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Weinstein's Functions and theAskey-Gasper IdentityWolfram KoepfDieter Schmersauemail: koepf@zib-berlin.deAbstractIn his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivityresult of special functions which follows from an identity about Jacobi polynomial sumsthat was found by Askey and Gasper in 1973, published in 1976.In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures,also using a special function system which (by Todorov and Wilf) was realized to be thesame as de Branges'.In this article, we show how a variant of the Askey-Gasper identity can be deducedby a straightforward examination of Weinstein's functions which intimately are relatedwith a L�owner chain of the Koebe function, and therefore with univalent functions.1 IntroductionLet S denote the family of analytic and univalent functions f(z) = z + a2z2 + : : : of the unitdisk ID. S is compact with respect to the topology of locally uniform convergence so thatkn := maxf2S jan(f)j exists. In 1916 Bieberbach [3] proved that k2 = 2, with equality if and onlyif f is a rotation of the Koebe functionK(z) := z(1� z)2 = 14  �1 + z1� z�2 � 1! = 1Xn=1nzn ; (1)and in a footnote he mentioned \Vielleicht ist �uberhaupt kn = n.". This statement is knownas the Bieberbach conjecture.In 1923 L�owner [13] proved the Bieberbach conjecture for n = 3. His method was to embeda univalent function f(z) into a L�owner chain, i.e. a family ff(z; t) j t � 0g of univalentfunctions of the formf(z; t) = etz + 1Xn=2 an(t)zn; (z 2 ID; t � 0; an(t) 2 C (n � 2))which start with f f(z; 0) = f(z) ;1



and for which the relationRe p(z; t) = Re  _f(z; t)zf 0(z; t)! > 0 (z 2 ID) (2)is satis�ed. Here 0 and _ denote the partial derivatives with respect to z and t, respectively.Equation (2) is referred to as the L�owner di�erential equation, and geometrically it statesthat the image domains of ft expand as t increases.The history of the Bieberbach conjecture showed that it was easier to obtain results aboutthe logarithmic coe�cients of a univalent function f , i.e. the coe�cients dn of the expansion'(z) = ln f(z)z =: 1Xn=1 dnznrather than for the coe�cients an of f itself. So Lebedev and Milin [12] in the mid sixtiesdeveloped methods to exponentiate such information. They proved that if for f 2 S the Milinconjecture nXk=1(n+ 1� k)�kjdkj2 � 4k� � 0on its logarithmic coe�cients is satis�ed for some n 2 IN, then the Bieberbach conjecture forthe index n+ 1 follows.In 1984 de Branges [4] veri�ed the Milin, and therefore the Bieberbach conjecture, and in1991, Weinstein [18] gave a di�erent proof. A reference other than [4] concerning de Branges'proof is [5], and a German language summary of the history of the Bieberbach conjecture andits proofs was given in [10].Both proofs use the positivity of special function systems, and independently Todorov [16]and Wilf [19] showed that both de Branges' and Weinstein's functions essentially are the same(see also [11]), _�nk (t) = �k�nk(t) ; (3)�nk (t) denoting the de Branges functions and �nk(t) denoting the Weinstein functions, respec-tively.Whereas de Branges applied an identity of Askey and Gasper [2] to his function system,Weinstein applied an addition theorem for Legendre polynomials to his function system todeduce the positivity result needed.The identity of Askey and Gasper used by de Branges was stated in ([2], (1.16)) in the formnXj=0P (�;0)j (x) = [n=2]Xj=0 (1=2)j ��+22 �n�j ��+32 �n�2j (n� 2j)!j! ��+32 �n�j ��+12 �n�2j (� + 1)n�2j 0@C(�+1)=2n�2j 0@s1 + x2 1A1A2 ; (4)where C�n(x) denote the Gegenbauer polynomials, P (�;�)j (x) denote the Jacobi polynomials(see e.g. [1], x 22), and (a)j := a(a + 1) � � � (a+ j � 1) = �(a+ j)�(a)2



