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Discrete Chirp-Fourier Transform and Its Application
to Chirp Rate Estimation

Xiang-Gen Xia Senior Member, IEEE

Abstract—The discrete Fourier transform (DFT) has found that are encountered in radar signal processing, such as in syn-
tremendous applications in almost all fields, mainly because it can thetic aperture radar (SAR) and inverse SAR (ISAR) imaging;
be used to match the multiple frequencies of a stationary signal see, for example, [1]. In SAR imaging, when targets are moving
with multiple harmonics. In many applications, wideband and ' iy - N . . ’
nonstationary signals, however, often occur. One of the typical the radar return.s_lgnals ale chlrps, in particgiaadratic chirps
examp|es of such Signa|5 is Chirp_type Signa|5 that are usua”y When the VelOC|t|eS Of the mOV|ng targets are constant. In |SAR
encountered in radar signal processing, such as synthetic aperture imaging, when targets have maneuvering motions, the radar re-
radar (SAR) and inverse SAR imaging. Due to the motion of a turn signals are also chirps. It is well known in the SAR and
target, the radar return signals are usually chirps, and their chirp | gAR |iterature that the direct DFT applications to the radar re-
rates include the information about the target, such as the location . . .
and the velocity. turn signals will smear the SAR or ISAR images of the targets.

In this paper, we study discrete chirp-Fourier transform Furthermore, the chirp rates in the radar return signals include
(DCFT), which is analogous to the DFT. Besides the multiple the important information about the moving targets, such as the
frequency matching similar to the DFT, the DCFT can be used velocities and the location parameters of the moving targets in

to match the multiple chirp rates in a chirp-type signal with — gaR imaging. Therefore, the estimation of the chirp rates are
multiple chirp components. We show that when the signal length . . . - ’ S
critically important in these applications.

N is prime, the magnitudes of all the sidelobes of the DCFT . . . . .
of a quadratic chirp signal are 1, whereas the magnitude of the ~ FOr chirp-type signals, besides frequencies of multiple har-

mainlobe of the DCFT is+/IN. With this result, an upper bound monics, there are chirp rates of multiple chirps, and the DFT
for the number of the detectable chirp components using the can be used only to match the multiple frequencies, but the mul-
DCFT is provided in terms of signal length and signal and noise tjp|e chirps, in this case, may even reduce the resolution of the
\;/)v%v;gr]s\.r\i/\sleaarl)sriomsgow that theV-point DCFT performs optimally frequency matching. The question of interest in this paper is to
generalize the DFT and its propertiesdigcrete chirp-Fourier
Index Terms—Chirp-Fourier transform, chirp rate estimation,  ransform(DCFT) and corresponding properties, which is used
chirps. not only to match the multiple frequencies but to match the mul-
tiple chirp rates, simultaneously as well.
I. INTRODUCTION It should be noticed that there has been much research
HE DISCRETE Fourier transform (DFT) has been applie‘z?in chirp-type signe_lls _and the_ir chirp rate estim_ations,_ such
in almost all fields. The main reason is because the D high-order ambiguity functions [2}-[4], ‘?‘dap“ve Ch'Tp'et
matches the frequencies in a signal of multiple harmonics. I‘II;?I’.]SfOI’.mS [10], [11], and_ .other polyqom|al phase signal
other words, if a signal has only several harmonics, the DIJ—eI'St'matlon.S [7}-{9]. In ad(.jl'glon, the phwp-transfqrm was
of this signal has and only has peaks at the frequencies of rgposed in [12] for the efficient DFT implementation but not

signal harmonics, and the peak values correspond to the si 5lch_|rp rz_ﬂe est|mat|qn. Hovx_/ever, the goal_of this paper Is
r chirp signal analysis and is, therefore, different. We first

powers at the corresponding harmonic frequencies. Therefola ) .

the DFT can be used to estimate the Fourier spectrum of a sigrgﬁ?ﬁéa:gg;_?eaazg Kc)) tzetc??h':rgg_?_ tTr?n Ztrl:.gylghre p;op::lrses

which is known asspectrum estimatigrthat plays an impor- . gous i Pl N particuiar, w W
FHat when signal lengtlV is a prime, the magnitudes of all

tant role in digital signal processing _apphcatlons. Howeyer, the sidelobes (i.e., when the chirp rate is not matched) of the
order to have the DFT work well, a signal has to be stationar CFT of a single quadratic chirp signal without noise are 1
Although the stationarity assumption applies in many applic ‘hereas the magnitude of the mainlobe (i.e., when the chirp

tions, nonstationary signals often occur in some real applic\%{— X

. . . : . e and the harmonic frequency are both matched) of the
ions. Exampl f nonstationary signals are chirp- |n§é . . . . -
tions. Examples of nonstationary signals are chirp-type sig FT isv N. The mainlobe and sidelobe magnitude ratio in

this case isy’N, which is shown to be optimal for a given
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us thatV many different harmonics can be estimated using theWe now introduce thediscrete chirp-Fourier transform

