in
the DSR Route Discovery and Route Maintenance phases,
but refuse to forward data packets (which are usually
much larger than the routing control packets);

« Selfish Nodes Type 2 (SN2) — These nodes participate in
neither the Route Discovery phase, nor forwarding data
packets. They only use their energy for transmissions of
their own packets;

o Selfish Nodes Type 3 (SN3) — These nodes behave (or
misbehave) differently based on their energy levels. When
the energy lies between full energy F and a threshold 77,
the node behaves properly. For an energy level between
T and another lower threshold 75, it behaves like a node
of type SN1. Finally, for an energy level lower than 75,
it behaves like a node of type SN2. The relationship
between 14, 15, and F is 1 < T < E.

The existence of the SN2 type nodes is simply ignored by

0-7803-8966-2/05/$20.00 (C) 2005 IEEE

the routing protocol. Thus, these nodes do not pose a sig-
nificant threat to the normal operation of the routing protocol,
even though they may degrade network connectivity. The SN1
and SN3 categories of nodes, on the other hand, are more
dangerous to routing protocols. These nodes support the flow
of route discovery traffic but interrupt the data flow, causing
the routing protocol to restart the route-discovery process or
to select an alternative route if one is available. The newly-
selected routes may still include some of these SNI type
nodes, and hence the new route will also fail. This process will
continue until the source of traffic concludes that data cannot
be transferred. In this work, we focus only on the detection
and mitigation of SN1 type misbehavior. SN3 type nodes will
be detected when they behave similar to the SN1 type nodes.

In order to detect misbehaving nodes, we propose a
network-layer scheme called TWOACK, which can be im-
plemented as a simple add-on to any source routing protocol
such as DSR [7] . When a node forwards a packet, the nodes
routing agent verifies that the packet is received successfully
by the node that is two hops away on the source route. This
is done through the use of a special type of acknowledgment
packets, termed TWOACK packets. TWOACK packets have a
very similar functionality as the ACK packets on the Medium
Access Control (MAC) layer or the TCP layer. A node
acknowledges the receipt of a data packet by sending back
a two-hop TWOACK packet along the active source route.
If the sender/forwarder of a data packet does not receive a
TWOACK packet corresponding to a particular data packet
that was sent out, the next-hop’s forwarding link is claimed
to be misbehaving and the forwarding route broken. Based
on this claim, the routing protocol avoids the accused link in
all future routes, resulting in an improved overall throughput
performance for the network. The S-TWOACK (Selective-
TWOACK) scheme is a derivative of the basic TWOACK
scheme, aimed at reducing the routing overhead caused by
excessive number of TWOACK packets. We discuss our
schemes in the framework of the DSR protocol as an example
of source routing schemes. The operation of the TWOACK
schemes when used with other source routing schemes is
similar. Technical details of the DSR protocol, such as Route
Discovery and Route Maintenance, and its optimizations, can
be found in [7].

The rest of the paper is organized as follows: In Section II,
we summarize the various approaches that have been proposed
and studied in the technical literature to mitigate routing
misbehavior. We then describe the details of the TWOACK
and the S-TWOACK schemes and their technical merits in
Section III. Section IV presents our performance evaluation
setup and preliminary simulation results. We conclude our
work and discuss our plan for future work in Section V.

II. RELATED WORK

Various techniques have been proposed to prevent selfish-
ness in MANETSs. As described in [15], these schemes can
be broadly classified into reputation-based schemes [2], [9]
and credit-based schemes [3], [5], [6], the basic idea being

to provide incentives to nodes to faithfully perform network-
ing functions. In a reputation-based approach, nodes (either
individually or collectively) detect, and then declare another
node to be misbehaving. This declaration is then propagated
throughout the network, leading to the misbehaving node being
avoided in all future routes. A credit-based approach, on the
other hand, uses the concept of virtual currency. Nodes pay
virtual money for services (networking resources) that they get
from other nodes, and similarly, get paid for providing services
to other nodes. Since our TWOACK scheme is reputation-
based, we only describe previous work of that category in this
section.

