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Abstract. Intersection Safety Systems (ISS) are a relative new but an important
research topic in the field of Advanced Driver Assistance Systems as accident
statistics show. Unfortunately, intersections are one of the most complex scenar-
ios out of all traffic related scenarios which complicates the development of such
ISS. This paper presents situation analysis and risk assessment algorithms for
Intersection Safety Systems which are suitable for online implementation. The
demonstrator system is able to observe the intersection environment with several
onboard sensors and to build an appropriate scene model including behaviors,
intentions and interrelations of all vehicles in the scene. The subsequent risk as-
sessment judges possible individual risks for the vehicle that is equipped with the
safety system.

1 Introduction

Detailed personal car accident analysis shows that there is an urgent need to assist
drivers at intersections. From [ROS+05] three main scenarios can be extracted which
cover a crucial number of intersection accidents. They define the basis for the ISS and
the pertinent interpretations which are required in this paper. These scenarios are the
“left turn across path scenario”, the “turn into/straight crossing path scenario” and the
“red light crossing scenario”. Each situation is covered by a separate assistance function
in this work. At first the scenario is analyzed by a behavior modeling and prediction with
a Dynamic Bayesian Network approach. In a next step, the risk of the current situation
is computed by an adaptive fuzzy logic based approach. Finally, the risk is presented to
the driver of the equipped vehicle through an appropriate HMI.

The demonstrator vehicle used for this work has two laser scanners integrated in its
two front corners. An additional video camera is mounted inside of the vehicle behind
the windscreen (see Fig. 1). The specifications of the sensors can be found in [HST+05].
The laser scanners are used for host vehicle landmark localization, object detection
classification and tracking [RF06]. The video camera is used for lane detection. A time
stamp based data fusion combines both localization outputs in order to gain a precise
position and orientation of the vehicle within the intersection. Fig. 1 shows the test
vehicle with the mounting positions of each sensor.



Fig. 1. Sensor integration in the test vehicle

2 Intersection Modeling

Intersections can include different lanes for different tasks (e.g. turning lanes), bound-
aries (e.g. curbstones, refuges, lane-markings) and last but not least complex right of
way regulations (e.g. traffic-signs, traffic lights). Therefore, intersections are very com-
plex since all traffic participants can move in nearly arbitrary directions and with dif-
ferent aims. This is the reason why intersections were neglected in the past and many
situation analysis tasks for driver assistance applications were built upon freeway sce-
narios. In this work, this complex structure of intersections is reduced to a model that
allows the formulation of many assistance functions for intersection scenarios with only
few restrictions. The modeling developed in this work is a modification of the GDF (Ge-
ographic Data Files) description [fS02] and is named Lane Model Description (LMD).
The idea is to introduce a lane as the most basic feature of its description. A road el-
ement of GDF turns into a lane in LMD and a junction into a lane link respectively.
The road of GDF is interpreted as a road element in LMD. Fig. 2(a) shows the LMD in
a GDF like format in order to express the different approach. For an advanced driver
assistance system like the one developed in this work, it is crucial to have exact informa-
tion on the driving lanes of a road. The developed ISS uses lane information amongst
others in order to recognize possible conflicts and to identify the road users aims. In
addition to real lanes with markings at each side, lanes of the LMD can also express
virtual lanes that describe the possible paths a vehicle can take within the intersection.
They provide an abstraction of the complex structure of an intersection by reducing it
to the minimum required information. We will see later that this is highly suitable for
high level assistance functions at intersections.

3 Behavior Modeling

The driving behavior in this work is represented in terms of a few geometric entities
which facilitates the calculation of possible trajectories and therefore the determination
of possible conflicts within an intersection. This drastically reduces the computational
complexity of the whole system and makes it suitable for online analysis tasks. The
entities for the behavior modeling are the driving lanes (real and virtual lanes) of the in-
tersection. The idea is that each traffic participant only drives in predefined areas within
the intersection, i.e. the lanes. This form of modeling can be interpreted as the definition



of one common trajectory with a tolerance area on both sides which corresponds to the
width of a lane. Accident analysis [ROS+05] shows that accidents resulting from wrong
lane changes are of no relevance in intersection accidents. Thus, the proposed behavior
modeling is suitable for the proposed ISS.

