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Abstract

Natural products have potential for inducing apoptosis, inhibiting adipogenesis and stimulating lipolysis in adipocytes. The objective of
this review is to discuss the adipocyte life cycle and various dietary bioactives that target different stages of adipocyte life cycle. Different
stages of adipocyte development include preadipocytes, maturing preadipocytes and mature adipocytes. Various dietary bioactives like
genistein, conjugated linoleic acid (CLA), docosahexaenoic acid, epigallocatechin gallate, quercetin, resveratrol and ajoene affect adipocytes
during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular
targets that can be used for both treatment and prevention of obesity have been identified, targeted monotherapy has resulted in lack of
success. Thus, targeting several signal transduction pathways simultaneously with multiple natural products to achieve additive or synergistic
effects might be an appropriate approach to address obesity. We have previously reported two such combinations, namely, ajoene+CLA and
vitamin D+genistein. CLA enhanced ajoene-induced apoptosis in mature 3T3-L1 adipocytes by synergistically increasing the expression of
several proapoptotic factors. Similarly, genistein potentiated vitamin D's inhibition of adipogenesis and induction of apoptosis in maturing
preadipocytes by an enhanced expression of VDR (vitamin D receptor) protein. These two examples indicate that combination therapy
employing compounds that target different stages of the adipocyte life cycle might prove beneficial for decreasing adipose tissue volume by
inducing apoptosis or by inhibiting adipogenesis or both.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Obesity is no longer considered to be only a cosmetic
problem. Studies indicate that higher levels of body fat are
associated with an increased risk for the development of
numerous adverse health conditions [1]. Weight loss is
increasingly recognized to have major health benefits for
overweight people [2] and also increases life expectancy in
people having obesity-related complications. While reducing
dietary fat content combined with increased physical
exercise was shown to be effective in preventing obesity
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[3], only one third of those trying to lose weight reported
eating fewer calories and exercising more [4]. Although
weight loss and weight control drugs are becoming
extremely common in today's society, the remedies provided
by the diet industry have failed in the long-term maintenance
of weight loss in obese patients [5]. Moreover, it has been
estimated that more than 90% of the people who lose weight
by dieting return to their original weight within 2–5 years
[6]. Adipose tissue growth involves formation of new
adipocytes from precursor cells, further leading to an
increase in adipocyte size. The transition from undiffer-
entiated fibroblast-like preadipocytes into mature adipocytes
constitutes the adipocyte life cycle, and treatments that
regulate both size and number of adipocytes may provide a
better therapeutic approach for treating obesity.

The decrease of adipose tissue mass that occurs with
weight loss may involve the mobilization of lipids through
lipolysis or the loss of mature fat cells through apoptosis
[7,8]. While development of obesity is a greater problem
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during middle age, elderly people can have a relative
increase in body fat content accompanied by an accumula-
tion of adipocytes in nonadipose tissues, such as muscle and
bone marrow. Since marrow adipocytes inhibit osteoblast
proliferation [9] and disrupt the normal blood supply to bone
tissue [10], treatments that inhibit marrow adipogenesis and
decrease bone marrow adipocyte populations would have
positive consequences for bone health. Furthermore, loss
of weight in the elderly is associated with acceleration of
both muscle tissue loss [11] and bone loss [12], and hence,
treatments that selectively remove adipocytes while sparing
muscle and bone tissue could be of tremendous benefit
for prevention of sarcopenia, osteoporosis and adiposity in
the elderly.

Medicinal plants and plant extracts represent the oldest
and most widespread form of medication. At least 25% of the
active compounds in currently prescribed synthetic drugs
were first identified in plant sources [13]. Dissatisfaction
with the high costs and potentially hazardous side effects
of pharmaceuticals have resulted in a larger percentage of
people in the United States purchasing and exploring the
applications of medicinal plants than before [14]. Several
plants like willow, poppy, foxglove, cinchona, aloe and
garlic have been verified as medicinally beneficial through
repeated clinical testing and laboratory analyses [15,16], and
a number of plant extracts like green tea [17], garlic
compounds [18] and conjugated linoleic acid (CLA) [19]
were shown to possess either antidiabetic effects or have
direct effects on adipose tissue.

