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Statement 2:Under the assumptions of this theorem for @ny
to <t
Di(t) — Palto) > Pax(t) — Pa-(to)
—}lAﬁT(t)L_lAﬁ(t) + 0. (h)
1

where

Da(t) := /D (2a* (7)dd(7) + a” (r)La(r)dr)

AV(t) := BL P[Buo(tcomp(t) — 2™ (t))h
+ (K 4+ AoCH)Ay(1)], Ay(t) = y(t) — y(t — h)

(20)

and this minimum is reachable for

@(t)dt = @ (t)dt := —L™ "' Byo P[Buo(tcomp () + 2" (1)) dt
+ (K + AoCy) dy()]-

As a result, we havei®;-(¢) < 0 (in symbolic form).
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Proof of Statement 2.Using the Euler-Maruyama’s formula

[3], [9] we obtain the following relation:(h = t — tg —
~T . ~T ~

0): ‘I.’ﬁ.(f? - Pa(to) = 2u (t)éd(t) +u (t)L“(f)}L + Oug(h)- Abstract—Min—max feedback formulations of model predictive control
Minimizing then the right side for each fixed we derive are discussed, both in the fixed and variable horizon contexts. The control
) schemes the authors discuss introduce, in the control optimization, the

min[®g(t) — $a(to)] = Pax(t) — Pax(to) notion that feedback is present in the receding-horizon implementation

() 1 of the control. This leads to improved performance, compared to standard
LT -1 model predictive control, and resolves the feasibility difficulties that arise

- }L“\‘l) (LT AD(t) + 0 (h) < 0u(h). (21) with the min—max techniques that are documented in the literature.

The stabilizing properties of the methods are discussed as well as some

Hence, taking into account the definition (20), we hade- () < 0.  practical implementation details.

Rewriting (18) in differential form and taking into account thattrollr.]dex Terms—Feedback, min—-max optimization, model predictive con-
P is the solution of the Riccati equation (see Assumption 4 of this
theorem) we finally derive
as . . |I. INTRODUCTION
dV(e(t)) < [p(t) +I(O)]dt+ 87 (1) dw(t) — e (H)Qee(t) dt. Model predictive control (MPC) is a control methodology that

According to the Kronecker lemma, the Large Number law fdf Pecoming mature. The basic aspects of the method are now
martingale, and Skorohod lemma (see [2] and [4]), we obtain tieell understood, and stabilizing formulations of the control law are
result of the theorem. Details of this proof can be found in [13]. ([jlcicu[g]ented in the literature, both for linear and nonlinear processes
The MPC strategy optimizes an open-loop control sequence, at
each sample, to minimize a nominal cost function, subject to some
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closed-loop performance can be poor [3], with likely violations of
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unknown disturbances affect the process, the result is often that seguence associated with tlith such realization, and Ietﬁﬂ‘t
control law is inapplicable, due to infeasibility. represent the solution of the model equation

In this paper, we consider a min—-max feedback MPC approach,
in which the model is assumed to be exact, and the effects of
possible future dlstl_erances are take_n into account. T_he formulatlvc\nlrgh i'?fu — 2, forall £ € £. In the fixed horizon case, we consider
we propose does introduce the notion of feedback in the contrR ; L

o . the min—-max optimization
optimization that is performed at each sample.

.r§+1 [+ = A:L"é]-‘f + Bug‘,, + 'wf“, (el 3)

N—1
. I3 4
Il. FEEDBACK MIN-MAX MPC e e L(@etsier weesie)
gt J=0
We consider linear time-invariant discrete-time systems described
b
4 st b, € X, ji>t V0eL,
Tir1 = Az + Bug + wy (2) 1‘§\t e U, j>t, YleL,
n m ; . -’l?f_;,_N“ € Xo, V{E L,
wherez; € R”, u; € R™ are the state and input vectors, at time o o . 0 P o ,
A and B are the state transition and input distribution matrices: and %t = &1t = Uil = ujfee G 26 Vi €L )