denotes the shifted factorial (or Pochhammer symbol).In this article, we show how a variant of the Askey-Gasper identity can be deduced by astraightforward examination of Weinstein's functions which intimately are related with thebounded L�owner chain of the Koebe function.The application of an addition theorem for the Gegenbauer polynomials quite naturally arisesin this context. We present a simple proof of this result so that this article is self-contained.2 The L�owner Chain of the Koebe Function and theWeinstein FunctionsWe consider the L�owner chainw(z; t) := K�1�e�tK(z)� (z 2 ID; t � 0) (5)of bounded univalent functions in the unit disk ID which is de�ned in terms of the Koebefunction (1). Since K maps the unit disk onto the entire plane slit along the negative x-axisin the interval (�1; 1=4], the image w(ID; t) is the unit disk with a radial slit on the negativex-axis increasing with t.Weinstein [18] used the L�owner chain (5), and showed the validity of Milin's conjecture if forall n � 2 the Weinstein functions �nk : IR+ ! IR (k = 0; : : : ; n) de�ned byetw(z; t)k+11� w2(z; t) =: 1Xn=k�nk(t)zn+1 = Wk(z; t) ; (6)satisfy the relations �nk(t) � 0 (t 2 IR+; 0 � k � n) : (7)Weinstein did not identify the functions �nk(t), but was able to prove (7) without an explicitrepresentation.In this section we apply Weinstein's following interesting observation to show that �nk(t) arethe Fourier coe�cients of a function that is connected with the Gegenbauer and Chebyshevpolynomials.The range of the function w = K�1(e�tK) is the unit disk with a slit on the negative realaxis. Since for all 
 2 IR; 
 6= 0 (mod �) the mappingh
(z) := z1� 2 cos 
 � z + z2maps the unit disk onto the unit disk with two slits on the real axis, we can interpret w ascomposition w = h�1� (e�th
) for a suitable pair (�; 
), and a simple calculation shows thatthe relation cos 
 = (1� e�t) + e�t cos � (8)3



is valid. We get thereforeh
(z) = et � h�(w(z; t)) = etw1� w2  1� w21� 2 cos � � w + w2!= etw1� w2  1 + 2 1Xk=1wk cos k�! =W0(z; t) + 2 1Xk=1Wk(z; t) cos k�= W0(z; t) + 2 1Xk=1 1Xn=k�nk(t)zn+1! cos k� : (9)It is easily seen that (9) remains valid for the pair (�; 
) = (0; 0), corresponding to therepresentation K(z) = W0(z; t) + 2 1Xk=1Wk(z; t) :Since on the other hand h
(z) has the Taylor expansionh
(z) = z1� 2 cos 
 � z + z2 = 1Xn=0 sin(n+ 1)
sin 
 zn+1 ;equating the coe�cients of zn+1 in (9) we get the identitysin(n+ 1)
sin 
 = �n0 (t) + 2 nXk=1�nk(t) cos k� :Hence we have discovered (see also [19], (2))Theorem 1 (Fourier Expansion) The Weinstein functions �nk(t) satisfy the functionalequationUn�(1� e�t) + e�t cos �� = C1n�(1� e�t) + e�t cos �� = �n0(t) + 2 nXk=1�nk(t) cos k� ; (10)where Un(x) denote the Chebyshev polynomials of the second kind.Proof: This is an immediate consequence of the identityC1n(cos 
) = Un(cos 
) = sin(n+ 1)
sin 
(see e.g. [1], (22.3.16), (22.5.34)). 2
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3 TheWeinstein Functions as Jacobi Polynomial SumsIn this section, we show that the Weinstein functions �nk(t) can be represented as Jacobipolynomial sums.Theorem 2 (Jacobi Sum) The Weinstein functions have the representation�nk(t) = e�kt n�kXj=0 P (2k;0)j (1� 2e�t) ; (0 � k � n) : (11)Proof: A calculation shows that w(z; t) has the explicit representationw(z; t) = 4e�tz�1� z +p1� 2xz + z2�2 : (12)Here we use the abbreviation x = 1� 2e�t. Furthermore, fromW0(z; t) = etw1� w2 = K(z) 1� w1 + w ;we get the explicit representationW0(z; t) = z1� z 1p1� 2xz + z2 (13)for W0(z; t). By the de�nition of Wk(z), we have moreoverWk(z; t) = etwk+11� w2 = wkW0(z; t) :Hence, by (12){(13) we deduce the explicit representationWk(z; t) = e�kt zk+11� z 4kp1� 2xz + z2 1�1� z +p1� 2xz + z2�2k (14)for Wk(z; t).Since the Jacobi polynomials P (�;�)j (x) have the generating function1Xj=0P (�;�)j (x) zj = 2�+�p1�2xz+z2 1�1� z +p1�2xz+z2�� 1�1 + z +p1�2xz+z2�� (15)(see e.g. [1], (22.9.1)), comparison with (14) yieldsWk(z; t) = e�kt zk+11� z 1Xj=0P (2k;0)j (x) zj :5



