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Discrete Chirp-Fourier Transform and Its Application
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Abstract—The discrete Fourier transform (DFT) has found
tremendous applications in almost all fields, mainly because it can
be used to match the multiple frequencies of a stationary signal
with multiple harmonics. In many applications, wideband and
nonstationary signals, however, often occur. One of the typical
examples of such signals is chirp-type signals that are usually
encountered in radar signal processing, such as synthetic aperture
radar (SAR) and inverse SAR imaging. Due to the motion of a
target, the radar return signals are usually chirps, and their chirp
rates include the information about the target, such as the location
and the velocity.

In this paper, we study discrete chirp-Fourier transform
(DCFT), which is analogous to the DFT. Besides the multiple
frequency matching similar to the DFT, the DCFT can be used
to match the multiple chirp rates in a chirp-type signal with
multiple chirp components. We show that when the signal length

is prime, the magnitudes of all the sidelobes of the DCFT
of a quadratic chirp signal are 1, whereas the magnitude of the
mainlobe of the DCFT is . With this result, an upper bound
for the number of the detectable chirp components using the
DCFT is provided in terms of signal length and signal and noise
powers. We also show that the -point DCFT performs optimally
when is a prime.

Index Terms—Chirp-Fourier transform, chirp rate estimation,
chirps.

I. INTRODUCTION

T HE DISCRETE Fourier transform (DFT) has been applied
in almost all fields. The main reason is because the DFT

matches the frequencies in a signal of multiple harmonics. In
other words, if a signal has only several harmonics, the DFT
of this signal has and only has peaks at the frequencies of the
signal harmonics, and the peak values correspond to the signal
powers at the corresponding harmonic frequencies. Therefore,
the DFT can be used to estimate the Fourier spectrum of a signal,
which is known asspectrum estimation, that plays an impor-
tant role in digital signal processing applications. However, in
order to have the DFT work well, a signal has to be stationary.
Although the stationarity assumption applies in many applica-
tions, nonstationary signals often occur in some real applica-
tions. Examples of nonstationary signals are chirp-type signals
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that are encountered in radar signal processing, such as in syn-
thetic aperture radar (SAR) and inverse SAR (ISAR) imaging;
see, for example, [1]. In SAR imaging, when targets are moving,
the radar return signals are chirps, in particularquadratic chirps,
when the velocities of the moving targets are constant. In ISAR
imaging, when targets have maneuvering motions, the radar re-
turn signals are also chirps. It is well known in the SAR and
ISAR literature that the direct DFT applications to the radar re-
turn signals will smear the SAR or ISAR images of the targets.
Furthermore, the chirp rates in the radar return signals include
the important information about the moving targets, such as the
velocities and the location parameters of the moving targets in
SAR imaging. Therefore, the estimation of the chirp rates are
critically important in these applications.

For chirp-type signals, besides frequencies of multiple har-
monics, there are chirp rates of multiple chirps, and the DFT
can be used only to match the multiple frequencies, but the mul-
tiple chirps, in this case, may even reduce the resolution of the
frequency matching. The question of interest in this paper is to
generalize the DFT and its properties todiscrete chirp-Fourier
transform(DCFT) and corresponding properties, which is used
not only to match the multiple frequencies but to match the mul-
tiple chirp rates, simultaneously as well.

It should be noticed that there has been much research
on chirp-type signals and their chirp rate estimations, such
as high-order ambiguity functions [2]–[4], adaptive chirplet
transforms [10], [11], and other polynomial phase signal
estimations [7]–[9]. In addition, the chirp-transform was
proposed in [12] for the efficient DFT implementation but not
for chirp rate estimation. However, the goal of this paper is
for chirp signal analysis and is, therefore, different. We first
generalize the DFT to the DCFT and then study the properties
of the DCFT analogous to the DFT. In particular, we show
that when signal length is a prime, the magnitudes of all
the sidelobes (i.e., when the chirp rate is not matched) of the
DCFT of a single quadratic chirp signal without noise are 1,
whereas the magnitude of the mainlobe (i.e., when the chirp
rate and the harmonic frequency are both matched) of the
DCFT is . The mainlobe and sidelobe magnitude ratio in
this case is , which is shown to be optimal for a given
length . In other words, the DCFT performs optimally in the
matching of the constant frequency and the chirp rate when the
signal length is a prime. When the chirp rate is precisely
matched, the DCFT is reduced to the DFT. Notice that for any
signal length , the magnitudes of all the sidelobes of the DFT
of a single harmonic signal without noise are 0, whereas the
magnitude of the mainlobe of the DFT is . The mainlobe
and sidelobe magnitude ratio in this case is infinity, which tells
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us that many different harmonics can be estimated using the
DFT when there is no noise. In general, unlike the DFT for
the harmonic estimation, less than many different chirps
can be estimated using the DCFT. This paper is focused on
quadratic chirps that are common in radar applications.

