New Advances in Biomedical Signal Processing, 2011, 231-250 231
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Abstract: Atherosclerotic plaque has been identified as one of the most important causes of sudden
cardiac failure in patients with no history of heart disease. IntraVascular UltraSound (IVUS)
represents a unique technique to study, determine and quantify plaque composition and thus allows
to develop automatic diagnostic and prediction techniques for coronary diagnosis and therapy.
However, one of the main problems of image-based studies is its dependence on image brightness
and data miss-registration due to the dynamic system composed by the catheter and the vessel.
Hence, the high dependence of the automatic analysis on the gain setting of IVUS console and its
transmit power as well as vessel motion make impossible direct analysis, comparison and follow
up of IVUS studies. To this purpose, a complete framework for data analysis should be considered
focusing on:a) modeling the image acquisition and formation procejsieveloping techniques

for removing data acquisition artifacts due to the nature of ultrasound reflectance and motion of
coronary vesselg) developing sophisticated tools for extracting features from radio-frequency
and images, and) designing robust methods to discover and classifiedent categories of tissue
structures. In this chapter, we overvievfidrent methodologies to approach the afore-mentioned
problems and outline possible computer-assisted applications in the clinical practice.

Key words: Intravascular Ultrasound, Ultrasonography, Tissue Characterization, Swinfjed, Rigid
Registration, Radio Frequency Analysis

respiratory disease 7% Injuries and poisoning 12%

1. Introduction: Clinical Motivation
Coronary heart disease is a leading cause of death in
the most developed countries, representing in Europe the
21% of mortality cause that accounts for 2 millions of
lives (Figl). Atherosclerosis is the underlying mecha- ot concer 2%
nism for unstable angina, myocardial infarction and sud- somach cancer 2%
den cardiac death. Atherosclerotic plaque formation re-
sults from the proliferation, then destruction of intimal
fibrosis tissue, resulting in the formation of an atheroma, ofher cvp 11%
i.e. a thickening of théntimal-medialsegments and an
overall thickening of the vessel wall (Fig.2 Plaques sroke 11%

mlght be circumferential and occupy the entire perlme_Figure 1: Deaths by cause, men, latest available year, Europefinsem

ter of a vessel or be eccentric and occupy only a pOrropean Cardiovascular Disease Statistics 2p0&ardiovascular dis-
tion of the vessel wall. Luminal narrowing of the arter- ease, stroke and coronary heart disease globally represent the 43% of

ies is the main cause of the chronic ischemic manifestadeath cause
tion of coronary heart disease, whereas superimpositions

of thrombi over the plaques lead to acute coronary syn-

dromes. Myocardial infarction occurs when the athero-

matous process prevents blood flow through the coronar\ZUlner"J‘b_Ie plaque could be determined as a mixture of
artery [1]. nown diferent tissue types. In this scenario, new di-

Vulnerable plaquesre atherosclerotic plaques prone agnostic techniqu_es for detecting vulnerable plagques be-
to disruption angbr thrombosis. The exact nature of the €0Me of extreme importance [2].
vulnerable plaque is not yet well understood. The histol- Angiography has always been considered agythld
ogy of atherosclerotic plaque is generally comprised ofstandardimaging technique for detecting problematic
a mixture of layer upon layer of cholesterol debris, cal-arterial lesions and to guide therapy and percutaneous
cium, and fibrous tissue. Recent studies suggest that thiatervention for coronary disease. However, this diag-

all other causes 17%

lung cancer 6%

coronary heart disease 21%
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Figure 2: Atherosclerotic plaque formation. From the initial health (a) (b)
condition (1), through the plaque formation (2), growth (3) and finally,
the occlusion of the vessel with the formation of a blood clot (4) block-

Figure 4: (a) Standardadial artery cross-section view of an IVUS
ing the normal blood flow 9 @ y

image and (b) corresponding longitudinal sequence (pullback). The
longitudinal view is obtained by considering the graylevel values at a
certain angle of the cross-sectional image during the whole sequence
nostic technique does not provide insight into the disease

state within the artery, and often fails to detect those le-
sions prone to thrombosis.

In the last 10 years, Intravascular Ultrasound (IVUS)
has evolved as a valuable adjunct to angiography. O
Whereas angiography depicts in fact only a 2D silhou-
ette of the lumen, ultrasound allows precise tomographic ‘
visualization and measurement of lumen area and plaque Q
size. This view is usually calleshort-axisview. It al-
lows then the visualization of the full circumference of @ (b)
the vessel wall (Fi@), thus showing the tissue distribu-
tion and, to some extent, composition. Hence, despité

igure 5: (a) Example of histological analysis of a post-mortem coro-
ary artery cut and (b) corresponding IVUS image with (c) labeled

the independent value of IVUS, this technique should b&jaques. In blue thealcified plaque and in yellow thépidic plaque.
considered supplemental to angiography, not a compre-
hensive alternative [3, 4].

longitudinal view of the stack of images. The extension
of the disease and the vessel morphology can be globally
observed by this view. It allows in fact to detect diseased
segments, positive or negative remodeling of the artery
as well as the position of bifurcations and their plaque
involvement. Furthermore, it is possible to measure the
length of the plaque and to observe the lumen morphol-

_ _ , ogy, extremely importantinformations in order to decide
Figure 3: A coronary artery image by angiography (left) of the over-

al vessel morphology and corresponding IVUS image (right). While which is the optlmal stent to use.

angiography allows to observe the 2D vessel morphology when the L . .
contrast agent is injected, the IVUS shows the inner morphological HOwever, the longitudinal view isfiected by severe

structure and content of the vessel motion artifacts due to heart cycle that hinder the right
interpretation and measurement process.

Plague composition in ultrasound is usually character- Starting from the analysis of the ultrasound-based im-
ized by the intensity of the signals as soft (gray) echoesage formation process, the main goal of this chapter is
very high intensity (bright) reflectors that create distalto describe the Intravascular Ultrasound image clinical
shadowing, and echoes of intermediate intensity, feamodality, highlighting its properties and its usefulness in
tures that correspond to tissue, calcification, and fibro¢linical case. Diferent approaches for the image recon-
sis, respectively (Fi§). In addition, echolucentor signal struction, filtering and processing are presented, in the
free zones have been found to represent lipid accumulazontext of coronary vessel modeling and plaque charac-
tions. For these reasons, IVUS results to be a suitabléerization techniques. The analysis motion artifacts due
technique for the assessment of atherosclerotic plaque it motorized pullback acquisition is presented along with
coronary artery analysis. In particular, it is appropriatecorrection techniques yielding a more stable and reliable
in the study of the vulnerable plaque. image sequence. Finally, by exploiting th&diences in

Due to the acquisition nature of the ultrasonic imageghe US response provided byffdirent tissue types, sev-
by means of a pullback of the catheter a sequence of imeral IVUS based plaque characterization techniques are
ages is obtained. If the pullback is motorized with con-presented, mainly oriented to the automatic recognition
stant speed a notion of distance can be inferred from thef different plaque types.
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2. ULTRASOUND TECHNOLOGY In this chapter we focus our interest in the generation

. and the processing of A-lines, signals generated by A-
Ultrasounds (US) are pressure waves with frequéncy mqsde ultrasound type, since they are the basis of the In-

beyond the limit of human hearing ¢ 20KHz), propa-  travascular Ultrasound technique.
gating in a medium.

In medicine, US are used in both diagnostic (ul-2 1. yjtrasound image generation
trasonography and therapeutic f¢cused ultrasound
surgery applications. In the first case, they are usedon the following parametersyavelengti(2), frequency
to penetrate a medium and measure the reflection si f) andamplitude(!) (Fig.6) '
nature, which reveals details about the inner structure o e
the medium, while in the second case to supply focused wavelength
energy to tissues.

In nature, each medium can be considered as formed
by a large number of particles, normally quiet, that when

Given its oscillatory nature, an US can be described

/ ) amplitude
perturbed by an US wave start to oscillate around their
resting position. US in fact transfer mechanical energy
through the medium they are traveling in, alternatively e

compressing and decompressing it [5].

Ultrasounds are generated by an US transducer able to
both produce and receive pressure waves {FigVhen
an US, propagating through a medium, finds an interface
of two different tissues, it is in part reflected and returns T :

X X oscillation: frequency is
towards the source with a reduced magnitude and a cer-  the number of oscillations
tain temporal delay: this phenomenon is caketioand per second
it is common to each acou_stlc_wave, not U_S On'Y? Tor Figure 6: Example of a wave. The wavelength is the spatial distance
example, the echo of the voice into a well or in a big in- petween two maxima, the amplitude is the distance between the mean
door environment. An ultrasound image is then createdalue (usually null) and the maximum. The period is the temporal
by processing the echoes returning to the US transducé‘?'ay between two consecutive maxima, while the frequehneyl/T
. .. is the number of oscillations per second

from various depths of the body upon emission of an ul-
trasound pulse of a specific frequency.