Using the Cauchy product11� z 1Xj=0P (2k;0)j (x) zj = 1Xn=0 nXj=0P (2k;0)j (x) zn ;we �nally haveWk(z; t) = e�kt zk+1 1Xn=0 nXj=0P (2k;0)j (x) zn = 1Xn=k�nk(t) zn+1 = 1Xn=0�n+kk (t) zn+k+1 :Equating coe�cients gives the result. 24 Askey-Gasper Inequality for the Weinstein Func-tionsWe would like to utilize the Fourier expansion (10) of Theorem 1 to �nd new representationsfor the Weinstein functions, hence by Theorem 2 for the Jacobi polynomial sum on the lefthand side of (4). Hence, we have the need to �nd a representation for C1n�(1�e�t)+e�t cos ��.We do a little more, and give a representation forC1n�xy +p1� x2q1� y2 �� ; (16)from which the above expression is the special case x = y = p1� e�t; � = cos �. Actually,in the next section, an even more general expression is considered, see Theorem 5. Here weoutline the deduction for our particular case.The function given by (16) as a function of the variable � is a polynomial of degree n. Henceit can be expanded by Gegenbauer polynomials C�j (�) (j = 0; : : : ; n). We choose � = 1=2, i.e.we develop in terms of Legendre polynomials Pj(�) = C1=2j (�) (see e.g. [1], (22.5.36)),C1n�xy +p1� x2q1� y2 �� = nXm=0Anm(x; y)C1=2m (�) (17)with Anj depending on x and y. By the orthogonality of the Gegenbauer polynomials,1Z�1 C1=2j (�)C1=2m (�) d� = ( 22j+1 if j = m0 otherwise ;multiplying (17) by C1=2j (�), and integrating from � = �1 to � = 1, we get thereforeAnj (x; y) = 2j + 12 1Z�1 C1n�xy +p1� x2q1� y2 ��C1=2j (�) d� : (18)6



To eliminate the second (oscillating) factor C1=2j (�), we utilize the identity1Z�1 f(�)C�j (�)(1� �2)��1=2 d� = 2jj! �(j + �)�(j + 2�)�(�)�(2j + 2�) 1Z�1 f (j)(�) (1� �2)�+j�1=2 d� ; (19)which is valid for any j times continuously di�erentiable function f , and which can easily beproved by iterative partial integration (see e.g. [9], Chapter VII, p. 140). Choosing � = 1=2and f(�) := C1n�xy+p1�x2q1�y2 ��we get (with the Gamma duplication formula (29))1Z�1C1n�xy+p1�x2q1�y2��C1=2j (�) d�= 12j j! 1Z�1(1��2)j djd�jC1n�xy+p1�x2q1�y2��d�: (20)Since furthermore djd�jC�n(�) = 2j (�)j C�+jn�j(�) (21)(see e.g. [17], p. 179), we get moreover12j j! 1Z�1 (1� �2)j djd�jC1n�xy +p1� x2q1� y2 �� d� = (1� x2)j=2 (1� y2)j=2Qnj (x; y) (22)with Qnj (x; y) := 1Z�1 (1� �2)j Cj+1n�j�xy +p1� x2q1� y2 ��d� :Now observe that Qnj (x; y) is a polynomial in the variables x and y, of degree n � j each.In the next section we will show that the integral Qnj (x; y) has zeros at both the zeros ofCj+1n�j(x) and Cj+1n�j(y), hence, as a polynomial of degree n� j in x and y respectively, must bea multiple of the product Cj+1n�j(x)Cj+1n�j(y). An initial value givesQnj (x; y) = 22(j+1) j!2 (n� j)!2(n + j + 1)! Cj+1n�j(x)Cj+1n�j(y) : (23)Note that the complete proof of a generalization of statement (17)/(23) will be given in thenext section.Therefore �nally, combining (18){(23), we have discovered the identityAnj (x; y) = (2j + 1)22j j!2 (n� j)!(n + j + 1)! (1� x2)j=2 (1� y2)j=2Cj+1n�j(x)Cj+1n�j(y) : (24)As a �rst step this leads to the following Askey-Gasper type representation for the Fourierseries (10). 7



