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Summary. In this article, we propose a graphical technique for assessing the goodness-of-fit of a stationary
hidden Markov model (HMM). We show that plots of the estimated distribution against the empirical
distribution detect lack of fit with high probability for large sample sizes. By considering plots of the
univariate and multidimensional distributions, we are able to examine the fit of both the assumed marginal
distribution and the correlation structure of the observed data. We provide general conditions for the
convergence of the empirical distribution to the true distribution, and demonstrate that these conditions
hold for a wide variety of time-series models. Thus, our method allows us to compare not only the fit of
different HMMs, but also that of other models as well. We illustrate our technique using a multiple sclerosis
data set.
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1. Introduction
Hidden Markov models (HMMs) describe the relationship
between two stochastic processes: an observed process and
an underlying “hidden” (unobserved) process. These models
have been applied to a wide array of problems involving lon-
gitudinal data, including speech recognition (e.g., Levinson,
Rabiner, and Sondhi, 1983), gene profiling and recognition
(e.g., Krogh, 1998), and precipitation modeling (Hughes and
Guttorp, 1994).

Magnetic resonance imaging (MRI) scans of relapsing-
remitting multiple sclerosis (MS) patients are another source
of data that may be appropriately modeled by HMMs. Pa-
tients afflicted with this disease have symptoms that worsen
and then improve in alternating periods of relapse and re-
mission. One such symptom is lesions in the brain; it is
now believed that exacerbations are associated with increased
numbers of lesions. Thus, it may be reasonable to assume
that the distribution of the lesion counts depends on the
patient’s (unobserved) disease state, i.e., whether the pa-
tient is in relapse or remission. Additionally, we might ex-
pect to see autocorrelation in this sequence of disease states.
Indeed, Albert et al. (1994) use this idea in the devel-
opment of an HMM for individual relapsing–remitting MS
patients.

We will give the definition of a stationary HMM in the
context of these MS/MRI data. In particular, for a given pa-
tient, we let Yt be the observed lesion count and Zt be the
hidden disease state at time t, t = 1, . . . ,n. We assume, for
convenience, that these time points are equally spaced; how-
ever, this assumption is not strictly necessary. The process
{Yt} is a stationary HMM if the following two conditions
hold:

1. {Zt} is a stationary Markov chain with transition proba-
bilities {Pk�} and initial probabilities {πk}, k, � = 1, . . . ,
K, where K < ∞.

2. Yt |Zt is independent of Y 1, . . . ,Y t−1, Y t+1, . . . ,Yn and
Z1, . . . ,Zt−1, Zt+1, . . . ,Zn , with P(Yt ≤ y |Zt = k) ≡
H(y; θk, φ).

These assumptions imply that HMMs form a class of fi-
nite mixture models where, given the hidden state at time t,
the distribution of the observation at this time is fully speci-
fied. However, HMMs are more general than classical mixture
models in that the hidden states are not assumed to be in-
dependent, but rather to have a Markovian structure. One
consequence of this assumption is that the observed data are
also modeled as correlated, with dependence between observa-
tions decreasing as a function of the distance between them.
This correlation is long range, i.e., HMMs are not Markov
chains.

As with most data analysis problems, it is desirable to find
methods for assessing the goodness-of-fit (GOF) of a given
HMM. In other words, we would like to be able to detect dis-
crepancies between the proposed and the true models of the
data. Lystig (2001) provides a comprehensive overview of ex-
isting literature on heuristic GOF techniques for HMMs. For
example, in the context of precipitation modeling, Zucchini
and Guttorp (1991) consider the case where the distribution
of the response (rain or no rain) depends on the season. For
each of five seasons, they plot the predicted versus empiri-
cal probability of rain. To study the GOF of an HMM for
count data, Albert (1991) suggests qualitatively comparing
the observed and expected frequencies of each observed value.
However, these methods permit only the examination of the
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fit of the assumed marginal distribution, and do not allow
the investigation of deviations from the assumed correlation
structure.

Turner, Cameron, and Thomson (1998), working with
Poisson HMMs, attempt to overcome this limitation by pre-
dicting the mean response at each time point conditional on
the observed data. These authors then create a diagnostic plot
by overlaying the predicted responses on the the observed
data. Nevertheless, because this method focuses on means
rather than on distributions, it is not suitable for detecting
violations of the Poisson assumption.