In_ most of the u_Itrason_ography application, the ultra-  The velocity of the US propagating into the medium
sonic transducer is applied to the surface of the bOdydepends on the medium nature. If we consider the den-
while in invasive application, like Intravascular Ultra- sity p and the acoustic impedan¢eof the medium or

sound, it is directly put into the artery. Fourflérent  gjternatively, the sfiness cofficientK, the velocityv of
modes of ultrasound are used in medical imaging [3]:  the propagating US is expressed as:

e A-mode, the simplest type of ultrasound: a single
i Ie K
transducer scans a line through the body and there- y=2 = |, (1)
flected echoes are studied as a function of depth. p p
Therapel_mc ultrasound aimed at a sp_eC|f|(_: tumor ot J -\ vhich we obtain
calculus is also A-mode, to allow for pinpoint accu-
rate focus of the destructive wave energy; = pv. (2)

e B-mode, where a linear array of transducers simul- Furthermore, the velocityis related to the wave param-
taneously scans a plane through the body that casters as follows:
be viewed as a two-dimensional image on screen;
v =Af. 3)

e M-mode, whereM stands for motion. It consists In biological di b q tant:
in a rapid sequence of B-mode scans whose im- "' blological mediunmv can be assumed as constant,

ages follow each other in sequence on screen: thigince human body mostly consists of water, usually we

modality enables doctors to see and measure rang%ssume_a_ value = 1,540m/s for human tissues, while
In bone itis around = 3, 500m/s. Note that the low ve-

of motion, as the organ boundaries that produce rel— ity of q ' hei )
flections move relative to the probe: tpcny[g] sound waves allow to measure their propagation
ime [5].
¢ Doppler-modeDoppler is the effct of changing in Ultrasounds are generated witliezoelectrictrans-
frequency of a wave for an observer moving relativeducer. Piezoelectric materials, ligeiartz have the prop-
to the source of the wave and it is used to measurerty of generating an electric voltage proportional to the

and to visualize blood flow. pressure applied on them and vice-versa of changing
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Figure 7: Schematized piezoelectric transducer. When a pressure, or Gt

even an acoustic (mechanical) wave impacts the piezoelectric probe, TRANSMITTED
a voltage proportional to the amount of pressure is generated. Vice-

versa, when the transducer is excited by an electrical signal, it deforms,

thus generating pressure waves or vibrations

Figure 8: Acoustic interface between two generic tissue in contact:
the propagating, reflected and transmitted wave are represented. The
medium w3 is characterized by the acoustic impedangean the
o . . mediumyy by the impedancé,
their dimension, thus generating pressure waves, when

a voltage is applied. The piezoelectric transducer can be
then used as U§enerator when supplied by a voltage, o _
or as USreceiver converting the mechanical excitement  In the case of normal incidence @ 6; = 0), T is:
into an electric signal that can be processed @#ig. .
All ultrasound techniques rely on the processingeef e [1 - zi )

(6)

flected sound wavds]. In the propagation of US into 1+ &
a medium, phenomena absorption reflectionandre- a
fraction are observed. Let us consider two mediuin  |f /; > £, or ¢, > /1, as happens in the tissbene inter-
anduz, characterized by their acoustic impedaticand  face, all the incidence energy is reflected:; in particular, if
&2, putin contact: a surface presenting a discontinuitys, s #, a part of the wave iscattered in all directions
of acoustic impedance arises (Fdp. Let us consider  consequently,i) if u, has high echoreflectance (e.g.
an US wave, propagating through(propagatingwave)  pone, calcified tissue) it avoids the transmission of the
and reaching the discontinuity surface, with an amgle \yave through the interface, thus generating a reflected
Consequently, a part of the wave propagatest@rans-  \ave with an amplitude similar to the propagating one,
mittedwave) while a part of the wave keeps propagatingyhile (ji) if it has low echoreflectance, it will let transmit
throughu; (reflectedwave) but with a dierent direction  the wave, reflecting a small portion of it.
with respect tq the propagating wave. The laws thatreg- Gjyen the relation among (or p) andyv, it becomes
ulate the relationship among the angles): andé: are:  clear that an ultrasound scan does not visualize tissue
) ) structures directly but rather interfaces between tissues
Sing; = sing; (4)  of different acoustic impedances: the greater tikedi
ence in impedance, the greater the reflection of the ultra-
sound wave and the smaller its transmission into deeper
tissue.
(5 The piezoelectric transducer receives then the re-
flected wave that presentdiirent amplitude and a tem-
known as Snell's law. From the previous equations, wePoral delay (echo arrival time) respect to the generated
can deduce that: pulse. By the attenuation the tissue type is recovered,
while by the temporal delay the tissue position is estab-
e if Vi = W, there is no refraction and then the US lished.
keeps propagating without deviations £96; = 0); The intensity of the returning echoes also depends on
the emitted frequency (see Eq.7). Attenuation increases
e if &3 = ;> there is no reflection and all the energy of with frequency and limits the penetration depth of the
the propagating wave is transmitted throughitin ultrasound pulse. The emitted intensity in fact decreases
this case no echo signal is observed exponentially with distance from the source (the trans-
ducer) and is influenced by an attenuation fioeent
e if {1 # { apart of the US energy is reflectel €  « that varies with the type of tissue through which the
6r) according to the reflection cicient0O< T <1,  beam travels in the human body (Fj.The average in-
representing the amount of the reflected wave. tensity in the body ranges from 0.3 to 0.6 decijidldz

that impliess, = 6, (Reflection lay, and moreover:

Sing Vi
Sith - \A
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Figure 9: US wave attenuation phenomenon proportional to the tissue
depth
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; ; igure 10: Morphology of a coronary artery. The intima-media-
cm [5] This phenomenon IS usua”y Compensated by 5adventitia layers are indicated in (a) the histological image of a post-

Time Gain Compensation function, as explained in NeXtyortem artery, while corresponding layers are highlighted in (b) the

section. IVUS image. An example of US signal generating the IVUS image is
also represented, together with the envelope, proportional to the image
gray level.

3. INTRAVASCULAR ULTRASOUND IMAGING

Intravascular Ultrasound is a catheter-based imaging Estimation of the vessel area is based on the measure-
modality that provides an accurate luminal and transmuments of the media-adventitia border, and plaque area
ral image of vascular structures [5]. Unlike angiogra-is derived by subtracting lumen area from vessel area.
phy, which depicts a silhouette of the coronary lumen,Although invasive, the inside-out imaging of the arte-
IVUS in fact displays tomographic, cross-sectional per-rial wall is extremely important in coronary interventions
spective. This facilitates direct measurements of lumemwhere there is limited access to the site of plaque depo-
dimensions, including minimum and maximum diametersition [8].
and cross-sectional area as well as the characterization
o_f _ather(_)ma size, plaque distribution and lesion COMPO7 1 |vUS DATA ACQUISITION SYSTEMS
sition (Fig10) [6].

A typical IVUS image consists of three layers around Images in IVUS are acquired by means of high-
the lumen: theintima, the mediaand theadventitia ~ frequency, single-use probes based on various mechan-
Theintimais normally a thin layer of endothelial cells: ical and electronic phased-array systems [5]. The probes
this layer substantially and often unevenly thickens inare inserted into the vessel by a catheter with a diam-
atherosclerosis. Thmediaconsists of multiple layers eter of 0.96 to 1.17 mm (2.9F to 3.5F in size). Two
of smooth muscle cells arranged helically and circum-technical approaches to transducer design have emerged
ferentially around the lumen of the artery; the normalin years: mechanically rotatedmaging devices and a
medial thickness ranges from 125 to 36 although  multi-element electronic arragievice [6].
in the presence of plaque the medial thickness may be In multiple-elementIVUS catheters, an array of piezo-
considerably thinner or even completely involuted andelectric transducers is disposed around the probe (see
replaced by the plaque in several disease. Finally, th&ig.11), and an internal electronic device synchronizes
adventitiais the external layer, essentially composed bythe US waves emission. The plane of imaging is per-
fibrous tissue, i.e. collagen and elastin [7]. pendicular to the long axis of the catheter and provides a
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in the IVUS image.
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Figure 11: mechanical rotative (above) and phased array (below) IVU

catheters ﬁzigure 12: (a) Standard cross-sectional IVUS image (in cartesian co-

ordinates) and (b) its corresponding polar representation, obtained by
processing the reflected US wavpsepresents the depth in the tissue
andd the position (angle) in the rotation of the probe.