In order to represent the behavior of all traffic participants, a common structure is
needed. For this representation the LMD (see Section 2) is transferred into a probabilis-
tic graph model for each object.

A directed graph is a tuple G = (V,E) where V (G) is the set of vertices and
E(G) ⊆ V (G)×V (G) the set of edges in the graph G, respectively. The graph G is
called undirected if E(G) = E(G)−1 with E(G)−1 = {(u,v)|(v,u) ∈ E(G)}.

The k-th path pa(vs,ve) of a directed graph G from vertex vs to vertex ve is a tuple
(v1, . . . ,vnk) where v1 = vs,vnk = ve and (vi,vi+1) ∈ E(G)∀i ∈ (1, . . . ,nk−1).

The so-called Microscopic Behavior (MiB) of a driver forms a probabilistic behav-
ior network which is a directed graph with lanes as vertices and transition probabilities
at the edges. Those transition probabilities from vertex v1 to vertex v2 are denoted by
prob(v1,v2). The MiB is build out of the LMD starting at the initial position of the
appropriate traffic participant. The possible next lanes from the driving lane at initial-
ization time are traversed and inserted into the graph. The possible next lanes are the
lanes connected to the same link as the considered lane and the neighboring lanes at
the left and right side of the considered lane. The transition probabilities describe the
likelihood of a traffic participant moving from one lane to another. Normally, the like-
lihoods at the edges of the MiB are uniformly distributed over the number of outgoing
edges for each vertex but they can also express terms like the most probable path at an
intersection by assigning different probabilities to the outgoing edges. Nevertheless, the
probabilities at the outgoing edges of one node must add up to 1.
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Fig. 2. LMD and Microscopic Behavior

Fig. 2 shows a sample intersection and the corresponding MiB for one approaching
direction. In Fig. 2(b) the lanes which are used in the MiB of Fig. 2(c) are shaded and



numbered in order to state the relationship. Nevertheless, the shown MiB has additional
nodes whose lanes are not shown in the intersection figure. A new lane, i.e. a new
node, is used if there are changes in the attributes of the corresponding lane. The shown
MiB also uses the mentioned deflection from the uniformly distributed probabilities at
the edges, i.e. here it is more likely for a traffic participant to be going straight ahead
than to be turning left. The initial global probabilities for a maneuver at an intersection
(e.g. straight, left, right) can be computed from the MiB by summing the multiplied
probabilities of all possible paths that lead to the destination starting from a specific
vertex. Therefore the following has to be calculated: p(vs

∗→ ve) = ∑
n
k=0 p(vs

k→ ve),

where n is the number of possible paths from vs to ve and p(vs
k→ ve) is the probability

for reaching ve beginning at vs in the k-th path pak(v1 = vs,vnk = ve) which is computed

by p(vs
k→ ve) = ∏i=1,...,nk−1 prob(vi,vi+1).

In this example, the initial global probability for a left turn is the limit of a geomet-
ric series p(vs = 2 ∗→ ve = 7) = limn→∞ ∑

n
k=0(0.3 ·0.8) · (0.3 ·0.2)k ≈ 0.255. Initially,

the probabilities at the edges are uniformly distributed or assigned due to statistical
background knowledge on the driving behavior at the intersection. Nevertheless, they
can be modified by the application if the distribution changes due to some reason. Each
MiB covers a specific maximum distance which can be seen as the range of vision for
the appropriate traffic participant. Within this distance the behavior of the vehicle is
described. It is mainly driven by the field of view of the sensors. The wider the field of
view, the more extensive the maneuver decision as well as the behavior prediction can
become.

