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Abstract—In this paper, we consider a differential game alarm to the network operator. In [28], Woetlal.investigate
theoretic approach to compute optimal strategies by a team how to deliberately avoid jamming in IEEE 802.15.4 based
of UAVs to evade the attack of an aerial jammer on the \yieless networks. In [6], Lin Cheat.al. propose a strategy
communication channel. We formulate the problem as a zero- to introd ial node in th work called th fi
sum pursuit-evasion game. The cost function is the terminan .O Introduce Q spec!a no (? In the networ _Ca ef e anti-
time of the game. We uselsaacs’ approach to derive the jammer to drain the jammer’s energy. To achieve its goal, the
necessary conditions to arrive at the equations governinghe  anti-jammer configures the probability of transmitting tbai
saddle-point strategies of the players. We illustrate theesults  packets to attract the jammer to transmit.
through simulations. For a static jammer and mobile nodes, the optimal strategy

|. INTRODUCTION for the nodes is to retreat away from the jammer after

In the past few years, a lot of research has been done qgtectlng jamming. In case of an aerial jamming attack,

deploy multiple UAVs in a decentralized manner to carr){)hpt'malbﬁ_t{atefgt'ﬁ S _for retreat dare ha:rd_e rt tc_) ‘i‘r’]mi!‘te dut(_e to
out tasks in military as well as civilian scenarios. UAVS € mopility of the jammer and constraints in the kinematics

have shown promise in a wide range of applications. Th((zzf the UAVS. This attack can be modeled as a zero-sum

recent availability of low-cost UAVs suggests the use opame [1] between the jammer and the UAVS. Such dynamic

teams of vehicles to perform various tasks such as maﬁ‘:’Imes governed by differential equations can be analyzed

ping, surveillance, search and tracking operations [7][25 sing t_ools frpm differential game theory [12][10]. In the
For these applications, there has been a lot of focus PoaSt’ differential game theory has been used as a framework

deploy teams of multiple UAVs in cooperative or competitivetO analyze problems in multi-player pursuit-evasion games

manner [18]. An extensive summary of important milestone§0|mIOnS for particular multi-player games were presente

and future challenges in network control of multiple UAVsby Pashkov and Terekhov [17], Levchenkov and Pashkov
is presented in [21]. [11], Hage_dorn and Breakwell [9], Breakwell and Hagedprn
In general, the mode of communication among UAV514] and _Srlram_et.al[22]. More general treatment of multi-
deployed in a team mission is wireless. This renders t ayer differential games was presented by St_arr and Ho [3],
communication channel vulnerable to malicious attackmfro aisbord and Zhu.kOVSk'Y, [26] anq Zhukovskiy a}nd Saluk-
aerial intruders flying in the vicinity. An example of suchvadze [30] and Stipanovi¢, Hovakimyan and Melikyan [24].

an intruder is an aerial jammer. Jamming is a malicioughe mherent hard.ness in obtaining an gnaly‘ucal solution
0 Hamilton-Jacobi-Bellman-Isaacs equation has led to the

attack whose objective is to disrupt the communicatioré | L of ical techni for th i f
of the victim network intentionally causing interference o cevelopment of numerical techniques tor the computation 0
the value function. Recent efforts in this direction to carep

collision at the receiver side. Jamming attack is a well aporoximation of the reachable sets have been provided
studied and an active area of research in wireless networl! 3PProxi : v provi

Many defense strategies have been proposed by researclf%’g#\ﬂgﬁgegt;gigsig]I'gr[i};lr’] 22%6‘?8[\‘2&] I-[lg\]/ang and Tomlin
against jamming in wireless networks. In [29], Wi.al. R '

propose two strategies to evade jamming. The first strategé/éﬁgcit;?rgft%ltﬂﬁ FeXIEU,A?Vgs“itr?r?g:)reérg:\r/gvgrskv?gl?lgei;::-e
channel surfing, is a form of spectral evasion that inVOIvecoo erative scengrios in the resepnce of a malicious ietrud
legitimate wireless devices changing the channel thataney in trllae communication networrl)< In this paper, we envision a
operating on. The second strategy, spatial retreats, isna fo enario in which an aerial 'a;”nmer in?ru%es’ the communi-
of special evasion whereby legitimate devices move awaxtion channel in a multiple JUAV formation. We model the
from the jammer. In [27], Wooekt.al. present a distributed . HrUSion &S & continuousriime " S b
protocol to map jammed region so that the network c:aﬁjl \ L pursuit-evasion game ‘“.Wee
avoid routing traffic through it. The solution proposed b); N E'.A‘VS anq the agnal Jammerr.] Infcontr?st o the p][fegnousd
Cagalj et.al. [5] uses different worm holes (wired worm work in pursuit-evasion games that formulate a payoff base