full 360 degree image of the blood vessel. The used fre-

quency for this type of catheters is in the range of 15-25

MHz. A problem of these imaging catheters, common to

all high-frequency ultrasound devices to some extent, i$-2. US IMAGE FORMATION

the inability to image structure in the immediate vicin-  In both rotational and phased-array catheter, it is pos-

ity of the transducer, i.e. in the“near field”. Because thesible to reconstruct the 360 degree cross sectional rep-

imaging crystal in a phased-array configuration is in al-resentation of the inner vessel morphology. To form a

most direct contact with the structure being imaged, aransverse cross-sectional image of the vessel in real-

bright circumferential artifact known as the "ring down” time, the ultrasound beam is rotated at 30 revolutions per

surrounds the catheter (Fi). The ring-down artifact second leading to 30 images per second [8]. Each beam

can be electronically removed, but structures within thecan be seen as a radius of the final circular IVUS image

masked region will not be seen [9]. that shows the cross-section of the explored vessel (see
Mechanical transducers, the most frequently used typ€ig.10).

of IVUS catheters, consist in a single piezoelectric trans- Given the number of positioM assumed by the ro-

ducer, and the 360 degree view of the vessel is obtainethtional catheter (or the number of transducer in the

by rotating the probe. Actually, two fierent configura- phased-array), during IVUS data acquisitidm A-lines

tions are available: (i) either the transducer itself or (ii) are collected by the probe. The low speed of sound in hu-

an acoustic mirror is rotated at the tip of the catheter usman tissue (1,540 fs) and the aim of achieving a high

ing a flexible, high-torque cable that extends the lengthframe rate (real-time display) limit the number of ultra-

of the device. In the case in which the mirror is the ro-sound scan lines that can be used per image [5]. Each A-

tating part, the transducer does not need to rotate anhe can be sampled ard samples, quantized by using

moreover can be put at a larger distance from the tisK-bit, are obtained. In this way, each IVUS frame can be

sue. This fact partially reduces the ring-dowffeet and  stored and processed as Mnx N matrix (Fig13). The

the poor resolution in the near-field [9]. In both rotating information contained in this matrix is actually related to

transducer and rotating mirror devices, ultrasound frethe polar domainr(6) of the vessel morphology. The en-

guencies are between 12.5 and 40 MHz, although someelope of the A-line in fact corresponds to the amplitude

experimental devices use up to 45 MHz [9]. In devicesof the reflected echo (Fig.)1at a certain depth.

with a distally placed transducer and proximally rotating

mirror, it is necessary for an electrical connecting wire TIME GAIN COMPENSATION (TGC)As the US

to pass along the side of the imaging assembly. Thigpropagatingin the tissue ifacted by an attenuation due

wire produces an artifact that occupies approximately 150 depth, first we apply TGC to data, defined as follows:

degrees of the image cross-section (FiJ). An in-

teresting modification of the mechanical catheter design ~ T(r) = 1-¢e™#", @)

involves rotation of both the transducer and the mirror,

eliminating any electrical wire artifact. Note that in the whereg = In 107729, « is the attenuation factor of the

array-based IVUS catheter, the guide wire is placed irtissue measured idB/MHz - cm, f is the frequency of

the center of the array and, therefore, it does not obstrudhe transducer iMHz andr is the radial distance from

the ultrasound beam. In a single element system, théhe catheter itm.

guide wire is on the side of the ultrasound element. The Different attenuation factors can be used for each tis-

ultrasound beam, therefore, maybe reflectédobthe  sue in order to be more precise in the vessel modelling.

guide wire and will result in bright echoes and shadowHowever, in practice this is not feasible since there is no
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a priori information about the presence of specific tis-
sues. Therefore, a weighted average of all possible fac-
tors is can be assumed & 0.1 for example). Typical
values fora for different parts of the human body are in-
dicated in Table 1. The obtained profile is shown in Fig.

14.

o = BAND PASS (BP) FILTERGiven the central frequency
0 % of the catheterfy, we expect to find the main spectral
o7 § information in a certain band centeredfin Data can be
os then filtered by a band-pass filter in order to reduce the

z 0s 2 noise dfect and spurious harmonic components outside
0 the band of interest. For this purpose, a Butterworth filter
0 [10]is suitable, given that its frequency response is as flat
02 as mathematically possible in the passband.

w0 10 00 20 S ENVELOPE. After filtering we need to recover the en-

velope of the signal to change from bipolar to unipolar
Figure 13: Raw RF data matrix (left) and a single A-line (rigth), ac- S|gnal, "_1 C_'rderto aChIeV_e final conversion between_O and
tually representing one of thil columns of the data matriN is the ~ 299- This is done by taking the absolute value of Hilbert

number of samples and also represents the tissue depth. Note the eitansform of the signal (FigL0).
ponential attenuation of the A-line whil increases

NORMALIZATION. Data range is then changed be-
tween 0 and 1: this allows to work with homogeneous
data ranges for all cases:

R- Rmin
Rmax - Rmin’

whereR s the RF data matrix.

Rnorm = (8)

LOG TRANSFORMATIONThis transformation maps a
narrow range of low gray-level values in the input image
into a wider range of output levels [11]:

_ Iog(l + (et — 1)Rnorm)
= n .

Riog 9)

GAMMA CORRECTION (optional)ln order to expand
the dfective dynamic range of our digital images in
terms of saturation, we can optionally apply the gamma
correction using thggamma value, the gradient of the
linear region on thgamma value curvgll]. A larger
gamma results in a higher contrast imaBg:= R'Vog.

Figure l4:tE)t(r?mptlte of Tti_me'(i‘]ai”'compensﬁi‘(’f‘ E;;’g']e {'i%‘éfed ©  Finally, R, can be converted from polar to cartesian
fr?g] /g-eli?]s.aNeoteeﬂ?ateimﬁelo'?(apc?cnoon:]peennosr;taer(]j prrgile, thee signal rr]angecoordma‘te.S and t.he typlcal cross-sect!onal IVUS image
results more uniform of Fig. 10is obtained. Hence, the radial component of
R, is usually subsampled by a factor of 2 or 4, thus ob-
taining a 256x 512 or 256x 256 polar image. Since the
number of available A-lines is usually 256, in order to
reconstruct a full 360 degree tissue visualization, an in-
terpolation task is needed. In order to complete the im-
age reconstruction process, a simple linear interpolation
and a Gaussian smoothing filter can be applied [12].

05 1 15 2 25 3 35 4
rfmm]
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[ Material [ Lung [ Bone [ Kidney [ Liver [ Brain | Fat [ Blood [ Water |
[«(@B/(MHAz-cm) | 41 | 20 | 1.0 | 0.94 | 0.85 | 0.63 | 0.18 | 0.0022 |

Table 1: Attenuation factors

4, Artifacts in IVUS a motorized pullback can be misaligned. Moreover, (2)
since the visual aspect of the vessel can change due to
As commented before, the IVUS imaging techniqueits elasticity and due to the heart motion, the IVUS sam-
is affected by some artifacts. We can split these artifactgling depends on the sampling instant with respect to the
in two classesstaticanddynamic Thestaticartifacts  heart cycle. This causes that subsequent frames in the
are mainly two: the ring downfiect and the guide wire pullback can have ffierent vessel size or relative posi-
shadowing. These two artifacts have been discussed ition andor rotation in the image plane. Finally, (3) the
previous sections, and they actually depends only on thipngitudinal movement of the transducer igeated by a
transducer manufactory process. Thymamicartifacts  continuous oscillatory movement due to the heart beats;
are caused by the heart beating. These artifacts severeflyis causes that some positions in the vessel are sampled
affect the coronary inspection, thus they deserve to benultiple times, and the pullback presents an oscillation
discussed in details. in the longitudinal direction that can be easily seen in the
resulting pullback video.
4.1. Dynamic properties of coronary IVUS pullbacks

To clarify how thedynamicartifacts afect the vascular 4-2- Longitudinal swinging artifact
inspection, it is worth to outline the standard procedure The longitudinal swinging féect can be mathemati-
of data acquisition. Figl5shows a schema of a classi- cally modeled to better understand its behavior [13]. Let
cal IVUS acquisition setup. During the acquisition pro- V(l, X, y) be a virtual stack of all images that represents
the vessel at each longitudinal positionVe can model