4 Behavior Prediction

The prediction of human behavior is a very complex task, especially at intersections. In
general, the behavior prediction can be classified into high-level and low-level behavior
prediction. The high-level prediction considers global maneuver decisions like e.g. the
intention to turn left or to stop at the intersection (e.g. due to a red traffic light). In the
low-level prediction, trajectories or speed profiles are considered which describe the
maneuvers from the high-level prediction. If thinking of a “simple” left turn maneu-
ver at the low-level, the number of trajectories that can be used is very high (different
trajectories and even different speed profiles). The accuracy of the prediction module
developed in this work lies between this high-level and low-level prediction. It can be
seen as the determination of the probability P(v1

∗→ v2) of two arbitrary vertices of the
MiB in each time step. Since the behavior prediction is based on the behavior network
description which is defined on real and virtual lanes, the current lane information of
a vehicle is of very high importance. The developed model is capable of solving two
problems in parallel: 1) Computation of P(xt) for all lanes of the model (lane assign-
ment for the current time step) and 2) Computation of P(xt+δ ) for all lanes of the model
(maneuver prediction for a vehicle).

For the realization of the behavior prediction, the theory of Dynamic Bayesian Net-
works (DBN) was used. Generally, the used network can be interpreted as an estimator
for the lane a vehicle is driving on. Due to the description of the vehicle’s behavior
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Fig. 3. 2 TBN Dynamic Bayesian Network for Behavior Prediction

solely by lanes, the intention of a driver can be inferred from the model. Fig. 3 shows
the DBN that is used for current lane estimation as well as the behavior prediction.
The observed states, i.e. the evidences in each slice, are the position of the vehicle, the
indicator state (especially important for the approaching phase to an intersection and
intersections with no separate turning lanes), the velocity and the status of the traffic
light. The hidden state is the current lane. Through a filtering process the actual lane
can be estimated for the current time t.

If the behavior of all traffic participants is analyzed, it has to be evaluated if the
predicted plans are at odds with each other. In a first step, the possible conflicts that
arise because of the construction of the intersection have to be identified and expressed
by a so-called Conflict Graph (CG). In a second step, the conflicts that could arise
because of the current combination of the objects and their predicted plans have to be
analyzed. At the end a comprehensive view on the scene emerges.

The CG is a graph that results from an interconnection of the different MiBs of each
traffic participant currently in the scene. An interconnection between two vertices of
two MiBs exists if there is a potential conflict with the lanes belonging to these vertices.
A potential conflict exists if two lanes have an overlapping area called conflict zone.
The conflict zone can be reduced to the Conflict Point (CP) which is the intersection of
the middle line of both lanes. The edges that represent a conflict are undirected edges in
order to differentiate them from the transition edges of the initial MiBs. The initial CG



does not take the traffic control at the intersection into account, i.e. it cannot be seen
which lane of the connection is preferred in terms of right-of-way regulations.

If the computed CG is reduced to the conflicts where the host vehicle has to give
right-of-way to other vehicles, the Right-of-Way Graph (RoWG) is obtained. Therefore,
the RoWG is only valid for the host vehicle. While the CG is a static graph, the RoWG
is a dynamic graph that can change continuously during system operation. Every time
a new vehicle is detected at the intersection or the categories of the lanes change (e.g.
due to a traffic light), the RoWG has to be updated.

5 Adaptive Risk Assessment

Calculating the risk for a driver is a complex task as well. The situation analysis pro-
vides all possible conflicts and the assigned probabilities of the driving behavior of the
vehicles. With an analytical approach it would be very hard to try to compute the oc-
currence of the conflicts, to cope with the fact of imperfect sensor data and to include
aspects like the subjective assessment of the current risk for a specific driver. Here, a
fuzzy rule-base is built to reproduce “human thinking” for risk assessment so that an ad-
equate strategy can be formulated. Input variables are speed, acceleration and distance
to the conflict. In addition, inputs such as the type of the opponent could also be used as
a severity index for a possible crash [SUBW04]. Visibility can also easily be modeled
in such a fuzzy rule-base system since this also effects risk assessment. E.g., the risk
for an available time-gap in an intersection could be assessed higher for poor visibility
than in very good weather conditions. The risk assessment takes the probabilities of the
behavior prediction as weighting factors and computes a risk level for each possible
conflict in the time and space domain. The results of the risk assessment module are
different risk levels for all possible conflicts in the scene.