In [9], Marti et al. proposed a reputation-based scheme.
Two modules called watchdog and pathrater are implemented
at each node, to detect and mitigate, respectively, routing
misbehaviors in MANETSs. Nodes operate in a promiscuous
mode wherein, the watchdog module overhears the medium to
check whether the next-hop node faithfully forwards the packet
or not. At the same time, it maintains a buffer of recently sent
packets. A data packet is cleared from the buffer when the
watchdog overhears the same packet being forwarded by the
next hop node over the medium. If a data packet remains in
the buffer too long, the watchdog module accuses the next-
hop neighbor to be misbehaving. Thus, the watchdog enables
misbehavior detection at the forwarding level as well as the
link level. Based on watchdog’s accusations, the pathrater rates
every path in its cache and subsequently chooses the path
that best avoids misbehaving nodes. However, the watchdog
technique may fail to detect misbehavior in the presence of
ambiguous collisions, receiver collisions, limited transmission
power, false misbehavior and partial dropping [9].

The CONFIDANT protocol proposed by Buchegger et al.
in [2] is another example of a reputation-based scheme. The
protocol is based on selective altruism and utilitarianism,
thus making misbehavior unattractive. CONFIDANT consists
of four important components - the Monitor, the Reputation
System, the Path Manager, and the Trust Manager. They
perform the vital functions of neighborhood watching, node
rating, path rating, and sending and receiving alarm messages,
respectively. Each node continuously monitors the behavior
of its first-hop neighbors. If a suspicious event is detected,
details of the event are passed to the Reputation System.
Depending on how significant and how frequent the event is,
the Reputation System modifies the rating of the suspected
node. Once the rating of a node becomes intolerable, control
is passed to the Path Manager, which accordingly controls
the route cache. Warning messages are propagated to other
nodes in the form of an Alarm message sent out by the Trust
Manager. Of course, trust relationships and routing decisions
depend on experienced, observed or reported behavior of other
nodes, i.e. a node would obviously trust a first hand experience
of misbehavior much more than if the misbehavior were
reported by a third party.

In [12], Miranda and Rodrigues adopted a hybrid of
reputation-based and credit-based schemes. Each node X
maintains a data structure Statusx[Y] about every other

0-7803-8966-2/05/$20.00 (C) 2005 IEEE

o ())
—+ Ny = Ny—...—= D
o2 (s) % ®)
MEOBONO O
]\zaz\las
RN OBONONORSENO
\2%]\1%5]\3*}]\2%]\
MEONONONONERNO
\3*>\z*>1\1]\4~>\3~>\2]
MEOBONONOREENO

]\4*}]\3*}]\

Fig. 1. The TWOACK Scheme

node Y, which is an indication of what impression node
X has about node Y. Along with a credit counter, node
X also maintains lists of nodes that Y will and will not
provide service to. Every node periodically broadcasts relevant
information in the form of a self-state message. Other nodes
update their own lists based on the information contained in
these self-state messages.

III. SCHEME DESCRIPTIONS

In this section, we describe our reputation-based schemes
(TWOACK and S-TWOACK) that detect and mitigate the
effects of node selfishness. The schemes aim to overcome
some of the most prominent deficiencies of other reputation-
based schemes.

A. The TWOACK Scheme

The TWOACK scheme can be implemented on top of
any source routing protocol such as DSR. This follows from
the fact that a TWOACK packet derives its route from the
source route established for the corresponding data packet.
The TWOACK scheme uses a special type of acknowledgment
packets called TWOACK packets, which are assigned a fixed
route of two hops (or three nodes) in the direction opposite to
that of data packets.