DFT when there is no noise. In general, unlike the DFT fqDCFT). Letz(n), 0 < n < N — 1 be a signal of lengthiv.

the harmonic estimation, less thafV many different chirps Its N-point DCFT is defined as

can be estimated using the DCFT. This paper is focused on

guadratic chirps that are common in radar applications. )
This paper is organized as follows. In Section I, we intro-Xc(k,1) = ()Wt 0<kI<SN-1

duce the DCFT and study its basic properties for single com- 0

ponent chirp signals. In Section Ill, we study the properties of (2.5)

the DCFT for multiple component chirp signals. We present an

upper bound for the number of the components such that theerek represents the constant frequencies fargpresent the

are detectable using the DCFT. In Section IV, we study its coghirp rates. From the above DCFT, one can see that for each

nection with the analog chirp-Fourier transform. In Section VixedZ, {X.(k,1)}o<r<n—1 isthe DFT of the signat(n)W§ .

we present some numerical examples. When! = 0, the DCFT is the same as the DFT. Therefore, the

inverse DCFT (IDCFT) is

.

>
i\

-

n

Il. DISCRETECHIRP-FOURIER TRANSFORM AND ITS BASIC

PROPERTIES FORSINGLE COMPONENT CHIRP SIGNALS 2 1 —k
z(n) =Wy" — X (b, DW™
Before going to the DCFT, let us first briefly recall the DFT. N =
For a signalz:(n) with lengthV, its N-point DFT is defined as
0<n<N-1 (2.6)

N—1
X(k) = 1 Z z(n)Wik, 0<k<N-1 (2.1) Wherelisan arbitrarily fixed integer. The above connection be-
VN oy tween the DCFT and the DFT also suggests a fast algorithm to
compute the DCFT, i.e., for eaéjthe FFT may be used to com-

whereWy = exp(—2mj/N). The key properties of the DFT PuteX.(k,1), 0 < k < N — 1. The computational complexity

are based on the following elementary identity with this approach is, thu€)(N? log(IV)).
As a remark, the above chirp-Fourier transform is related
N_1 to the fractional Fourier transform (FRFT), where the rotation

Z Wik = N§(k), 0<k<N-1 (2.2) angle is related to the variablén the DCFT. For more about
o FRFT, see, for example, [13]-[17].

The above DCFT definition is not surprising to see by fol-
wheres(k) takes 1 wherk = 0 and 0 otherwise. The identity IOV\_/ing the D_FT definition. What is more interesting is its prop-
(2.2) implies that ifz(n) is a single harmonic, i.e., erties. Can it be used to match the chirp rates and the constant

frequencies simultaneously? If so, how many of the chirp com-
ponents can be matched simultaneously? Similar to the previous

x(n) = exp <‘7'27r % n) DFT study, let us first consider a single chirp signal

_ 7(lgn2+k0n)
for some integek, with 0 < kg < N —1, then its DFT matches z(n) =Wy 2.7)

the frequency, perfectly, i.e., . .
g Yo P y whereky andly are two integers witl) < kg, lg < N — 1.

Whenk and! in the DCFT (2.5) precisely match the abdiug

X (k) = VN&(k — ko). (2.3)  andiy, we have
Based on this property, whefin) has/ harmonics withl < N, Xe(ko, lo) = VN
€., which is called themainlobeof the DCFTX.(k,1). The ques-
7 5 tion of interest here is what happens when the chirp rated
z(n) = Z Ay, exp <j27r - n) the constant frequendy do not matcH, andky, i.e., what the
=1 N sidelobesof the DCFT are. Is there a similar property for the

) o . DCFT as (2.3) for the DFT? To study these questions, we first
wherek;, # k;, for¢; # 42, its DFT matches these frequenmeqs]ave the following lemma.

perfectly, i.e., Lemma 1: When N is a prime, we have the following iden-
tity: For0 < [,k < N -1
I
X(k)=VN > A8k — k) (2.4) N, l=o0andk=0
i=1 N-1
ST w8 VN, 1#£0 (2.8)
where the peaks in the DFT domain are shown atalnd the jopr
corresponding peak values atg, for: =1,2,.--,1. 0, [ =0butk #0.
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Proof: Let