we assume thatd, B) is controllable. The vectar, € W C R" is  \yhere N is the control horizon, and the stage co&t, R" x
an unknown, but bounded, deterministic disturbanidgjs compact, g™ _, R, is a positive semidefinite function. The outer controller is
convex, and contains an open neighborhood of the origin. obtained by receding-horizon implementation of the solution to this
Because the system cannot be controlled to the origin, du@ [0 gptimization.
the standard MPC law must be modified. An obvious possibility is The terminal constraint!, v, € X is the stability constraint
to ignore the disturbance. However, the resulting performance cangge this formulation and is necessary in order to guarantee stability.
poor [3]. To overcome this deficiency, we may consider the use $he notion of feedback is introduced into the control optimization
min-max MPC formulations, similar to those proposed in [4] and [Shy allowing a different control sequence for each realization of
However, this raises other difficulties. On one hand, the usual stabilifys gisturbance. Combined with this, however, is the “causality
constraintr,+ v = 0 cannot be included in the formulation, since th%onstraint,”.rz.‘lf — wclzf N u4|1f _ u”‘z,, which restricts the freedom
system cannot be steered to the origin. Also, the worst case scenagiosihe control sequences considered by enforcing a single control
corresponding to a nominal control can be considerably worse thagtion for each state. Thus, the control predicted for tjmeepends
actually achieved by feedback control. This is highly likely to leagnly on the state prediction for tim not on the path taken to reach
to infeasibility, when state constraints are used. that prediction.
In this paper, we consider an MPC variant that is also based onyote that in the min—max formulation of [4] and [5] a single control
a min—max optimization of the control, but in which we include thgequence is optimized over all disturbance realizations. Thus, the
notion that feedback is present. The result is a control law that §gtion that more measurements become available as time progresses
more computationally intensive but which leads to more reliable afginot included in the formulation; this is the cause of the feasibility

consistent performance. difficulties that are likely to arise with that formulation.

A. The Control Law B. Construction of the Robust Control Invariant Set
As the state cannot be steered to the origin, the control objective isy get x C R" is said to be robust control invariant if system

to regulate the state of the system to a predetermined robust conﬁg! with the predetermined control law= — K =, satisfies the state

invariant set. A set of state anq ian{t constraints must also be sgtisfig,qld input constraints iX and if (A — BK)X + W C X. Thus, if

We denote the robust control invariant setXy and the constraints ¢ jnjtial state,r, lies in robust a control invariant set, the control

are given by law, « = —Kz, keeps all subsequent states in this set, despite the
€ X, u, €U (2) disturbance.

The first step in the construction of the robust control invariant
whereX,, X, andU are compact, convex sets, each containing afet, X,, is to define the inner controller. We may use any linear
open neighborhood of the origin, a&h C X C R*, U C R™. controller,u = — K, that steers the system state to the origin in

We consider a dual-mode control law, for which we design both dimite time, when the disturbance is absent. Such a controller always
“inner” and an “outer” controller. The inner controller operates wheaxists becauséA, B) is assumed controllable. For all appropriate
the state is in the robust control invariant s, and its role is to designs oy, we thus get an integer> n such that A— BK)* = 0.
keep the state in this set, despite the disturbance. The outer controllerhe inner controller is used as soon as the state eitgréor all
operates when the state is outside the invariant set and steersjffial statesz; ¢ Xo, we therefore getr;y1 = Fu;, + w,, where
system state to the invariant set. F = A - BK. By design ofK, we also haveF*z = 0, F*w = 0,

The inner controller we use is linear, of the foum= — K, and for all z, w € R"™. If ze1j € Xy for all j > 0, it follows that, with
is such that A — BK)" = 0, for some finite integes. This property j > s, 2,0; = wiyj_1 + Fwiyj_o 4+« 4+ F* hwyj_.. In view
of the inner controller is important in the construction of the contralf this, we define the set
robust invariant set, as seen in Section |I-B.

For the outer controller, we propose two feedback min—max MPC Xo=W+FW+---+ F'W. (5)
schemes, which form the focus of this paper. First, we consider_a. . . . i
fixed horizon formulation; then we preser?t,ri)n Section Ill, a variabl-le—?1|IS set is robust control invariant K, C X and—KX, C U.
horizon variant of the method.