A large body of literature indicates that substantial
progress has been made concerning our knowledge of bio-
active components in plant foods and their links to obesity.
Polyphenols constitute one of the ubiquitous groups of
plant metabolites [20] widely found in fruits, vegetables,
cereals, legumes and wine [21,22]. A number of studies
have been carried out to investigate the antiobesity effects
of polyphenols like apigenin and luteolin [23], kaempferol
[24], myricetin and quercetin [25], genistein and diadzein
[26–28], cyanidin [29], grape seed proanthocyanidin extract
(GSPE) [30], xanthohumol [31] and epigallocatechin
gallate (EGCG) [32]. Likewise, studies involving the
effects on lipid metabolism have been carried out with
carotenoids like fucoxanthin [33], coumarin derivatives
like esculetin [34] and phytoalexins like resveratrol [35].
Other bioactive components of food with antiobesity effects
include phytosterols, polyunsaturated fatty acids and orga-
nosulfur compounds.
2. Natural compounds used for the treatment of obesity

2.1. Metabolic stimulants

Caffeine and ephedrine have been proposed as treatments
for weight loss and weight maintenance for a long time.
Caffeine increases energy expenditure by inhibiting the
phosphodiesterase (PDE)-induced degradation of intracellu-
lar cyclic adenosine monophosphate (cAMP) [36] and
decreases energy intake by reducing food intake [37].
Ephedrine, an alkaloid, mediates thermogenic effects by
enhancement of sympathetic neuronal release of norepi-
nephrine (NE) and epinephrine [36]. Although, the thermo-
genic effect of ephedrine was shown to be markedly
potentiated by caffeine [38], owing to adverse cardiovascular
side effects, the Food and Drug Administration has banned
the sale of ephedra-containing dietary supplements [39].
EGCG, a flavonoid [40,41] and capsaicin, an alkaloid [42]
were also shown to increase energy expenditure and
thermogenesis in humans. Capsaicin dose-dependently
enhanced catecholamine secretion from the adrenal medulla
[43] to exert its thermogenic effect, whereas EGCG
stimulated thermogenesis by inhibition of catechol O-
methyl-transferase, an enzyme that degrades NE [44].

2.2. Appetite suppressants

Better understanding of the endogenous mechanisms
involved in appetite and appetite suppression has dramatically
increased interest in appetite suppressants. Extract of Hoodia
gordoni is one of the most popular herbal supplements
claimed to possess appetite suppressant properties. An
oxypregnane steroidal glycoside, known as P57, is the only
reported active constituent from hoodia [45]. This compound
increased the adenosine triphosphate (ATP) content in
hypothalamic neurons that regulate food intake after intracer-
ebroventricular injection in rats [46]. Several other herbal
supplements and plant extracts like ephedra [47], Citrus
aurantium [48], hydroxycitric acid [49], Caralluma fimbriata
[50] and Phaseolus vulgaris isolectins [51] have also been
reported to possess appetite-suppressing properties.

2.3. Starch blockers

It has been well established that certain plant foods, such
as P. vulgaris extract (derived from white kidney beans) and
wheat, contain a substance that inhibits the activity of salivary
and pancreatic amylase, and therefore, they are called starch
blockers [52]. The plant extracts or herbal supplements that
act as starch blockers promote weight loss by either
interfering with the breakdown of complex carbohydrates
or by providing resistant starches to the lower gastrointestinal
tract [53]. Starch blockers show potential promise in the
treatment of obesity, but further studies are warranted to
conclusively demonstrate the effectiveness.