Figure 1 illustrates the operational details of the TWOACK
scheme. Suppose that the process of Route Discovery has
already yielded a source route [S — N3 — Ny — N3 —

- — D] from a source node S to destination node D.
For instance, when N; forwards a data packet to Ns, to be
forwarded on to N3, N; has no way of knowing if the packet
reached N3 successfully or not. Listening on the medium, as
suggested in [9], would only tell N; whether N> is sending

No N3 Crr S LIST
Next Hop Second Hop Misbehavior List of Data Packet IDs
Receiver Receiver Counter Awaiting TWOACK

Fig. 2. Data Structure maintained for misbehavior detection

out the packet or not.! However, the reception status at N3
is unclear to node N;. The possibility of collisions at both
N; and N3 makes the overhearing technique vulnerable to
medium access problems and false detections [9].

The TWOACK scheme is designed to solve these problems:
when N3 receives a data packet, it sends out a TWOACK
packet over two hops back to N1, carrying the packet ID of the
corresponding received data packet. The route [N3 — Ny —
N;] for the TWOACK packet is extracted from the source
route of the original data packet. The aim of the TWOACK
packet is to notify N; that the data packet has successfully
reached a node that is two-hop away, namely Ns. Such a
procedure will be carried out by every set of three consecutive
nodes, termed triplet, along the source route.

Note that the ACK packets at the TCP layer have a similar
effect as our TWOACK packets do. The main differences
are the following: First, ACK packets in TCP are used for
the purpose of flow-control and reliable end-to-end commu-
nication, while selfishness is more a problem that should
be solved by the underlying IP layer. In the absence of a
lower layer acknowledgment scheme, the source and other
intermediate nodes have no way of finding out which of the
downstream nodes is misbehaving. It will be inefficient to
conclude that the entire route is misbehaving when indeed
there is only one misbehaving node. To correctly detect and
isolate such a misbehaving node, additional techniques such
as the TWOACK scheme need to be employed. Second, ACK
packets in TCP have to travel all the way from the final
destination back to the source. Therefore, depending on the
length of the path used for data packets, it is likely that
ACK packets will arrive after significant delays. In contrast,
TWOACK packets travel exactly two hops, making the timeout
period shorter and more predictable.

To detect misbehavior, the sender or router of a data packet
maintains a list of data packet IDs that have yet to receive
a TWOACK acknowledgment packet from a node two hops
away. Each node maintains a unique list for each forwarding
link that it is using. Each item on the list has the following
data members (cf. Fig. 2):

e Ny and Nj: the receivers of the next two hops after this

node, along the source route being used;

e Crs: counter for number of instances of misbehavior

by forwarding link Ny — Nj;

o LIST: list of data packet IDs that are awaiting the

TWOACK packets.

When a node, say, N1, sends or forwards a data packet

Due to potential packet collisions, N7 should not conclude that No has
not sent out the data packet even if it has not overheard the transmission.

0-7803-8966-2/05/$20.00 (C) 2005 |IEEE

along a particular route, say, Ny — Ny — N, it adds
the ID of the packet to LIST on its list corresponding to
Ny — N3. When it receives a TWOACK packet, it checks for
the No — N3 combination, and then removes the packet ID
from the corresponding LIST. If a data packet ID stays on
LIST longer than a certain period of time, termed timeout,
misbehavior of link No — N3 is suspected. Every time
misbehavior is suspected, a non-negative misbehavior counter
Cyrs is increased by one. When Cjrs exceeds a certain
level, termed thresh, a node declares the corresponding link,
Ny — Ns, misbehaving and sends out an RERR packet
informing the source about the same.” Every node receiving
or overhearing such an RERR packet should identify link
Ny — N3 as misbehaving. Every node maintains a list of
misbehaving links that it has learned. Such links will not be
chosen when it selects routes for data transmission later on.?
It might be unclear how the TWOACK scheme distinguishes
genuine route failures from misbehaving nodes (links). Indeed,
genuine route failures may take place due to mobility or
excessive traffic in the vicinity of a forwarding node, e.g.,
Ns. When such failures appear, N will voluntarily send an
RERR packet to notify the source, as described in the routing
protocol. Such an RERR packet is different from the RERR
packet sent out by /V; reporting a misbehaving link No — N3.
The values assigned to thresh and timeout play an important
role in determining the effectiveness of the TWOACK scheme.
These parameters should be large enough so that intermittent
failures or excessive transmission delays (due to collisions) of
TWOACK packets are not interpreted as misbehavior. On the
other hand, they should not be so large that a significant num-
ber of data packets are lost before a misbehaving node (link)
is detected. Our studies on this are presented in Section IV.