We start with the fixed horizon formulation of the control law. AC. The Control Algorithm
time ¢, Iet{wf‘f} denote the possible realizations of the disturbance; The fixed horizon feedback min-max MPC law we propose is
£ € L indexes the realizations. Further, thf‘t} denote a control summarized as follows.
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Algorithm 1—Fixed Horizon Feedback Min—-Max MPC: appears possible only in an approximate sense, through quantization

Data: 2. of the disturbance; moreover, this type of approximation invalidates

Algorithm: If 2, € X, setu, = —Kz,. Otherwise, find the proof of Theorem 1. However, due to linearity of the process and
the solution of (4) and set; to the first control convexity of the constraints and cost, this problem can be resolved.
in the optimal sequence calculated. Indeed, we show below thatW is a polytope inR"™, considering, in

the control optimization, only the “extreme” disturbance realizations,
which take values at the vertices 8, it leads to a stabilizing
control law that satisfies the constraints for all disturbance realizations

Certain properties follow immediately from the formulation ofy,5¢ jie inside the convex hull of the realizations considered in the
the control optimization. The worst case performance obtained W%timization.

this control law, i.e., the performance obtained with the disturbanceraomark 3: An “extreme disturbance realization” is a sequence

realization that is most “upsetting” to the system, has a cost Qgyich takes values at the vertices of the convex®&t Therefore,

greater than the optimal cost for a min-max approach that does gLy gisturbance realization that takes value@riies in the convex
incorporate the notion of feedback. This results from the increasg| of the extreme disturbance realizations. 0

number of degrees of freedom in the control optimization. Again, at timet, let {w?,} denote the possible realizations of the

Under certain assumptions on the cost, the fixed horizon feedb{i‘ﬁgturbance with € £. Further, letW be a polytope ifR" and

D. Properties

min—-max control law can also be shown to be stabilizing. let £, denote the set of indexes such that{w!,} takes values
Assumption 1:The functionL is convex and such that only on the vertices oW. We now consider the min—max control
L(x,u) =0, Ve € Xo,u=—Kuz ©) optimization
L(z,u) > a(d(z,Xo)), Ve & Xo,Vu N—1 ‘
] i ) ) ) min max Z L(;z:’,{_k]-‘f, uf+j|f)
where « is a K-function andd(x,Xo) denotes the distance of a {uf) } €Ly 7
point = to the setX,.
Theorem 1: Suppose Assumption 1 holds. Then, the feedbackt =%, € X. J>t Ve L.,
min—-max MPC law given by Algorithm 1 drives the state uf‘t €U, j>t, YLEL,,
asymptotically to the robust control invariant S€g. meth € Xo, Vi e Ly,
Proof: At time ¢, statex,, let {rwf‘t}, t € L, represent the 2 =2 =0 =wf . >t Vb€ L, (8)

. . . . Talt T Jlt Jlt?
possible disturbance realizations and {@t,} denote the corre- 4y e obtain the outer control by receding-horizon implementation
sponding optimal control sequences. Further, fef,} and i  of the solution to this optimization. We note immediately that this
denote the state trajectories and costs associated with each Ofdﬂﬁmization has finite dimension, becau&e contains only a finite
optimal control/disturbance realizations. The optimal cost, at time nymper of indexes; this number depends on the number of vertices of
is 61 = maxcec ¢t. At time ¢, the first of the optimal controls is w and the horizonV. We show that the resulting min—-max control
applied and the disturbance takes a certain valuelet £, denote |5y satisfies the state and input constraints and is stabilizing for all
the set of indexes such thmf“ =w, forall £ € Ly, andwflt #w:  disturbance realizationsuw’,, }, { € L.

forall ¢ ¢ £;. Attime ¢ + 1, the state has moved along a trajectory Theorem 2: Suppose A]slsu/mption 1 holds, and ¥t be a poly-

that coincides with the predicted state trajectories indexetddy.; . tope inR”, with {U’fu}» ( € L., denoting the extreme disturbance
The control sequenceh’zf+1‘t,ﬁf+2|t,---7'ﬂf+N,1‘t,—I(:cfﬂw]. realizations, which take values at the vertices Wf. Then, the