2.4. Glucose/insulin metabolism

Metabolism of glucose is a complex process regulated by
peptides and steroid hormones and is highly influenced by
diet. Hypoglycemic effects of several plant extracts like
Siraitia grosvenori [54], Stachytarpheta cayennensis [55],
Platycodon grandiflorum [56], Gynostemma pentaphyllum
[57], Cichorium intybus [58], Oryza sativa [59], Cucurbita
ficifolia [60], Allium sativum [61], Vitex megapotamica [62]
and cinnamon bark [63] have been investigated. Soy protein
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was shown to significantly improve insulin sensitivity and
glucose effectiveness compared with casein [64]. Dietary
fiber was also shown to significantly improve blood glucose
control but the mechanisms by which dietary fiber exerts its
hypoglycemic activities are unknown [65].

2.5. Lipid metabolism

Obesity is generally linked to complications in lipid
metabolism and oxidative stress. The effects of several plant
extracts like Cissus quadrangularis [66], Aralia mandshur-
ica (aralax) [67], Kochujang (Korean fermented red pepper
paste) [68], psyllium [69], Salix matsudana leaves [23,70]
and Arachis hypogaea [71] on lipid metabolism revealed a
reduction in serum triglyceride levels. However, there are no
major long-term studies demonstrating harm or benefit in
using lipid-lowering drugs compared to low-fat diets in
children [72]. Phytosterols have been widely studied for their
cholesterol-lowering effects. One such phytochemical,
guggulsterone [4,17(20)-pregnadiene-3,16-dione], has been
used to treat a variety of ailments, including obesity, arthritis
and lipid disorders [73]. Several other plant sterols like
diosgenin, campesterol, sitosterol, stigmasterol and brassi-
casterol were shown to possess cholesterol lowering effects
[74–76]. Since turnover of cholesterol was shown to bear a
relationship to body fat mass [77], phytosterols may also
decrease body fat. A number of studies have demonstrated
the beneficial effects of polyunsaturated fatty acids (PUFAs)
on lipid-related disorders in humans [78].

2.6. Adipocyte-specific effects

Adipose tissue mass can be reduced by both inhibiting
adipogenesis and inducing apoptosis of adipocytes. Natural
products that specifically target both these pathways therefore
will have better potential for treatment and prevention of
obesity. Polyphenolic compounds are widely found in fruits
and vegetables [21], among which flavonoids and several
classes of nonflavonoids are usually distinguished [22]. The
antiobesity effects and also adipocyte-specific effects of
several polyphenols have been investigated, as discussed
below. PUFAs are vital components of the phospholipids of
cell membranes and serve as important mediators of the
nuclear events regulating the adipocyte-specific gene expres-
sion involved in lipid metabolism and adipogenesis [79].
Although most commonly used dietary supplements like CLA
showed an effect on glucose and lipid metabolism, these
effects are also likely secondary effects mediated through
adipocyte-specific transcription factors and their nuclear
receptors [80]. Likewise, although the beneficial effects of
organosulfur compounds present in natural food are due to
their antioxidant and anticarcinogenic properties [81], recently,
the adipocyte specific effects of ajoene, a garlic derivative,
were reported [82]. This study indicates that garlic extracts
may influence fat cell number, thereby suggesting a therapeutic
possibility for obesity. The adipocyte-specific effects of natural
products are described in detail in the following sections.
3. The adipocyte life cycle

The biologic events leading to obesity are characterized
by changes in cell properties of adipocytes and may
include an increase in the number or size or both [83].
Adipocytes are derived from mesenchymal stem cells, which
have the potential to differentiate into myoblasts, chondro-
blasts, osteoblasts or adipocytes. The adipocyte life cycle
includes alteration of cell shape and growth arrest, clonal
expansion and a complex sequence of changes in gene
expression leading to storage of lipid and finally cell death
(Fig. 1) [84].

During the growth phase, preadipocytes resemble fibro-
blasts morphologically. Pref-1, a preadipocyte-secreted
factor serves as a marker for preadipocytes and is
extinguished during adipocyte differentiation [85]. At
confluence, preadipocytes enter a resting phase called
growth arrest before undergoing the differentiation process.
Two transcription factors, CCAAT/enhancer binding protein
(C/EBPα) and peroxisome proliferator-activated receptor
(PPAR) γ were shown to be involved in the preadipocyte
growth arrest that is required for adipocyte differentiation
[86]. Following growth arrest, preadipocytes must receive an
appropriate combination of mitogenic and adipogenic
signals to continue through the subsequent differentiation
steps. During the process of differentiation, preadipocytes
undergo one round of DNA replication leading to clonal
amplification of committed cells [87]. The induction of
differentiation also results in drastic change in cell shape as
the cells convert from fibroblastic to spherical shape.

