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The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP) are physiological gut peptides with insulin-releasing and extrapancreatic glucor-
egulatory actions. Incretin analogues/mimetics activate GLP-1 or GIP receptors whilst avoiding
physiological inactivation by dipeptidyl peptidase 4 (DPP-4), and they represent one of the newest
classes of antidiabetic drug. The first clinically approved GLP-1 mimetic for the treatment of type-
2 diabetes is exenatide (Byetta/exendin) which is administered subcutaneously twice daily. Clinical
trials of liraglutide, a GLP-1 analogue suitable for once-daily administration, are ongoing. A number
of other incretin molecules are at earlier stages of development. This review discusses the various
attributes of GLP-1 and GIP for diabetes treatment and summarises current clinical data. Addi-
tionally, it explores the therapeutic possibilities offered by preclinical agents, such as non-peptide
GLP-1 mimetics, GLP-1/glucagon hybrid peptides, and specific GIP receptor antagonists.
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INCRETINS AND THE ENTEROINSULAR AXIS

The enteroinsular axis was first described in the 1960s following experiments demon-
strating that a greater insulin secretory response could be elicited by oral as opposed
to intravenous administration of glucose.1,2 The enteroinsular axis comprises nutrient,
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neural and incretin hormone signals that activate pancreatic b cells.3 Incretin hormones
are peptides which are released in response to nutrients and which stimulate insulin
secretion at physiological concentrations.4 The main incretin hormones, glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are
released from intestinal endocrine L and K cells, respectively. GLP-1 is produced
by post-translational processing of preproglucagon gene products, and the predom-
inant form in human plasma is GLP-1(7–36)amide.5 GIP is secreted as a 42-amino-
acid peptide and shares approximately 68% sequence similarity with GLP-1.6 The
physiological responses to GLP-1 and GIP secreted in response to feeding are eli-
cited by the binding and activation of separate transmembrane G-protein-coupled
receptors that have no cross-reactivity.6 Receptors for GLP-1 and GIP are found
in many organs, including pancreas, stomach, skeletal muscle, heart, lung and brain.
Comprehensive up-to-date details on the biology of both incretin hormones can be
found elsewhere.7

Diabetes is rapidly becoming a global health epidemic, with recent projections in-
dicating that over 366 million people will be affected by 2030.8 Type-2 diabetes con-
stitutes more than 90% of these cases, and is characterized by b-cell decline, insulin
resistance, and increased hepatic glucose production. This form of diabetes is also as-
sociated with a defect in the endogenous incretin system.9 Thus, the contribution of
incretin factors to the total insulin response to enteral stimulation is decreased in di-
abetic patients compared with control subjects.9 This reflects a modest but significant
decrease in meal-stimulated GLP-110 and disturbed GIP amplification of the late phase
of glucose-regulated insulin release.11,12

ANTIDIABETIC EFFECTS OF THE INCRETIN HORMONES

As summarised in Table 1, GLP-1 and GIP possess a number of antidiabetic actions.7

An array of effects across a range of physiological systems enhances blood glucose

Table 1. Comparison of the antidiabetic actions of the incretin hormones.

Physiological effect Incretin hormone

GLP-1 GIP

Lower blood glucose Yes Yes

Glucose-dependent stimulation of insulin secretion Yes Yes

Enhance b-cell glucose responsiveness Yes Yes

Increase b-cell gene expression and differentiation Yes Yes

Suppress glucagon secretion Yes No

Stimulate somatostatin secretion Yes No

Stimulate b-cell expansion Yes Yes

Enhance b-cell survival Yes Yes

Extrapancreatic glucose-lowering actions Yes Yes

Suppress gastric acid secretion No Yes

Inhibition of gastric emptying Yes No

Inhibition of hepatic insulin extraction Yes Yes

Enhance satiety Yes No

Reduce body weight Yes No

GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic polypeptide.
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control, but also provides exploitable opportunities to potentially preserve b-cell func-
tion and slow the progression of type-2 diabetes.

Of key importance are the potent insulinotropic activities of GLP-1 and GIP which
are triggered only when blood glucose levels become elevated. This glucose-
dependent mode of action is not offered by other insulin-releasing drugs, such as
the sulphonylureas or meglitinides, and therefore provides a key advantage in minimis-
ing episodes of hypoglycaemia.13,14 Similarly, the incretin hormones promote insulin
biosynthesis and improve b-cell responsiveness to glucose by enhancement of func-
tional gene expression. GLP-1 also inhibits secretion of glucagon from pancreatic
a cells15, possibly mediated through increased somatostatin secretion.