A fuzzy-logic [Zad65] approach was used in this work to judge the risk of a possible
conflict for the intersection scenarios. Such a fuzzy-logic approach allows the formu-
lation of the rules for risk assessment in a very natural and easy way. No widespread
expert knowledge is needed in order to define the rules so that the resulting system can
work properly. The concept of the inference system is based on B-spline membership
functions and is similar to that presented in [ZK99]. Each input is uniformly covered
by five membership functions. This is due to a natural human partitioning of a specific
linguistic variable. The linguistic variable speed would therefore be represented by the
linguistic terms very slow, slow, medium, high and very high. The risk computation is
shown in Equation (1).

risk =
∑

m1
i1=1 · · ·∑

mn
in=1(Yi1,...,in ∏

n
j=1 X j

i j ,k j
(x j))

∑
m1
i1=1 · · ·∑

mn
in=1 ∏

n
j=1 X j

i j ,k j
(x j)

=
m1

∑
i1=1
· · ·

mn

∑
in=1

(Yi1,...,in

n

∏
j=1

X j
i j ,k j

(x j)) (1)

where x j is the j-th input, k j the order of the B-Spline basis function for x j, X j
i j ,k j

the i-th B-Spline membership function of x j, i j = 1, . . . ,m j the number of member-
ship functions for the linguistic variable for x j and Yi1i2...in the fuzzy singleton for
Rule(i1, i2, . . . , in).



This above risk assessment computation is performed for every conflict c which
possibly can occur in the current situation. Since due to the number of the road users
currently at the intersection and their predicted driving behavior which will be less than
100% most of the time, a lot of possible conflicts can occur. Therefore an additional
weighting factor has to be added to the risk computation which influences the overall
risk for a specific conflict. Assuming C = (c1, . . . ,cN) are the current conflicts for a
specific situation, the most critical conflict is computed by:

θ = argmaxcl∈C

[
ωcl ∑

m1
i1=1 · · ·∑

mn
in=1(Yi1,...,in ∏

n
j=1 X j

i j ,k j
(x j,cl ))

]
,

where x j,cl is the j-th input and ωcl the weight for conflict cl . Several procedures for
the computation of the weight ωcl can be used. All are based on the probabilities calcu-
lated for the current conflict. The easiest way is to weight the risk computation simply
by the probability for the conflict: ωcl = p(cl). This has the effect that the risk changes
if the probability for the conflict changes. If the risk should not change proportionally
to the probabilities of the conflicts, the following weighting factor can be used:

ωcl = 1 if p(cl) > 1
N ,ωcl = 0 otherwise, where N is the number of calculated possi-

ble conflicts.
The fuzzy-system approach introduced above can be extended with the ability for

optimizing and generating rules by a machine learning approach. The practical suitabil-
ity of this method was among others shown by the authors of this paper in the field
of robotic grasp learning [ZR03]. The goal is to minimize the following squared error
function: E = 1

2 (riskr − riskd)2, where riskr and riskd are the current calculated risk
and the desired outcome, respectively. The momentous risk level riskr is thereby calcu-
lated by Equation (1). In order to minimize the error function, the parameters Yi1,...,in of
Equation (1) have to be adapted. For this purpose the gradient descent method is used:
∆Yi1,...,in = ε

δE
δYi1 ,...,in

= ε(riskr− riskd)∏
n
j=1 X j

i j ,k j
(x j).

The automatic adaption of the proposed risk assessment by machine learning tech-
niques offers additional enhancement. It is either done online in the vehicle or offline
in a developed simulation. In both cases the adaption is used in order to adjust the
parameters of the membership functions for the fuzzy rule base.