B. The S-TWOACK Scheme

The TWOACK scheme described above gives rise to two
hops of TWOACK packets for every hop of data packet being
forwarded. Considering that each TWOACK packet is a unique
entity and has to contend for the medium just like any other
packet, the TWOACK packets may contribute to the traffic
congestion on the routing path. Therefore, we further propose
the S-TWOACK (Selective-TWOACK) scheme, a derivative
of the TWOACK scheme, to reduce this extra traffic due to
TWOACK packets. In the S-TWOACK scheme, instead of
sending back a TWOACK packet every time when a data
packet is received, a node waits until a certain number of
data packets (through the same triplet) arrive. The node then
sends back one TWOACK packet acknowledging multiple data
packets that have been received so far.

2When link No — N3 is misbehaving, it is because either Na refuses to
forward the data packets or N3 refuses to send back the TWOACK packets.
It is difficult to identify which of these two nodes misbehaves. Since the link
N2 — N3 is unusable, we mark it as misbehaving.

3Ideally, bad routes will be avoided completely by storing both the node
IDs and the link itself. However, such an approach blacklists a significant
number of well-behaved nodes, consequently losing well-behaved routes in
the network.

The S-TWOACK scheme has three parameters: timeout,
timeout_Last_Sent and maximum_IDs_Carried. While timeout
has the same usage as that in the TWOACK scheme, the
use of the other two parameters can be explained as below:
when the number of data packets received at N3 reaches maxi-
mum_IDs_Carried or the duration since sending the TWOACK
packet last time is larger than timeout_Last_Sent, a TWOACK
packet will be sent. Note that, although the S-TWOACK
scheme is expected to provide a significant reduction of rout-
ing overhead, it comes with a cost: the problem of false-alarms
due to genuine TWOACK packets lost is more noticeable.

C. The TWOACK Scheme Revisited

The TWOACK technique has the following salient features
(we use an example triplet of Ny — Ny — N3 in our
discussions):

Ambiguous Collisions: The TWOACK scheme will not be
affected by ambiguous collisions at the sender or the receiver
[9]. The reason is that a specific acknowledgment packet, the
TWOACK packet, will be sent back from N3 to the sender, V7.
The underlying MAC layer ensures the reliable transmission
of such TWOACK packets.

Limited Transmission Power: Similarly, a selfish node,
e.g., Ng, trying to use limited transmission power [9] to
mislead the sender will be detected as well.

Missed Detection: A missed detection is the event of failure
to detect a misbehaving node (link). Unless collusions between
two neighboring misbehaving nodes, e.g., Ny and Ng, exist,
there will not be any missed detections in the TWOACK
scheme.

Refusal of Sending TWOACK Packets: In the TWOACK
scheme, a misbehaving N3 may refuse to send TWOACK
packets even if it receives the forwarded data packets suc-
cessfully. While the TWOACK scheme cannot distinguish a
misbehaving N> from a misbehaving N3, such a scenario
justifies our philosophy of marking the link Ny — N3 as
misbehaving.

Fabrication of TWOACK Packets: A misbehaving N»
may fabricate a TWOACK packet and claim that it was
generated by V3. The current version of the TWOACK scheme
cannot detect such fabricated TWOACK packets. However,
authentication mechanisms similar to those used in SEAD [4]
or SPINS [14] may be employed to detect such fabrications.