€ € L1, then satisfy the constraints and yield casfs— L(+, us) +  feedback min-max law given by Algorithm 1, with the optimization
L(xiynpe =Ky ng) = 6t — L(we, ur), sincexy, vy, € Xo forall  of (4) replaced by (8), drives the state asymptotically to the robust

£ € L. The optimal cost at time + 1 is no larger than the largest control invariant setXo.

of these costs; denoting by 1 the optimal cost at time + 1, we Proof: At time ¢, statex,, let {u},}. { € £, denote the opti-
therefore get;+1 < maxeez, ¢f — L(x+,us), and consequently  mal control sequences corresponding to the disturbance realizations
{ulf‘t}, ¢ € L,. Further, Iet{.ch‘t} denote the state trajectories
associated with each of these optimal control/disturbance realizations.
since maxeer, 6f < maxies 6. = .. The cost is therefore Finally, leta, denote the first control in the optimal control sequences.
monotonically nonincreasing. As it is bounded below by zero, it muéf time ¢, state x;, the optimal controla, is applied and the
consequently converge to a constant value, sodhaté, 41 — 0,as disturbance takes a certain value € W, driving the state to

t — oo. From (7), we havel(x, u)) < 61 —di41, and it follows that  #i+1 = Az + Buy + w,. Due to linearity of the process.
L(x,u) — 0, ast — oo. In view of Assumption 1, we conclude /€S inco{z;y; [ € € Lo}, wherew,, = Awe + B¢ + wyy,, and

that d(z1, Xo) — 0, ast — oc, i.e., the state converges &, cof{-} denotes the convex hull of the points in a $ef. Therefore,

Gr11 < 6t — Ly, ur) (7)

asymptotically. O «:+1 may be expressed as
Remark 1: Note _thaft, if the state ent(_erXO at any time, ,it is T = Z #€If+l|t 9)
subsequently kept inside this set by the inner contraller — K z. vec,

Remark 2; Note also that if, in addition ;o Assumption 1, we hav‘?/vhereuy are appropriate scalar weights. At timer 1, statex1,
L(z,u) > a(]|«|]), for all ¢ Xo, u € R™, then the state can be ., <ider the control sequence defined as
shown to entefX, in finite time.

The min—max optimization for the outer controller associates a _¢ _¢ -0

m oWyt N—1 |4 —peKai N | (10
separate control sequence for the state trajectories that can result fro ; pethee Z el =te Z el i) (10)
every possible disturbance realization. In general, prior knowledge of . . - .
the disturbance is limited to a compact convex¥ét within which l_(fnder this control strategy, t_he_ state and |npl_1t predictions evolve in

. ) o the convex hulls of the predictions made at timso that

wy may be assumed to lie. This means an infinite number of dis- ' P )
turbance realizations must be considered, leading to an optimization "’;’\tﬂ < Co{f’%’\t | (€ Lo}, vl e L. (11)
of infinite dimension. Practical implementation of the controller then Ujjer1 € CO{um | ¢ € £“}e

v LEL, LEL,
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Fig. 1. Example: nominal MPCyw; = —1/t.
Since xf‘t € X and ﬂf‘t € Uforall ¢ € £,,j, it follows that, tions in cost may be obtained by receding-horizon implementation of

under this control Sequenceﬁ‘w € X and u§|f+1 € U for all the outer controller; nevertheless reoptimization is not necessary, if
(€ L.j. Also, becauser;, v |, € Xo for all { andX, is robust computation is at a premium.
control invariant under the control law = — K, it follows that
ﬂ?f+mz+1 € X, forall £ € £. So we find that the control sequencer. |llustrative Example
in (_10) leads to satisfaction (_)fthe state, input, an_d stability constraints,r iustrate the points we make, we consider a very simple
at timet + 1. Furthermore, it yields a cost that is no larger than th
largest cost at time, becausd. is convex, making the cost a convex
function of the state and input predictions.