This paper is organized as follows. In Section II, we intro-
duce the DCFT and study its basic properties for single com-
ponent chirp signals. In Section III, we study the properties of
the DCFT for multiple component chirp signals. We present an
upper bound for the number of the components such that they
are detectable using the DCFT. In Section IV, we study its con-
nection with the analog chirp-Fourier transform. In Section V,
we present some numerical examples.

II. DISCRETECHIRP-FOURIER TRANSFORM AND ITS BASIC

PROPERTIES FORSINGLE COMPONENTCHIRP SIGNALS

Before going to the DCFT, let us first briefly recall the DFT.
For a signal with length , its -point DFT is defined as

(2.1)

where . The key properties of the DFT
are based on the following elementary identity

(2.2)

where takes 1 when and 0 otherwise. The identity
(2.2) implies that if is a single harmonic, i.e.,

for some integer with , then its DFT matches
the frequency perfectly, i.e.,

(2.3)

Based on this property, when has harmonics with ,
i.e.,

where for , its DFT matches these frequencies
perfectly, i.e.,

(2.4)

where the peaks in the DFT domain are shown at all, and the
corresponding peak values are for .

We now introduce thediscrete chirp-Fourier transform
(DCFT). Let , be a signal of length .
Its -point DCFT is defined as

(2.5)

where represents the constant frequencies andrepresent the
chirp rates. From the above DCFT, one can see that for each
fixed , is the DFT of the signal .
When , the DCFT is the same as the DFT. Therefore, the
inverse DCFT (IDCFT) is

(2.6)

where is an arbitrarily fixed integer. The above connection be-
tween the DCFT and the DFT also suggests a fast algorithm to
compute the DCFT, i.e., for each, the FFT may be used to com-
pute , . The computational complexity
with this approach is, thus, .

As a remark, the above chirp-Fourier transform is related
to the fractional Fourier transform (FRFT), where the rotation
angle is related to the variablein the DCFT. For more about
FRFT, see, for example, [13]–[17].

The above DCFT definition is not surprising to see by fol-
lowing the DFT definition. What is more interesting is its prop-
erties. Can it be used to match the chirp rates and the constant
frequencies simultaneously? If so, how many of the chirp com-
ponents can be matched simultaneously? Similar to the previous
DFT study, let us first consider a single chirp signal

(2.7)

where and are two integers with , .
When and in the DCFT (2.5) precisely match the above
and , we have

which is called themainlobeof the DCFT . The ques-
tion of interest here is what happens when the chirp rateand
the constant frequencydo not match and , i.e., what the
sidelobesof the DCFT are. Is there a similar property for the
DCFT as (2.3) for the DFT? To study these questions, we first
have the following lemma.

Lemma 1: When is a prime, we have the following iden-
tity: For ,

and

but

(2.8)
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Proof: Let

Then, for

(2.9)

where , and the new range of in the summation
in Step 1 is from the periodicity of in terms of the integer
variable for any integer . When is a prime, for

, and is a multiple of if and only
if is a multiple of , i.e., . Thus

for

Therefore, when . When , is
reduced to (2.2). This proves the lemma.

From the second half of the above proof, one can see why
needs to be prime in order for the second equality in (2.8)

to hold. From this lemma, we immediately have the following
result.

Theorem 1: Let be a single chirp

(2.10)

for some integers and with , . If the
length is a prime, then its DCFT magnitude has the following
form:

when and
when
when but

(2.11)

This result tells us that for a single quadratic chirp, the peak or
the mainlobe of its DCFT has value and appears at
in the DCFT domain and that the sidelobes are not above 1. In
other words, the DCFT of a single quadratic chirp matches its
chirp rate and its constant frequency simultaneously. Sur-
prisingly, one can see that all the magnitudes of the sidelobes,
unless the chirp rate is matched, are all the same, which is 1.

In chirp rate and constant frequency estimation, the smaller
the sidelobe magnitudes of the DCFT, the better the perfor-
mance of the estimation. When is a prime, from (2.11), the
maximal sidelobe magnitude of the DCFT is 1, i.e.,

when is a prime (2.12)

One might want to ask what will happen whenis not a prime.
The following result tells us that the maximal sidelobe magni-
tude is the minimal when is a prime, i.e., the -point DCFT
performs the best when is a prime in the estimation of chirp
rates and constant frequencies. This will be also seen from the
numerical simulations in Section V.