N—-1

2
Z Wln +kn
N .

n=0

P(k,1) 2

Then,for0 < [ <N -1

N-1 N—-1

In+kn —Im?—km
>owy > wy
n=0

m=0

P(k,D) =

N—-1 N-1

Z Z W](\?_rn) {A(n+m)+k)

n=0 m=0
N—-1 N-1

Z Z W;Sl(?n—e)+k)

n=0 e=0
W—ezl—l—ek
N

N-1 <N—1

> (3w

e=0 n=0
wheree = n — m, and the new range af in the summation
in Step 1 is from the periodicity o} in terms of the integer
variablen for any integerl. WhenX is a prime,2¢l for 0 <
[ <N -1,and0 < e < N — 1is amultiple of NV if and only
if ¢ is a multiple of N, i.e.,e¢ = 0. Thus

(2.9)

N-1
D WM =0 foro < el <N-1.

Therefore|P(k,1)|?> = N whenl # 0. Whenl = 0, P(k,l) is
reduced to (2.2). This proves the lemma. q.e.d.

From the second half of the above proof, one can see why

N needs to be prime in order for the second equality in (2.

to hold. From this lemma, we immediately have the following

result.
Theorem 1:Let z(n) be a single chirp

W*(lo n? —+kq TL)
N

z(n) = (2.10)

for some integerg, andly with 0 < ko, lop < N — 1. If the
lengthV is a prime, then its DCFT magnitude has the followin
form:

VN, whenl = [y andk = ko
|Xc(k,D)| =< 1,  whenl #1, (2.11)
0, whenl = [y butk # k.

This result tells us that for a single quadratic chirp, the peak
the mainlobe of its DCFT has valuéN and appears dko, l)
in the DCFT domain and that the sidelobes are not above 1.

other words, the DCFT of a single quadratic chirp matches its™

chirp rately and its constant frequendy simultaneously. Sur-

prisingly, one can see that all the magnitudes of the sidelobes, \P(k, D)2
unless the chirp rate is matched, are all the same, which is 1.
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In chirp rate and constant frequency estimation, the smaller
the sidelobe magnitudes of the DCFT, the better the perfor-
mance of the estimation. Whe¥ is a prime, from (2.11), the
maximal sidelobe magnitude of the DCFT is 1, i.e.,

Xe(k D] =

max |

whenN is a prime
(kD (ko lo)

(2.12)

?

One might want to ask what will happen wh&his not a prime.
The following result tells us that the maximal sidelobe magni-
tude is the minimal whetV is a prime, i.e., théV-point DCFT
performs the best wheN is a prime in the estimation of chirp
rates and constant frequencies. This will be also seen from the
numerical simulations in Section V.

Theorem 2: Let z(n) be the same as in Theorem 1, i.e., have
the form in (2.10). If the lengthV is not a prime, then the max-
imal sidelobe magnitude of the DCFT satisfies

max
(k,l)#(ko 710)

|Xo(k.D)] 2 V2. (2.13)

Proof: To prove (2.13), it is enough to prove that wh&n
is not a prime, the following inequality holds:
|P(k,DI* 2 2N

max

2.14
(k,D)#(0,0) ( )

whereP(k,1) is defined in the Proof of Lemma 1. Assumé
is not a prime, and lelV = NN, with N; > 2 andN, > 2.
Case i): Both N; and N, are odd. In this case, lét= Ny
andk = 0. Then, by (2.9)
< ) WJ;Z@

N-1

=2

e=0

N-1

Z W2€n

|P(k, D)

N-1
8) _ Nl FZ:;) <nz:0 W2€n> W]sz.

Since N, is odd, 2¢ is a multiple of N, if and only if ¢ is a
multiple of Ns. Thus

Z W™ =0, if eis notamultiple ofVs.

Jherefore, by setting = ¢; N», we have

~ = 2 72
peE =3 3 (30w |
e1=0 n=0
Ny—1
=Ni ) Np=NiN;>2N.
e1=0

OrCase ii): One of Ny and NV, is even. Without loss of gener-

lity, we may assumé&/s = 2. Letk = [ = Nj. In this case,
2eln — 1, Thus, by (2.9)

N-1
=N > wyeeh,
e=0
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N=67, 1=2, =0 dB

Notice thate(e¢ — 1) is always even, which implieWQ—e(e—l) _
1. Therefore

|P(k, 1) = N2 > 2N. N
st
By combining Cases i) and ii), (2.14) is proved. q.e.d. st

By this result, in what follows, we only consider prinfé. w0
The above results are based on the assumption thai batid Em
ko in (2.10) are integers. In practice, these two parameters me
not be precisely integers. Next, we want to briefly discuss the
DCFT performance when they are not integers but are close 1
integers. The reason why we only consider the case Vigemd o> ‘
ko are close to integers is because of the following argument.