Besides these actions on the endocrine pancreas, blood glucose control is further
enabled by several extrapancreatic actions of the incretin hormones. There is evidence
that GLP-1 and GIP have ‘insulin-like effects’ in peripheral tissues, enhancing glucose
uptake in liver, adipose and muscle tissues.16–20 Also, in human subjects, GLP-1
reduces hepatic glucose production, and both hormones may reduce hepatic insulin
extraction.21–23 GIP inhibits gastric acid secretion24 and, more importantly, GLP-1
inhibits gastric emptying25,26, thereby slowing the digestion and absorption of carbo-
hydrates. This effect on gastric emptying is considered to be a key instrument in
the antidiabetic action of GLP-1.27

There is compelling evidence that the clinical use of GLP-1 analogues/mimetics pro-
motes significant weight loss.28–32 Mechanisms through which GLP-1 induces weight
loss include the stimulation of feelings of satiety, inhibition of gastric emptying, and
possibly increased energy expenditure.25,26,33,34 Given the strong correlation between
type-2 diabetes and obesity, and the fact that weight loss improves insulin sensitivity
and delays progression of diabetes, this attribute offers a significant advantage over
many other antidiabetic drugs, such as sulphonylureas or thiazolidenediones, which
tend to promote weight gain.

Several studies indicate that GLP-1 and GIP have protective and proliferative effects
on the pancreatic b cell.35–41 Recent studies show that GLP-1 counteracts endoplas-
mic reticulum stress in the b cell42 and prevents cytokine-induced cell death by inhib-
iting JAK1-STAT1.43 Furthermore, a stable GIP analogue enhances functional
differentiation of mouse embryonic stem cells into cells expressing islet-specific genes
and hormones.44 Although clinical studies to confirm such effects are not yet available,
there are indications that native GLP-1 improves b- and a-cell function following intra-
hepatic islet transplantation in type-1 diabetic patients.45

DIPEPTIDYL PEPTIDASE 4 (DPP-4)

Dipeptidyl peptidase 4 (DPP-4) is a complex and widely expressed enzyme which can
be found either membrane-anchored or solubilized in blood. The multifaceted roles of
DPP-4, such as activation of T lymphocytes and cleavage of numerous physiological
peptides, are detailed elsewhere.46,47 The relevance of DPP-4 to the incretin hor-
mones is that it is the primary physiological inactivator of GLP-1 and GIP, giving
half-lives of 2 min and 5–7 min, respectively.48 As illustrated in Figure 1, such inactiva-
tion occurs by the specific cleavage of N-terminal dipeptides from the incretins.
Truncation of GLP-1(7–36)amide to GLP-1(9–36)amide reduces receptor affinity
1000-fold and completely eliminates insulin-releasing activity.49–51 Similar truncation
of GIP(1–42) to GIP(3–42) also eliminates insulinotropic activity but reduces receptor
affinity only four-fold.52 The physiological inactivation of GLP-1 and GIP by DPP-4 has
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been a major obstacle to their clinical implementation and is being overcome by two
new pharmacological strategies. The first, which is the main focus of this review, is the
development of incretin analogues/mimetics that are resistant to DPP-4. The second,
which is dealt with in detail elsewhere in this issue (Chapter 3 by Ahren), is the
development of selective inhibitors of DPP-4 which exploit the natural antidiabetic
effects of endogenously secreted GLP-1 and GIP.47,53,54

PRECLINICAL DEVELOPMENT OF INCRETIN ANALOGUES

N-terminal modification of GLP-1 and GIP to confer resistance to DPP-4

Certain modifications/substitutions of amino acids at the N-terminus of GLP-1 or GIP
generate DPP-4-resistant analogues (Table 2). Published information regarding the in
vitro and in vivo characteristics of these N-terminally-modified GLP-1 and GIP ana-
logues is detailed in a recent review.55 Most modifications convey DPP-4 resistance,
but receptor activation and biological activity can vary significantly. For GLP-1, Ala8

substitutions appear to be superior to changes at His7, whereas Tyr1 modifications
provide more potent GIP agonists than substitutions at Ala2. In the case of GIP, su-
per-agonists can be generated, as exemplified by N-acetyl GIP.56 In contrast, amino
acid substitutions in either incretin adjacent to the DPP-4 cleavage site at Glu9 of
GLP-1 or Glu3 of GIP provide weak agonists or even receptor antagonists.51,57,58

Two examples of DPP-4-resistant incretin analogues with significant antidiabetic ac-
tivity in preclinical studies are (Val8)GLP-1 and N-acetyl GIP. The in vivo effects of
(Val8)GLP-1 are both greater and longer lasting than those of native GLP-1.37 Once-
daily administration of (Val8)GLP-1 for 3 weeks in ob/ob mice reduced plasma glucose,
increased insulin and decreased body weight substantially more than native GLP-1.37

Treatment with (Val8)GLP-1 also improved glucose tolerance, reduced the glycaemic
excursion after feeding, increased insulin secretory responsiveness, and improved in-
sulin sensitivity. Morphological studies also indicated that (Val8)GLP-1 increased islet

Incretin hormone

Figure 1. Incretin hormone modification strategies. The incretin hormones glucagon-like peptide 1 (GLP-1)

and glucose-dependent insulinotropic polypeptide (GIP) can be modified either N-terminally to prevent

DPP-4 degradation, or C-terminally to circumvent renal filtration.
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area without changing the number of islets.37 Broadly similar effects, with the excep-
tion of body weight changes, were noted in ob/ob mice receiving once-daily injections
of N-acetyl GIP56,59 This observation also indicates that stable GIP agonists do not suf-
fer from possible desensitization of the GIP receptor as observed in several preclinical
animal models.