Theorem 2: Let be the same as in Theorem 1, i.e., have
the form in (2.10). If the length is not a prime, then the max-
imal sidelobe magnitude of the DCFT satisfies

(2.13)

Proof: To prove (2.13), it is enough to prove that when
is not a prime, the following inequality holds:

(2.14)

where is defined in the Proof of Lemma 1. Assume
is not a prime, and let with and .

Case i): Both and are odd. In this case, let
and . Then, by (2.9)

Since is odd, is a multiple of if and only if is a
multiple of . Thus

if is not a multiple of

Therefore, by setting , we have

Case ii): One of and is even. Without loss of gener-
ality, we may assume . Let . In this case,

. Thus, by (2.9)
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Notice that is always even, which implies
. Therefore

By combining Cases i) and ii), (2.14) is proved.
By this result, in what follows, we only consider prime.

The above results are based on the assumption that bothand
in (2.10) are integers. In practice, these two parameters may

not be precisely integers. Next, we want to briefly discuss the
DCFT performance when they are not integers but are close to
integers. The reason why we only consider the case whenand

are close to integers is because of the following argument.
Let us consider an analog chirp signal

(2.15)

and consider the sampling . Then, the sampled chirp
becomes

(2.16)

where and . There-
fore, when is large enough (i.e., the sampling rate is fast
enough), there exist integersand such that

and (2.17)

This implies that the real chirp rate is and that
the real constant frequency is when integers
and are estimated. It also tells us that for a practical chirp
signal in (2.15), we only need to consider the discrete
chirp signal in (2.16) with parameters and close to
integers.

We now consider a discrete chirp signal

(2.18)

where

and (2.19)

where and are two integers with , , and ,
and are two positive numbers. By using the Taylor expansion
of in terms of , it is not hard to see that

(2.20)

Thus, for

(2.21)

Fig. 1. DCFT of two chirp components with additive SNR
 = 0 dB. (a)
Three-dimensional plot. (b) Image.

where , which is the same as in (2.10).
By using Theorem 1 and (2.21), the following result is therefore
proved.

Theorem 3: Let satisfy (2.18) and (2.19), and let
be its DCFT. Then

if and
if
if and

(2.22)

where is defined in (2.21).
From this theorem, one can see that as long as the chirp rate

error level and the constant frequency error levelare low
enough (i.e., and are close enough to integersand ,
i.e., , , which can be achieved when the sampling rate
is fast enough), the DCFT of the chirp signal still has the peak
property as in Theorem 1. We will see some numerical examples
in Section V.
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Fig. 2. DCFT of two chirp components with additive SNR
 = 6 dB. (a)
Three-dimensional plot. (b) Image.

III. DCFT PROPERTIES FORMULTIPLE COMPONENTCHIRP

SIGNALS

We next consider a multiple component chirp signal of
the form

(3.1)

where is an additive i.i.d. noise with mean 0 and variance
, is the signal power of theth chirp component,

and for . For , let

(3.2)

Then, the DCFT of is

Fig. 3. DCFT of three chirp components with additive SNR
 = 0 dB. (a)
Three-dimensional plot. (b) Image.

where is the DCFT of theth chirp component ,
and is the DCFT of noise . From the study in Sec-
tion II, we know that each has a peak at with
peak value , and the maximal off peak value is .
What we are interested in here is whether there is a peak of

at each , . If there is a peak at
, then a chirp component with constant frequencyand

chirp rate is detected. To study this question, let us calculate
the mean magnitude of . We first calculate the mean

at . For

(3.3)
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Fig. 4. DCFT of three chirp components with additive SNR
 = 6 dB. (a)
Three-dimensional plot. (b) Image.

where the inequality in Step 1 is because
from the Schwarz inequality with respect

to the expectation . Thus, to estimate the lower bound of the
mean magnitude , we need to estimate the mean
power of the DCFT of the noise . Since for any fixed ,

is the DFT of , the energy of in
terms of the frequency variable is the same as the one of

, i.e., the one of . This proves

(3.4)

Therefore, for by (3.3) and (3.4), we have

(3.5)

Fig. 5. DCFT of four chirp components with additive SNR
 = 0 dB. (a)
Three-dimensional plot. (b) Image.

Furthermore, for for

(3.6)

By comparing (3.5) and (3.6), there are peaks at in the
DCFT domain if

or

(3.7)
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Fig. 6. DCFT of four chirp components with additive SNR
 = 6 dB. (a)
Three-dimensional plot. (b) Image.