Let us consider an analog chirp signal

. ” h
i ;“W&‘.
,WWU

|
'WJ \| )i?,

i i(llgﬁi’lﬁ‘ ”
i, , ¥fl [‘
ﬁwmﬁwﬂw
J\‘ﬂ i
W ‘J/i'}”l,‘\f'.")”(w

(2 . 15) chirp rate b o o constant frequency k,

q(t) = exp(j(Fot® + aot))

and consider the samplig= n/N1/2. Then, the sampled chirp
becomes image of [DCFTI%, N=67, I<2, 1=0 dB

- A n /30 2 (&)
Z(n) = zq (_Nl/?’) exp < <N2/3 + E n))

= o o) (2.16)

20 e B a8 L T i B

wherely = BoN=1/3/(2r) andko = aoN=2/3/(2r). There- =,
fore, whenV is large enough (i.e., the sampling rate is fast;
enough), there exist integelsandky such that

chirp rate |

- N-1/3 . N—2/3 : E

This implies that the real chirp rate % ~ 27l N'/? and that : ‘ : : : : ;
the real constant frequencydsg ~ 27 ko N2/? when integers, o 0 2 R %0 %
andk, are estimated. It also tells us that for a practical chirp consant Teauenery

signal z,(t) in (2.15), we only need to consider the discrete (b)

chirp Slgnalx(n) in (2.16) with parameterg, and#o close to Fig. 1. DCFT of two chirp components with additive SNR= 0 dB. (a)

integers. _ _ o Three-dimensional plot. (b) Image.
We now consider a discrete chirp signal

wherex(n) = WJG(IO"ZJ"“O"), which is the same as in (2.10).
By using Theorem 1 and (2.21), the following result is therefore
proved.

where Theorem 3:Let Z(n) satisfy (2.18) and (2.19), and let
X.(k,1) be its DCFT. Then

@(n) = Wiy lor" +hom) (2.18)

llo—1lo] < ¢ and |ko—ko| < 7 (2.19)

wherel, andkg are two integers with < Iy, ko < N —1, ande, 20k > VN1 =§), ifl=lpandk =ko _—
andn are two positive numbers. By using the Taylor expansion [ Xe(k, DI < 14+ VN, !f [# 1l (2.22)
< V/NE¢, if I =1pandk # kg

of exp(jy) in terms ofjy, it is not hard to see that

where¢ is defined in (2.21).

From this theorem, one can see that as long as the chirp rate
error levele and the constant frequency error leveare low
enough (i.e.]Jo andkg are close enough to integdgsand ko,

lexp(jy) — 1| < |ylexp(|y]), v €R. (2.20)

Thus, for0 < n < N -1

en? + nn
. _ < morm
j&(n) —2(n)] < —

< (eN 4+ n)exp(eN +n) 2 3

exp(en? + nn)

i.e.,e, n = 0, which can be achieved when the sampling rate

is fast enough), the DCFT of the chirp signal still has the peak
property as in Theorem 1. We will see some numerical examples
in Section V.
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Fig. 2. DCFT of two chirp components with additive SNR= 6 dB. (a)

Three-dimensional plot. (b) Image.

I1l. DCFT PROPERTIES FORMULTIPLE COMPONENT CHIRP
SIGNALS

We next consider a multiple component chirp sign@l) of
the form

I
=3 AWGEEY 4 )

i=1

(3.1)

wherez(n) is an additive i.i.d. noise with mean 0 and variancehirp ratel; is detected. To study this question, let us calculate
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N=67, =3, y=0 dB

?Z:_ R ! l ‘M’ Mk “&lfll:.“JII«“i irt}{{l“{{l\‘j‘l‘lf" " l'{“‘ﬂ‘ﬂ \ \
R fl{"f"‘i i h i ‘||1 i"" j ',ﬂ“uu‘( ‘, W'\‘l,
L e

i 0
chirp rate | 0

(a)

constant frequency k,

image of [DCFTZ, N=67, |=3, y—odB
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Fig. 3. DCFT of three chirp components with additive SNR= 0 dB. (a)
Three-dimensional plot. (b) Image.

wherex ") (k, 1) is the DCFT of theth chirp component;(n),
andZ.(k,!) is the DCFT of n0|se( ). From the study in Sec-
tion I, we know that eactk " (k,D) has a peak dtk;, [;) with
peak value|A |v/N, and the maximal off peak value jsi;|.

