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Abstract— In this paper, we consider a differential game
theoretic approach to compute optimal strategies by a team
of UAVs to evade the attack of an aerial jammer on the
communication channel. We formulate the problem as a zero-
sum pursuit-evasion game. The cost function is the termination
time of the game. We useIsaacs’ approach to derive the
necessary conditions to arrive at the equations governing the
saddle-point strategies of the players. We illustrate the results
through simulations.

I. I NTRODUCTION

In the past few years, a lot of research has been done to
deploy multiple UAVs in a decentralized manner to carry
out tasks in military as well as civilian scenarios. UAVs
have shown promise in a wide range of applications. The
recent availability of low-cost UAVs suggests the use of
teams of vehicles to perform various tasks such as map-
ping, surveillance, search and tracking operations [7][25].
For these applications, there has been a lot of focus to
deploy teams of multiple UAVs in cooperative or competitive
manner [18]. An extensive summary of important milestones
and future challenges in network control of multiple UAVs
is presented in [21].

In general, the mode of communication among UAVs
deployed in a team mission is wireless. This renders the
communication channel vulnerable to malicious attacks from
aerial intruders flying in the vicinity. An example of such
an intruder is an aerial jammer. Jamming is a malicious
attack whose objective is to disrupt the communication
of the victim network intentionally causing interference or
collision at the receiver side. Jamming attack is a well-
studied and an active area of research in wireless networks.
Many defense strategies have been proposed by researchers
against jamming in wireless networks. In [29], Wuet.al.
propose two strategies to evade jamming. The first strategy,
channel surfing, is a form of spectral evasion that involves
legitimate wireless devices changing the channel that theyare
operating on. The second strategy, spatial retreats, is a form
of special evasion whereby legitimate devices move away
from the jammer. In [27], Woodet.al. present a distributed
protocol to map jammed region so that the network can
avoid routing traffic through it. The solution proposed by
Cagalj et.al. [5] uses different worm holes (wired worm
holes, frequency-hopping pairs, and uncoordinated channel
hopping) that lead out of the jammed region to report the
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alarm to the network operator. In [28], Woodet.al.investigate
how to deliberately avoid jamming in IEEE 802.15.4 based
wireless networks. In [6], Lin Chenet.al. propose a strategy
to introduce a special node in the network called the anti-
jammer to drain the jammer’s energy. To achieve its goal, the
anti-jammer configures the probability of transmitting bait
packets to attract the jammer to transmit.

For a static jammer and mobile nodes, the optimal strategy
for the nodes is to retreat away from the jammer after
detecting jamming. In case of an aerial jamming attack,
optimal strategies for retreat are harder to compute due to
the mobility of the jammer and constraints in the kinematics
of the UAVs. This attack can be modeled as a zero-sum
game [1] between the jammer and the UAVs. Such dynamic
games governed by differential equations can be analyzed
using tools from differential game theory [12][10]. In the
past, differential game theory has been used as a framework
to analyze problems in multi-player pursuit-evasion games.
Solutions for particular multi-player games were presented
by Pashkov and Terekhov [17], Levchenkov and Pashkov
[11], Hagedorn and Breakwell [9], Breakwell and Hagedorn
[4] and Sriramet.al.[22]. More general treatment of multi-
player differential games was presented by Starr and Ho [3],
Vaisbord and Zhukovskiy [26] and Zhukovskiy and Saluk-
vadze [30] and Stipanović, Hovakimyan and Melikyan [24].
The inherent hardness in obtaining an analytical solution
to Hamilton-Jacobi-Bellman-Isaacs equation has led to the
development of numerical techniques for the computation of
the value function. Recent efforts in this direction to compute
an approximation of the reachable sets have been provided
by Mitchell and Tomlin [14], Stipanović, Hwang and Tomlin
[23] and Stipanović, Sriram and Tomlin [8].