Although N-terminal modifications can prevent DPP-4 degradation and extend the
half-life of incretin peptides, gradual elimination by the kidneys means that biological
activity is unlikely to exceed 4 h. As such, these analogues have limited utility for
once-daily administration. This is especially true for GLP-1, which is particularly sus-
ceptible to DPP-4-mediated degradation, and where renal extraction can be up to
70%. Importantly, the potent GLP-1-receptor agonist, exendin-4 (isolated from saliva
of the lizard Heloderma suspectum) does not suffer this fate and exerts in-vivo biolog-
ical effects for up to 7 hours. As a consequence, this GLP-1 mimetic has progressed
most rapidly through to clinical application.60

Strategies to circumvent renal filtration

A number of approaches has been used to circumvent the rapid renal filtration of in-
cretin hormones (Table 2). The strategies developed either facilitate binding of the in-
cretin hormone to circulating plasma proteins, or involve direct chemical fusion of the
incretin hormone to a plasma protein (e.g. albumin or transferrin) prior to administra-
tion. Adherence of GLP-1 or GIP to these macromolecules thereby prevents simple
filtration in the nephrons of the kidney. This approach has been exploited extensively
with a significant number of the GLP-1 peptides, many of which have progressed to
various stages of pharmaceutical drug testing (Table 3).

Table 2. Analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypep-

tide (GIP) bearing N-terminal modification for potential dipeptidylpeptidase 4 (DPP-4) resistance and

C-terminal manipulation to counter renal filtration.55,57–59,63–68,104,105

GLP-1 analogues

Modifications at His7GLP-1 Desamino-GLP-1, (D-His7)GLP-1, N-glucitol-GLP-1, N-Imi-GLP-1,

N-alpha-Me-GLP-1, N-Me-GLP-1, N-acetyl-GLP-1, N-pryoglutamyl-GLP-1

Substitutions at Ala8GLP-1 (D-Ala8)GLP-1, (Gly8)GLP-1, (Ser8)GLP-1, (Aha8)GLP-1, (Thr8)GLP-1,

(Aib8)GLP-1, (Abu8)GLP-1, (Val8)GLP-1

Substitutions at Glu9GLP-1 (Asp9)GLP-1, (Ala9)GLP-1, (Pro9)GLP-1, (Phe9)GLP-1, (Lys9)GLP-1,

(Tyr9)GLP-1

C-terminal modifications Fatty acid acylation, PEGylation, chemical linker (sometimes with enabling

Lys substitutions) to promote binding to plasma proteins

Direct fusion with albumin or transferrin.

GIP analogues

Modifications at Tyr1GIP N-acetyl-GIP, N-pyroglutamyl-GIP, N-glucitol-GIP, N-palmitate-GIP,

N-Fmoc-GIP

Substitutions at Ala2GIP (Gly2)GIP, (Ser2)GIP, (D-Ala2)GIP, (Abu2)GIP, (Sar2)GIP

Substitutions at Glu3GIP (Ala3)GIP, (Hyp3)GIP, (Lys3)GIP, (Phe3)GIP, (Pro3)GIP, (Trp3)GIP, (Tyr3)GIP

C-terminal modifications Fatty acid acylation, PEGylation (sometimes with enabling Lys

substitutions) to promote binding to plasma proteins

PEG, polyethylene glycol.



the development of type-2 diabetes therapeutics.

Status Company

and launched Amylin/Eli Lilly

Amylin/Eli Lilly/Alkermes

NovoNordisk

Conjuchem Inc

Conjuchem Inc

Zealand/Aventis

Roche/Ipsen

l trials Human Genome/Glaxo-SmithKline

l trials Eli Lilly

l trials Biorexis

l trials Bayer Healthcare Pharmaceuticals

l trials Bayer Healthcare Pharmaceuticals

l trials Transition Therapeutics/Novo Nordisk

l trials Amylin/Diabetica

l trials CovX Research LLC
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Table 3. Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) in

Name Structure

Exenatide (Byetta) Exendin-4(1e39) (unmodified) Approved

(see also Figure 2)

Exenatide LAR Long-acting release exendin-4(1e39) Phase III

� polylactide-glycolide microsphere suspension

Liraglutide GLP-1 plus Phase III

� C16 fatty acid chain linked to Lys26

� Lys34 replaced with Arg34 (see also Figure 2)