holes, frequency-hopping pairs, and uncoordinated chanrf! & geometric quantity in the configuration space of the
hopping) that lead out of the jammed region to report thaystem, we formulate a payoff based on the capability of the
players in a team to communicate among themselves in the
Sourabh  Bhattacharya and Tamer Basar are with thpresence of a jammer in the vicinity. In particular, we are
\'IDeerFS’iat‘)f/tme(;t IIICi)rI;OisEle;tmc?Jrbaﬁgijha%%rZierl]ter Urﬁgﬁﬁeeﬂ"ﬂg’ Uni-interested in computing strategies for spatial reconfigpma
{sbhat tac, basar1}@] | i noi s. edu ' of a formation of UAVs in the presence of an aerial jammer

This work was supported in part by a grant from AFOSR. to reduce the jamming on the communication channel.



Section 2 presents the problem formulation. The jamming,
communication and mobility models for the nodes are pre-
sented. Based on the aforementioned models, a multi-player
pursuit-evasion game is analyzed in Section 3. Section 4

extends the solutions to a variant of the problem discussed i //—%(\q
Section 3. Section 5 presents the results and the conclusion @

Il. PROBLEM FORMULATION

In this section, we first introduce a communication model
between two mobile nodes in the presence of a jammer. Then Y
we present the mobility models for the nodes. We conclude
the section by formally formulating the problems we study
in the paper. 0 X

A. Jammer and Communication Model Fig. 1. Configuration of a UAV

Consider a mobile nodergceive) receiving messages
from another mobile noddgrénsmitte) at some frequency.
Both communicating nodes are assumed to be lying on aln the rest of the paper, we will use the above jamming
plane. Consider a third node that is attempting to jam tha&nd communication model.
communication channel in between the transmitter and the
receiver by sending a high power noise at the same frequency.
This kind of jamming is referred to as tiivial jamming A B. System Model
variety of metrics can be used to compare the effectiverfess o
various jamming attacks. Some of these metrics are energyVWe now describe the kinematic model of the nodes. In
efficiency, low probability of detection, and stromtgnial Our analysis, each node is a UAV. We consider two UAV's
of service[16] [15]. In this paper, we use the ratio of the(UAV1 and UAV,) in the presence of a third UAV (UAY
jamming-power to the signal-power (JSR) as the metric. [1g'l1at is trying to jam the communication link in between them.
provides various models for the JSR) (at the receiver’s We assume that the UAV’s are ha.Ving a constant altitude
antenna. In all the models the jammer to signal ratio iight. This assumption helps to simplify our analysis to a
dependent on the rati&Z2 where Dy is the Euclidean plana_r case. Referring to Figure 2, the configuration of eaph
distance between transmitter and receiver, @ng; is the UAV in the global coordinate frame can be expressed in
Euclidean distance between jammer and transmitter. ~ terms of the variablez?, 7, ¢7). The subscript is either

For digital signals, the jammer's goal is to raise thel, 2 Or j depending on the UAV being referred. The pair
ratio to a level such that thbit error rate [20] is above (%,¥]) represents the position of a reference pointiofl;
a certain threshold. For analog voice communication, th&ith respect to the origin of the global reference frame and
goal is to reduce the articulation performance so that tHé& denotes the instantaneous heading of the VAV the
signals are difficult to understand. Hence we assume that tg{obal reference frame. Hence the state spacelfal; is
communication channel between a receiver and a transmitt$s = R”xS'. In our analysis, we assume that the UAV's are
is considered to be jammed in the presence of a jammerafkinematic system and hence the dynamics of the UAV's are
¢ > &, whereg,, is a threshold determined by many factord0t taken !nto account in the dn‘ferel_’ltlal equanon govegni
including application scenario and communication harewarthe evolution of the system. The kinematics of the UAV's
If all the parameters except the mutual distances between th'® assumed to be the following:
jammer, transmitter and receiver are kept constant, we can
conclude the following from all the above models: If the  dz} Wi cos 69 d(?i;; W sin g d(f ., )