Catheter Vessel wall Adines  US probe the image formation during the pullback as:
| I(t. x.y) = G(V(lo + s- t+ f(4(1)). x.).¢(1)) (10)
Blood .
|/ / Flow wheres represents the constant speed of the motorized
<{}> <= pullback, f(¢(t)) represents an unknown function that
(& > describes the longitudinal displacement as a function of

T T T \ the heart cycle phase (modeling in this way the artifact
(3)). G represents an unknown 2D operator that de-
scribes the vessel image deformation due to the heart cy-
cle, depending on the phagé&) (modeling artifacts (1)
Figure 15: Schema of an IV US acquisition setup. and (2)). The quantitly + s-t+ f(¢(t)) represents the po-
sition of the transducer in the vessel at timd&quation
tocol, the catheter is pulled back (pullback) at a constanf10) represents the catheter position as an initial vilue
speed in order to acquire spatially subsequent images ¢flus a constant speednotion plus an unknown quantity
the artery. In this way, theoretically, a trunk of the ves- f that depends on the phagg). This formulation clar-
sel can be sampled at regular spatial intervals. Howeveifies that the heart beating is the only causephamic
during this procedure, the heart beating produces artifiartifacts and that the key variable, that introduce period-
cial fluctuations of the probe position along the axis oficity in the artifacts magnitude, is the cardiac phag.
the vessel. Moreover, due to the heart cyclic contrac-
tion/expansion, an apparent rotation with respect to thet.2.1. ECG based gating
catheter axis and in-plane translation can be observed. The uneven sampling of the vessel structure (caused
Finally, due to the pressure changes, during the heart cyby (3)) can be reduced using a gating method. The gat-
cle, the vessel cyclically expands and contracts. Due ting is thought as a method to sample evenly spaced and
these motion phenomena, the appearance of the crosstable frames. The stability refers to the fact that, af-
sectional images can change significantly depending oter the gating, in subsequent frames the vessel should
the heart cycle phase. have a similar position and rotation. This theoretically
Summarizing, IVUS pullbacks fier from diferent  permits to have a sampling that does not contain arti-
dynamicartifacts: First of all, (1) the position of the facts due to the heart cyclic movement. The gating can
transducer is not fixed with respect to the vessel morbe performecbn-ling but it requires a longer time of
phology in the plane orthogonal to vessel extension, alsévUS intervention for the physician and for the patient.
called short-axis. This cause that subsequent frames iAnother possibility is to perform a motorized pullback

Constant Longitudinal Vessel roto- Vessel
speed pullback oscillation translation expansion
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while capturing the ECG signal and then perforrogh  thors propose a method to extract the cardiac phase from
line (also calledretrospectivg ECG gating. This tech- IVUS sequences based on the hypothesis that the oscil-
nique heavily reduces the duration of the clinical examlation of the vessel wall is visible in longitudinal cuts. In
while giving sub-optimal frames, since the frame rate is[13], the authors modifies the method in [14] to make it
fixed, and we can sample only approximately at desirednore robust and computationallffieient.

instants. Recently, other disadvantagesfpfine ECG-

gating have been highlighted: (1) the optimal sampling4.3. Short-axis oscillation

instant in the heart cycle isfliicult to select (usually, the  The other mairdynamicartifact is the short-axis os-
end-diastolic point) and it has high inter and intrapatientgjjjation and deformation. Figl6 shows two examples
variability; (2) the ECG signal is a global measurementof |ongjtudinal cut. The oscillation in the short axis can
of the heart electrical activity while the artifacts due to pe noticed easily in the longitudinal cut as a saw-shaped

the heart movement can change locally depending on thgsgiljation of the vessel wall. This artifact negatively
actual position of the catheter. These two points have

been partially addressed in [14]. A new promising di-
rection in IVUSgff-line gating is to perform an image-
based analysis of the pullback data and to infer optimal
sampling pointsvithoutconsidering the ECG signal.

4.2.2. Computer assisted methods for longitudinal
swinging artifact:
Image-based gating

promising direction to perform retrospective selection of
stable frames. These methods make no use of the ECG |
signal and totally rely only on the information contained |
in the IVUS pullback. In [15] authors propose an al-
gorithm that extracts the information on cardiac cycle
by analyzing image sequence variation of two properties
computed on a region of interest (ROI). The properties
are theAverage Intensitpf the ROI and thébsolute In-
tensity Djferencebetween ROIs of subsequent frames.
In [16] authors discuss results of their Intelligate method §&#
showing that the method performs actually as good as an
ECG gating technique. In [17] and [14] authors propose
an image-based gating algorithm. The basic idea is to
introduce the use of a dissimilarity matdxF;, F;) that
measures the dissimilarity between the frafieandF;

of the same IVUS pullback, whereandj represent tem- .
poral variables. Once defined a proper measure such that &4
®(F, Fj) > 0, they obtain a matrix that exhibits a repeti-
tive pattern of local minima and ridges of local maxima.
The pattern is repeated so that some diagonals represent
the loci of local minima, thus representing a specific in-
terval between any two frames that present minimal dis-
similarity; the principal diagonal is obviously not con- Figure 16: Two examples of longitudinal cut view.

sidered sinceb(F;, F;) = 0. The first diagonal of lo-

cal minima is displaced a number of columns; this dis-impacts on the visual quality of the longitudinal cut; a
placement is a clue for detecting the average heart beaisualization that is often used by clinician to quickly
along the sequence. To enhance the sharpness of magstimate the length of plaques and the degree of steno-
imal ridges, they convolutes the matrix with an X-  sis. In particular, the periodical rotation in the short-axis
shaped inverted Gaussian kernel obtaining a maix can cause that important structures, as e.g. a plaque, to
Now, local maxima on the above defined diagonal iden-appear and disappear periodically in the longitudinal cut
tifies couple of frames that have a high similarity and (see Figl6, right). With the aim of alleviating theffect
minimal inter-frame motion. Then, authors use two al-of this artifact on the longitudinal cut appearance, var-
gorithms to select the best frames in the path on the diagous computer assisted methods have been proposed so
onal that have the highest local maximdnin [18] au-  far.
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4.3.1. Computer assisted methods for Short-axis oscilsuch that the lumen appears as an horizontal tube; more-
lation reduction over, the registration allows to clearly see the length and

The registration of IVUS images is a challenging topic thickness of the plague and the adventitia border.
mainly for two reasons: (1) IVUS imagesfBer from
speckle noise and have poor definition of edges; (2) the
vessel shape changes in a non-rigid way due to heart
movement. The result is that the same part of the ves-
sel can appear quite ftkrent if sampled at two dif-
ferent phases of the heart cycle. figrent rigid and
non-rigid registration algorithms have been proposed to EESSEEESEESS
tackle these two issues. In [19] the authors present a
method for non-rigid alignment of IVUS image based
on Generalized Correlograms (GC) [20]. The method
applies anisotropic éusion to the IVUS images and de-
tects the vessel boundary using a snake. Then, the algo-
rithm samples the boundary atffidirent location to ex-
tract a set of local features. The non-rigid transforma-
tion is estimated by finding the optimal set of correspon-
dence between landmarks (GC) of two IVUS images.
The method is highly computational demanding and has
been conceived to perform non-rigid registration aimed
at retrieval. An alternative method to suppress IVUS im-
age rotation based on a kinematic model is presented in
[21]. The model is used to estimate the center of ro-
tation in the short-axis by computing the rotation of two
ellipses that fit the vessel border in the two compared im-
ages. The method requires detection of the vessel border
with suficient precision using a trained neural network.
In [22], a rigid registration algorithm composed of two 8
steps is presented. Firstly, the method fixes the center of |
rotation as the center of mass of image gray scale val-
ues. Secondly, it estimates the rotation between the two
images by spectral correlation analysis [23]. The most
important limitation of this method is that the estimation
of rigid rotation heavily depends on correct estimationgigure 17: An example of a longitudinal cut before (a) and after (b)
of the center of rotation. In our opinion, the center of applying the registration method described in [25]
mass, while robust with respect to noise and changes in
image texture, is not a good estimate of the center of
rotation. In [24], the authors present a method base%. IVUS-BASED PLAQUE CHARACTERIZATION
on the scale-space optical flow algorithm with a feature-
based weighting scheme. The algorithm has been tested One of the most important property of IVUS modality
on a tissue-mimicking phantom, subjected to controlledconsists in its ability of describing the inner morphology
amounts of angular deviation. While interesting, the ap-of the vessel and, moreover, its tissue composition. As
proach estimates only the catheter rotation, which pointiepicted in section (2), fferent tissue types show dif-
of rotation is fixed in the image center. Recently, in [25], ferent acoustic properties (see Eq. 2) and, consequently,
the authors proposed a method that aims at registerindifferent intensity and shape of the reflected ultrasonic
subsequent IVUS images by aligning the center of thewave; furthermore, the contribution of the scattered com-
vessels first, based on a modified version of the Fast Rgonent is also dierent for each tissue. As results, in the
dial Symmetry transform [26]; and then estimate the rel-IVUS image, areas corresponding téfdrent tissues ex-
ative rotation by spectral correlation analysis [23]. Thehibit different grey-level intensity and textures. Plaque
algorithm is also dfficiently dficient and highly robust characterization problem actually consists ipattern
to intra-patient variations. The method has shown to outrecognitionproblem. For this reason, in each one of
perform the one in [22], having similar computational the method proposed in the last 10 years, the main steps
cost. Fig.17 shows an example of longitudinal cut be- of a pattern recognition problem can be distinguished:
fore and after the registration using the method in [27].(1) ground truth collection, (2) feature extraction and (3)
It can be noticed that the sequence has been registeréchining of a classifier.