CJC-1131 GLP-1 plus Phase II

� Gly37 replaced with Lys37

� Lys37 contains a reactive chemical linker

� Ala8 replaced with D-Ala8

CJC-1134-PC Exendin-4(1e39) with chemical linker as for CJC-1131 Phase II

ZP 10A Exendin-4(1e39) plus Phase II

� N-terminally extended with a His

� C-terminally extended with 6 Lys residues

BIM51077 GLP-1 analogue Phase I

No structural information available

Naliglutide (albugon) Recombinant GLP-1-albumin protein Preclinica

LY315902 GLP-1 plus Preclinica

� C8 fatty acid chain linked to Lys34

� Lys26 replaced with Arg26

� His7 replaced with des-His7

GLP-1-Tf GLP-1 fused to the serum protein transferrin (Tf) Preclinica

DAPD (dual-acting peptide

for diabetes)

GLP-1/glucagon hybrid peptide Preclinica

PEG-DAPD

(PEGylated DAPD)

GLP-1/glucagon hybrid peptide containing a

maleimide-polyethylene glycol polymer

Preclinica

GLP-1-I.N.T. GLP-1 analogue Preclinica

No structural information available

N-GIP N-terminally-modified GIP Preclinica

CVX-73 DPP IV resistant GLP-1 analogue fused with a proprietory

monoclonal antibody

Preclinica



Incretin hormone mimetics and analogues 503
Two methods employed to facilitate plasma protein binding involve acylation
(attachment of a fatty acid side-chain) or, less frequently, PEGylation (attachment of
polyethylene glycol chains). Acylation of GLP-1 with a C8 fatty acid (LY315902, Eli Lilly;
Table 3) results in a half-life of 3–6 h in dogs61, and C16 fatty acid (Liraglutide, NovoNor-
disk; Table 3) extends half-life to 8 h in humans.62 Similarly, addition of a C16 fatty acid
moiety to native, N-acetyl or N-pyroglutamyl GIP generates stable GIP agonists with en-
hanced antidiabetic activity in preclinical models.59,63–65 PEGylated forms of GLP-1 and
GIP have also been produced and tested.66–68 The half-life of PEGylated GLP-1 was 40-,
10- and 28-fold longer than that of GLP-1 in plasma, liver and kidney homogenates, re-
spectively.67 Over a 3-hour period PEGylated GLP-1 improved glucose tolerance in di-
abetic db/db mice by up to 63%, compared with only 40% for native GLP-1.67 PEGylation
of GLP-1 at Lys34 (as opposed to Lys26 or the N-terminus) generates an analogue with
the highest biological activity.68 Dual modification of GIP by N-terminal acylation and C-
terminal PEGylation generates a full agonist of comparable potency to native GIP which is
stable to DPP-4 cleavage.66 These molecules have yet to proceed to pharmaceutical de-
velopment, but remarkably the use of a reactive chemical linker to form covalent peptide
bonds with circulating albumin69,70 extends the half-life of GLP-1 to 18 h (CJC-1131,
Conjuchem; Table 3) and exendin-4 to 7 days (CJC-1134, Conjuchem; Table 3). Finally,
two novel GLP-1-plasma protein molecules are in early development (Table 3). Albugon
(naliglutide; Human Genome/GlaxoSmithKline) is a recombinant GLP-1-albumin protein
which is DPP-4-resistant and is expected to have a superior pharmacokinetic profile than
native GLP-1.71 GLP-1 has also been fused to the circulating protein transferrin (GLP-
1-Tf; Biorexis), but relatively little information is currently available on the efficacy of
either of these latter two modified forms of GLP-1. CVX-73 was created by fusing
a DPP IV resistant analogue to a proprietary monoclonal antibody. Preclinical studies
in rodents and primates demonstrate efficacy to improve glucose tolerance and pro-
tracted duration of action with effects persisting up to 5 days post administration.107

Non-peptide incretin mimetics

Incretin analogues/mimetics developed thus far must be delivered subcutaneously be-
cause their peptide nature makes them unsuitable for oral administration. The recent
surge in development of DPP-4 inhibitors is perhaps because these compounds readily
lend themselves to oral administration. However, there have been recent develop-
ments in the search for non-peptide GLP-1 agonists.72,73 A library of 48,160 synthetic
and natural compounds was screened for ability to bind to the GLP-1 receptor and
stimulate production of adenylate cyclase.72 After evaluation of five initial hits,
a small-molecule candidate compound, Boc5 (a substituted cyclobutane), was identi-
fied that stimulated glucose-dependent insulin secretion and lowered food intake in
mice. The effects of Boc5 were countered by co-administration of the established
GLP-1 receptor antagonist, exendin(9–39). Furthermore, injection of Boc5 to db/db
mice over a 6-week period significantly lowered HbA1c values.72 In another report,
a combination of structural and functional screening assays was used to identify two
allosteric modulators selective for the GLP-1 receptor from an initial screen of
500,000 small molecules.73 The most potent molecule identified (compound 2;
a substituted quinoxaline), stimulated glucose-induced insulin release from mouse
islets, but in-vivo glucoregulatory activity of the compound was not reported.