In the offline risk adaption, the parameters for the fuzzy rule base are generated
automatically from scratch without designing the membership functions with expert
knowledge. The idea is to simulate a lot of different situations which do or do not
result in accidents. From the conflict situation (e.g. accident, near accident, no accident)
corresponding feedback can be calculated and thus the parameters can be adopted. The
measure for evaluating the risk is called Conflict Time Gap (CTG). For the definition
of this measure the Time-to-Collision-Point (TTCP) is used as differentiation to the
well-known term Time-to-Collision (TTC) (e.g. see [vdHH93]). For the TTC the time
trajectories of two vehicles (Th(x,y),To(x,y)) are intersecting exactly in one point P =
(xc,yc, tc) in the time-space domain. Thus, the TTC is the same for both vehicles. This
results in: TTC = Th(xc,yc) = To(xc,yc) The TTCP is defined as the time to a conflict
point (within an intersection) where a collision would occur if the last equation would
be true. For the TTCP both trajectories are not necessarily intersecting in the time-
space domain but at least in the space domain, i.e. at P = (xc,yc). This means that
the TTCP is simply the time value of the time-space trajectory of the host vehicle
h at a defined conflict point: TTCPh = Th(xc,yc). The TTCP for the host vehicle h



becomes the TTC if another vehicle o exists where TTCPo = TTCPh. Considering
these two vehicles, the CTG is defined as follows: CTG = abs(TTCPh−TTCPo). The
CTG defines the time for a vehicle V1 to reach a predefined point P after another vehicle
V2 has already crossed it. It is used to compute the risk of the situation and its conflict
point: riskd = max(0.,riskmax− CT G·riskmax

CT Gmax
), where riskmax is the maximum number of

the risk level and CT Gmax the maximum CTG up to which a risk should be assigned.
The online risk adaption is performed in order to adjust the warning system to a

specific driving behavior or driver’s skill. Here, an initial parameter set is already given
and the system is performing well in most situations. Just for some specific situations,
where a driver reacts noticeably against the warning or recommendations of the assis-
tance system, the risk assessment is adapted to the driver. Therefore, it is necessary to
compare the computed risk of the system with the risk felt by the driver. So riskd be-
comes the felt risk of the current driver. The strategy introduced is as follows: if a driver
always disregards the suggestion/warning of the assistance system in the car because
from his point of view it is not suitable for his driving behavior, the automatic risk as-
sessment adaption can adjust to his skills. This strategy can be explained by rules like
“if the computed risk is high, but the driver passes the conflict point without stopping
anyhow, then the risk is changed to a lower risk”. Vice versa, “if the computed risk is
low, but the driver stops in front of the conflict point anyhow, then the risk is changed
to a high risk”.

6 Results

The described behavior prediction and risk assessment algorithms were successfully
implemented in the real demonstrator vehicle. A big challenge for humans while driv-
ing a car is to assess parameters like speed and distance of other approaching vehicles.
Therefore, the developed HMI approach uses a warning interface that visualizes the
computed risk level in a continuous manner for the time of a possible dangerous situ-
ation to the driver (see Fig. 4) In this way, the driver has a direct visual link to those
parameters which are difficult to estimate.

Fig. 4. The used HMI for Risk Level Visualization in the Demonstrator Vehicle



6.1 System and User Test Results

System as well as user tests were carried out on a test intersection [FHO+07]. The
system test evaluations were carried out based on the number and the rate of correct
alarms, false alarms and missing alarms. The results of the test indicated that the sys-
tem had a correct alarm rate of 93% in left turn scenarios and 100% in lateral traffic
scenarios. For the user tests sixteen untrained subjects had been selected by taking their
age, gender and driver experience into account. Each subject took around 2.5 hours to
drive the demonstrator vehicles on the test intersection and assessed the performance of
the systems. The subjects rated the ISS helpful and relieving. Further analysis showed
that the subjects thought the ISS for left turn was more useful than for lateral traffic.
They judged that such a system could have helped them in their daily driving and it was
agreed that it would improve traffic safety.

7 Conclusion

Intersection Safety is a very hot research topic. Nearly every automobile manufacturer
and also the suppliers have recognized that future advanced driver assistance systems
have to deal to some extent with the topic of ISS. This is mainly due to the fact that inter-
sections are a black spot in terms of road accidents. This work has shown a promising
approach for all of the tasks that need to be solved in order to build a comprehen-
sive ISS. A new approach was shown how to deal with the challenging topic of sce-
nario interpretation and risk assessment in intersection safety systems. This approach
was successfully implemented on a demonstrator vehicle and extensively tested in the
European-funded project PReVENT-INTERSAFE.
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