Following induction, a dramatic decrease in Pref-1
expression accompanies a rapid increase in the expression
of C/EBPβ, followed by expression of C/EBPα and PPARγ
[88]. During the terminal stages of differentiation, the
mRNA levels for enzymes involved in triacylglycerol
metabolism like glycerol-3-phosphate dehydrogenase, fatty
acid synthase and glyceraldehyde-3-phosphate dehydrogen-
ase, increase to a great extent [89,90]. Finally, although it
was once believed that the total number of adipocytes does
not change throughout life, it is now recognized that new
adipocytes can be formed or can be removed by the process
of apoptosis [7].
4. Targeting the adipocyte life cycle

4.1. Preadipocytes

Preadipocytes can proliferate throughout life to increase
fat mass. A number of natural products were shown to inhibit
preadipocyte proliferation and induce apoptosis. Polyphe-
nols are powerful antioxidants [91], and induction of
apoptosis in preadipocytes by flavonoids was shown to be
associated with their antioxidant activity [92]. Quercetin, one
of the most abundant flavonoids present in various common
fruits and vegetables, induced apoptosis in 3T3-L1 pre-
adipocytes by decreasing mitochondria membrane potential,



Fig. 1. Mesenchymal stem cells are the precursors of several different types of cells, including myoblasts, chondroblasts, osteoblasts and preadipocytes. Once
preadipocytes are triggered to mature, they begin to change shape and undergo a round of cell division known as clonal expansion, followed by initiation of the
genetic program that allows them to synthesize and store triglycerides. Mature adipocytes can continue storing lipid when energy intake exceeds output, and they
can mobilize and oxidize lipid when energy output exceeds input. Mature adipocytes can also undergo apoptotic cell death under certain conditions.
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down-regulating poly (ADP-ribose) polymerase (PARP) and
Bcl-2 and activating caspase 3, Bax and Bak. Several other
flavonoids like naringenin, rutin, hesperidin, resveratrol,
naringin and genistein also decreased preadipocyte prolif-
eration [93–95]. The green tea polyphenol EGCG also
induced apoptosis in preadipocytes. The apoptotic effects
were Cdk2- and caspase 3-dependent and could be attributed
to inhibition of cell mitogenesis [96]. The induction of
apoptosis in 3T3-L1 preadipocytes by capsaicin was
mediated through the activation of caspase 3, Bax and
Bak, and then through the cleavage of PARP and the down-
regulation of Bcl-2 [97].

Dividing cells when exposed to stress will undergo cell
cycle arrest to either repair the DNA or to initiate apoptosis
[98]. Natural antioxidants were reported to cause G1 phase
arrest in prostatic carcinoma cells [99]. Phenolic acids like
o-coumaric acid,m-coumaric acid and chlorogenic acid caused
cell cycle arrest at the G1 phase in a time- and dose-dependent
manner in preadipocytes [93], and another coumarin deriva-
tive, esculetin, also induced apoptosis in 3T3-L1 preadipocytes
[94]. More recently, CLAs were shown to promote human
preadipocyte apoptosis [100]. However, docosahexaenoic
acid (DHA), an omega-3 fatty acid, showed no effect on the
proliferation of preconfluent preadipocytes [101].

4.2. Maturing preadipocytes

Adipocyte number increases not only as a result of
increased preadipocyte proliferation but also due to differ-
entiation [102]. Induction of differentiation stimulates clonal
expansion resulting in doubling of the cell number [87].
Two critical events occur during the early stage of
differentiation, namely, mitotic clonal expansion and an
irreversible commitment to differentiation [103]. Genistein
inhibited mitotic clonal expansion of 2-day postconfluent
3T3-L1 preadipocytes, whereas naringenin, a flavonoid
structurally similar to genistein, failed to exert antiprolifera-
tive effects on maturing preadipocytes [95] (Fig. 2).
Esculetin induced apoptosis in maturing preadipocytes
during the late differentiation stage [94]. DHA-induced
apoptosis in 3T3-L1 cells during postconfluent mitotic
expansion was accompanied by increased LDH release
[104]. Postconfluent preadipocytes treated with CLA had
more apoptotic cells than control cultures and also had fewer
cells in the S-phase than control cultures [105].