Despite these advances, the considerable effort and luck required to develop small
non-peptide molecules as therapeutically useful incretin mimetics should not be
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underestimated. Key issues for confrontation include synthesis, specificity, toxicity and
pharmacodynamics, as well as acceptable antidiabetic activity and oral bioavailability.
Thus it will probably be a struggle for any small-molecule incretin mimetic to outper-
form emerging incretin peptide biologics in any of these categories other than offering
the potential of oral administration.

Dual-acting peptides

Bayer pharmaceuticals have engineered a GLP-1/glucagon hybrid peptide that acts both
as a GLP-1 agonist and as glucagon antagonist, named ‘dual-acting peptide for diabetes’
(DAPD) (Table 3).74 This approach potentially benefits from blockade of the hypergly-
caemic actions of glucagon, but may possibly increase the risk of unwanted hypoglycae-
mic episodes. Further preclinical development of DAPD has led to the formation of
a PEGylated form (PEG-DAPD) with an improved plasma half-life in vivo.74,75 PEG-
DADP improves glucose tolerance and reduces blood glucose following a glucagon
challenge.75 Furthermore, PEGylation appears to eliminate the inhibitory effect of
DADP on gastrointestinal motility, and it is hoped that this will prevent the more sig-
nificant gastrointestinal side-effects such as nausea and vomiting. However, clinical
studies are required to assess the efficacy of PEG-DADP and to determine how its
performance compares with less promiscuous GLP-1 peptide mimetics.

CLINICAL DEVELOPMENT OF GLP-1 ANALOGUES/MIMETICS

Exendin/exenatide/Byetta

The first incretin-based pharmaceutical to reach the market was Byetta (Amylin/Eli
Lilly), which is otherwise known as exendin-4(1–39), exenatide, or AC-2993 (Table 3).
Byetta is a DPP-4-resistant GLP-1 receptor agonist isolated from the saliva of the Gila
monster (Heloderma suspectum). Exenatide shares approximately 50% structural simi-
larity with GLP-1 (see Figure 2). Extensive preclinical studies and more recent clinical
studies show that exendin-4 replicates all of the known biological actions of GLP-1.7,60

Since receiving approval by the US Food and Drug Administration in 2005, exenatide

Figure 2. Structural representations of clinically relevant glucagon-like peptide 1 (GLP-1) analogues/mi-

metics: liraglutide (NN2211), a GLP-1 analogue, and exenatide (Byetta, exendin), a GLP-1 mimetic. Liraglu-

tide has close structural similarity to GLP-1 but contains a C16 fatty acid chain attached at Lys26. Originally

isolated from the salivary glands of the Gila monster, exendin shares w50% similarity with GLP-1. Exendin is

resistant to degradation by dipeptidyl peptidase 4 (DPP-4) and is a potent agonist of the GLP-1 receptor.

Underlined letters indicate amino acids which differ from native GLP-1.
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has been launched in the USA and Europe. Exenatide requires twice-daily administra-
tion; a longer-acting formulation administered once weekly, known as exenatide LAR
(long-acting release), is currently in phase-III trials (Table 3).

A summary of the medium- and long-term clinical studies for exenatide and exena-
tide LAR in type-2 diabetic patients is found in Table 4. Administration of exenatide
5–10 mg twice daily consistently lowered HbA1c values.29–31,76,77 Furthermore, exena-
tide treatment often led to average weight losses of 1.5–2.8 kg.29–31 Once-weekly
administration (0.8 or 2 mg) of exenatide LAR to type-2 diabetic patients for 15 weeks
lowered HbA1c (1.4–1.7%) and reduced body weight (up to 3.8 kg).32 Although exe-
natide LAR was generally well tolerated, the most commonly observed side-effect was
mild nausea.32

Liraglutide/NN2211

Liraglutide – Arg34,Lys26-(N-e-(g-Glu(N-a-hexadecanoyl)))-GLP-1(7-37) – differs from
exenatide in that it is a true analogue of GLP-1 and not simply a mimetic (Table 3). As
shown in Figure 2, liraglutide is structurally similar to physiological GLP-1 but contains
a C16 fatty acid chain attached to Lys26 which presumably orientates to mask the DPP-
4 cleavage site. This modification alone appears to be sufficient to confer enzyme
resistance, as is also observed with similar modifications to GIP.63

A summary of the medium-term clinical studies for liraglutide in type-2 diabetic pa-
tients is found in Table 5. Once-daily administrations of liraglutide across a range of
doses (0.045–1.9 mg) led to dose-dependent reductions in fasting glucose and
HbA1c.28,78–80 In two studies, treatment with liraglutide for 12 weeks led to significant
reductions in body weight.28,81