(b)
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>~ ] assumption that ffierences in data from ex-vivo cases
sy > Vi and in-vivo cases are negligible.

’ : ' Alternatively, a ground truth can also be created by
using data from in-vivo examples. In this case, the la-
beling process is performed by experts without the in-
formation provided by histology. No assumptions on the
differences between data used as ground truth and data
from clinical cases are needed in this case, but the reli-
ability of the obtained ground truth is relied only on the
experience of physicians.

5.2. FEATURES EXTRACTION

Once the ground truth has been created, the data fea-

Figure 18: Pairs of images obtained by histological analysis (abovefures extraction is performed. Basing on the idea that dif-
and corresponding (below) IVUS image ferent tissues produceftirent echoes, several approach
for extracting features from IVUS signals have been pro-
posed. Early approaches were based on the analysis of
5.1. GROUND-TRUTH COLLECTION texture and patterns on the IVUS image produced by the

The main goal of each automatic plague characterizar/US equipment, while more recent approaches are fo-
tion technique consists in training a mathematical modetused on the analysis of raw radio frequency signals ex-
called classifierwith a set of examples. In the tissue tracted from the catheter. The main approaches, based
characterization problem, the classifier is fed with exam-oth in texture and RF signal analysis, are now pre-
ples of diferent plaque types, like thmalcified lipidic,  sented.
fibrotic andnecroticone. Basing on the features of the
training examples, the classifier should be able to cor5.2.1. TEXTURAL FEATURES

rectly recognize new unknown examples by comparing In textural features approaches, the input data con-
their feature with the features of the learned cases. It igists in the IVUS image, expressed as a two variables
clear that the set of examples used to train the classifiediscrete functiori(x,y), thus treated as a matrix. The
must be extremely reliable, since an error in this databasgrst plaque characterization method based on the anal-
causes a systematic misclassification. ysis of the texture of the image is presented in [29].
In pattern recognition problems, the training set isStarting from a large set of textural features (histogram
calledground truth consisting in a reliable data-base of contrast, skewness, kurtosis, dispersion, variance, radial
labeled examples of the objects we want to recognizeprofile, energy, entropy, maximum probability, contrast,
The ground truth is typically used during the training inverse diference moment, short primitives emphasis,
task but also during the validation task, when the qualitylong primitives emphasis and brownian fractal dimen-
of the trained classifier must be assessed. sion), the features with the highest discriminative power
In the atherosclerotic plaque characterization prob-are identified using the inter-class distance search crite-
lem, the gold standard procedure for producing a reliableion and the Euclidean metric, thus using:
ground truth is the histological analysis of post-mortem . , .
cases. Given an ex-vivo coronary artery is in fact pos- ® Radial profile Itis a gray-level-based texture de-

sible to acquire IVUS data and then, by an histologi-  SCriptor, oriented to reflect thefigrent gray level
cal analysis, to correctly determine the nature of each  Profile characteristics of the hard and soft plaque.
atherosclerotic plaque found into the artery (Fig). In For an elementary region with a point of interest at

this way, a team of experts together with pathologists can (1> Y1) the radial profile is determined as
establish the correspondence between the plaque area en- | (%, Y1)
countered in the histology and its corresponding repre- Pprofile = ’
sentation on the IVUS image. THabeling process is maxyl (X1, Y1 + AY)
then performed, consisting in assigning &elient label
to data corresponding to firent tissue types, and the
ground-truth is created. During this process, the use of a
software that deforms the histological image in order to e Long-Run emphasislt is a measure describing the
match the IVUS image can be also used [28]. maximum contiguous set of constant gray level pix-
In almost all the methods proposed in recent years, els located at a specified direction: a large number
the histological analysis is used to create the ground-  of neighboring pixels of the same gray level rep-
truth and the discriminative power of the characteriza- resents a coarse texture, a small number of these
tion methods is assessed with ex-vivo cases, under the pixels represents a fine texture and the lengths of

(11)

whereAy = 10,20,..., AYmax andAymax iS given
by the image size.
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texture primitives at dferent directions can serve
as texture descriptor.

e Fractal Dimension This measure is calculated
through the transformation of image space to fractal
dimension.

Despite of the high accuracy achieved, the main prob
lem of using the IVUS images obtained with the IVUS
equipment is the lack of normalization in data they pro-
vide. In order to improve the tissue visualization, in fact,
usually physicians need to change the imaging param-
eters of the IVUS equipment, like contrast, depth, gain
etc. In this way, the same tissue observed into two IVUS
images acquired with fierent imaging parameters set
presents dierent features.

In order to extract coherent and comparable features
belonging to diferent tissue, a set of normalized IVUS
images should be used. For this purpose, the raw radio
frequency signals captured by the IVUS equipment can
be exploited to reproduce the image formation process,
with a unique and well controlled set of imaging param-
eters [30]. Furthermore, using the Raw RF signals as ba-
sis for the reconstruction, guarantees a lack @edént
gains applied to the signal itself. In [30] the reconstruc-
tion process is used to create a set of IVUS images of
in-vivo cases in which experts segment atherosclerotic
plagues. Textural features are then extracted by using:

Ciompi et al.

Figure 19: Bank of 16 Gabor filters, obtained by varying the angle and
the frequency, applied to the IVUS image in polar coordinate. Note
that the tissue vary their response wheffiedent filters are applied

e Gabor Filters It is a special case of wavelets and

can be defined as a Gaussgamodulated by a com-
plex sinusoids. In 2D, a Gabor filter has the follow-
ing form in the spatial domain:

h(XY) = 5o

~exp{—% [(%ﬂ)z ()

wheres(x, y) and the gaussian rotation are defined
as: g(xy) = exp[-i2r(Ux + W)], X = xcosd +
ysing, y = —xsind + ycosf. x andy represent
the spatial coordinates rotated by an angjleory
andoy are standard deviations for the Gaussian en-
velope. The aspect ratiohand its orientation are
defined asil = 2%, ¢ = arctanV/U whereU and

V represent the 2D frequencies of the complex si-
nusoid. Fig.19 depicts an example of a bank of 16

(14)

}s(x, ).

e Co-occurrence matrix It can be defined as an es- filters applied to an IVUS image.

timation of the joint probability density function of
gray level pairs in an image. The element values ing 3 pr_.BASED FEATURES

the matrix are bounded from O to 1 and their sum is: . .
In greyscale IVUS, the backscattered signal is pro-
P@, j,D,0) = P(1(l,m)

cessed in real-time into a two-dimensional video image.
=i®I(l + Dcos@), m+ Dsin(g)) = j), This processing task introduces a certain set of approx-
imations and also reduces the resolution in visualizing
: . . tissues. The approximate envelope of the RF signal is in
Dis the.d|stalnce among pixels aads the angle fact computed first, followed by a subsampling process
of egqh Its n(_e|ghbor. Given the co-occurrence ma'(usually by a factor 4) that reduces the number of sam-
trix it Is possible to compute a set of second—orderple in order to create an IVUS image of reasonable di-
SFat'St'C measures of texture, like taeergy kurto- mensions. The signal intensity is then discretized among
Sis entropyetc. 0 and 255 to be converted into greyscale image. Fi-
e Local Binary Patterns LBSs are used to detect nally, the cross-sectional image creation requests an in-
uniform texture patterns in circular neighbourhoodsterpolation task that contributes in decreasing the quality
with any quantization of angular space and spatialof tissue representation. Therefore, even though recon-
resolution. They are based on a circular symmet-structed according to a standardized imaging parameter
ric neighborhood o members with radiuR. To  Set, greyscale IVUS can be seen as a suboptimal tool to
achieve gray level invariance, the central pigeis ~ accurately and reproducibly identify plaque composition
subtracted to each neighbgy, assigning the value [31]-
1 to the result if the dference is positive and 0 oth- ~ RF data from the unprocessed backscattered ultra-
erwise: sound signal provides an alternative to greyscale image
analysis. Theoretically, analysis of the IVUS-RF data
provides a more accurate and reproducible technique for
measuring tissue properties because it is not subject to
machine-dependent processing, subsampling, interpola-
tion, quantization and even operator-dependent settings
[31].