What we are interested in here is whether there is a peak of

X.(k,1) at each(k;,l;), 1 < ¢ < I.If there is a peak at
(ki,1;), then a chirp component with constant frequehgcgnd

2/|4;? > 0is the signal power of théth chirp component, the mean magnitude oX.(k,7). We first calculate the mean

and( i1 liy ) 7 (Kiy, L) foriéy # 4. Fori =1,2,- -,

Then, the DCFTX.(k

1, let
= AW R, (3.2)

D of z(n) is

I
Xo(k, 1) =D XO (k1) + Zo(k, 1)

i=1

| Xo(k, D] at(k;, ;). Fori = 1,2,--- .1

E|X (ki ;)]
> | XD (ki )| = > 1XE (i )] = E|Ze(Ri )]
TH#L
1
> |AIVN =7 A = (B Ze(k IDY? (33)

T
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Fig. 5. DCFT of four chirp components with additive SNR= 0 dB. (a)
Fig. 4. DCFT of three chirp components with additive SNR= 6 dB. (a) Three-dimensional plot. (b) Image.

Three-dimensional plot. (b) Image.

Furthermore, fofk, 1) # (k;,l;)fori =1,2,---,1
where the inequality in Step 1 is becaugkZ.(k;,l;)] <
(E|Z.(ks,1;)|>)'/? from the Schwarz inequality with respect ! )
to the expectatiotE. Thus, to estimate the lower bound of the ~ EIXc(k, D] < Y 1 X0 (k,D)] + (E| Ze(k, )|}
mean magnitudéX.(k;,[;)|, we need to estimate the mean =1
power of the DCFT of the noise(n). Since for any fixed,
Z.(k,l) is the DFT ofz(n)W}\?Z, the energy ofZ.(k,1) in = ‘ |4s] + 0. (3.6)
terms of the frequency variable is the same as the one of =t

2(n)W{"", i.e., the one of(n). This proves By comparing (3.5) and (3.6), there are peakékatl;) in the
DCFT domain if

~

E|Z.(k,D]* = o2 (3.4)
VNIA| =Y 1A -0 > Z |A;| + o
T
Therefore, for = 1,2,---, I by (3.3) and (3.4), we have or
2
E|Xo(ki,1))] > VN|A;| = [A;]—0.  (35) |4 > N1 (Z | A +a> . (3.7)
T THE
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Fig. 6. DCFT of four chirp components with additve SNR= 6 dB. (a) Fig. 7.

DCFT of another set of four chirp components with additive SNR
Three-dimensional plot. (b) Image.

0 dB. (a) Three-dimensional plot. (b) Image.

Theorem 4:Consider a multiple component chirp signal From (3.7), one can see that when the numbef mul-
#(n) in (3.1) with components at different constant frequemﬂp'e chirp components is fixed, all the peakg&at./;) for i =
and chirp rate pairék;, [;) of power|4,|2 fori = 1,2,---, 1. 1,2, , I will appear in the DCFT domain as long as the signal
lts DCFT magnitudes dt;, ;) are lower bounded by IengthN—a prime—is sufficiently large. In other words, when
the signal is sufficiently long, all the chirp components can be

detected by using the DCFT.
(ki 1) > |- - : i .
B Xo(ki 1) 2 \/NM"' Z |As| — o We next consider the special case when all the signal powers
i=1, ;’#Z I (3.8) |4;]? of the different chirp components are the same, i.e.
|Ai| = A4, fori=1,2,--- I

and its DCFT magnitudes at oth@r, [) are upper bounded by
In this case, (3.7) becomes

I
BIXo(k, D < Y [Ail+0, (k1) # (ki, 1) IR Y SR CA W <I_ Hi)
i=1 VN -1 ( A) VN -1 NG
1=1,2,--- 1. (3.9) , . ) )
where~ is the signal-to-noise ratio (SNR)
Foreach with1 < ¢ < I, a peakin the DCFT domain appears A2
at (k;,1;) if the inequality (3.7) holds. == (3.10)

g
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Fig. 8. DCFT of another set of four chirp components with additive SNR  Fig. 9. DCFT of two chirp components with additive SNR= 6 dB and
6 dB. (a) Three-dimensional plot. (b) Image. signal lengthV+ 66. (a) Three-dimensional plot. (b) Image.