Re-Introduction of Misbehaving Nodes: Misbehaving
nodes may be re-introduced to the network after a certain
period of time. This is especially important for those networks
that are supposed to run for a long period of time and some
false alarms are possible. Some misbehaving nodes may be
recharged and become well-behaved later on as well.

IV. PERFORMANCE EVALUATION

In this section, we present evaluation of the TWOACK
and the S-TWOACK schemes through network simulations.
We use a version of Network Simulator (ns-2) [16] that
incorporates the CMU Monarch project’s wireless extensions.
We have modified the DSR module in ns-2 to simulate selfish
nodes of type SN1 described in Section I.

0-7803-8966-2/05/$20.00 (C) 2005 |IEEE

A. Simulation Methodology

Our simulations were carried out with 40 mobile nodes
moving in a 670 x 670 m? flat area. Each node’s transmission
range is 250 m. The IEEE 802.11 MAC layer was used. A
random waypoint mobility model was assumed with maximum
speed of 20 m/sec and pause time of 0 second (high mobility).

For the communication pattern, we implement CBR trans-
fers between pairs of nodes. The source and destination for
each CBR pair are randomly chosen such that there is no
limit on the number of sources or destinations that a node
can host. The TWOACK scheme is analyzed under varying
traffic conditions by running simulations for networks with 10
(low traffic), 20, and 30 (high traffic) CBR pairs. Each CBR
source generates packets of size 512 Bytes, and transmits 4
packets per second. Each simulation lasts 900 seconds. We
used a thresh value of 5 (allowable failures per link) for
both TWOACK and S-TWOACK schemes. An experimental
timeout value of 0.15 second was used in the TWOACK
scheme. In the S-TWOACK scheme, this value was 1.15
seconds. The parameter maximum_IDs_Carried was set to 5
and timeout_Last_Sent to 1.10 seconds. 10 simulation runs
(using different seeds) were used to obtain each data point.

We measured the following evaluation metrics for different
percentage of misbehaving nodes in the network. Packet De-
livery Ratio: defined as the ratio of the number of packets
received at the destination node to the number of packets
sent by the source node; Routing Overhead: defined as the
ratio of the amount of routing-related transmissions in bytes
(RREQ, RREP, RERR [7] and TWOACK) to the amount of
data transmissions in bytes in a network; End-to-End Delay:
defined as the time taken by a data packet to travel from
the source to the destination through the source route. This
metric is needed to examine whether the extra traffic due to
the induction of new TWOACK packets affects packet latency.

Note that in the following discussions, when we mention the
TWOACK scheme or the S-TWOACK scheme, we actually
mean the TWOACK or the S-TWOACK scheme with the
original DSR protocol.

B. Simulation Results and Discussions

Figure 3 compares the packet delivery ratio of the
TWOACK scheme and the original DSR scheme as a function
of different percentage of network nodes that are misbehaving.
The percentage of misbehaving nodes in the network was
varied from O (all nodes are well-behaved) to 40%. Different
numbers of CBR pairs were simulated. From Fig. 3, we can
observe that the packet delivery ratio of both schemes is close
to 1 when no one is misbehaving. The packet delivery ratio
decreases as more nodes in the network misbehave. This is
due to the problem of missing routes and the overhead of
searching for alternative routes. Compared with the original
DSR scheme, our TWOACK scheme maintains a relatively
high packet delivery ratio. For example, when there are 40%
nodes that are misbehaving, the TWOACK scheme delivers
about 85-90% of data traffic, while the original DSR scheme
can only deliver 70-75%.