[ —
ratio 22 > 5 then the communication channel between a  dt
transmitter and a receiver is considered to be jammed. Here
n is a function Off, PJT, Pr, Grr, Grr, Gjr, Gry and
Drr. Hence if the transmitter is not within a disc of radius Wwhere, W; and o; are the speed and angular velocity
nD.r centered around the receiver then the communicatidf UAV;, respectively. In this paper, we assume thate
channel is considered to be jammed. We call this disc ds'1,+1] Vi. Moreover, we assume thalt; =1 Vi.
the perception range The perception rangefor any node The state space of the entire systenXis x X, x X; =
depends on the distance between the jammer and the noR&.x (S')3. In order to reduce the dimension of the state
For effective communication between two nodes, each nodpace we analyze the system in a coordinate frame fixed to
should be able to transmit as well as receive messages fr@émV; as shown in Figure 2. In the new coordinate frame, the
the other node. Hence two nodes can communicate if theystem can be modeled using six independent variables and
lie in each other'perception range the equations of motion of the UAVand UAV; with respect




to the new coordinate frame are given by the following [22]: and UAV, are about to lose their link. We need to

compute the optimal strategies for each UAV.

x —1 + o2y1 + cos o

1/1 —02x21y41- sin ¢1¢1 In both problems, it is assumed that each UAV has a complete
('bl —o3 + 01 knowledge about the state of the system.

22 | T | 1+ 00y; +cos; 2 In the next section, we analyze the first problem.

Y2 —09x; + sin ¢

bo —0y + 0, [1l. ANALYSIS OF PROBLEM 1

e F(%,01.02,05) We consider a situation in which UAVand UAV; are not

communicating initially in the presence of a jammer (UAV

In the above expressiorts;, y;, ;) and (z1,y1, ¢1) r€pre-  Tha termination condition is defined as the first instant at

sent the relative position and orientation of the UAsind

which UAV; and UAV; are in a position to communicate.

UAV, in the reference frame attached to UAWhiCh are g ot function of the game is the time of termination of

the state variables of the system. Hence the state spaceyqf

the reduced system is isomorphickd x (S')2. Comparing

game. The objective of the jammer is to maximize the
time for which it can jam the communication between UAV

C. Problem Statement

ing problems.

and UAV,. The objective of UAY and UAV; collectively
is to minimize the time for which communication remains

UAV
X, 9 jammed.
In order to obtain the optimal strategies of the players we
p need to compute theaddle-point strategiesince this is a
Y, zero-sum game. A set of strategies for the players are said
N o to be insaddle-point equilibriunif no unilateral deviation
\ ! in strategy by a player can lead to a better outcome for
that player. Hence there is no motivation for the players to

deviate from their equilibrium strategies. In scenarioereh

the players have no knowledge about each other’s strategies
equilibrium strategies are important since they lead to a
guaranteed minimum outcome for the players in spite of the
other player’s strategies.

For a pointx in the state space, lef(x) represent the
outcome if the players implement their optimal strategies
starting at the pointx. In this game, it is the time of
termination of the game when the players implement their
optimal strategies. It is also called thalue of the game
atx. LetVJ = [Jo, Jy, Jo Ju, Jy, Je,|T denote
From the communication and the m0b|||ty models pro.the gradient of the value function. The Hamiltonian of the

posed in the previous subsections, we formulate the follovwyStem is given byl =1+ V.J - f(x, 07,07, 03,1). From
the equations of motion of the system, the Hamiltonian is

d given by the following expression:

7 UAVZ) Gl% |

Fig. 2. Relative configuration of UAVs

o Problem 1 Consider a situation in which UAV an
UAV, are not communicating initially in the presence;; _
of a jammer (UAV;). The objective of the jammer is

to maximize the time for which it can jam the com-Sjnce the jammer wants to maximize the time of termination
munication between UAVand UAV,. The objective of and the UAV’s want to minimize the time of termination, we

UAV; and UAV; is to minimize the time for which get the following expressions for the controls from Isaacs’
communication remains jammed. The game terminatggst condition.

at the first instant at which UAV and UAV, are in

a position to communicate. We need to compute the
optimal strategies for each UAV.