Hughes and Guttorp (1994), working with a nonhomoge-
neous HMM with finite state space, S, consider the compari-
son of the observed frequency of each response, y, to

1

n

n∑
t=1

P̂(Yt = y),

where P̂ is the estimated probability under the fitted HMM.
In a similar way, these authors compare the observed and
estimated survival functions (i.e., the probability that the ob-
served process is in state s ∈ S for at least k days), as well
as the observed and estimated correlations. This method at-
tempts to address the problem of detecting the lack of fit in
either the marginal distribution or the correlation structure
of the observed data. However, as P(Yt = y) depends on t in
this setting, it in unclear whether averaging over the n obser-
vations achieves this goal.

Few formal GOF tests exist for HMMs. Giudici, Rydén, and
Vandekerkhove (2000) show that the likelihood ratio test can
be used in the usual way to compare nested stationary HMMs
with a common, known value of K. However, the comparison
of nonnested models, including both HMMs (with possibly un-
known values of K ) and models outside the class of HMMs, is
more challenging. Finally, Lystig (2001) develops a test based
on the score process for use in the context where there are n
responses (from a finite state space) on each of N independent
individuals, and N is large.

In addition to providing guidance about choosing among
models, it is desirable that a GOF technique will, with high
probability, detect a lack of fit as n gets large—when either
the marginal distribution or the correlation structure of the
observed data is misspecified. However, none of the methods
described above has been shown to have this property.

With these goals in mind, we consider an alternative
method of assessing the GOF of a stationary HMM. Our
method is similar to that of Hughes and Guttorp (1994), but
we exploit the fact that, in the stationary case, we have iden-
tically distributed observations. In particular, in Section 2, we
propose plotting the estimated cumulative distribution func-
tion (CDF) against the empirical CDF. Under the regular-
ity conditions given in Section 3, we show that, if we have
correctly specified the model, the empirical and estimated
distributions will both be consistent estimates of the true
distribution, so as n increases, this plot will converge to a 45◦

line through the origin. If {Yt} is discrete, we might also con-
sider plotting the estimated probability distribution function
(PDF) against the empirical PDF. However, we will restrict
our discussion to the general case, and henceforth, the word
“distribution” will refer to the CDF.

The method that we propose here is intended to comple-
ment that of MacKay (2002), which focuses on the estimation
of the number of hidden states in a stationary HMM.

Our method is novel for three reasons. First, most proba-
bility plots (e.g., Lockhart and Stephens, 1998) compare an
estimated distribution with a true (rather than empirical) dis-
tribution. Second, we suggest plotting not just the univariate
CDF, but higher dimensional distributions as well. As de-
scribed in Section 2, this approach will allow us to examine
the fit of both the assumed marginal distribution and the cor-
relation structure of the observed data. Finally, our method
permits the investigation of the fit of a model with K known or
unknown, as well as the comparison of models with differing
values of K.

In Section 4, we discuss other models for time series data for
which this method may be appropriate. In this way, we may
compare the fit of HMMs with that of other model choices.

We apply our method to an MS/MRI data set in Section 5.
This example illustrates the type of deviations that we might
see when an HMM does not represent the data well, or when
our choice of the conditional model for the observed data is
not appropriate.

2. Methodology
Assuming that the observed process follows a stationary
HMM, Y 1, . . . ,Yn are identically distributed with common
CDF

F (y) =

K∑
k=1

πkH(y; θk, φ). (1)

Similarly, using the notation yk
1 = (y1, . . . , yk ), we will express

the m-dimensional distributions of {Yt} as

Fm
(
ym

1

)
=

K∑
z1=1

· · ·
K∑

zm=1

πz1Pz1,z2 · · ·Pzm−1,zm

×H(y1; θz1 , φ) · · ·H(ym; θm, φ).

When the parameters of Fm(·) are estimated, we refer to the
resulting distribution, F̂m(·), as the estimated m-dimensional
CDF. In contrast, the empirical m-dimensional CDF is based
solely on the observed data, and is defined by

F̄m
n

(
ym

1

)
=

n−m+1∑
t=1

I{Yt ≤ y1, . . . , Yt+m−1 ≤ ym}

n−m+ 1
.