In other words, given the SNR, all peaks atk;, ;) for i = Similar to the single chirp DCFT performance analysis in
1,2,---, I appear in the DCFT domain if the number of chirrhegrem 3, when the chirp rate and the constant frequency pa-
components satisfies rameters; andk; are not integers, the above results for multiple
chirp DCFT can be generalized. Some numerical examples will
VN 41 — i_ (3.11) be presented in Section V.
2 A
This gives us the following corollary.

Corollary 1: Let z(n) be of the form (3.1) with all equal
powers|4;|> = A? and the SNRy defined in (3.10). Then, In this section, we want to see the relationship of the DCFT
there are peaks &k;,[;) fori = 1,2, -, I if the numberl of and the analog chirp-Fourier transform (ACFT). Let us first see
the chirp components satisfies the upper bound (3.11). the ACFT. For an analog signal,(¢), its ACFT is

The above corollary basically says that in the case when all
signal powers of the multiple chirp components are the same,
the chirp components can be detected using the DCFT if the
number of them is less thafV /2 when the signal length is
sufficiently large. From the simulation results in Section V, oneghere« andg are real. Whem,(¢) is a quadratic chirp, i.e.,
will see that the upper bound in (3.11) is already optimal, i.e.,

tight. 24 (t) = exp(j(Fot? + aot)) 4.2)

IV. CONNECTION TO THEANALOG CHIRP-FOURIER
TRANSFORM

Xoa(a, ) = /_Oo zalt) exp(— (B2 + at)) dt (4.1)
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Fig. 10. DCFT of two chirp components (41.9897, 15.0180), (45.003¢;y 11 DCFT of two chirp components (41.9897, 15.0180), (45.0037,
43.9968) with additive SNR = 6 dB. (a) Three-dimensional plot. (b) Image. 4399968) with additive SNR _pO dB. ?a) Three(dlmensmnal plot. ()b) (Image

the ACFT is

- s
Xeola,B) = /_ exp(j[(Bo — B)B2 + (o — a)t]) dt

n 2mn 2mn

ti= —— [ _Nl/g, a—m

i (4.4)

= 2/ cos(fo — Pt cos(ag — )t dt
0 o where N is a positive integer. The reason for this sampling
+ 25 / sin(fo — B)t? cos(ag — a)t dt method is for getting the DCFT form studied in the previous
0 sections, and the difference of the samplings between the chirp

_ 1 (1 + signBo — A)) rate3 and the constant frequeneyis due to the power differ-
B0 — BI/2 ence between the chirp tethand the constant frequency term
(ao — a)? 43 b Truncater,(t) such that it is zero fot ¢ [0, N2/3]. Sample
Bl G T (43) () into a(n) = a(n/NY3) forn = 0,1,2,---,N — 1. In

th|s case, the integral in (4.1) can be d|scret|zed
where (4.3) is from [18]. Clearly, when the constant frequency d 1)

ap and the chirp ratg, are both matched, i.e., when= « and

. k l
B = o, the ACFTX, ,(«, 3) = o0, and otherwiseX.. ,(«, 3) X.u < ; ) Wl" +hn
is a finite value, i.e.X. o(cv, ) < oo for @ # Fp or a # «y. N2/37 N1/3 Nl/?’ Z

To consider the connection with the DCFT, let us consider the N1/2

following samplings for the above analog parametets and Xe(k, D).

= N1/3

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 14:46 from IEEE Xplore. Restrictions apply.



XIA: DISCRETE CHIRP-FOURIER TRANSFORM AND ITS APPLICATION TO CHIRP RATE ESTIMATION 3131

i
\‘\ w

70

i v' \(}ﬂ“ ol ,’(

;tl
I

‘-f—?—-
==

A 'M g o E] il w‘ I 1)1 AT

EER ‘ "yu a-J i tan S 8 " { \ l ol

“ K1 ;J"ﬁﬂiﬁ':"i ”'[lll"i‘:f"P‘g’f““'M H“.,{is“"f’w{ﬁ} “j‘M’ j: M’\ f”” \\‘,‘l'”' ‘?[“,"““]M

1: | , .f_»,'f_,)y\,?;;'ﬁ*u .\l il U,. \\«JM&J 0 } [;,l,,.\}ﬁ(‘ ‘IH',}%M" | :
! ' ﬁllf‘d] \’f ' | { - | <, .