Theorem 3 The Fourier series (10) has the representationC1n�(1� e�t) + e�t cos �� = nXj=0Anj �p1� e�t;p1� e�t� C1=2j (cos �) (25)= nXj=0(2j + 1)4j j!2 (n� j)!(n+ j + 1)! e�jt �Cj+1n�j �p1� e�t��2 Pj(cos �) :Proof: Set x = y = p1� e�t and � = cos � in (24). 2Since by a simple function theoretic argument the Legendre polynomials Pj(cos �) on the righthand side of (25) can be written asPj(cos �) = jXl=0 glgj�l cos(j � 2l)� ; (26)with positive coe�cients gl = (2l)!4l l!2 (27)(see e.g. [15], (4.9.3)), we have at this stage theCorollary 4 The Weinstein functions satisfy the inequalities (7),�nk(t) � 0 (t 2 IR+; 0 � k � n) :Proof: Combining Theorems 1 and 3 with (26){(27) gives the result. 2Theorem 3 together with (26) immediately yields sum representations for the Weinstein func-tions in terms of the Gegenbauer polynomials,�n2m(t) = [n=2]Xj=m 42j �(n+ 1� 2j)(2j)!2�(n + 2 + 2j) (4j + 1) gj�m gj+m e�2jt �C2j+1n�2j �p1�e�t��2for m = 0; 1; : : : ; [n=2], and�n2m+1(t) = [(n�1)=2]Xj=m 42j+1 �(n�2j)(2j+1)!2�(n + 3 + 2j) (4j+3) gj�m gj+1+m e�(2j+1)t �C2j+2n�2j�1 �p1�e�t��2for m = 0; 1; : : : ; [(n�1)=2]. Another form of this statement will be given in x 6.5 Addition Theorem for the Gegenbauer PolynomialsIn this section, we �ll the gap that remained open in the last section by proving a generalizationof (17)/(23), the addition theorem for the Gegenbauer polynomials (see e.g. [7]).8



Theorem 5 (Addition Theorem for the Gegenbauer Polynomials) For � > 1=2, x; y 2[�1; 1], and � 2 C, the Gegenbauer polynomials satisfy the identityC�n�xy +p1� x2q1� y2 �� =�(2��1) nXj=0 4j (n� j)!�(n+ 2� + j) �(�)j�2 (2�+2j�1)(1�x2)j=2 (1�y2)j=2C�+jn�j(x)C�+jn�j(y)C��1=2j (�) :Proof: The function C�n(xy +p1� x2q1� y2 ��as a function of � is a polynomial of degree n. Therefore, for any � > 0, we can expand it interms of Gegenbauer polynomials C�j (�),C�n(xy +p1� x2q1� y2 �� = nXm=0Anm(x; y)C�m(�) ; (28)the coe�cients Anj being functions of the parameters x and y.The orthogonality relation of the system C�j (�) is given by1Z�1 (1� �2)��1=2 C�j (�)C�m(�) d� = ( � 21�2� �(j+2�)j! (j+�) �(�)2 if j = m0 otherwise(see e.g. [1], (22.2.3)). Multiplying (28) by (1� �2)��1=2 C�j (�), and integrating from � = �1to � = 1, we get therefore1Z�1 (1� �2)��1=2 C�n(xy +p1� x2q1� y2 ��C�j (�) d� = Anj (x; y) � 21�2� �(j + 2�)j! (j + �) �(�)2 :Utilizing identity (19) with f(�) := C�n�xy+p1�x2q1�y2 �� ;we getAnj (x; y) = 2j+2��1 �(�) �(j+�+ 1)� �(2j + 2�) 1Z�1(1� �2)j+��1=2 djd�jC�n�xy+p1�x2q1�y2��d� :The derivative identity (21) then yieldsAnj (x; y) = 22j+2��1 (�)j �(�) �(j + �+ 1)� �(2j + 2�) (1� x2)j=2 (1� y2)j=2� 1Z�1 (1� �2)j+��1=2 C�+jn�j�xy +p1� x2q1� y2�� d� :9