As the control sequence in (10), which may be suboptimal, satisfies Lkttt = Lk + Uk + Wk
the constraints and yields a cost that is no larger than the optimal
cost at timet, we conclude that the optimal cost, at time- 1, is  with w_ < w, < w4, wherew_ andw are known bounds on the
no larger the optimal cost at time Thus, the cost is monotonically disturbanceg. The constraints are given by
nonincreasing with time, and using the same arguments as in the proof
for Theorem 1, we conclude that the state converges asymptotically e €EX={r €R: —1.2< <2}

Sxample. The system is described as

(15)

to the setXy. O V>t (16)
u;;r € U =R,
E. Computational Issues For this example, we usew_ = w4 = 1. The inner controller is
The control optimization may be stated as u = —=z, and the robust control invariant set¥, = {z € R" :
|z] < 1}. We use a horizov = 3 and the stage cost &(z, v) = 0,
min max {(,)f |ueC} (12) if « € Xo, and L(x,u) = 2® + «*, otherwise.
uoLELy Nominal MPC: In nominal MPC, a single control sequence,
[tes teq1)e, wi2)], 1S Optimized at each time, and the effects
where of the disturbancesw,, wi, and ws, are ignored in the control
u=(u',u’ ) (13) Optimization.
The optimal control ensures that the state constraints are satisfied,
with u® = (uflt,ufﬂ‘t‘---,uerN,ut); the setC is defined by the only if wo = wy, = w2 = 0. Therefore, we have,,; € X.
stability, state, and input constraints. However, the actual disturbance may not be zero, and the best

This is a linearly constrained convex min—max optimization, whicapproximation we have of, 1 is: zi41 € [z —w— 2411 +
can be solved using standard optimization technique¥¥lthasp w4]. Consequently, we may get violations of the state constraint in
vertices, the number of controls that are computea{¢ +p+p° + closed-loop, even though the controller predicts satisfaction of the
.-+ pV~"). This is the dimension of the min—max optimization. constraints at all times.

An alternative formulation of the control optimization is Also, becauser;+1 may not coincide withxz,y};, the control
Sequenceu, 1|, U2, —I 2, 45,] May not satisfy the state con-
min {'U | ¢ <w,forallfe L, ue C} (14) strai_n_ts at timet + 1. Consequently, the stabilizing properties of
u,v traditional MPC are lost.

To illustrate this, we use an MPC scheme, in which the control
which is a standard nonlinear program, of dimensiofi +p+p*+ is given by minimization of the nominal objective, subject to the
+pN*1) + 1, the extra dimension being due to the addition ofiominal constraints, ift ¢ X,, and byu = —« otherwise. (The
v as a degree of freedom. We note that although the constraints thaminal objective and constraints are based on the predictions that
defineC are linear, the constraintss < v are not linear inequalities. result by assuming that, = 0 for all ¢.)

However, the problem is convex and can therefore be solved byin Fig. 1, we show the results obtained with = 2 andw; =
available algorithms. —1/t, t > 1; in Fig. 2, the results obtained witho, = 2 and

Finally, we note that when the process model is exact, and the = — cos(¢/5), ¢ > 0 are presented. For this example, we find,
disturbance remains iW, open-loop implementation of the optimalin both cases, that the state is brought to the robust control invariant
control sequence computed at any time satisfies the constraints aetX, in finite time. However, constraint violations are experienced
drives the state to the invariant s&,, in finite time. Further reduc- during the transient t&X.
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state =
control u

Fig. 2. Example: nominal MPCyw; = —cos(t/5).

Traditional Min—-Max MPC: In traditional min-max MPC, a sin-
gle control sequencefu;;, wey1)e, ut2)¢], IS optimized over all
possible disturbance profiles, at each timeéMNe therefore get the
prediction

17

which yieIdSQL't_;,_gh = x¢tugturtus—3, if wo = w1 = we = —1,
andzy g = o +uo +u +ue + 3, if wo =wi = wy = 1.

From this, we find that it is impossible to satisfy the state constraint,
xj+ € X, for all disturbance realizations. The control optimization
is therefore infeasible and the control law fails.