1+ le‘@l + Jylyl + J¢1¢1 + ij‘@j + J%?J] + J¢quj

(01,05,0;) = argmaxmin H

gj 0201
Since the Hamiltonian is separable in its controls, the orde
of taking the extrema becomes inconsequential. Hence the
optimal control of the players are given as follows.

o Problem 2 Now consider a situation in which UAV
and UAV, are communicating initially in the presence
of a jammer (UAV;). The objective of the jammer is to
minimize the time in which it can jam the communica- o5 = —SigNTo,y1 — Jy 1 — Jg, — Jg,
tion channel between UAVand UAV;. The objective Ty 4 Juy] 3)
of UAV; and UAV; is to maximize the time for which Yi=d z;Yi
communication link between them remains operable. o = sign(Jy,) (4)
The game terminates at the first instant at which YAV o1 = —sign(Jy, ) (5)



The retrogressive path equatiof®PE) for the system lead 1) The first terminal manifold is characterized by the

to the following equations. positions of the UAV’s such that UAVis at the bound-
Jo oty ooty (©) ary of the perception rangeof UAV, and UAV; is
o= T2y iy T 02 inside theperception rang®f UAV ;. In the coordinate
Jo, = =03y, Jy, =03Js, (7) system of UAV the terminal manifold is represented
jdn = —Jy, sinéy + J,, cos ¢y (8) by the hypersurfac@ (z1, 91, ¢>1_, xj,Y;j, ¢;) which is
j¢j = —J,, sing; + Jy, cos g, ©) given by the following expression:

* denotes derivative with respect to retrograde time. (Vo +yi —m/23 +y7=0)N

---------------------------------------------------- (21 —25)* + (g1 —y)* = (2 +45) <0)

- PLANT !
B B o I J, 2) The second terminal manifold is characterized by the
s ;1*“23{5:%“’1 9| c*=si1 o) __m positions of the UAV’s such that UAYis at the bound-
e 1;’2*23* e L jﬁ:axszirl{(pl—l Césll E ary of the perception rangeof UAV; and UAV, is

) A OLLER: . inside theperception rangef UAV ,. In the coordinate

i system attached to UAMthis terminal manifold is rep-
o i resented by the hypersurfaéé(z1,y1, ¢1, 25, Y5, ¢;)
g is given by the following expression:

SENSOR

JAMMER SENSORL . 3| 7 AR Ayt i

PLANT ) CONTROLLER } (V23 + 58 —ny/a2 +y2 =0)N

R - : :
S 9 Y (@1 —25)* + (1 — y;)* — 2F +y7 > 0)

Y=Ly voony L =y 3= o5,

705X TSI g [ |9=9nq) 51=;.siﬁm—i,. o8, Both the terminal surfaces are five dimensional manifolds

w= A R I Bt with boundary. Hence they can be parameterized using five
independent variables,, y1, x;, ¢1 and¢;. SinceJ =0 on

Fig. 3. The Control Loop for the System the terminal manifoldV.J satisfies the following equations
at an interior point in the manifold:
Figure 3 summarizes the entire control algorithm. The
controller of each UAV takes as input the state variables and ng +J

By, By,
020 g, g0 +J0 2 —¢

runs the RPE to compute the control. This control is then fed ¥ 9y Y Oy
into the plant of the respective UAV. The plant updates the JO 4+ Jg% =0, ng =0, Jg_ -0 (10)
state variables based on the kinematic equations governing ! 7 O !

the UAV. Finally the sensors feedback the state variabkes in|n addition to the above equations Isaacs’ second condition
the controllers. In this case the sensors measure the@ositjeads to the following equation.

and the orientation of each UAV.
o H(x,VJ, f(x,07,03,0;)) =0 (11)
A. Termination situations

In order to compute the optimal strategies, we need to 1h€ value of V.J at the terminal manifold can be ob-

compute the boundary conditions for the dependent vagaplined from Equations (11) and (12). Since there are two
of the differential equation. In order to do so, we charageer different terminal manifolds, we have to analyze both of
the terminal conditions of the game in the state space afidem Separately. At first, we compute the value 67
compute the value of’.J at the terminal conditions. This ON terminal manifold 1. Substituting the expression for
section presents the computation of the terminal valueef thf 1 (¥1, Y1, 61,25, ;, ¢;) in Equation (11) and (12), we ob-
dependent variables of the differential equations goweyni t@in the following value o/, .
the game. 29
From the communication model, we can conclude that Jg?j = y?[ (CC?)Q + (3/?)2(— -1+ (552 - —é
UAV; can communicate with UAY when the following g g
condition holds:

Nt (12

From the values oV .J at the terminal manifold, the optimal
. controls of the UAVs at termination can be computed. An
nmin[d(UAV ;,UAV ), d(UAV ;,UAV3)] > d(UAV1,UAV2)  elaborate computation of the optimal control of the UAVs is

where d(UAV,;,UAV ;) is the Euclidean distance betweenSNOWn in the [2].