(12)

wherel(l, m) is the gray value at the pixel, (),

P

LBPrp = Z a(gp - 9) - 2,
p=1

(13)

where the operata(x) = 1 if x > 0 and O other-
wise.
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For this reason, post-processing of the backscatteredherep is the ARM degree and the cihieientsay are
(reflected) RF IVUS signal has been developed in ordecalculated minimizing the error of the modeled process
to better characterize plague composition, since the ulwith respect to the original one using the Akaike’s error
trasound RF signals provide quantitative information onprediction criterium. By means of the obtained values
tissue microstructures [32]. Several approaches for feaa it is possible to accurately estimate the power spectral
tures extraction from the Raw RF signals have been prodensity of the considered signal. The use of ARM is
posed. preferred in cases where the window size of the ROl is

ACOUSTIC IMPEDANCE (2) small, since in this case the technique provides a more
Given the relationship between the acoustic impedancaccurate spectral approximation.
¢ and the tissue densigy(Eq. 2) and given that the US
wave propagates with fierent velocity in diferent tis- o ‘
sues, the relative acoustic impedance can be used as
parameter to classify plaque types [33]. This method as-
sumes ultrasound pulse to be well approximated by us-
ing the Plane Wave Born Approximation (PWBA) de-
convolved inverse scattering technique [34]. Given the
matrix of US acquired A-lines, a Region of Interest can
be selected and then windowed with a Hamming win-
dow of length equal to the length of ROIs. To each ROI
a Fourier transform can be associated by averaging the
spectra of all scanlines within the ROI. For each ROlI,
the value of the impedance relative to that of water can
be computed following next steps:

Power Spectrum Density

Power Density Amplitude [dB]

o theultrasound wave reflected fromanultrasoundre- "% » % @ @ e w0 w0 w
flector (acrylic phantom) is acquired and reversed a)
in the time domain: the incident pulse is then ob- .
tained; N power spectrum

_ao| N N P — — —negative slope
N ’ — ' —  positive slope

e given the incident pulse, the reflection ddgentl’
(Eq. 6) is calculated as the ratio of the conjugate of
the Fourier transform of the reflected pulse and the
Fourier transform of the incident pulse itself;

e impulse response (IR) is obtained by calculating the
inverse Fourier transform of the reflection €ibe
cient. Relative impedance is then calculated using:

' =exy(- \/2/72 IR) (15)

POWER SPECTRUM

Power Density Amplitude [dB]
|

Based on the hypothesis thatffdrent tissues behave T S T T T
differently in the frequency domain, several approaches frequency (M)
based on the analysis of power spectrum have been pro- (b)

osed. Mainly, for each ROI oN;, samples andM
P y r P ' .Figure 20: (a) Power spectrum of a ROl computed by ARM; the fre-

contiguous A-lines, a power spectrum can be aSSOCI('quency range is 0-100Hz and the central frequency is KHz. In (b)

ated to each point by averaging the power spectra come straight lines used to compute the spectral features are shown; in
puted in the lines belonging to the ROI. The power specthis case the frequency range is 30461z

trum can be computed by means of the Fourier trans-
form [35, 36, 37] or by using the AutoRegressive Model ~Given the power spectrum, a set of spectral features
(ARM) [38, 39, 30, 40]. can be extracted. Some features have been succes-
Basically, ARM are defined as a linear equation whergfully used in plaque characterization techniques, as the
the value of a stochastic process (A-linejt a certain Mmean power (dB), maximum power (dB), spectral slope
pointt is equal to a linear combination of ifsprevious ~ (dB/MHZ) (a least -squares linear regression over the
outputs weighted by a set of parameters: given bandwidth), y-axis intercept of spectral slope (dB)
b (intercept of the straight line with the y-axis at 0 Hz)
x(t) = Zak(k)x(t _K), (16) [35]. In addition, the value of the frequencies corre-
— sponding to maximum and minimum power can be used
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[38, 39]. These features are extracted in a frequency A plaque characterization system based only on 1B
range of 17-42 MHz, corresponding to the -20 dB band-parameter is presently distributed only in Japan and
width of the system. This set of features, commonlyuses the IVUS catheter from Boston Scientific based
known in literature as theeven-featureapproach, to- on a 40MHz single rotating crystal. Comparisons of
gether with the Integrated Backscatter (IB) represent thédVUS-IB with histopathology demonstrated a high
basis of a commercial product call&@tual Histology  sensitivity for characterizing calcification, fibrosis, and
(VH), implemented in the Volcano (Rancho Cordova, lipid pool [32]. Finally, the IB parameter also repre-
CA) IVUS clinical scanners thatffer near-realtime tis- sents the 8th feature of the Virtual Histology system [39].
sue characterization in vivo [32].

Alternatively to the presented spectral featurefsilla ~ WAVELET-BASED APPROACH
spectrumapproach can be considered [37, 36]. TheThe wavelet analysis of RF signals has been also studied
use of a full-spectrum analysis demonstrated to produce recent years [45, 46]. A wavelet is mainly a waveform
more accurate results, when compared with the seversf limited duration and zero average amplitude [47]
features approach, when classifying fibrolipidic, lipidic, while thewavelet analysiés one of the time-frequency
fibrotic and calcified tissue: when using a 40MHz domain analyses of signals, extracting a unique local
catheter in fact, a lot of variations can be found in thewave pattern within a complex original IVUS-RF signal
main bandwidth of the signal (20-60MHz), thus justify- by iteratively computing wavelet céiicients that are
ing a full-spectrum analysis [37]. In the full-spectrum localized by the amplitude and the position of wavelets.
approach the power spectrum, with frequency range The hypothesis in this kind of approach is that the
from 0 to 100 MHz, is discretized by using a certain IVUS-RF signal belonging to ffierent tissues exhibits
number of bins and then used as feature vector for eactlifferent behavior when analyzed by wavelet, and that
point (the center of a ROI). the wavelet coficients, computed at filerent scales,

INTEGRATED BACKSCATTER (IB) could be the discriminative measures to be used in the
Integrated Backscatter (IB) is another feature, derivedissue characterization [31].
from the RF signals, that has been used in plaque char- This approach has been proved to be appropriate in
acterization approaches [41, 42, 43]. The first methodliscriminating the fibrous from the fatty areas within
based on IB was proposed in 1989 and was oriented tatherosclerotic plaques [45], thus demonstrating the
the detection of acute myocardial infarction and reperfu-useful use of wavelet cdigcients.
sion via M-mode echocardiography [44]. The IB is an
intrinsic parameter of the electrical US signal and can beeLASTOGRAPHY-BASED APPROACH
computed as [41]: The last interesting approach that we consider is based

on elastography, i.e. the measure of théfratiss of a

% % tissue. From equation 2 we see that théstiss value
IB=20log a7) : o o : "
% g g of a tissue is indicative of its histological composition.

Hence, the hypothesis at the basis of this approach is that
whereV is the signal voltage from ROV is the smallest  the measure of the tissuefitiess, actually consisting in
signal voltage that the system can detect, @nid the its strain map, can be used as a discriminative parameter
integration interval. to discriminate tissues [48, 49, 50, 51, 52, 53].