Even if the state constraint is removed, it is impossible to satisfy
the stability constrainty, x|+ € Xo, for all disturbance realizations.
Consequently, the control law still fails, due to infeasibility. More-
over, attempts to continue control in spite of this problem result in
a loss of the stability guarantee.

We cannot present simulations for traditional min-max MPC
because the control law is infeasible, and therefore undefined, for
the example we consider.

Feedback Min—Max MPC:In feedback min—-max MPC, a family
of control sequencegyf ;. u -ty o], iS Optimized at timet,
each one corresponding to a different disturbance profile.

In view of the above discussion, we need only consider the
extreme disturbance realizations. Over the hori2de= 3, these are
{-1,-1,-1}, {-1,-1,1}, {-1,1, -1}, {—1,1,1}, {1,—-1, -1},
{1,-1,1}, {1,1,—1} and{1,1, 1}. The corresponding state trajec-
tories are depicted in Fig. 3, and we have the following predictions:
;L’%Jrz‘t =@ + U + ”%Jrl\t -2
Tito|e = Tt + Uy + 'ui+1\z
Tipo| = Tt + Uy + 'u%+1\z
‘r?+2\t =2y + Uy + “’f+l\t +2

Typpsje = Tt + Uy + Upgpr e + Ueg2)e + wo + wi + w2

1 — ;

T =@t uge — 1
2

Ty =@ tuge+1

l‘i+3\z =2+ Uy + Utl+1\t + Utl+2\t -3
l’f+3\t =&+ U + Utl+1\t + Utl+2\t -1
»rf+3\z =Tt + Ut + UL1+1\L + Uf+2\z -1
T+ uge + Utl+1\t + U%+2\t +1

5 2 3
@yys)e = @+ )+ g+ W — 1

1/1 p—
T3]t =

6 2 3
Tiys) = Tt U+ Uipr T Ui + 1

7 2 4
Tigse = Te + Ugpe + Uiga)e + Upgoe + 1

17?+3\t = T + Ut + U;Z,+1 |t + Uf+2\f +3. (18)
Consider now the control sequence%t, defined by
Ug)g = — Ty Uzl+1\t =1 u§+2|t =1
Uy = -1 u?+2|L = -1
Uiyole = 1
Upyq)e = — 1. (29)
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Fig. 3. Example: possible state trajectories.

These lead to the following predictions:

s —
Tyyye =1
.2 —
Tiyge =1
3 —
Tyya = —1
: =1
Tiy3)t =
B
Lipz)e = -1
76 —
Tepse =
7/ j—
Tz = -1
-8 —
Tiyge =1
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(20)

For all ¢, we find, therefore, that the above set of controls satisfies the
stability and state constraints. The control optimization is therefore
feasible for all initial states, and it follows that the optimal feedback
min—-max MPC law is always defined. Moreover, this control law
leads to no constraint violations and is guaranteed stabilizing, as
long asw¢ € [w_,wy].
To conclude, we present simulation results obtained by use of
feedback min-max MPC law. In Fig. 4, we show the results obtained
with zo = 2 andw; = —1/¢t, ¢t > 1; in Fig. 5, the results obtained
with 2o = 2 andw; = — cos(t/5),t > 0, are presented. As expected,
we find in both cases, that in spite of the disturbance, the control law
drives the state to the robust invariant 3t allowing no constraint
violations at any time.
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8 =0
2 £
5 &4
(%)
=2+
0 5 10 15 20 0 5 10 15 20
time time
Fig. 4. Example: min-max MPCw; = -1/t
) e 1
8 20
3 g
3 =
w o -1
(5]
2t
0 10 20 30 40 0 10 20 30 40
time time
Fig. 5. Example: min-max MPCw: = —cos(t/5).
lll. VARIABLE HORIZON FORMULATION Algorithm 2—Variable Horizon Feedback Min—Max MPC:
The use of variable horizons in MPC has recently come under in-Data: &y
creasing scrutiny, due to the advantages it offers over fixed horizonsAlgorithm: If 2, € Xo, setu, = —Ku,. Otherwise, find
First, the use of a variable horizon removes the need to design the the solution of (21) and set, to the first
fixed horizon, which can be a tricky task. Variable horizon control control in the optimal sequence calculated.