Our method first involves plotting the estimated univari-
ate distribution against the empirical univariate distribution.
When Yt is discrete, we plot F̂ (y) versus F̄n(y) for a finite
number of points, focusing on values of y over which these
functions tend to concentrate. When Yt is continuous, we plot
F̂ (y) versus F̄n(y) over the entire range of y. Under the reg-
ularity conditions given in Section 3, by examining this plot
for deviations from the 45◦ line through the origin, we will be
able to assess the fit of the assumed marginal distribution for
Yt , i.e., the mixture distribution given by equation (1). How-
ever, this plot will not provide any information about the fit
of the assumed correlation structure. In light of the comment
by Hughes and Guttorp (1994) that, at least in their setting,
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“it is generally not difficult to get a good fit to the empiri-
cal marginal probabilities,” checking the correlation structure
may be of primary interest. We accomplish this goal by ex-
amining plots of the higher dimensional distributions.

Specifically, in the usual case where the values of {θk} are
distinct, Leroux (1992) proves that, if the family of mixtures
of {H(y; θ, φ)} is identifiable, then the two-dimensional distri-
bution is sufficient to determine all finite-dimensional distri-
butions. Making use of this idea, we propose the construction
of an additional plot: the estimated bivariate distribution,
F̂ 2(·), against the empirical bivariate distribution, F̄ 2

n(·). If
the values of {θk} are not distinct, we may also wish to make
plots of the higher dimensional distributions. In particular,
again assuming that the family of mixtures of {H(y; θ, φ)} is
identifiable, Rydén (1995) shows that the finite-dimensional
distributions of {Yt} are determined by the 2K-dimensional
distribution. Thus, if we know an upper bound, M < ∞, on
the number of hidden states, then we may wish to plot the 3-,
4-, . . . , 2M-dimensional distributions. In the case of the uni-
variate plot, the functions are monotonic in y, and hence their
values are necessarily ordered with respect to the values of y.
The points of the multidimensional distributions, however, are
not ordered in this way.

As in the univariate case, we would expect the multidimen-
sional plots to converge to a straight line if the assumed model
is correct and the regularity conditions hold. In this way, as n
increases, we will be able to make a better assessment of the
fit of both the marginal model and the correlation structure of
the observed data. Moreover, we will be able to compare the
fit of several proposed models by overlaying plots constructed
by fitting these models to the same data set.

The requirements that we impose to ensure that the plot
of the m-dimensional distributions has the above convergence
property are as follows:

Requirement 1. {Yt} is strictly stationary.
Requirement 2. F̂m(·) converges to F m(·).
Requirement 3. F̄m

n (·) converges to F m(·).

Remark. Requirement 1 implies that the joint distribution
of (Yt , . . . ,Y t+�) is the same for all t. Requirement 2 will be
satisfied (in the sense of pointwise convergence) if F m(·) is
continuous in the parameters and the parameter estimates
are consistent. When K is known, the method of maximum
likelihood (Leroux, 1992) or the penalized minimum-distance
method described by MacKay (2002) may be used to ob-
tain consistent parameter estimates. MacKay’s method is also
valid when K is unknown.

We discuss Requirement 3 in more detail in Section 3, and
present two alternative sets of sufficient conditions for this re-
quirement. We use these to show that our proposed graphical
method is valid for stationary HMMs. Thus, we will be able
to graphically compare different (including nonnested) HMMs
for the observed data by examining how close each estimated
distribution is to the empirical distribution.

3. Convergence Conditions
The conditions for Requirement 3 that we develop are based
on the concept of α-mixing sequences of random variables
(see, e.g., Ould-Säıd, 1994).

Definition: A stationary sequence of m-dimensional vec-
tors, {Vt} is α-mixing or strong mixing if

α� = sup
A∈Fs

1 ,B∈F∞
s+�

|P (AB) − P (A)P (B)| → 0 as �→ ∞

where Fb
a = σ(Vt, a ≤ t ≤ b). The values {α�} are called the

mixing coefficients.