Contrary to the existing literature, our work analyzes the
behavior of multiple UAVs in cooperative as well as non-
cooperative scenarios in the presence of a malicious intruder
in the communication network. In this paper, we envision a
scenario in which an aerial jammer intrudes the communi-
cation channel in a multiple UAV formation. We model the
intrusion as a continuous time pursuit-evasion game between
the UAV’s and the aerial jammer. In contrast to the previous
work in pursuit-evasion games that formulate a payoff based
on a geometric quantity in the configuration space of the
system, we formulate a payoff based on the capability of the
players in a team to communicate among themselves in the
presence of a jammer in the vicinity. In particular, we are
interested in computing strategies for spatial reconfiguration
of a formation of UAVs in the presence of an aerial jammer
to reduce the jamming on the communication channel.



Section 2 presents the problem formulation. The jamming,
communication and mobility models for the nodes are pre-
sented. Based on the aforementioned models, a multi-player
pursuit-evasion game is analyzed in Section 3. Section 4
extends the solutions to a variant of the problem discussed in
Section 3. Section 5 presents the results and the conclusion.

II. PROBLEM FORMULATION

In this section, we first introduce a communication model
between two mobile nodes in the presence of a jammer. Then
we present the mobility models for the nodes. We conclude
the section by formally formulating the problems we study
in the paper.

A. Jammer and Communication Model

Consider a mobile node (receiver) receiving messages
from another mobile node (transmitter) at some frequency.
Both communicating nodes are assumed to be lying on a
plane. Consider a third node that is attempting to jam the
communication channel in between the transmitter and the
receiver by sending a high power noise at the same frequency.
This kind of jamming is referred to as thetrivial jamming. A
variety of metrics can be used to compare the effectiveness of
various jamming attacks. Some of these metrics are energy
efficiency, low probability of detection, and strongdenial
of service[16] [15]. In this paper, we use the ratio of the
jamming-power to the signal-power (JSR) as the metric. [19]
provides various models for the JSR (ξ) at the receiver’s
antenna. In all the models the jammer to signal ratio is
dependent on the ratioDT R

DJR
where DTR is the Euclidean

distance between transmitter and receiver, andDJR is the
Euclidean distance between jammer and transmitter.

For digital signals, the jammer’s goal is to raise the
ratio to a level such that thebit error rate [20] is above
a certain threshold. For analog voice communication, the
goal is to reduce the articulation performance so that the
signals are difficult to understand. Hence we assume that the
communication channel between a receiver and a transmitter
is considered to be jammed in the presence of a jammer if
ξ ≥ ξtr whereξtr is a threshold determined by many factors
including application scenario and communication hardware.
If all the parameters except the mutual distances between the
jammer, transmitter and receiver are kept constant, we can
conclude the following from all the above models: If the
ratio DT R

DJR
≥ η then the communication channel between a

transmitter and a receiver is considered to be jammed. Here
η is a function ofξ, PJT

, PT , GTR, GRT , GJR, GRJ and
DTR. Hence if the transmitter is not within a disc of radius
ηDJR centered around the receiver then the communication
channel is considered to be jammed. We call this disc as
the perception range. The perception rangefor any node
depends on the distance between the jammer and the node.
For effective communication between two nodes, each node
should be able to transmit as well as receive messages from
the other node. Hence two nodes can communicate if they
lie in each other’sperception range.
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Fig. 1. Configuration of a UAV

In the rest of the paper, we will use the above jamming
and communication model.

B. System Model

We now describe the kinematic model of the nodes. In
our analysis, each node is a UAV. We consider two UAV’s
(UAV1 and UAV2) in the presence of a third UAV (UAVj)
that is trying to jam the communication link in between them.
We assume that the UAV’s are having a constant altitude
flight. This assumption helps to simplify our analysis to a
planar case. Referring to Figure 2, the configuration of each
UAV in the global coordinate frame can be expressed in
terms of the variables(xg

i , y
g
i , φ

g
i ). The subscripti is either

1, 2 or j depending on the UAV being referred. The pair
(xg

i , y
g
i ) represents the position of a reference point onUAVi

with respect to the origin of the global reference frame and
φ

g
i denotes the instantaneous heading of the UAVi in the

global reference frame. Hence the state space forUAVi is
Xi

∼= R
2×S1. In our analysis, we assume that the UAV’s are

a kinematic system and hence the dynamics of the UAV’s are
not taken into account in the differential equation governing
the evolution of the system. The kinematics of the UAV’s
are assumed to be the following:

dx
g
i

dt
= Wi cosφ

g
i ;

dy
g
i

dt
= Wi sin φ

g
i ;

dφ
g
i

dt
= σi (1)

where, Wi and σi are the speed and angular velocity
of UAV i, respectively. In this paper, we assume thatσi ∈

[−1, +1] ∀i. Moreover, we assume thatWi = 1 ∀i.