Other GLP-1 analogues

As can be seen in Table 3, there are several GLP-1 analogues/mimetics currently in
preclinical/clinical development. Clinical data for other GLP-1 analogues are relatively
scarce at present; however, one GLP-1 analogue developed by Eli Lilly, LY307161, has
shown effective glucose-lowering properties when administered once daily for 21 days
to type-2-diabetic subjects.82 Conjuchem is developing two long-acting incretin com-
pounds with chemical linkers. CJC-1331 and CJC-1134-PC are chemically modified
forms of GLP-1 and exendin-4, respectively, with an ability to covalently bond with
albumin following administration.69,70 Both compounds have shown early promise in
clinical trials (www.conjuchem.com). It is expected that these compounds will have
protracted half-lives similar to those of liaraglutide and exenatide LAR, possibly being
suitable for once-weekly administration. Little additional information is available con-
cerning Albugon (aliglutide), the recombinant albumin–GLP-1 protein.72

CLINICAL POTENTIAL OF GIP

GIP agonists

Since in type-2-diabetic patients the action of GLP-1 on b cells is better preserved than
that of GIP, most pharmaceutical effort in developing stable incretin mimetics has
focused on GLP-1-receptor agonism. This endeavour has been fruitful (Table 3), but
there is good reason to reconsider the clinical potential of GIP.83 First, diminished

http://www.conjuchem.com


xenatide LAR (long-acting release) in type-2 diabetes.

rvention n Study design Effect on glycaemic control

and/or 109 PC Y HbA1c 0.7e1.1%

377 TBPC Y HbA1c 0.46% (5 mg)

Y HbA1c 0.86% (10 mg)

lphonylurea 733 RDBPC Y HbA1c 1.0%

Y BW 1.6 kg

336 RDBPC Y HbA1c 0.78% (5 mg)

Y HbA1c 0.78% (10 mg)

Y BW 2.8 kg (10 mg)

Y BW 1.6 kg (5 mg)

ne 233 RDBPC Y FSG 1.7 mmol/L

Y HbA1c 0.98%

Y BW 1.5 kg

min 45 RPC Y HbA1c 1.4% (0.8 mg)

Y HbA1c 1.7% (2 mg)

Y FPG 2.4 mmol/L (0.8 mg)

Y FPG 2.2 mmol/L (2 mg)

Y BW 3.8 kg

(2-mg dose only)

C, randomized placebo-controlled; TBPC, triple-blind placebo-
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Table 4. Medium- and long-term clinical studies with exenatide (exendin, Byetta) and e

Study Compound Dose Duration (weeks) Other inte

Fineman et al (2003)76 Exenatide 0.08 mg b.i.d

0.08 mg t.i.d

4 Sulphonylurea

metformin þ
Buse et al (2004)77 Exenatide 5e10 mg b.i.d. 30 Sulphonylurea

Kendall et al (2005)31 Exenatide 5e10 mg b.i.d. 30 Metforminþ su

DeFronzo et al (2005)29 Exenatide 5e10 mg b.i.d. 30 Metformin

Zinman et al (2007)30 Exenatide 10 mg b.i.d. 16 Thiazolidinedio

Kim et al (2007)32 Exenatide-LAR 0.8 or 2 mg

once weekly

15 Diet or metfor

Y decrease; PC, placebo-controlled; RDBPC, randomized double-blind placebo-controlled; RP

controlled; FSG, fasting serum glucose; FPG, fasting plasma glucose; BW, body weight.



liraglutide (NN2211) in type-2 diabetes.

S Other intervention n Study design Effect on glycaemic control

M Glimepiride 193 RDBPC Y FPG 1.8 mmol/L

Y HbA1c 0.75%

Y BW 1.2 kg

D Diet only 13 DBPCC [ HOMA-B 30%

Y PPG 20%

H Diet only 33 RDBPC Y FSG 1.9 mmol/L

Y HbA1c 0.33%

F Metformin 210 RDBC Y BW 1.9%

N Metformin þ
Glimepiride

144 RDBC Y FSG 3.9 mmol/L

Y HbA1c 0.8 %

Y BW 1.5 kg

V Diet only RDBPC Y FPG TBC mmol/L

Y PPGTBC mmol/L

Y HbA1c 1.7%

Y asis model assessment: b-cell function; RDBPC, randomized double-blind

p glucose; FPG, fasting plasma glucose; PPG, postprandial plasma glucose;
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Table 5. Medium- and long-term clinical studies with

tudy Compound Dose Duration (weeks)