The idea is that for the empirical distribution to converge
to the true distribution, α� must converge to 0 quickly enough.
The two propositions that we present give sufficient rates of
convergence. The first is due to Ould-Säıd (1994), and is ap-
plicable to plots of the multidimensional distributions.

Proposition 1: For a stationary, m-dimensional, α-mixing
process with marginal distribution Fm(·) and mixing coefficients
α� = O(�−ν) for some ν > 2m + 1,

lim
n→∞

sup
y∈Rm

∣∣F̄m
n (y) − Fm(y)

∣∣ = 0

almost surely.

The proof of Theorem 1 of MacKay (2002) demonstrates
that the mixing coefficients of stationary HMMs satisfy the
condition in Proposition 1. Thus, our graphical method (in
any dimension) is valid for these models.

If we consider the pointwise, rather than uniform, conver-
gence of the empirical distribution to the true distribution,
Requirement 3 amounts to a law of large numbers (LLN) for
dependent variables. Lin and Lu (1996) provide general infor-
mation in this context for processes satisfying various mixing
conditions (e.g., α-mixing, ρ-mixing, ψ-mixing, and others).
Proposition 2 below is an example of one such LLN. We focus
on this particular result because of its relative simplicity in
our context. In particular, for some models the conditions of
Proposition 2 may be easier to verify than those of Lin and
Lu (1996) (or of Proposition 1) because the calculation of the
mixing coefficients is not required. The proof is provided in
the Appendix.

Proposition 2: Assuming that {Yt} is a stationary one-
dimensional process with marginal distribution F (·), let

β�(y) = |P(Yt ≤ y, Yt+� ≤ y) − P(Yt ≤ y)P(Yt+� ≤ y)|.

Then for each y, F̄n(y) converges in probability to F(y) if

n−1∑
�=1

(n− l)β�(y) = o(n2). (2)

Although Proposition 2 is stated in terms of the univari-
ate distributions, it can easily be extended to the multidi-
mensional case, where, for the bivariate case, for example, we
would define

βt−s(x, y) = |P(Ys ≤ x, Ys+1 ≤ y, Yt ≤ x, Yt+1 ≤ y)

−P(Ys ≤ x, Ys+1 ≤ y)P(Yt ≤ x, Yt+1 ≤ y)|

and use the same bounds as in (2).

4. Other Models for Time Series Data
More generally, we would like to know that the empirical dis-
tribution is converging to the true distribution regardless of
whether the true distribution is an HMM. In this section, we
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discuss other models for stationary time series. It turns out
that these models meet at least one of our conditions. Thus, if
the true underlying model is a member of the broad class that
we consider, our method will allow us to determine whether
the HMM in question is a reasonable model for our data. More
importantly, if consistent estimates of these alternative distri-
butions are available, we will also be able to use our method
to compare the fit of the HMM with that of the other models
by overlaying the appropriate plots.

In addition to HMMs, other possible models (for discrete
or continuous data) are

1. Markov models, including

� Autoregressive (AR) models
� “Observation-driven processes” where Yt |Y t−p, . . . ,
Y t−1 is independent of Y 1, . . . ,Y t−p−1, and has a den-
sity in the exponential family,

ft(y) = exp{yηt − c(ηt))/a(φ) + d(y, φ)}, (3)

where h is some function and the link function is given
by ηt = h(Y t−p, . . . ,Y t−1)

2. m-dependent time series, including

� Moving average (MA) models

3. “Parameter-driven processes” where {εt} is a latent
ARMA process, and Yt |εt is independent of Y 1, . . . ,Y t−1,
Y t+1, . . . ,Yn with density of the form (3) with ηt = h(εt)
(e.g., Chen and Ibrahim, 2000).

We now show that all of these models, in fact, satisfy the
convergence criterion given in Proposition 1.

4.1 Markov Models
The mixing coefficients of a stationary Markov chain sat-
isfy α� ≤ cρ�, where c is a positive constant, and 0 < ρ <
1 (see, e.g., Doukhan, 1994). Thus, it is clear that station-
ary Markov chains satisfy the condition in Proposition 1,
and hence our graphical method is valid for these processes.
Stationary AR(p) and INAR(p) (e.g., Alzaid and Al-Osh,
1993) processes are (p-order) examples of such a process.
Observation-driven processes, such as Poisson regression mod-
els with p lagged dependent variables, are also p-order Markov
processes.