The state space of the entire system isX1 ×X2 ×Xj
∼=

R
6 × (S1)3. In order to reduce the dimension of the state

space we analyze the system in a coordinate frame fixed to
UAV2 as shown in Figure 2. In the new coordinate frame, the
system can be modeled using six independent variables and
the equations of motion of the UAV1 and UAVj with respect



to the new coordinate frame are given by the following [22]:

˙









x1

y1

φ1

x2

y2

φ2











︸ ︷︷ ︸

x

=











−1 + σ2y1 + cosφ1

−σ2x1 + sin φ1

−σ2 + σ1

−1 + σ2yj + cosφj

−σ2xj + sin φj

−σ2 + σj











︸ ︷︷ ︸

f(x,σ1.σ2,σj)

(2)

In the above expressions(xj , yj , φj) and(x1, y1, φ1) repre-
sent the relative position and orientation of the UAVj and
UAV1 in the reference frame attached to UAV2 which are
the state variables of the system. Hence the state space of
the reduced system is isomorphic toR

4 × (S1)2. Comparing
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Fig. 2. Relative configuration of UAVs

C. Problem Statement

From the communication and the mobility models pro-
posed in the previous subsections, we formulate the follow-
ing problems.

• Problem 1: Consider a situation in which UAV1 and
UAV2 are not communicating initially in the presence
of a jammer (UAVj). The objective of the jammer is
to maximize the time for which it can jam the com-
munication between UAV1 and UAV2. The objective of
UAV1 and UAV2 is to minimize the time for which
communication remains jammed. The game terminates
at the first instant at which UAV1 and UAV2 are in
a position to communicate. We need to compute the
optimal strategies for each UAV.

• Problem 2: Now consider a situation in which UAV1
and UAV2 are communicating initially in the presence
of a jammer (UAVj). The objective of the jammer is to
minimize the time in which it can jam the communica-
tion channel between UAV1 and UAV2. The objective
of UAV1 and UAV2 is to maximize the time for which
communication link between them remains operable.
The game terminates at the first instant at which UAV1

and UAV2 are about to lose their link. We need to
compute the optimal strategies for each UAV.

In both problems, it is assumed that each UAV has a complete
knowledge about the state of the system.

In the next section, we analyze the first problem.

III. A NALYSIS OF PROBLEM 1

We consider a situation in which UAV1 and UAV2 are not
communicating initially in the presence of a jammer (UAVj).
The termination condition is defined as the first instant at
which UAV1 and UAV2 are in a position to communicate.
The cost function of the game is the time of termination of
the game. The objective of the jammer is to maximize the
time for which it can jam the communication between UAV1

and UAV2. The objective of UAV1 and UAV2 collectively
is to minimize the time for which communication remains
jammed.

In order to obtain the optimal strategies of the players we
need to compute thesaddle-point strategiessince this is a
zero-sum game. A set of strategies for the players are said
to be in saddle-point equilibriumif no unilateral deviation
in strategy by a player can lead to a better outcome for
that player. Hence there is no motivation for the players to
deviate from their equilibrium strategies. In scenarios where
the players have no knowledge about each other’s strategies,
equilibrium strategies are important since they lead to a
guaranteed minimum outcome for the players in spite of the
other player’s strategies.