EGCG also induced apoptosis in postconfluent maturing
preadipocytes during treatment with insulin, but the
biochemical mechanisms involved are not known [106].
Cell cycle and growth-related genes in maturing preadipo-
cytes were down-regulated after treatment with GSPE during
the early stage of differentiation [107]. Since irreversibly
committed preadipocytes undergo several rounds of replica-
tion during the first 2 days of differentiation, the induction of
apoptosis in postconfluent differentiating cells will lead to
fewer adipocytes. Therefore, maturing preadipocytes could
be an important target for natural products in regulating the
adipocyte life cycle.
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4.3. Adipogenesis

The first hallmark of the adipogenesis process is alteration
in cell shape paralleled by changes in the type and expression
levels of extracellular matrix components and cytoskeletal
components [108]. These events further promote the
expression of adipogenic transcription factors, including
C/EBPα and PPARγ. C/EBP and PPAR are the central
transcriptional regulators of adipogenesis and are required
for the synthesis of many adipocyte functional proteins.
C/EBP up-regulation is a very early event and mediates the
downstream up-regulation of PPAR and C/EBP expression
[109]. A number of studies have demonstrated that natural
compounds like EGCG, genistein, esculetin, DHA, berber-
ine, resveratrol, guggulsterone, CLA, capsaicin, baicalein
and procyanidins inhibited adipogenesis [35,94,97,104,
110–115]. The protein expression of PPAR and C/EBP was
decreased in adipocytes treated with capsaicin, genistein,
berberine and EGCG [106,107,95,97,111,116]. PUFAs were
shown to suppress lipogenesis by down-regulating the
expression of the sterol regulatory element-binding proteins
[117] and also by down-regulating the late phase of
adipocyte differentiation [118]. The decrease in adipogenesis
by resveratrol was associated with increase in the expression
of Sirt1, which promotes fat mobilization by repressing
PPARγ [35]. The anti-adipogenic effect of baicalein was due
to its ability to enhance the expression of cyclooxygenase-2
(COX-2), which is normally down-regulated during adipo-
genesis [115]. AMP-activated protein kinase (AMPK) is
Fig. 2. Examples of individual natural compounds and combinations of compoun
preadipocyte proliferation and suppresses lipid accumulation in maturing preadipoc
in combination with 1,25(OH)2D3, it can induce apoptosis in maturing preadipocyte
it can inhibit lipid accumulation in maturing preadipocytes. Quercetin also has mul
apoptosis and stimulate lipolysis in mature adipocytes. Ajoene+CLA are especiall
another target molecule for antiobesity treatments, and
genistein, EGCG and capsaicin were shown to inhibit
adipocyte differentiation by activating AMPK [119].

4.4. Lipolysis

Breakdown of triglycerides in adipocytes and the release
of glycerol and fatty acids are important for the regulation of
energy homeostasis [120]. Hormone-sensitive lipase (HSL)
is the most important lipase that catalyses the process of
lipolysis, and HSL is subject to hormonal regulation [121].
Lipolysis is stimulated by protein kinase A (PKA) activation,
which phosphorylates HSL, or by phosphorylation of HSL by
G protein-coupled receptors and cyclic AMP-activated
extracellular signal-regulated kinase (ERK) [122]. Preadipo-
cytes do not have lipolytic activity until they are differ-
entiated to mature adipocytes [123]. The cytokine tumor
necrosis factor alpha (TNFα) has been shown to increase the
lipolysis rate in humans in vivo [124] and in primary cultures
of newly differentiated human preadipocytes [125].