It has been shown that the IB parameter combined In order to obtain the strain map of a tissue by ultra-
with two-dimensional echo can fterentiate the tis- sound, the area containing the tissue must be first im-
sue characteristics in both in vivo and ex vivo studiesaged at two dferent pressure conditions. After that, the
[41, 42]. In Table 2 the computed value of the IB pa- so called pre-compression and post-compression images
rameter when characterizing tissuesrirvitro cases are are correlated and regions with large and small change
presented when discriminating calcifications, mixed le-in positions are then detected: this is called the shift-
sions, fibrous tissue, lipidic core and thrombus. Sincediagram. Finally, the strain diagram can be obtained by
no overlaps in the obtained values are encountered, theéeriving the obtained shift-diagram.
discriminative power of this parameter is confirmed. This approach has been successfully applied to de-
tecting fatty plaques iex-vivo[49, 48] andin-vivo [50]

Histology 1B [dB] -
e i S cases. _Usefulness of el_astograph_y has be_en aIS(_) demon
Mixed lesion | —55 < IB < -30 strated in plaque modeling of aortic artery in rabbits [53]
Fibrotic tissue | -63 < IB < -55 i i i
Lipidic core | _73< 1B < 63 and potentially useful for 3D field extensions [52].
Thrombus | -88< 1B < -80

Table 2: Integrated Backscatter values obtained by histological analy6- CLASSIFICATION /CHARACTERIZATION

sis of post-mortem tissues. The values are provided as meanwdlue ) L
dB. Data extracted from [42] Once the features are extracted, a certain description

of the tissue is defined. Given the collected ground truth
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ROOT NODE
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tissue2
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2000 —

1800 —
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feature,

feat3 > value3

feat2 < value2 feat2 > value2 feat3 < value3 CLASS X
defined
800 —
600‘1 15 20 . .. .
08 06 04 02 o 5 Figure 22: Decision tree. Starting from the ROOT NODE, at each node
feature, featurey the most discriminant feature is computed, thus defining the “path” to

the recognition of each class

Figure 21: Feature space. A set of point acquired from fZerént
tissue types are represented in the space of 3 discriminative features.

property of some tissues, whilef@at < valug for the

o ) ) ) same feature is related to other tissues. By proceeding
itis also possible to assign a reliable label to each one of, s way, the discriminant features and their value are

the set of data relative to atherosclerotic plaques. The Sefsfined at each node (Fi®2). When a new unknown
of labeled data is then passed as input to a mathematicgl ample must be classified, its features are then simply

model callecclassifierfor the training process.  compared, at each node, with the threshold set during
A classifier actually is a probabilistic model (discrimi- o training process, thus assigning it a label. Several

native or generative) with a set of parameters determinefbchniques can be used to assign the most discriminant

(learned) during the training process. The model is iNte a1 re to a node and to define its value. The most im-

fact able to learn the characteristics of the input dataportant are based on ti#ntropy, the Information Gain
from their features, and to set its parameters according tthe Gini Indexand thePartition I’Distance

data. When the training process is over, the set of learned
parameter is flnally saved and the classifier is ready to b%.z ERROR-CORRECTING OUTPUT CODE
used to characterize unknown examples.

The atherosclerotic plaque characterization problem Another dtective approach for the solution of multi-
implies the definition of a multi-class classifier. Except class plaque characterization problem is the use of Error-
for some approaches that aim to discriminate for examCorrecting Output Code (ECOC) technique [30, 54, 12,
ple fibrotic from fatty (lipidic) plaques, the main scenario 40].
implies the discrimination among fibrotic, lipidic and ECOC [55] is a technique that combinék binary
calcified plaques. Furthermore, the necrotic core, fibroliclassifiers to solve K-classes classification problem. A
pidic and lipidic with calcifications tissues are also con-binary classifier is a model trained to discriminate among
sidered in some approaches. The characterization prolwo set of data. Given an unknown example as input, the
lem actually consists in separating, in the feature spacdjinary classifier is able to label it as belonging to the
clouds of points belonging to multiple classes (F2d). class 1 or to the class 2, thus producing®or -1 out-

Several approaches have been presented to solve tpet value, respectively. For each class a particodate-
multi-class tissue characterization problem: we will referword g = {1, -1}>N is obtained k = 1, ...,K). Based
to them with the word “architecture”, since actually they on a chosen coding strategy, a matix= {1, 0, —1}*N
often consist in combining a set of simple classifiers intois designed (Fig23), in which each column represents

a more complex framework. a binary classifieH; (dichotomy) and each row repre-
sents a class. A value 1 in positidf(k, j)) means that
6.1. DECISION TREE the j" dichotomy classifies an unknown example as be-

One simple architecture for the discrimination of dif- longing to the clasg, a value -1 means that it belongs
ferent tissues is thdecision treg38, 39]. Starting from to the clasg] # k and a 0 value means that we do not
a main node (root), during the training process, at eacltare about classification result, regarding clasehere-
node the input data are split into sub-groups according tdore, to classify an unknown example, the distance be-
the most discriminative feature in that node. For exam+tween the obtained codeword and each moyvof the
ple, starting from the root node, during the training pro-matrix M is computed: the inferred class is the valkue
cess we can find that a certdieat > valug is mainlya  reporting the minimum distance. flerentcodingtech-
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H, H: H; rest of tissues\ binary classifiers are trained: each clas-
sifier is trained with a set of data randomly selected, with
reinsertion, from the original training dataset. Hence,
M classifiers are obtained for each binary problem, and
each one of them shows a certain classification accuracy,
depending on how the randomly selected dataset is rep-
resentative of the global training dataset: this accuracy
is somehow taken into account by weighting the result
of each single prediction with the weigkt Then, in
order to discriminate a tissue, a combination of the pre-
dictions of theM classifiers is considered; this combi-
Figure 23: ECOC matrix for a 3-class problem, One-vs-One codinghation can be seen as a monolithic macro-block (array)
technique and Attenuated Euclidean Decoding (AED) technique; thefor the detection of this particular tissue (Fig@4). In
distances value are showed for each row of the matrix the multi-class classification problem, following the bag-
ging architecture, this blocks are repeatédimes for
each considered tissue, thus generating the final predici-

nique can be used. The most popular is¢he-vs-ong  tion on an unknown example by further combining the
in which each pair of classes is considered an the respegredictions of each macro-block.
tive classifier trained. Alternatively, ane-vs-all coding Similarly to that exhibited by the ECOC framework,
can be used, where each class is discriminated toward§is approach embeds a kind of error correction capa-
the other classes. For ﬂqhgcodingtechnique, dierent blllty, given by the contribution of several "experts” and
distance measures can be used. The most common ahaythe combination of their"opinions". Furthermore, the
the Euclidean and the Hamming distance. architecture foresees the use of a large number of macro-
The benefits in using an ECOC framework are mainlyPlocks (M x N x K) and though this fact decreases the
(i) the possibility of combining several binary classifiers Probability of error, it increases the computational time.
into a multiclass framework,iij the automatic error-
correction property of ECOC of correcting some errors
in the prediction and finallyii{ ) the flexibility of a multi-

class architecture in which several variations, like the The last step in the design of a plaque characterization
sub-class classification [54] can be easily adopted. 5 4g consists in itsalidation This task is common to
each medical data processing methodology and, more in
6.3. ENSEMBLE ARCHITECTURE general, to each pattern recognition model, requiring (1)
the creation of a highly reliable data set to be used to test

The lff‘St multi-class architecture we are going tothe discriminative power of the designed method and (2)
present is the Ensemble framework [36]. Usually, dur- . . .
a mathematical testing procedure to follow in order to

ing a standard training process, a classifier is trained, in, , . : :
order to learn parameters according to input data, Wobtaln reliable reSL_JIts._ This last procedure is commonly
. W N . . known ascross-validation

can call it an “expert” for that particular data characteri-
zation problem. The main idea of an ensemble architec- ) S
ture consists in using several experts, instead of one, i.d-1- IN-vitro data validation procedure
several classifier, trained to solve the same problem. As mentioned in section 5.1, the gold standard pro-

According to the combination policy of these expertscedure for obtaining a validated ground truth in the tis-
different ensemble architectures can be built. Two of thesue characterization problem consists in the histologi-
most popular ones at®ostingandbagging Theboost-  cal analysis of post-mortem arteries. In order to extract
ing procedure combines experts in an incremental waylVUS data, the artery (separated from the heart) is first
Given a set of experts, at each step of the boosting prdfixed on a mid-soft plane and filled (using a catheter)
cess a new expert is added to the ensemble so that it favith physiological saline solution at constant pressure
cusses on data that was previously misclassified. Thigaround 100nmmHg, simulating blood pressure. In the
selected set is usually combined by means of a weighteganel the distal and proximal position, together with left
additive model. and right hand are marked to be used as a reference for

Another important family of ensembles comes from the marker position. The probe is then introduced and RF
the baggingprocess. This process specializes each exdata are acquired in correspondence of plaques. These
pert on a diferent sampling of the data set. Then, by positions can be clearly marked on the external part of
means of voting procedure these experts are combinethe artery. The artery is then cut in correspondence of
This process results in very robust classifiers. For exampreviously marked positions and plaque composition is
ple, in the problem of discriminating the fibrotic from the determined by histological analysis.

classi

class:

classs

H z(x) H 2(x) Hz(x)
| | |

X

7. RESULTS
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Figure 24: BaggintEnsemble architecture. Given the numberkotlasses, an array dfl binary classifiers is constructed. Their prediction is
combined taking into account the classification reliabityf each one. The output is then repeabédmes for each one of thK classes and
then combined to produce the output. Optionally, a classification confidence measure can be obtained

As alternative, a specially designed box containing the B IM/N
artery can be used, allowing to automatically cut the ves- B.
sel at a fixed number of positions by superimposing a _
dedicated set of knives [37]. With this procedure, a set : _wain_
of equally-spaced artery cuts are obtained. M — S

For each cut, an image of the tissue obtained by using [
a microscope is obtained. Given the reference points in

the panel and in the IVUS image orientation it is pos-

sible to put in correspondence the plaques detected by, Bx | Accr‘Jracy,

histology with their respective areas in the IVUS image.