adsbad et al (2004)28 Liraglutide 0.045e0.75 mg/day 12

egn et al (2004)78 Liraglutide 6 mg/kg/day 1

arder et al (2004)79 Liraglutide 0.6 mg/day 8

einglos et al (2005)81 Liraglutide 0.045e0.75 mg/day 12

uack et al (2006)80 Liraglutide 0.5e2 mg/day 5

ilsboll et al (2007)106 Liraglutide 0.625e1.9 mg/day 14

decrease; DBPCC, double-blind placebo-controlled crossover; HOMA-B, homeost

lacebo-controlled; RDBC, randomized double-blind comparator; FSB, fasting serum

W, body weight.
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insulinotropic action of GIP is observed in studies using continuous infusion11,12 but
not simple bolus injections.84 Second, it is recognized that the defect in GIP is acquired
rather than representing a primary feature of type-2 diabetes.85 Third, the defect is
reversible, and GIP responsiveness can be restored clinically by sulphonylureas or
by simply improving blood glucose control.86–88 The involvement of hyperglycaemia
in impairment of the GIP receptor has also been demonstrated in animals studies.89

Finally, the proven efficacy of DPP-4 inhibitors, which act through potentiation of
both GLP-1 and GIP action54, indicates that these agents might partly or fully restore
GIP responsiveness in humans. Taken together, accumulating evidence supports the
therapeutic utility of GIP arising endogenously from DPP-4 inhibition or exogenously
from injection of stable GIP analogues either alone or in combination with a GLP-1
mimetic. This latter approach is particularly interesting as it has established that the
two incretin hormones potentiate each other’s actions.7

As noted above, substantial basic and preclinical studies have been undertaken
mainly in academic laboratories to identify a number of structurally modified forms
of GIP as potentially attractive drug candidates. These include DPP-4-resistant N-
terminally-modified and acylated fatty acid derivatised analogues of GIP (Table 2).55

Amylin Pharmaceuticals has also recently reported development of a long-acting GIP
analogue, AC163794, with antidiabetic activity.90 Clinical studies are needed to assess
the insulin-releasing and antihyperglycaemic potential of the most promising of these
stable GIP receptor agonists in patients with type-2 diabetes. Since GIP does not
inhibit gastric emptying in man7, side-effects of nausea and vomiting exhibited by
some of the longer-acting GLP-1 analogues may be less problematic.

GIP receptor antagonism

One of the most significant advances in incretin biology over the past few years is the
increasing realisation that GLP-1 and GIP have actions outside of the pancreas and gas-
trointestinal tract. Anabolic effects on bone and possible cardio- and neuroprotective
effects might also benefit patients with diabetes.7 However, most significant is the
presence of functional GIP receptors on adipocytes91 and an appreciation that GIP
secreted strongly in response to fat ingestion plays a major role in the translation
of excessive amounts of dietary fat into adipocyte tissue stores83,92, thereby impairing
insulin action. Established effects of GIP on adipocytes include an increase in lipopro-
tein lipase, stimulation of lipogenesis, enhancement of fatty acid and glucose uptake,
augmentation of insulin-induced fatty acid incorporation, and inhibition of both gluca-
gon- and adrenergic-receptor-mediated lipolysis.

The above actions have opened up an unexpected therapeutic channel for exploit-
ing GIP-receptor antagonism for treatment of obesity and associated insulin resis-
tance.54,83,92 Stated simply, at the level of the adipocyte, GIP promotes energy
storage and reduces insulin action, whereas at the b cell GIP stimulates insulin secre-
tion. Thus in well-established insulin-resistant obesity-related diabetes, the beneficial
effects of GIP-receptor blockade take primacy and considerably outweigh the loss
of the insulin-releasing GIP component of the enteroinsular axis.93 This scenario is
borne out by studies in high-fat-fed mice or ob/ob mice with either genetic knock-
out of GIP receptor94,95 or induced chemical ablation of GIP action using the DPP-
4-resistant and specific GIP receptor antagonist (Pro3)GIP.93,96,97 Most recent studies
involving once-daily administration of (Pro3)GIP to young ob/ob mice indicate that GIP-
receptor blockade is also able to prevent the onset of diabetes.97 A major observation
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in these animal models is that by causing preferential oxidation of fat98, GIP-receptor
blockade is able to clear triglyceride deposits from liver and muscle, thereby respec-
tively restoring mechanisms for suppression of hepatic glucose output and cellular
glucose uptake.96,97

(Pro3)GIP is the most potent N-terminally-modified GIP antagonist developed so far,
effective by once-daily injection.57,58,99 Knowledge of the C-terminal modifications used
successfully to prolong the action of GLP-1 and GIP, such as acylation or PEGylation, will
greatly assist the generation of second-generation longer-acting molecules. Further
studies are clearly warranted to evaluate the potential of GIP-receptor antagonists
and particularly their applicability to human obesity diabetes. However, as highlighted
elsewhere100, proof of concept is provided by emerging evidence indicating that rapid
cure of diabetes in grossly obese subjects undergoing Roux-en-Y bypass surgery may
be mediated by surgical bypass of GIP-secreting K cells in the upper small intestine.
These individuals demonstrate low levels of circulating GIP (with compensatory increase
in GLP-1) and the restoration of normoglycaemia due to substantial improvement of in-
sulin resistance with accompanying b-cell glucose responsiveness.101,102 Importantly,
such effects precede any significant weight loss that will confer an additional metabolic
advantage, as observed in genetic and diet-induced models of obesity diabetes.96,97