Theorem 4: Consider a multiple component chirp signal
in (3.1) with components at different constant frequency

and chirp rate pairs of power for .
Its DCFT magnitudes at are lower bounded by

(3.8)

and its DCFT magnitudes at other are upper bounded by

(3.9)

For each with , a peak in the DCFT domain appears
at if the inequality (3.7) holds.

Fig. 7. DCFT of another set of four chirp components with additive SNR
 =

0 dB. (a) Three-dimensional plot. (b) Image.

From (3.7), one can see that when the numberof mul-
tiple chirp components is fixed, all the peaks at for

will appear in the DCFT domain as long as the signal
length —a prime—is sufficiently large. In other words, when
the signal is sufficiently long, all the chirp components can be
detected by using the DCFT.

We next consider the special case when all the signal powers
of the different chirp components are the same, i.e.

for

In this case, (3.7) becomes

where is the signal-to-noise ratio (SNR)

(3.10)
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Fig. 8. DCFT of another set of four chirp components with additive SNR
 =

6 dB. (a) Three-dimensional plot. (b) Image.

In other words, given the SNR, all peaks at for
appear in the DCFT domain if the number of chirp

components satisfies

(3.11)

This gives us the following corollary.
Corollary 1: Let be of the form (3.1) with all equal

powers and the SNR defined in (3.10). Then,
there are peaks at for if the number of
the chirp components satisfies the upper bound (3.11).

The above corollary basically says that in the case when all
signal powers of the multiple chirp components are the same,
the chirp components can be detected using the DCFT if the
number of them is less than when the signal length is
sufficiently large. From the simulation results in Section V, one
will see that the upper bound in (3.11) is already optimal, i.e.,
tight.

Fig. 9. DCFT of two chirp components with additive SNR
 = 6 dB and
signal lengthN+ 66. (a) Three-dimensional plot. (b) Image.

Similar to the single chirp DCFT performance analysis in
Theorem 3, when the chirp rate and the constant frequency pa-
rameters and are not integers, the above results for multiple
chirp DCFT can be generalized. Some numerical examples will
be presented in Section V.

IV. CONNECTION TO THEANALOG CHIRP-FOURIER

TRANSFORM

In this section, we want to see the relationship of the DCFT
and the analog chirp-Fourier transform (ACFT). Let us first see
the ACFT. For an analog signal , its ACFT is

(4.1)

where and are real. When is a quadratic chirp, i.e.,

(4.2)
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Fig. 10. DCFT of two chirp components (41.9897, 15.0180), (45.0037,
43.9968) with additive SNR
 = 6 dB. (a) Three-dimensional plot. (b) Image.

the ACFT is

sign

(4.3)

where (4.3) is from [18]. Clearly, when the constant frequency
and the chirp rate are both matched, i.e., when and

, the ACFT , and otherwise,
is a finite value, i.e., for or .

To consider the connection with the DCFT, let us consider the
following samplings for the above analog parameters, , and

Fig. 11. DCFT of two chirp components (41.9897, 15.0180), (45.0037,
43.9968) with additive SNR
 = 0 dB. (a) Three-dimensional plot. (b) Image.

:

(4.4)

where is a positive integer. The reason for this sampling
method is for getting the DCFT form studied in the previous
sections, and the difference of the samplings between the chirp
rate and the constant frequencyis due to the power differ-
ence between the chirp termand the constant frequency term
. Truncate such that it is zero for . Sample

into for . In
this case, the integral in (4.1) can be discretized
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Fig. 12. DCFT of three chirp components (12.0050, 1.9883), (48.9875,
35.0063), (17.9825, 24.0004) with additive SNR
 = 6 dB. (a)
Three-dimensional plot. (b) Image.

In other words

(4.5)

which gives a connection between the DCFT and the ACFT.

V. NUMERICAL SIMULATIONS

In this section, we want to see some simple numerical simu-
lations. Two signal lengths are considered: and

. We first see some examples when . Two different
SNRs in (3.10) are considered, which are (0 dB) and

(6 dB). For the first SNR , the upper bound in (3.11)
for the number of the detectable chirp components is 3, i.e.,

. For the second SNR , the upper bound in (3.11)
for the number of the detectable chirp components is 4, i.e.,

. In the following, three different numbers

Fig. 13. DCFT of two chirp components (12.0050, 1.9883), (48.9875,
35.0063), (17.9825, 24.0004) with additive SNR
 = 0 dB. (a)
Three-dimensional plot. (b) Image.

of chirp components are simulated, where the constant frequen-
cies and the chirp rates for are arbitrarily
chosen. The corresponding amplitudesare set to be all 1.