UAV; and UAV;. Hence the boundary of the game set is IV. ANALYSIS OF PROBLEM 2
the set of positions of the UAV’s that satisfies the following

condition: For Problem 2 as described in Section 2, Isaacs’ first

condition leads to the following optimal strategies for the
nmin[d(UAV ;,UAV1), d(UAV ;,UAV )| = d(UAV 1,UAV 3) players:

* * *\ .
This leads to two termination manifolds in the state space. (01,03,05) = arg ax H%nH
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Fig. 4. Figure shows the players leading to Termination g1 for  Fig. 6. Figure shows the players leading to Termination dmrd 1 for
Problem 1. The valug) = 1. The player in red is the jammer. The players Problem 2. The valug) = 2. The player in red is the jammer. The players
in green and blue are UAVand UAV; respectively. Figure (b) shows the in green and blue are UAVand UAV; respectively. Figure (b) shows the
control of the UAV, . Figure (c) shows the control of the UAV Figure (c)  control of the UAV;. Figure (c) shows the control of the UAV Figure (c)

shows the control of the UAY. shows the control of the UAY.
10 Trajectory > Trajectory
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> 0 o o' 0 > 10 ° o' 0
-5 -1
| 0 *
-10 -2 >
“1s 0 5 10 0 5 10 -10 -5 0 5 10 0 5 10 15 20
X t(sec)
(a) (b) x t(sec)
(@) (b)
2 2 R R
1 1 . .
_ ~
5" 0 e 0 5= 0 &0
-1 -1 1 1
2 5 o % 5 10 -2 -2
0 5 10 15 20 0 5 10 15 20
t(sec) t(S;C) t(sec) t(sec)
©) (d)

Fig. 5. Figure shows the players leading to Termination #wrd2 for g, 7
Problem 1. The valug = 2. The player in red is the jammer. The players
in green and blue are UAVand UAV; respectively. Figure (b) shows the
control of the UAV; . Figure (c) shows the control of the UAV Figure (c)
shows the control of the UAY.

Figure shows the players Ieadlng to Termination iad 2 for
Problem 2. The valug) = 1. The player in red is the jammer. The players
in green and blue are UAVand UAV; respectively. Figure (b) shows the
control of the UAV; . Figure (c) shows the control of the UAV Figure (c)
shows the control of the UAY.

Hence the optimal control of the players are given as follows
P Pay g shown by a small circle in the plots showing the trajectories

05 = sigNJo, y1 — Jy, 21 — Jp, — Jo, — Jy, x5 + Jo,yj] of the players. Each figure shows the trajectory of the
0% = —sign(Jy,), o} = sign(J,,) players just befor_e termination for a small tlme mteryal.
From the expression of the optimal controls in equations
The retrogressive path equations remain the same as in {4, (5) and (6), we can infer that the controls of the players
previous problem. The terminal conditions also remain thare bang-bang. This is also verified from the simulation
same. Analysis done in the previous section can be extendegults. From the nature of the controls and kinematics of
to this problem. The results obtained by simulating th¢he system, we can infer that the optimal paths comprise
differential equations governing the optimal control laavel of arcs of circles and straight line trajectories as motion
the trajectories are presented in the next section. primitives. Arcs of circles are generated when the UAV keeps
its angular velocity saturated at one extrema for a non-zero
interval of time. Straight line segments are obtained due to
Figures 4, 5, 6 and 7 show trajectories of the players fampid switching between the extremum value of the controls
both problems along with their optimal controls for variougchattering). An instance of such a behavior is exhibited by
terminal conditions and different values 9f The position UAV, in Figure 4. Among the future works are to prevent
of the players corresponding to the termination situat®n isuch an undesired behavior by adding the derivative of the

V. RESULTS



controls in the cost function of the game by considering @7] A. G. Pashkov and S. D. Terekhov. A differential game ppmach
dynamic extension of the original system.

In this paper, we considered a differential game theoret'[(fg]
approach to compute optimal strategies by a team of UAVs to
evade the attack of an aerial jammer on the communicatid#f!
channel. We considered two variants of the problem in thig,
paper. We formulated the problem as a zero-sum pursuit-

VI. CONCLUSION

evasion game and useldaacs’ approach to derive the
necessary conditions to arrive at the equations goverhiag t
saddle-point strategies of the players. The cost functias w

picked as the termination time of the game. We illustrate®3l

the results through simulations.

Among the future works are to extend the problem to an-
alyze multiple jammers and multiple UAVs in the formation.[24]

Another direction of future research is to extend the Igcall

optimal trajectories presented in this paper into the entir
phase space. In order to do so construction of various typ&s!
of singular surfaces [13] is needed. We are also analyzing

the case whe th
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