Packet Delivery Ratio
8
T
,
7
.

o
©
T

s
7
I

-6~ TWOACK, 10 CBR S N RS
0.75 - —— TWOACK, 20 CBR =~ > N
—— TWOACK, 30 CBR =~ ~
-O- DSR, 10 CBR SN
—+- DSR, 20 CBR RN

—*- DSR, 30 CBR
T

07 T L L L L L
0 5 10 15 20 25 30 35 40
Percentage of Misbehaving Nodes (%)
Fig. 3. Packet Delivery Ratio of TWOACK & DSR
0.1
0.09 g
0.08 B
e
T T S,
0.07 25— S
- —¥
©
So0.06- E
<
5 A
2 -
S o.05- - __ 3
2 __.z-==::::: —-==--=%=Z "::::—‘V
g5 y----C e -7
3004f - - =~ "~ * 1
i
0.03 B
0.02|{ o~ TWOACK, 10CBR 7
—— TWOACK, 20CBR
—— TWOACK, 30CBR
0.01H —+- DSR, 10CBR b
—*- DSR, 20CBR
-y~ DSR, 30CBR
0 T T L L L L
0 5 10 20 25 30 35 40

15
Percentage of Misbehaving Nodes (%)

Fig. 4. Routing Overhead of TWOACK & DSR

In Fig. 4, we show the routing overhead of the TWOACK
scheme and the DSR scheme. The network parameters are the
same as those used to obtain Fig. 3. It is evident from the
curves that the routing overhead increases from just over 4%
for the original DSR scheme to around 7% for the TWOACK
scheme. While such a 75% increase of routing overhead may
seem large, it is only a net increase of 3 percentage points.
Such an increase is mainly due to, the transmissions of the
TWOACK packet for each data packet processed by each of
the triplets and the transmissions of RERR packets to report
misbehaving nodes.

In Fig. 5, we compare the routing overhead of the
TWOACK, the S-TWOACK, and the DSR schemes for differ-
ent percentages of misbehaving nodes. It can be observed that
the routing overhead of the S-TWOACK scheme is about 3%,
which is lower than the 4% of the original DSR scheme. This

0-7803-8966-2/05/$20.00 (C) 2005 |IEEE

o

Il
o
©
T
I

o
o
=)
T
I

o o

o o

> <
T T
I

Routing Overhead
&
T
\
\
\
.

- t-----—-- —+- -7
0.04 4
. - - .
0.03;_ .-~ R i
B P T
0.02 i
0.01{ -o- TWOACK B
—+- DSR
*: S-TWOACK
T L L L L L L
0o 5 10 15 20 25 30 35 40
Percentage of Misbehaving Nodes (%)
Fig. 5. Routing Overhead of TWOACK, S-TWOACK, and DSR

is due to an increase of data traffic being delivered successfully
in the S-TWOACK scheme (the increase in control packets is
negligibly small.)

Our further simulation results show that the S-TWOACK
scheme has a slightly lower packet delivery ratio as compared
to the TWOACK scheme. Our results also show that the
TWOACK and the S-TWOACK schemes have a similar end-
to-end delay of packet delivery as compared to the original
DSR scheme, even under high traffic. These results can be
found in [1].

V. CONCLUSIONS

Mobile Ad Hoc Networks (MANETS) have been an active
area of research over the past few years, due to their potentially
widespread application in military and civilian communica-
tions. Such a network is highly dependent on the cooperation
of all its members to perform networking functions. This
makes it highly vulnerable to selfish nodes.

In this paper, we have proposed and evaluated two network-
layer acknowledgment-based schemes called TWOACK and
S-TWOACK, which can be easily added-on to source routing
protocols such as the DSR protocol. The schemes detect
selfish nodes (links) so that other nodes may avoid them in
future route selections, with the aim of overall improvement
in end-to-end packet delivery ratio. Through simulations we
showed that, in a network where up to 40% of the nodes
are misbehaving, the TWOACK scheme improves the end-
to-end packet delivery ratio from around 70% to almost
90% while increasing the overhead from 4% to 7%. The S-
TWOACK scheme which is a derivative of the TWOACK
scheme, achieves almost the same performance improvement

without any routing overhead but with some expected increase
of false alarms.