Figs. 1 and 2 show the DCFT’s of signals with two chirp
components at (42,15), (45, 44) and the SNR’s

0 dB and 6 dB in (3.10), respectively. Figs. 3
and 4 show the DCFT’s of signals with three chirp components
at (12, 2), (49, 35), (18, 24), and the SNR’s
0 dB and 6 dB in (3.10), respectively. Figs. 5 and
6 show the DCFT’s of signals with four chirp components at

(44, 57), (38, 65), (53, 10), (55, 12) and the SNR’s
0 dB and 6 dB in (3.10), respectively.

One can see from Fig. 5 that although the upper bound foris
3 when the SNR 0 dB, the four peaks can be seen in
the DCFT domain. This is, however, not always true from the
following examples. Figs. 7 and 8 show the DCFT’s of another
set of two signals with four chirp components at (64,
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Fig. 14. DCFT of four chirp components (43.9977, 56.9989), (38.0013,
64.9920), (52.9976, 9.9991), (54.9898, 12.0094) with additive SNR
 = 6 dB.
(a) Three-dimensional plot. (b) Image.

55), (21, 39), (8, 17), (53, 44), and the SNR’s 0 dB
and 6 dB in (3.10), respectively. One can see from
Fig. 7 that the four peaks ( ) are not clear, which is because
the upper bound for in (3.11) is 3 when 0 dB. The
four peaks in Fig. 8 are, however, clear because the upper bound
for in (3.11) is 4 when 6 dB.

When , we consider the two chirp components
(42, 15), (45, 44) in Fig. 2 with the SNR

6 dB. Its DCFT is shown in Fig. 9. Clearly, it fails to show the
two peaks, which illustrates the difference of the DCFT with
respect to having prime and nonprime length.

We next want to see some examples when the chirp rate and
the constant frequency parametersand are not but close
to integers, i.e., , . The parameter errors are randomly
added with Gaussian distributions. Figs. 10 and 11 show the
DCFT’s of the two chirp components = (41.9897,
15.0180), (45.0037, 43.9968) that are distorted from the chirp
components in Figs. 1 and 2. Figs. 12 and 13 show the DCFT’s

Fig. 15. DCFT of two chirp components (43.9977, 56.9989), (38.0013,
64.9920), (52.9976, 9.9991), (54.9898, 12.0094) with additive SNR
 = 0 dB.
(a) Three-dimensional plot. (b) Image.

of the three chirp components (12.0050, 1.9883),
(48.9875, 35.0063), (17.9825, 24.0004) that are distorted from
the chirp components in Figs. 3 and 4. Figs. 14 and 15 show
the DCFT’s of the four chirp components (43.9977,
56.9989), (38.0013, 64.9920), (52.9976, 9.9991), (54.9898,
12.0094) that are distorted from the chirp components in Figs. 5
and 6. One can see that unlike in Figs. 5 and 6, in Figs. 14
and 15, the four peaks are not all shown well, which is due to
the additional distortions of the integer chirp rate and constant
frequency parametersand , as we have studied in Theorem
3.

VI. CONCLUSION

In this paper, we studied the discrete chirp-Fourier transform
(DCFT) for discrete quadratic chirp signals. The approach is
analogous to the one of the DFT. We showed that when the
signal length is prime, all the sidelobes (i.e., when the chirp

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 14:46 from IEEE Xplore.  Restrictions apply.



XIA: DISCRETE CHIRP-FOURIER TRANSFORM AND ITS APPLICATION TO CHIRP RATE ESTIMATION 3133

rates or the constant frequencies are not matched) of the DCFT
are not above 1, whereas the mainlobe (i.e., when the chirp rates
and the constant frequencies are matched simultaneously) of the
DCFT is . We showed that this is optimal, i.e., whenis
not a prime, the maximal sidelobe magnitude of the DCFT is
greater than 1 (in fact, we showed that the maximal sidelobe
magnitude of the DCFT is greater than ). We also presented
an upper bound in terms of signal length and SNR for the
number of the detectable chirp components using the DCFT.
Simulations were presented to illustrate the theory. A connec-
tion of the DCFT with the analog chirp-Fourier transform was
also presented.

Although the DCFT was defined for quadratic chirps that
are quite common in radar applications, it is not hard to gen-
eralize to higher order chirps. Notice that the DCFT for higher
order chirps may not have the precise values but some roughly
low values of the sidelobes obtained in Section s II and III for
quadratic chirps. However, it might be possible but more tedious
to calculate the values of the sidelobes of the DCFT for higher
order chirps when the higher order powers of in (2.9) in
the Proof of Lemma 1 is used. Another comment we would like
to make here is that similar to the spectrum estimation, when the
chirp rate and the constant frequency are not integers, other high
resolution techniques may exist and are certainly interesting.
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