4.2 m-Dependent Time Series
Since, for an m-dependent time series, αl = 0 for l > m,
time series of this type clearly satisfy the condition of Propo-
sition 1. Included in this class are stationary MA(q) and
INMA(q) (e.g., Alzaid and Al-Osh, 1993) processes.

4.3 Parameter-Driven Processes
Blais, MacGibbon, and Roy (2000) show that if {εt} is an
α-mixing sequence with mixing coefficients α�, and {Yt} is
a process such that Yt | εt is independent of Y 1, . . . ,Y t−1,
Y t+1, . . . ,Yn , then the process {Yt} is also α-mixing, with
mixing coefficients 4α�.

From Liebscher (1996) we have that a stationary
ARMA(p, q) process is α-mixing with exponential rate, i.e.,
the mixing coefficients satisfy α� ≤ cρ� for some ρ, 0 < ρ <
1, and some c, 0 < c < ∞.

It is now obvious that the condition of Proposition 1 holds
for models of this type.

5. Application to MS/MRI Data
In this section, assuming the same model for each patient, we
compare the fit of five different stationary HMMs to the data
of Albert et al. (1994). Although we certainly could exam-
ine models with differing numbers of hidden states, we have
elected to focus on the choice of conditional model for the ob-
served data, and thus have assumed a value for K. Based on
the results from our analysis of these data in MacKay (2002),
we assume that each HMM has two hidden states, presumably
corresponding to relapse and remission. We use the method
of maximum likelihood to obtain estimates of the other pa-
rameters. We model the conditional distribution of Yt given
Zt as one of the following four distributions:

1. Poisson: P(Yt = y |Zt = k) =
e−λkλ

y
k

y! , λk > 0
2. Negative binomial:

P(Yt = y |Zt = k) =
(
pk+y−1

y

)
α
pk
k (1 − αk)

y, 0 < αk < 1,
pk > 0

3. Logarithmic: P(Yt = y |Zt = k) =
−θ

y+1
k

y log(1−θk) , 0 < θk < 1
4. Generalized Poisson:

P(Yt = y |Zt = k) = λk(λk+θky)y−1e−λk−θky

y! , λk > 0, θk ≥ 0

Figures 1 and 2 show the fit of these models to these data.
In Figure 1, we plot the estimated univariate distribution of
Yt under each model versus the empirical distribution of Yt

over the range 0, . . . , 20. Figure 2 is the corresponding plot
of the bivariate distributions over the range (0, 0), (0, 1), . . . ,
(20, 20).

Figure 1 shows that all of the models seem to capture the
univariate behavior of the data quite well, with the exception
of the logarithmic model. Since the Poisson model seems to
be reasonable, it is not surprising that the negative binomial
and generalized Poisson models also provide good fits, because
these are generalizations of the Poisson model. In contrast,
Figure 2 shows that none of the models is a good choice for
representing the bivariate behavior of the data. In particular,
the estimated probabilities tend to be lower than the empiri-
cal probabilities throughout almost the entire range. Thus, it
would appear that a two-state HMM cannot fully capture the
correlation structure of the data, and hence is not an adequate
model in this case.

In conclusion, this example shows that our GOF method is
useful both for comparing different models and for detecting
when a proposed HMM is not appropriate for the data.

6. Discussion
We proved in Section 3 that if we have correctly specified the
model, then the plots will converge to a 45◦ line through the
origin as n → ∞. It is also of interest to develop a formal
method of assessing the degree of variability in the observed
plot. In other words, it would be desirable to have a theoretical
means of determining whether the observed scatter around
the 45◦ line is “acceptable” for a given sample size, n.