For a pointx in the state space, letJ(x) represent the
outcome if the players implement their optimal strategies
starting at the pointx. In this game, it is the time of
termination of the game when the players implement their
optimal strategies. It is also called thevalue of the game
at x. Let ∇J = [Jx1

Jy1
Jφ1

JxJ
JyJ

JφJ
]T denote

the gradient of the value function. The Hamiltonian of the
system is given byH = 1 + ∇J · f(x, σ∗

1 , σ∗

j , σ∗

2 , t). From
the equations of motion of the system, the Hamiltonian is
given by the following expression:

H = 1 + Jx1
ẋ1 + Jy1

ẏ1 + Jφ1
φ̇1 + Jxj

ẋj + Jyj
ẏj + Jφj

φ̇j

Since the jammer wants to maximize the time of termination
and the UAV’s want to minimize the time of termination, we
get the following expressions for the controls from Isaacs’
first condition.

(σ∗

1 , σ∗

2 , σ∗

j ) = arg max
σj

min
σ2σ1

H

Since the Hamiltonian is separable in its controls, the order
of taking the extrema becomes inconsequential. Hence the
optimal control of the players are given as follows.

σ∗

2 = −sign[Jx1
y1 − Jy1

x1 − Jφ1
− Jφj

−Jyj
xj + Jxj

yj ] (3)

σ∗

j = sign(Jφj
) (4)

σ∗

1 = −sign(Jφ1
) (5)



The retrogressive path equations(RPE) for the system lead
to the following equations.

J̊x1
= −σ∗

2Jy1
, J̊y1

= σ∗

2Jx1
(6)

J̊xj
= −σ∗

2Jyj
, J̊yj

= σ∗

2Jxj
(7)

J̊φ1
= −Jx1

sin φ1 + Jy1
cosφ1 (8)

J̊φj
= −Jxj

sin φj + Jyj
cosφj (9)

˚denotes derivative with respect to retrograde time.
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Fig. 3. The Control Loop for the System

Figure 3 summarizes the entire control algorithm. The
controller of each UAV takes as input the state variables and
runs the RPE to compute the control. This control is then fed
into the plant of the respective UAV. The plant updates the
state variables based on the kinematic equations governing
the UAV. Finally the sensors feedback the state variables into
the controllers. In this case the sensors measure the position
and the orientation of each UAV.

A. Termination situations

In order to compute the optimal strategies, we need to
compute the boundary conditions for the dependent variables
of the differential equation. In order to do so, we characterize
the terminal conditions of the game in the state space and
compute the value of∇J at the terminal conditions. This
section presents the computation of the terminal value of the
dependent variables of the differential equations governing
the game.

From the communication model, we can conclude that
UAV1 can communicate with UAV2 when the following
condition holds:

η min[d(UAVJ ,UAV1), d(UAVJ ,UAV2)] ≥ d(UAV1,UAV2)

where d(UAV i,UAVj) is the Euclidean distance between
UAV i and UAVj. Hence the boundary of the game set is
the set of positions of the UAV’s that satisfies the following
condition:

η min[d(UAVJ ,UAV1), d(UAVJ ,UAV2)] = d(UAV1,UAV2)

This leads to two termination manifolds in the state space.

1) The first terminal manifold is characterized by the
positions of the UAV’s such that UAV1 is at the bound-
ary of the perception rangeof UAV2 and UAV2 is
inside theperception rangeof UAV1. In the coordinate
system of UAV2 the terminal manifold is represented
by the hypersurfaceF1(x1, y1, φ1, xj , yj , φj) which is
given by the following expression:

(
√

x2
1 + y2

1 − η
√

x2
j + y2

j = 0) ∩

((x1 − xj)
2 + (y1 − yj)

2
− (x2

j + y2
j ) ≤ 0)

2) The second terminal manifold is characterized by the
positions of the UAV’s such that UAV2 is at the bound-
ary of the perception rangeof UAV1 and UAV1 is
inside theperception rangeof UAV2. In the coordinate
system attached to UAV2 this terminal manifold is rep-
resented by the hypersurfaceF2(x1, y1, φ1, xj , yj, φj)
is given by the following expression:

(
√

x2
1 + y2

1 − η
√

x2
j + y2

j = 0) ∩

((x1 − xj)
2 + (y1 − yj)

2 − x2
j + y2

j ≥ 0)

Both the terminal surfaces are five dimensional manifolds
with boundary. Hence they can be parameterized using five
independent variablesx1, y1, xj , φ1 andφj . SinceJ ≡ 0 on
the terminal manifold,∇J satisfies the following equations
at an interior point in the manifold:

J0
x1

+ J0
yj

∂yj

∂x1
= 0, J0

y1
+ J0

yj

∂yj

∂y1
= 0

J0
xj

+ J0
yj

∂yj

∂xj

= 0, J0
φ1

= 0, J0
φj

= 0 (10)

In addition to the above equations Isaacs’ second condition
leads to the following equation.