schemes, moreover, can lead to identical nominal performance in
open-loop and receding-horizon implementations; provided theregs Properties

nom | error, this property of th ntrol m void an . . . . .
0 model error, this property of the control may be used to avoid a yBecause the cost in the variable horizon control law is the time

further computation, without loss of performance, once an acceptabl . . .
P P P %Een to reach the robust control invariant Xetthe controller drives
{

state to this set in minimal time. Stability is also easily established.

heorem 3: The variable horizon feedback min—-max MPC law

Ogiven by Algorithm 2 drives the state to the robust control invariant
setX, in finite time and keeps it in this set for all subsequent times.

Proof: Let {wf“}, ¢ € L represent the possible disturbance

initial trajectory has been computed. In practice, there is always so
deviation, but the control assuming zero model error is usually a goo
first guess for further optimization.

In this section, we formulate the variable horizon variant
feedback min—-max MPC and discuss its properties.

The variable horizon scheme we consider is based on the following

optimization: realizations, and Ie{'ﬁ'ﬁf“} denote the corresponding optimal control
sequences at timé Further, given that the state at timeis w4,
min  max N let {x},} and ¢ denote the state trajectories and costs associated
{uf ) b teL with each of the optimal control/disturbance realizations. The optimal

cost, at timet, is ¢, = maxyc, of. At time ¢, the first of the
optimal controls is applied and the disturbance takes a certain value

sty € X, j>t Vel w;. Let £, denote the set of indexes such thaf, = w, for
“élt ev. gzt VieL, all ¢ € £y andwy, # w, for all { ¢ £y. At time ¢ + 1,
ey € Xo, vie L, the state has moved along a trajectory that coincides with the
et =alt =l =ul, j2t Vel (21) predicted state trajectories indexed g L. The control sequences
[ty 4110 Uy pops Uy 1) — Ky ], £ € Lo then satisfy the

where the control horizonV becomes a degree of freedom. The ,straints and yield costg — 1. The optimal cost at time-+1 is no

outer controller is obtained by receding-horizon implementation ?};rger than largest of these costs; denotinghy: the optimal cost at
the solution to this optimization. As before, the inner controllertimet+1 we therefore getp.1 < maxser, o — 1, and therefore
uw = —Kz, is used when the state entéXs. - .

bip1 < e — 1 (22)
A. The Control Algorithm

The variable horizon feedback min—-max MPC law we propose $incemax ez, of < maxge &' = ¢,. The cost therefore decreases
summarized as follows. to zero in finite time. Asy; > 0 for all z; ¢ X, it follows that the
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state enterX, in finite time. Finally, once the state entéXs, itis implementation of the appropriate linear combination of the control

subsequently kept inside this set by the inner contraller — K'z. 0 sequences calculated at timesatisfies the constraints and yields a
Like Theorem 1, for the fixed horizon case, this theorem establishasst reduction of one at each sample until the state eXgr¢see

stability only for the case where the disturbance follows one of thgroofs of Theorems 2 and 4). This performance must be optimal

realizations considered in the optimization. If the disturbance veeitice it cannot be improved upon if, indeed, the trajectory calculated

away from the realizations considered, the stability proof no longet time ¢ was optimal. When the process model is exact, and the

applies. However, as in the fixed horizon case, linearity of the procedisturbance remains iW, therefore, the control optimization needs

and convexity of the constraints allow us to obtain a stability resuth be performed only once.

that states that only the extreme realizations of the disturbance need

to be considered in the min—-max optimization in order to obtain a IV. CONCLUSION

control formulation that is stabilizing for all disturbance profiles that

S o - - In this paper, we have outlined the details of min—-max MPC for-
lie in the convex hull of the extreme realizations, i.e., all disturbance .. ! . L .

Mmulations that introduce, in the control optimization, the notion that
sequences that take valuesW (see Remark 3).