Now we choose � := � � 1=2 (hence our assumption � > 1=2). This choice is motivatedby the calculation involving the di�erential equation that follows later, for which the desiredsimpli�cation occurs exactly when � = � � 1=2. Using the duplication formula�(2z) = 22z�1p� �(z) �(z + 1=2) (29)of the Gamma function to simplify the factor in front of the integral, we �nally arrive at therepresentationAnj (x; y) = 21�2�(2j + 2� � 1)�(2� � 1)�(�)2 (1� x2)j=2 (1� y2)j=2� 1Z�1 (1� �2)j+��1C�+jn�j�xy +p1� x2q1� y2��d�for the coe�cients Anj (x; y). Hence, we consider the functionQnj (x; y) := 1Z�1 (1� �2)j+��1C�+jn�j�xy +p1� x2q1� y2��d�in detail. Observe that Qnj (x; y) is a polynomial in the variables x and y, of degree n� j each.Note furthermore that Qnj (x; y) is symmetric, i.e. Qnj (x; y) = Qnj (y; x).In the following we will show that the integral Qnj (x; y) has zeros at both the zeros of C�+jn�j(x)and C�+jn�j(y), hence, as a polynomial of degree n�j in x and y respectively, must be a constantmultiple of the product C�+jn�j(x)C�+jn�j(y).By the symmetry of Qnj (x; y) it is enough to show that Qnj (x; y) has zeros at the zeros ofC�+jn�j(x). Since C�+jn�j(x) is a solution of the di�erential equation(1� x2) p00(x)� (2� + 2j + 1) x p0(x) + (n� j)(n+ j + 2�) p(x) = 0 ; (30)and since any polynomial solution p(x) of (30) must be a multiple of C�+jn�j(x) (see e.g. [15],Theorem 4.2.2 in combination with [1], (22.5.27)), we have only to check that p(x) := Qnj (x; y)satis�es (30).We write �(x) := xy +p1� x2p1� y2�, and note that�0(x) = y � p1� y2p1� x2 x �so that x�0(x) = xy � p1� y2p1� x2 x2 � = �(x)� p1� y2p1� x2 � :10



Hence we deduce�(2� + 2j + 1) x @@xQnj (x; y) = 1Z�1 �(2� + 2j + 1) �(x) �C�+jn�j�0(�(x))(1� �2)j+��1 d�+(2� + 2j + 1)p1� y2p1� x2 1Z�1 � (1� �2)j+��1 �C�+jn�j�0(�(x)) d�:Similarly, using the identity�yp1� x2 � xq1� y2 ��2 = (1� �(x)2)� (1� y2) (1� �2) ;we get(1� x2) @2@x2Qnj (x; y) = 1Z�1 (1� �(x)2) �C�+jn�j�00(�(x))(1� �2)j+��1 d��p1� y2p1� x2 1Z�1 p1� x2q1� y2 (1� �2)j+� �C�+jn�j�00(�(x)) d��p1� y2p1� x2 1Z�1 � (1� �2)j+��1 �C�+jn�j�0(�(x)) d�:Combining these results, we arrive at the representation(1� x2) @2@x2Qnj (x; y)� (2� + 2j + 1) x @@xQnj (x; y) + (n� j)(n+ j + 2�)Qnj (x; y) =1Z�1 (1��2)j+��1�(1��2) �C�+jn�j�00(�)�(2�+2j+1) ��C�+jn�j�0(�)+(n�j)(n+j+2�)C�+jn�j(�)�d�+p1�y2p1�x2 0@ 1Z�1 2(j+�)�(1��2)j+��1�C�+jn�j�0(�)d�� 1Z�1p1�x2q1�y2(1��2)j+��C�+jn�j�00(�)d�1A:The �rst integral obviously vanishes since C�+jn�j(x) satis�es the di�erential equation (30). Thevanishing of the �nal parenthesized expression follows easily by partial integration. Therefore,we have proved that Qnj (x; y) is a solution of (30), as announced.Hence, Qnj (x; y) = aC�+jn�j(x)C�+jn�j(y) (31)with a constant a (not depending on x and y). For y = 1, we deduceQnj (x; 1) = 1Z�1 (1� �2)j+��1 C�+jn�j(x) d� = 22j+2��1 �(j + �)2�(2j + 2�) C�+jn�j(x) (32)11