Apart from inhibiting adipogenesis, several natural
compounds stimulate lipolysis in adipocytes. Flavonoids
genistein, diadzein, coumestrol and zearalenone stimulated a
dose-dependent increase in lipolysis in rat adipocytes
[126,127]. Quercetin, luteolin and fisetin caused a dose-
and time-dependent increase in lipolysis in rat adipocytes,
which was synergistic with epinephrine, and these effective
lipolytic flavonoids were also reported to be potent PDE
inhibitors [128]. Grape seed proanthocyanidins stimulated
ds that affect specific stages of the adipocyte life cycle. Genistein inhibits
ytes. It also triggers lipolysis and induces apoptosis in mature adipocytes, and
s. EGCG induces apoptosis in both preadipocytes and mature adipocytes, and
tiple effects — it can inhibit preadipocyte proliferation, induce preadipocyte
y potent in inducing apoptosis in mature adipocytes.
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long-term lipolysis by increasing cAMP and PKA in 3T3-L1
adipocytes [129]. CLA increased basal lipolysis in 3T3-L1
preadipocytes [130,131] and human adipocytes [132]. The
mechanism of induction of lipolysis by CLA is not mediated
by HSL activation via classic cAMP or PKA pathways but
via an ERK-dependent activation of HSL [132]. DHA also
stimulated lipolysis when added to mature adipocytes;
however, the cellular mechanisms involved in DHA's effects
on lipid metabolism have not yet been investigated [104].
In contrast, EGCG did not induce lipolysis, indicating that
the anti-obesity effects of EGCG are not mediated via
increased lipid mobilization [133].

4.5. Mature adipocyte apoptosis

Compounds that induce adipocyte apoptosis can reduce
body fat content, and the effect has the potential to last much
longer than body fat reduction caused by lipid mobilization
alone. Apoptosis is a form of cell suicide that plays an
important role in maintaining cellular homeostasis, and at
times, it is necessary to eliminate excessive cells and cells that
hinder development. Although a number of stimuli trigger
apoptosis, there are two major signaling pathways: the death
receptor pathway and the mitochondrial pathway [134]. A
series of molecular steps leads to activation of caspases in
both of these pathways. Finally this results in cleavage of a
number of nuclear and cytoplasmic substrates resulting in cell
death [135].

Several natural compounds were reported to induce
apoptosis primarily in cancer cells, but relatively little
research exists on investigating the various natural com-
pounds that induce apoptosis in adipose tissue. Green tea
extracts [17], soy isoflavones [26,27], CLA [130,136,137]
and garlic compounds [18] were shown to reduce body fat in
experimental animals, but the mechanisms of action in
inducing adipocyte apoptosis with these compounds has been
investigated only recently. Although the effect of CLA on
body fat is not completely understood, it is thought that a
marked increase of TNFα mRNA with an increase of
uncoupling protein 2 (UCP2) in adipocytes caused CLA-
induced apoptosis [137]. In contrast, EGCG-induced apop-
tosis is mediated by activator protein-1, nuclear factor kappa
B and p53 [138] and increased caspase 3 activity [139].

Reactive oxygen species (ROS) were reported to play a
key role in cell signaling, and the role of ROS generation in
the proliferation of various cells has been investigated
[140,141]. In leukemic cells, increased ROS generation leads
to the activation of mitogen-activated protein kinases,
resulting in cell death [142]. Genistein, EGCG and capsaicin
stimulated intracellular ROS release, which activated AMPK
rapidly leading to apoptosis [119]. Ajoene also induced
apoptosis in leukemic cells through the generation of ROS
[143], and more recently, ajoene was shown to induce ROS-
mediated apoptosis in adipocytes as well [82]. The cellular
mechanisms involved in DHA-mediated apoptosis in mature
adipocytes has not been investigated yet [104].
4.6. Dietary bioactive entities targeting multiple
signaling pathways

Synergistic interactions with combinations of phytochem-
icals such as quercetin, tea catechins, curcumin, genistein
and resveratrol for the treatment of cancer has been
investigated [144]. The apoptosis-inducing activity of
EGCG on lung cancer cells was found to be synergistically
enhanced by other chemopreventive agents, such as sulindac
and tamoxifen [145]. Additionally, curcumin, a component
of the culinary spice turmeric, was shown to potentiate the
antitumor and apoptotic effects of cisplatin in ovarian
carcinoma cells [146]. While all the above studies were
performed in cancer cells, such synergistic interactions
among dietary bioactives on adipocytes have not been
investigated in detail.