In our future research, we will work on the optimization of
the parameters and extensive comparisons of the TWOACK
and the S-TWOACK schemes with other related schemes.

ACKNOWLEDGMENT

The first two authors’ work was performed when they were
with the Department of Electrical Engineering and Computer
Science at Syracuse University. This work was supported in
part by the SUPRIA program of the CASE Center at Syracuse
University.

REFERENCES

[1] K. Balakrishnan, “Prevention of Node Selfishness in Mobile Ad Hoc
Networks”, M.S. Thesis, Department of EECS, Syracuse University,
Syracuse, NY, USA, August 2004.

[2] S. Buchegger and J-Y. Le Boudec, “Performance Analysis of the
CONFIDANT Protocol: Cooperation Of Nodes, Fairness In Dynamic
Ad-hoc Networks”, Proc. of the IEEE/ACM Symposium on Mobile Ad
Hoc Networking and Computing (MobiHOC), June 2002.

[3] L. Buttyan and J-P. Hubaux, “Enforcing Service Availability in Mobile
Ad-Hoc WANSs”, Proc. of First IEEE/ACM Workshop on Mobile Ad Hoc
Networking and Computing (MobiHOC), August 2000.

[4] Y-C. Hu, D. Johnson and A. Perrig, “SEAD: Secure Efficient Distance
Vector Routing for Mobile Wireless Ad Hoc Networks”, Proc. of
Fourth IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA), June 2002.

[5] J-P. Hubaux, T. Gross, J-Y. Le Boudec, and M. Vetterli, “Toward Self-
Organized Mobile Ad Hoc Networks: The Terminodes Project”, IEEE
Communications Magazine, January 2001.

[6] M. Jakobsson, J-P. Hubaux and L. Buttyan, “A Micropayment Scheme
Encouraging Collaboration in Multi-Hop Cellular Networks”, Proc. of
Financial Crypto 2003, January 2003.

[71 D. Johnson, D. Maltz, Y-C. Hu, J. Jetcheva, “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR)”, Internet-Draft,
February 2002.

[8] Y. Liu and Y. Yang, “Reputation Propagation and Agreement in Mo-
bile Ad-Hoc Networks”, Proc. of IEEE Wireless Communications and
Networking Conference (WCNC), March 2003.

[9] S.Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehav-
ior in Mobile Ad Hoc Networks”, Proc. of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCom), August
2000.

[10] P. Michiardi and R. Molva, “Simulation-based Analysis of Security
Exposures in Mobile Ad Hoc Networks”, Proc. of European Wireless
Conference, February 2002.

[11] P. Michiardi and R. Molva, “Game Theoretic Analysis of Security in
Mobile Ad Hoc Networks”, Research Report, April 2002.

[12] H. Miranda and L. Rodrigues, “Preventing Selfishness in Open Mobile
Ad Hoc Networks”, Proc. of the Seventh CaberNet Radicals Workshop,
October 2002.

[13] C. Perkins, E. Belding-Royer and I. Chakeres, “Ad Hoc On Demand
Distance Vector (AODV) Routing”, IETF Internet-Draft, October 2003.

[14] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J. Tygar, “SPINS:
Security Protocols for Sensor Networks”, Proc. of ACM SIGMOBILE
Seventh Annual International Conference on Mobile Computing and
Networking (MobiCom), July 2001.

[15] S.Zhong, J. Chen, and Y. Yang, “Sprite: A Simple, Cheat-Proof, Credit-
Based System for Mobile Ad-Hoc Networks”, Technical Report, Yale
University, July 2002.

[16] The Network Simulator (ns-2), URL: http://www.isi.edu/nsnam/ns/.

0-7803-8966-2/05/$20.00 (C) 2005 |IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