This task is achieved by the joint cooperation of experﬂ:igure 25: Data division while pr_arforming N-fold cross validatidvi.
physicians together with pathologists. Théelient con- 'S¢ number of data example;is folds number

ditions and modalities in which the two images are ac-
quired are profoundly dierent. The mechanical con-
sistence given to the artery while acquiring IVUS data
is lost in the moment of cutting the vessel. Phenomen
of tissue spoiling and a certain error in finding the ex-
act correspondence between the IVUS and histologic

CLASSIFIER

test

classifier, while the validation data set is used to assess
he discriminative power of the trained classifier. It is
lear that when the classifier is used to characterize ex-
. : . mples of the training set, the classification error tends
image make _hard to geta _good r(_egrstratron and, conseg, zero, since the discriminative bounds in the feature
quently, a reliable automatic labeling. Hence, the Iabel'space have been actually modeled on that data. For this

ing pracess can be performed manually by joint COOper'reason, it is extremely important that no examples of the

ation of experts and. pathologist or by using a ded'cat.e(é/alidation data set is included in to the training data set.

software able to register the two images obtained by dif- ) ) ]

ferent modalities and fierent approaches [38, 39], and Furthermore, in order tp obtain completely reliable
numerical values, the testing phase must be repeated a

the ground truth is thus obtained. - ; Ve
certain set of times (rounds) and then statistical results
7.2. Cross-validation must be extracted.

Validated IVUS data are obtained from a set of ex-N-fold cross-validation The most common cross
vivo cases. Even though they actually consists in postvalidation technique is calledil-fold cross-validation
mortem cases, the intra-patients variability in data propit consists in considering the whole available data set
erties is still applicable. For this reason, the procedurdactually the available ground truth) and dividing it
of validating the discriminative power of the proposedinto N parts (blocks) containing the same number of
method must be carefully assign data dfefient patients data examples. A classifier is then trained by using
to the training and the validation data set. The trainingN — 1 blocks and its discriminative power is assessed by
data set represent in fact the set of data used to train thesting in the remaining block. This process is repeated
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N times and, after repeating several rounds, the finaby using the database in [12]. The sensitivity parame-
classification performance are given as mean value antér is depicted, after 5 rounds of LOPO cross-validation

standard deviation of the obtained results. technique, and 10 test cases have been randomly selected
The performance parameters typically considered in drom the validation data set.
plague characterization problem are: One of the main problem in the tissue characteriza-
tion, highlighted in Fig.26 as well, is commonly admit-
o Accuracy (A)= reaiEeEn ted as the misclassification between lipidic and fibrotic
plague. Furthermore, phenomena of misclassification
o Sensitivity (S)= ey are also experimented between calcified and necrotic tis-
. ™ sue. These phenomena can be observed when comput-
o Specificity (K) = rxrp ing the confusion matrix of the classified examples. In
- TP some cases, this problem is solved by considering the
* Precision (P)= pirp pairs of misleading (dierent) tissues as a unique tissue

type, thus reducing the classes number in the multi-class
problem definition [39]. In order to solve this problem,
recently an approach based on sub-class tissue definition

Among the N-fold cross-validation techniques, the 10- . :
fold and the 5-fold [56] are largely used. Even thoughhas been presented for a three tissue plaque characteri-
%gtion approach [57].

this technique can be successfully used to assess reliab Anoth I d orobl ists in th
results, one of the common error consists in the creatiora_ﬂinolt_ er cc;mrlnon_y assume p{)o emd C(;]nS'StSI '.?,. tde
of the N blocks. It is common in fact to create the sub- ¢'MCcU ties of classifying tissue beyond the calcifie

data sets by randomly sampling the whole data set, Withplaqug. _ Since the calcified tissue presents a high echo-
out re-insertion, or even by simply dividing by a factor reflectivity property, the US wave does not go through

N the sequential set of all the available examples. In thighe tissue itself, thus generatingshadingeffect result-

way, the complete separation between the training an Ig 'E very Ipwr;slglr:/alngt_ensny abrea, cgrrﬁsp?ndmg ‘?ha
the validation data set is not assured, since it is impossi lack area int e mage, beyon the plaque. The
difficult in observing a signal beyond the plaque does not

ble to control the random selection process; furthermore,
since the number of examples contained in each patieﬁ ply that no plaque can be actually encountered beyond

may not be constant, the sequential division of the Wholxgb N t'szutﬁ' Folr _th|s”r_eas;|>|n, the probleg} of glgssﬁymg
data set could mix part of a validation case with the othe eyond the calcium” is still an open problem [58].
ones.
For this reason, a technique that has been recently Corﬂieferences
sidered is the so calldceave-One-Patient-O L OPO).
It can be considered as a special case of the N-fold cross- _ _
lidati h . in th b f [1] G. K. Hansson, Inflammation, atherosclerosis, and coronary
validation, whereéN now consists in t_ € number of necro artery disease, N Engl J Med 353 (2005) 429-430.
cases and each block actually consists in the set of all ex{2] M.Madijid, A.Zarrabi, S.Litovsky, J.T.Willerson, W.Casscells,
amples of each individual case. In this way, the complete  Finding vulnerable atherosclerotic plaques. is it worth tifiert?,
separation between the training and the validation set is, ,, Arterioscler Thromb Vasc Biol. 24 (2004) 1775-1782. .

. . o . [3] G. Gorge, J. Ge, D. Baumgart, C. von Birgelen, R. Erbel, In vivo
assured, and the intra-patients variability is t_aken INt0 " tomographic assessment of the heart and blood vessels with in-
account. For these reasons, the results provided by the travascular ultrasound, Basic Res Cardiol. 93(4) (1998) 219-40.
LOPO technique can be considered as indicative of thel4] S.E.Nissen, P. Yock, Intravascular ultrasound: Novel pathophys-

. . . _ iological insights and current clinical applications, Circulation
behaV|or.o?c the de3|gneq model in presence pf anewun-  16375001) 604-616.
!‘nown clinical case. DU“ng.the cross-validation m?FhOd [5] W. Schaberle, Ultrasonography in Vascular Diagnosis, Springer,
in fact, the validation case is, respect to the classifier, a  2004.
completely unknown case. [6] S. G. Ellis, D. R. H. jr. (Eds.), Strategic approaches in coronary
intervention (3rd Edition), Lippincott Williams & Wilkins, 2006.
[7] R.J. Siegel (Ed.), Intravascular Ultrasound Imaging in Coronary
7.3. Classification results Artery Disease, 1998.
.. [8] s.Sethuramana, S.R.Aglyamova, J.H.Amirianb, R.W.Smallingb,
In almost all the proposed plague characterization S.Y.Emelianova, Development of a combined intravascular ul-
techniques, an overall accuracy between 80% and 92%is trasound and photoacustic imaging system, Proceeding of SPIE

; in dicerimi ; : ; 6086.
?C_hdl_eved.dTheIme?llr(;dl_SCI’Imlnated ?lssues are the f(ljbr(.)tlc' ] E.Ascher (Ed.), Vascular Surgery (5th Edition), Blackwell, 2003.
ipidic and calcified tissue. Furthermore, mixed fis- [10] G.Bianchi, R.Sorrentino, Electronic filter simulation & design,
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calcified tissue have been also considered in some apll] R.C.Gonzalez, R.E.Woods, Digital Image Processing (Second

: ; _ Edition), Addison-Wesley, 2001.
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calcified tissue characterization is presented, computed ing).

where TP= true positive, TN= true negative, F
false positive and FIN- false negative.
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Figure 26: Values of sensitivity for the fibrotic (green), lipidic (yellow)
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Figure 27: Example of plaque characterization results. In the column
(a) the IVUS image, in (b) the ground truth, segmented according to
the histological analysis and in (c) the classification result. In green,
yellow and blue are indicated tlirotic, lipidic andcalcified plaque,
respectively.
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