Recently we have reported that t10,c12CLA potentiates
ajoene-induced apoptosis in 3T3-L1 adipocytes [147].
Cytochrome c release is regulated by Bcl-2 family proteins,
and these proteins are associated with the mitochondrial
membrane and regulate its integrity. Bax, a member of Bcl-2
family proteins, exerts proapoptotic activity by translocation
from the cytosol to the mitochondria and inducing cyto-
chrome c release [148]. CLA and ajoene as individual
compounds showed no effect on cytochrome c, whereas
ajoene increased and CLA had no effect on Bax expression.
However, the combination of ajoene and CLA caused a
synergistic increase in both cytochrome c and Bax expression.

Similarly, we have reported that 1,25 dihydroxy vitamin D3

(1,25(OH)2D3 [calcitriol]), potentiates the effects of genistein
in inducing apoptosis and inhibiting adipogenesis in maturing
3T3-L1 preadipocytes. An interesting feature about this study
is that the synergistic effect was observed only in maturing
preadipocytes and not in either mature adipocytes or
preadipocytes, the reasons for which are not clearly under-
stood. The combination of genistein and 1,25(OH)2D3 caused
a significant increase in vitamin D receptor (VDR) mRNA
expression in human prostate cancer cells [149], and we found
that in maturing 3T3-L1 adipocytes, genistein+1,25(OH)2D3

increased VDR protein levels by more than 100%, whereas
1,25(OH)2D3 by itself increased VDR protein levels by only
40%, and genistein alone at the tested concentration had no
effect. This effect on VDR correlated with an increase in
apoptosis of about 200% with the combination treatment. The
VDR, a member of the nuclear receptor superfamily, plays a
key role in adipocyte biology when bound to its ligand, 1,25
(OH)2D3 [150], and these results indicate that the potentiation
of both the increase in apoptosis and suppression of
adipogenesis with the combination treatment might be
mediated in part through the VDR.

Such studies of synergistic activity suggest that the desired
effects on adipocytes could be achieved by using lower doses
of two or more compounds, thereby decreasing potential
toxic effects. Although results from in vitro experiments
cannot be directly extrapolated to clinical effects, such studies
will help in elucidating various molecular pathways by which
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selected natural products, either as individual treatments or
in combination, might be effective in regulating adipose
tissue volume through adipocyte apoptosis and inhibition
of adipogenesis.
5. Conclusions

Obesity is a risk factor for diseases like non-insulin-
dependent diabetes mellitus, atherosclerosis and certain
cancers [151]. Adipose mass can be decreased by removing
adipocytes, and it is becoming evident that fat cells have
a finite life span and can be eliminated by apoptosis
[7,152,153]. Since adipogenesis is intricately related to
adipocyte differentiation and maturation, inducing apoptosis
and inhibiting adipogenesis at various stages of the adipocyte
life cycle may be target pathways for treating obesity. In
cancer cells, phytochemicals tend to increase the therapeutic
effect by either blocking one or more targets of the signal
transduction pathway or by increasing the bioavailability of
the other drug in the system [144]. Dietary bioactives derived
from natural products have shown interesting effects on
adipose tissue like inducing apoptosis, decreasing lipid
accumulation and inducing lipolysis. Since a number of
complex interconnected cell signaling pathways are involved
in regulating all the abovementioned processes, treating
adipocytes with multiple natural products can result in
enhanced effects. This strategy can be achieved by exerting
beneficial effects through additive or synergistic actions of
several natural compounds acting at single or multiple target
sites in the adipocyte life cycle associated with physiological
processes like apoptosis, adipogenesis and lipolysis.
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