One way in which other authors have assessed this vari-
ability is by computing the correlation coefficient of the two
plotted variables, and then deriving the distribution of a test
statistic based on this coefficient under the null hypothesis
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Figure 1. Comparison of the estimated and empirical univariate distributions (MS/MRI data).

that the model fits. This derivation is simplified consider-
ably if one of the variables is fixed rather than random.
Lockhart and Stephens (1998) provide a good example in this
setting. They investigate the use of probability plots, where
the n observations are ordered and plotted against the values
F−1{k/(n + 1)}, k = 1, . . . ,n. Here F is an arbitrary dis-
tribution in the proposed family of distributions. Under the
assumptions that F is in the location-scale family (usually
with the values of the location and scale parameters chosen
as 0 and 1, respectively) and that the observations are i.i.d.,
the asymptotic distribution of their test statistic has a nice
form. However, typically, the exact distribution of this statis-
tic is not easily derived. Furthermore, in our setting, where
we plot two different estimates of the CDF and our observa-
tions are not independent, computing the distribution of the
associated correlation coefficient, even asymptotically, seems
like a very challenging problem.

Alternatively, Raubertas (1992) considers envelope plots as
a formal GOF test. Again, working in the context where the

proposed distribution is completely specified under the null
hypothesis, he suggests simulating s independent samples of
size n from this distribution, and preparing a plot of the es-
timated distribution against the true distribution for each.
These plots are then superimposed and summarized by dis-
playing only their upper and lower envelopes. Points corre-
sponding to the observed (as opposed to simulated) data that
fall outside this envelope indicate lack of fit in the model. The
advantage of this method is that the true distribution need
not be limited in its complexity. For example, we could eas-
ily simulate observations from an HMM. However, Raubertas
(1992) points out that the power of this test may be undesir-
ably low, and does not recommend it when other options are
available. An envelope plot in our case would have even more
inherent variability, because we would need to sample from
the estimated, rather than true, distribution. For the same
reason, the computational burden would also be quite heavy.
Given these concerns, we have not attempted to conduct this
test on our data sets.
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Figure 2. Comparison of the estimated and empirical bivariate distributions (MS/MRI data).

In conclusion, a feasible, theoretical method of assessing
the variability in our GOF plots is not yet available at this
time. Further research on this topic is required.
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Résumé

Dans cet article, nous proposons une méthode graphique pour
mesurer l’ajustement d’un modèle de Markov caché station-
naire (HMM). Nous montrons que le graphe de la distribu-
tion estimée comparée à la distribution empirique détecte

avec une probabilité forte un manque d’ajustement pour de
grandes tailles d’échantillons. En considérant les graphes de
distributions univariées et multidimensionnelles; nous sommes
capable d’examiner l’ajustement à la fois de la distribution
marginale supposée et de la structure de corrélation des
données observées. Nous indiquons les conditions générales
pour la convergence de la distribution empirique vers la vraie
distribution et nous démontrons que ces conditions sont rem-
plies pour une grande variété de modèles pour séries tem-
porelles. Ainsi, notre méthode nous permet de comparer
non seulement l’ajustement de différents HMMs, mais égale-
ment l’ajustement d’autres modèles. Nous illustrons notre
technique en utilisant un jeu de données sur la sclérose en
plaques.
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Appendix

Proof of Proposition 2
The proof follows from Chebyshev’s inequality. Let N(y) =∑n

t=1 I(Yt ≤ y). Then for a given value of ε,

P(|F̄n(y) − F (y)| ≥ ε)

≤ 1

ε2
E

[
N(y)

n
− F (y)

]2

=
1

ε2
E

[
N 2(y)

n2 − (F (y))2

]

=
1

ε2

{
1

n2 E

[
n∑
t=1

I(Yt ≤ y) + 2
∑
s<t

I(Yt ≤ y, Ys ≤ y)

]

− (F (y))2

}

=
1

ε2

{
1

n2

[
nF (y) + 2

∑
s<t

P (Yt ≤ y, Ys ≤ y)

]
− (F (y))2

}

≤ 1

ε2

{
F (y)

n
+

2

n2

∑
s<t

[(F (y))2 + βt−s(y)] − (F (y))2

}

=
1

ε2

{
F (y)

n
+

2n(n− 1)

2n2 (F (y))2

+
2

n2

n−1∑
�=1

(n− �)β�(y) − (F (y))2

}

=
1

ε2

{
F (y)

n
− (F (y))2

n
+

2

n2 o(n
2)

}
→ 0.