")‘.‘Il“l‘ i (”H 'l'
.w’u n{'ffiim"li ‘(
i
™

40 40
0 o 1 o
chi te | i
rp rate constant frequency k; chirp rate | 0 constant frequency k;
(a) (a)
|mage of ;ocr-nz N=67, I=3, 7-6 dB
L e e R s
H - N N
3 F H B
: ‘ . "
1o} 1 Fal R o
: i m e
: = :
200 o IR
- 7 i
: : : - :
=k : : " :
= 30F = e
£ : : i
g N B N - L]
5| : :
- e .= . 5
. = . | - L]
50 m o S — a0y L e . 4
H ? - "
3 =
sof will . Tl
i i X
0 10 30 40 50 €0 30 40
constant frequency Kk, constant frequency ko

Fig. 12. DCFT of three chirp components (12.0050, 1.9883), (48.9878;; 13. DCFT of two chirp components (12. 0050, 1.9883), (48.9875,
35.0063), (17.9825, 24.0004) with addiive SNR = 6 dB. (2) 35/0063), (17.9825, 24.0004) with it SNR = 0 ! @)
Three-dimensional plot. (b) Image. Three-dimensional plot. (b) Image.

In other words ) )
of chirp components are simulated, where the constant frequen-

6y k I ciesk; and the chirp rateg fori = 1,2,---, 1 are arbitrarily
X <W’ W) (4.5) chosen. The corresponding amplitudésare set to be all 1.
Figs. 1 and 2 show the DCFT's of signals with two chirp
components atk;,l;) = (42,15), (45, 44) and the SNR*s =
v = 0dB andy = v, = 6 dB in (3.10), respectively. Figs. 3
and 4 show the DCFT’s of signals with three chirp components
at(k;, ;) = (12, 2), (49, 35), (18, 24), and the SNR/s= v, =
In this section, we want to see some simple numerical simd-dB andy = . = 6 dB in (3.10), respectively. Figs. 5 and
lations. Two signal lengths are considerdd:= 67 andN = 6 show the DCFT’s of signals with four chirp components at
66. We first see some examples whah= 67. Two different (k;,l;) = (44, 57), (38, 65), (53, 10), (55, 12) and the SNR’s
SNRs+ in (3.10) are considered, whichatg =1 (0dB)and v = 7; = 0 dB andy = 4> = 6 dB in (3.10), respectively.
~vo = 4 (6 dB). For the first SNRy;, the upper bound in (3.11) One can see from Fig. 5 that although the upper bound fer
for the number of the detectable chirp components is 3, i.e3 when the SNRy = +; = 0 dB, the four peaks can be seen in
I < I; = 3. For the second SNR,, the upper bound in (3.11) the DCFT domain. This is, however, not always true from the
for the numberl of the detectable chirp components is 4, i.efpllowing examples. Figs. 7 and 8 show the DCFT’s of another
I < I, = 4. Inthe following, three different numbefs=2,3,4 set of two signals with four chirp components &t, ;) = (64,

Xk, )= N~

which gives a connection between the DCFT and the ACFT.

V. NUMERICAL SIMULATIONS
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Fig. 14. DCFT of four chirp components (43.9977, 56.9989), (38.001ig. 15. DCFT of two chirp components (43.9977, 56.9989), (38.0013,
64.9920), (52.9976, 9.9991), (54.9898, 12.0094) with additive NR6 dB.  64.9920), (52.9976, 9.9991), (54.9898, 12.0094) with additive SNRO dB.
(a) Three-dimensional plot. (b) Image. (a) Three-dimensional plot. (b) Image.

gizj (2} 39)’_(2 dlB7 )',n(533 '14(1)4),r:2detcr1f SN%?]Z’Z:;rTsOeSI?ro of the three chirp componentg;,;) = (12.0050, 1.9883),
ndy =72 = in (3.10), respectively. One ca M48.9875, 35.0063), (17.9825, 24.0004) that are distorted from
Fig. 7 that the four pe.aksl(: 4)_are not clear, which is becausethe chirp components in Figs. 3 and 4. Figs. 14 and 15 show
the upper bound fof in (3.11) is 3 whery = 3, = 0dB. The ., Ko of the four chirp components;, ;) = (43.9977,

four peaks in Fig. 8 are, however, clear because the upper bo d9989) (38.0013, 64.9920), (52.9976, 9.9991), (54.9898,
for\/\—ITF:erifll)—lsgGthmcgnQQd; ?hdeBt o chirb components 12.0094) that are distorted from the chirp components in Figs. 5
b 1) — (42_15) ()1'; 42) nIF 5 tvr\:the ISpN P B %nd 6. One can see that unlike in Figs. 5 and 6, in Figs. 14
é ng)ltg DCIéT is shown inIFi '% C\I/:arl it failjtgs?\i)v;th and 15, the four peaks are not all shown well, which is due to