by an evaluation of the Beta type integral. On the other hand, by (31),Qnj (x; 1) = aC�+jn�j(x)C�+jn�j(1) = aC�+jn�j(x) � n+ j + 2� � 1n� j �(see e.g. [1], (22.4.2)), so that we geta = 22j+2��1 �(j + �)2�(2j + 2�),� n+ j + 2� � 1n� j � = 22j+2��1 (n� j)! �(j + �)2�(n + j + 2�) :Hence Qnj (x; y) = 22j+2��1 (n� j)! �(j + �)2�(n+ j + 2�) C�+jn�j(x)C�+jn�j(y) ;implyingAnj (x; y) = �(2��1) 22j(n� j)!�(n+j+2�) �(j+�)2�(�)2 (2j+2��1) (1�x2)j=2 (1�y2)j=2 C�+jn�j(x)C�+jn�j(y);and we are done. 2As a consequence, taking the limit � ! 1=2, we get the followingCorollary 6 (Addition Theorem for the Legendre Polynomials) For x; y 2 [�1; 1],� 2 C, the Legendre polynomials satisfy the identitiesPn(xy +p1� x2q1� y2 �� =Pn(x)Pn(y) + 2 nXj=1 4j (n� j)!(n+ j)!�(1=2)j�2 (1� x2)j=2 (1� y2)j=2C1=2+jn�j (x)C1=2+jn�j (y)Tj(�) (33)= Pn(x)Pn(y) + 2 nXj=1 (n� j)!(n+ j)! P jn(x)P jn(y)Tj(�) ; (34)where Tj(�) denote the Chebyshev polynomials of the �rst kind, andP jn(x) = (�1)j (1� x2)j=2 @j@xj Pn(x) (35)denote the associated Legendre functions (see e.g. [1], (8.6.6)).In particular, for y = x, one hasPn(x2 + (1� x2) cos �) = Pn(x)2 + 2 nXj=1 (n� j)!(n+ j)! P jn(x)2 cos j� : (36)
12



Proof: SinceC0n(x) = lim�!0 C�n(x)� and C�n (x) = lim�!�C�n(x) for all � > 0(see e.g. [1], (22.5.4)), for � ! 1=2 Theorem 5 impliesC1=2n �xy +p1� x2q1� y2 ��= C1=2n (x)C1=2n (y)+ nXj=1 4j (n� j)!(n + j)! �(1=2)j�2 (1�x2)j=2 (1�y2)j=2 C1=2+jn�j (x)C1=2+jn�j (y) j C0j (�) :With C1=2n (x) = Pn(x), and j C0j (�) = 2Tj(�) (see e.g. [1], (22.5.35), (22.5.33)), we get (33).An application of (21) and (35) yields (34).Using Tn(cos �) = cosn�(see e.g. [1], (22.3.15)) �nally yields (36). 2Note that Weinstein used (36) in his proof of Milin's conjecture.6 Askey-Gasper Identity for the Weinstein FunctionsHere, we combine the above results to deduce a sum representation with nonnegative sum-mands for the Weinstein functions, and therefore by Theorem 2 for the Jacobi polynomialsum.By Theorem 3 we haveC1n�(1� e�t) + e�t cos �� = nXj=0(2j + 1)4j j!2 (n� j)!(n + j + 1)! e�jt �Cj+1n�j �p1� e�t��2 Pj(cos �) ;and, expanding Pj(cos �) using (33) with x = y = 0, � = cos �, this gives= nXj=0(2j+1)4jj!2(n�j)!(n+ j + 1)!e�jt �Cj+1n�j �p1�e�t��2 �2 jX0k=0 4k (j�k)!(j+k)!�(1=2)k�2C1=2+kj�k (0)2Tk(cos �);where �0 indicates that the summand for k = 0 is to be taken with a factor 1=2. Interchangingthe order of summation, and using Tk(cos �) = cos k�, gives= 2 nX0k=0 nXj=k(2j + 1)4k 4jj!2(n�j)!(n+ j + 1)! (j�k)!(j+k)!�(1=2)k�2e�jtC1=2+kj�k (0)2 �Cj+1n�j �p1�e�t��2 cos k�:Comparing with Theorem 1,C1n�(1� e�t) + e�t cos �� = 2 nX0k=0 �nk(t) cos k� ;13