. L . feedback is present in the control implementation. This often leads to
As before, we assum®8V is a polytope inR", and we letl, . .
. ¢ improved performance compared to standard MPC schemes, which
denote the set of indexéssuch that{w;, } takes values only on the

. : ‘ > = .~ do not take into account the effects of possible future disturbances.
vertices of W. We then consider the min—-max control optimization . . .
The method also avoids the likely feasibility problems that result

min max N from the use of min—max formulations that optimize a single control
£ (EL, . . . . . .
{ufy bV ee profile over all possible future disturbance realizations. These points
were illustrated with a simple example.

s.t. ;nf‘t € X, j>t, YLeL,, The price that must be paid for these benefits is that the compu-
uf“ e U, j>t, VLEL,, tational demands of the feedback min—max algorithms can be very
;pf+mt € Xo, Y(E Ly, high, both in the fixed and variable horizon cases. We showed that

21 =22 =yt =2 >t Yl € L (23) because the process is linear, all possible disturbance realizations do

ale = Tale ale ™ ke not need to be considered in the optimization; the control needs to be

and we obtain the outer control by receding-horizon implementatiopyimized only over the extreme disturbance realizations. However,
of the solution to this optimization. Again, this optimization has finitg,o 1\ mper of extreme realizations grows combinatorially with the
dLmenst:on. Eecausﬁéb_, contains only a f'n'ltel numbt_arf_of mﬁexes. Wehorizon V. Although the number of control profiles that are computed
show that the resulting min-max control law satisfies the state agg, - sample is smaller than the number of disturbance realizations,
Input constraints and is stabilizing for all disturbance realizationg e 1, the causality constraint, this can make the control optimization
fwt 4 W e . . ' .
{wjp}, £ € L. ) . prohibitively expensive if large horizons are used. The method can,
. n 14 1 ~

Theorem 4:Let W be a polytope inR", with {w;, }. £ € L. however, be very effective with small horizons. Furthermore, when
denoting the extreme disturbance realizations, which take valygs process model is exact and the disturbance remain¥Vin
at the vertices ofW. Then, the feedback min-max law given byye control optimization needs to be performed only once, and

Algorithm 2, with the optimization of (21) replaced by (23), drivegghtimization is not necessary at each sample. Hence, if the model
the stater, to the robust control invariant s, in finite time and ..o is small. the current control differs little from that obtained

keeps it in this set for all subsequent times. from the previous optimization which, therefore, provides an excellent
Proof: The first part of the proof proceeds exactly as the pro%itial guess.

for Theorem 2; we find that, at time+ 1, statex,+:, the control

strategy of (10) leads to satisfaction of the state, input and stability

constraints. Also, because under that control strategy the state is

forced to X, in one less sample than at tinte we find that the [1] S.S. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws

control sequence of (10) yields a cast— 1, where¢; denotes the for a gener_al class of (_:ons_trained disprete-time systems: Stability and

optimal cost at time. The optimal cost at time+ 1 is therefore no ?OVIngéfgcngZZ%r; a&;;ro?gqggonsj. Optim. Theory Appl.vol. 57, no.

Iarge_r th_a'_'b" N 1, and we find (_:onsequently that the cost decreases_é&] J.’ gPlRawIings ’and yK. R. Muske, “Stability of constrained receding

zero in finite time. As the cost is greater than zero for all states outside’ horizon control,” IEEE Trans. Automat. Contrvol. 38, no. 10, pp.

the invariant seiX, this leads to the conclusion that the state enters  1512-1516, Oct. 1993.

X, in finite time. Finally, once the state entéXs, it is subsequently [3] J. B. Rawlings, E. S. Meadows, and K. R. Muske, “Nonlinear model
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here than in the fixed horizon case.

The control optimization for the variable horizon formulation of
the control law is a mixed-integer nonlinear program, of dimension
m(l4+p+p*> 4+ -+ pN 1) 4+ 1, the extra degree of freedom
being due to the addition of the variable horizdnh as a degree
of freedom. However, as the cost involves only the integer-valued
variable NV, the efficient solution of the optimization results from a
simple integer search for the lowe$tfor which there exists a control
sequence that satisfies the constraints. Once the optimal trajectory
has been calculated at timethe optimal trajectory at all subsequent
times is known, provided there is no model error. This is because