' oS 9. 9. Y ..Ihe additional distortions of the integer chirp rate and constant
two peaks, which illustrates the difference of the DCFT wit| lequency parametetsandk;, as we have studied in Theorem
respect to having prime and nonprime length. 3 q yP ’ "
We next want to see some examples when the chirp rate and

the constant frequency parametérand k; are not but close VI C
to integers, i.e.¢, n &~ 0. The parameter errors are randomly - WONCLUSION

added with Gaussian distributions. Figs. 10 and 11 show theln this paper, we studied the discrete chirp-Fourier transform
DCFT's of the two chirp componentsk;,l;) = (41.9897, (DCFT) for discrete quadratic chirp signals. The approach is
15.0180), (45.0037, 43.9968) that are distorted from the chigpalogous to the one of the DFT. We showed that when the
components in Figs. 1 and 2. Figs. 12 and 13 show the DCFBignal lengthiV is prime, all the sidelobes (i.e., when the chirp
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rates or the constant frequencies are not matched) of the DCFT8] P. M. Djuric and S. M. Kay, “Parameter estimation of chirp signals,”
are not above 1, whereas the mainlobe (i.e., when the chirp rates EEE Trans. Acoust., Speech, Signal Processiol 38, pp. 2118-2126,

. . Dec. 1990.
and the constant frequencies are matched simultaneously) of thg; y 7. 1kram, k. Abed-Meraim, and Y. Hua, “Estimating the parameters

DCFT isv N. We showed that this is optimal, i.e., whéhis of chirp signals: An iterative approacHEEE Trans. Signal Processing

not a prime, the maximal sidelobe magnitude of the DCFT is, _ Vol- 46, pp. 3436-3441, Dec. 1998. _ _
. . . ELO] S. Qian, D. Chen, and Q. Yin, “Adaptive chirplet based signal approxi-

greater than 1 (in fact, we showed that the maximal sidelobe ™ 501 inProc. ICASSPSeattle, WA, 1998.

magnitude of the DCFT is greater thgf2). We also presented [11] G. Wang and Z. Bao, “ISAR imaging of maneuvering targets based on

an upper bound in terms of signal lengthand SNR for the chirplet decomposition,” , to be published.

. . 2] L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-trans-
number of the detectable chirp components using the DCF‘FL form algorithm and its applicationsBell Syst. Tech. Jvol. 48, pp.

Simulations were presented to illustrate the theory. A connec-  1249-1292, May-June 1969.
tion of the DCFT with the analog chirp-Fourier transform wasl[13] V- Namias, “The fractional order Fourier transform and its application to
| ted guantum mechanicsJ. Inst. Math. Appl.vol. 25, pp. 241-265, 1980.
also presented. _ _ ] [14] A. C. McBride and F. H. Kerr, “On Namias’ fractional Fourier trans-
Although the DCFT was defined for quadratic chirps that forms,” IMA J. Appl. Math, vol. 39, pp. 150-175, 1987.
are quite common in radar applications, it is not hard to gentt®l L. B Almeida ‘The fractional Fourier ransform ard time-fre-
. . . . . quency representationslEEE Trans. Signal Processingol. 42, pp.
eralize to higher order chirps. Notice that the DCFT for higher 3534 3091, Nov. 1994.
order chirps may not have the precise values but some roughlys] A. W. Lohmann, “image rotation, Wigner rotation and the fractional
low values of the sidelobes obtained in Section s Il and 1l for__ Fourier transform,J. Opt. Soc. Amer. Aol. 10, pp. 21812186, 1993.
dratic chi H it miaht b ible but tedi gl?] D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations
quadratic chirps. HOwevet, | mlg € possible but more e. lou and their optical implementation: I.J. Opt. Soc. Amer. Avol. 10, pp.
to calculate the values of the sidelobes of the DCFT for higher  1875-1881, 1993.
order chirps when the higher order powersgf:, 1) in (2.9)in ~ [18] I N. Bronshtein and K. A. Semendyayeifandbook of Mathe-
. . matics New York: Van Nostrand Reinhold, 1985.
the Proof of Lemma 1 is used. Another comment we would like
to make here is that similar to the spectrum estimation, when the
chirp rate and the constant frequency are not integers, other high

resolution techniques may exist and are certainly interesting.
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