and equating coe�cients yields for the Weinstein functions�nk(t) = nXj=k(2j + 1)4k 4jj!2(n�j)!(n+ j + 1)! (j�k)!(j+k)!�(1=2)k�2e�jtC1=2+kj�k (0)2 �Cj+1n�j �p1�e�t��2 :Replacing n by k + n, and then making the index shift jnew := jold � k �nally leads to�k+nk (t)= nXj=0(2j+2k+1)4j+2k(j+k)!2(n�j)!j!((1=2)k)2(2k + n+ j + 1)!(j + 2k)! e�(j+k)tC1=2+kj (0)2�Cj+k+1n�j �p1�e�t��2:Setting y := p1�e�t, by Theorem 2nXj=0P (2k;0)j (2y2�1)= nXj=0(2j+2k+1)4j+2k(j+k)!2(n�j)!j!((1=2)k)2(2k + n + j + 1)!(j + 2k)! (1�y2)jC1=2+kj (0)2�Cj+k+1n�j (y)�2:This is an Askey-Gasper type representation di�erent from (4) that was given by Gasper ([6],(8.17), and (8.18) with x = 0). Note that Gasper's formula ([6], (8.18)) interpolates betweenthese two representations. Whereas Askey's and Gasper's deductions of the given formulasprove the results for all � > �2, our deduction has the disadvantage that it is only valid for� = 2k; k 2 IN0. On the other hand, the advantage of our presentation is that it embedsthis result in a natural way in Weinstein's proof of Milin's conjecture using only elementaryproperties of classical orthogonal polynomials.7 Closed Form Representation of Weinstein functionsNote that nowhere in our deduction we needed the explicit representation of the de Brangesfunctions = Weinstein functions, compare Henrici's comment [8], p. 602: \At the time of thiswriting, the only way to verify _�nk (t) � 0 appears to be to solve the system explicitly, and tomanipulate the solution".In this connection we like to mention that in [11] we proved the identity (3), which connectsde Branges' with Weinstein's functions, by a pure application of the de Branges di�erentialequations system (see also [14]), and without the use of an explicit representation of the deBranges functions.In this section we give a simple method to generate this explicit representation which wasused by de Branges, see also [19].Since (1�e�t)+e�t cos � = 1�2e�t sin2 �2 , Taylor expansion gives using (21) and ([1], (22.4.2))C1n�(1� e�t) + e�t cos �� = C1n�1� 2e�t sin2 �2� = nXj=0 C1n(j)(1)j! (�1)j 2j e�jt  sin2 �2!j= nXj=0Cj+1n�j(1) 22j (�1)j e�jt  sin2 �2!j= nXj=0 � n+ j + 1n� j � 22j (�1)j e�jt  sin2 �2!j :14



An elementary argument shows that sin2 �2!j = 2 jX0k=0 (�1)k22j � 2jj � k �T2k  cos �2! = 2 jX0k=0 (�1)k22j � 2jj � k � cos k�(see e.g. [17], p. 189). Changing the order of summation, we get thereforeC1n�(1� e�t) + e�t cos �� = 2 nX0k=0 nXj=k(�1)j+k � n+ j + 1n� j � � 2jj � k � e�jt cos k�= 2 nX0k=0 �nk(t) cos k�by (10). Hence�nk(t) = nXj=k(�1)j+k � n+ j + 1n� j � � 2jj � k � e�jt= e�kt � n+ k + 1n� k � 3F2 n+ k + 2; k + 1=2;�n+ kk + 3=2; 2k + 1 ����� e�t! :AcknowledgementThe �rst author would like to thank Peter Deu
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