CLINICAL CONSIDERATIONS

Safety and tolerability

Currently available clinical data indicate that GLP-1 mimetics/analogues are generally
well tolerated. Mild nausea is the most commonly reported side-effect, which is likely
to be a result of the potent inhibitory effect of GLP-1 on gastric emptying.27 Higher
doses of liraglutide are reported to induce side-effects of nausea, vomiting, dizziness
and headaches. Optimal dosing is necessary to minimise these side-effects.103 Formu-
lations with extended duration of action – e.g. exenatide LAR, administered once
weekly – do not avoid side-effects. Nausea is less likely to occur with GIP analogues
since this incretin hormone does not inhibit gastric emptying.7

Low titres of weak-affinity exendin antibodies were produced in 50% of patients
following treatment103, which is not surprising given that the Gila-monster peptide
has only 50% sequence similarity to GLP-1. Usually this does not compromise the ef-
fectiveness of exenatide, although a few individuals with high-titre antibodies might be
less responsive. Generally much higher doses of exenatide LAR are required com-
pared with exenatide, typically 2 mg compared with 10 mg. It is not clear what the
long-term consequences of this will be, but a 15-week trial reported increased fre-
quencies of nausea, gastroenteritis, hypoglycaemia, and some injection-site bruising
in subjects receiving exendatide LAR.32 In contrast to exenatide, antibody production
has not been detected following prolonged administration of liraglutide, a molecule
with much closer structural similarity to GLP-1.

Overall, no serious adverse effects have been noted in the substantial numbers
of type-2-diabetic patients following long-term administration of exenatide or lira-
glutide.103 A high rate of nausea was encountered in early studies with CJC-
1131, although CJC-1134-PC has been reported to lack major side-effects.69,70

However, the lack of published clinical data on these and other agents, including
DAPD and GIP analogues, makes their safety and tolerability difficult to assess at
present.
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Role in diabetes management

Exenatide is the first clinically approved agent in a class of new multi-action drugs
which act through physiological mechanisms. It already shows great promise for treat-
ment of type-2 diabetes cases which are not well controlled by oral agents. Accumu-
lating experience with exenatide and other emerging agents will reveal whether stable
incretins can also be considered for use as monotherapy and also possibly to delay or
prevent the onset of type-2 diabetes. Positive effects of GLP-1 and GIP on the growth,
survival and function of b cells also suggests a possible, but unproven, role in patients
receiving islet transplantation. The extent of penetration of DPP-4 inhibitors into this
same area will depend on their performance (efficacy and freedom from side-effects)
as well as pharmaceutical marketing.

CONCLUSION

The diversity of useful actions of incretin hormones offers significant advantages over
many existing antidiabetic drugs. These are being exploited through the development
of incretin hormone analogues/mimetics. Strategies to extend the in vivo half-life of
GLP-1 and GIP include: (1) modification/substitution of N-terminal amino acids; (2)
attachment of molecules which facilitate plasma protein binding (e.g. acylation or PE-
Gylation); and (3) direct fusion with plasma protein molecules. Such modifications con-
fer resistance to degradation by DPP-4 and/or circumvent renal filtration. The first
antidiabetic drug of this new class to be launched in the US and Europe was exenatide
(Byetta/exendin), and phase-III clinical trials of an acylated GLP-1 analogue, liraglutide,
appear promising. In extensive studies conducted to date, GLP-1 analogues/mimetics
have produced sustained improvements in glycaemic control, with body weight loss,
good tolerability, and few adverse effects. Currently exenatide is administered as
a twice-daily subcutaneous injection; however, the prospect of a once-daily (liraglutide)
or perhaps once-weekly (exenatide LAR) administration appears to be both feasible
and attainable. A number of other GLP-1 analogues/mimetics are in clinical develop-
ment, and advances in the quest for small-molecule GLP-1 agonists bring the possibility
of oral therapy. Finally, recent research suggests that GIP-receptor antagonists may af-
ford an entirely new drug class for alleviation of insulin resistance through entirely
novel physiological pathways.

Practice points

� incretin hormone analogues/mimetics have proven efficacy and are a useful ad-
junctive therapy to oral agents
� there is good evidence that most patients taking exenatide or liraglutide will

lose weight for as long as they are taking it
� incretin hormone analogues/mimetics act only in the presence of hyperglycae-

mia; episodes of hypoglycaemia can be reduced by lowering the dose of other
oral antihyperglycaemic drugs
� incretin hormone analogues/mimetics are not recommended for use with insu-

lin, since combination therapy carries an increased risk of hypoglycaemia
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