H(x,∇J, f(x, σ∗

1 , σ∗

2 , σ∗

j )) = 0 (11)

The value of∇J at the terminal manifold can be ob-
tained from Equations (11) and (12). Since there are two
different terminal manifolds, we have to analyze both of
them separately. At first, we compute the value of∇J

on terminal manifold 1. Substituting the expression for
F1(x1, y1, φ1, xj , yj , φj) in Equation (11) and (12), we ob-
tain the following value ofJyj

.

J0
yj

= y0
j [

√

(x0
j )

2 + (y0
j )2(

1

η
− 1) + (x0

j −
x0

1

η2
)]−1 (12)

From the values of∇J at the terminal manifold, the optimal
controls of the UAVs at termination can be computed. An
elaborate computation of the optimal control of the UAVs is
shown in the [2].

IV. A NALYSIS OF PROBLEM 2

For Problem 2 as described in Section 2, Isaacs’ first
condition leads to the following optimal strategies for the
players:

(σ∗

1 , σ∗

2 , σ∗

j ) = arg max
σ1,σ2

min
σj

H



−5 0 5 10 15
−5

0

5

10

15
Trajectory

x
(a)

y

0 5 10
−2

−1

0

1

2

σ 1

t(sec)
(b)

0 5 10
−2

−1

0

1

2

σ j

t(sec)
(c)

0 5 10
−2

−1

0

1

2

σ 2

t(sec)
(d)

Fig. 4. Figure shows the players leading to Termination condition 1 for
Problem 1. The valueη = 1. The player in red is the jammer. The players
in green and blue are UAV1 and UAV2 respectively. Figure (b) shows the
control of the UAV1. Figure (c) shows the control of the UAVJ . Figure (c)
shows the control of the UAV2.

−10 −5 0 5 10
−10

−5

0

5

10
Trajectory

x
(a)

y

0 5 10
−2

−1

0

1

2

σ 1

t(sec)
(b)

0 5 10
−2

−1

0

1

2

σ j

t(sec)
c

0 5 10
−2

−1

0

1

2

σ 2

t(sec)
d

Fig. 5. Figure shows the players leading to Termination condition 2 for
Problem 1. The valueη = 2. The player in red is the jammer. The players
in green and blue are UAV1 and UAV2 respectively. Figure (b) shows the
control of the UAV1. Figure (c) shows the control of the UAVJ . Figure (c)
shows the control of the UAV2.

Hence the optimal control of the players are given as follows:

σ∗

2 = sign[Jx1
y1 − Jy1

x1 − Jφ1
− Jφj

− Jyj
xj + Jxj

yj ]

σ∗

j = −sign(Jφj
), σ∗

1 = sign(Jφ1
)

The retrogressive path equations remain the same as in the
previous problem. The terminal conditions also remain the
same. Analysis done in the previous section can be extended
to this problem. The results obtained by simulating the
differential equations governing the optimal control lawsand
the trajectories are presented in the next section.

V. RESULTS

Figures 4, 5, 6 and 7 show trajectories of the players for
both problems along with their optimal controls for various
terminal conditions and different values ofη. The position
of the players corresponding to the termination situation is
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shown by a small circle in the plots showing the trajectories
of the players. Each figure shows the trajectory of the
players just before termination for a small time interval.
From the expression of the optimal controls in equations
(4), (5) and (6), we can infer that the controls of the players
are bang-bang. This is also verified from the simulation
results. From the nature of the controls and kinematics of
the system, we can infer that the optimal paths comprise
of arcs of circles and straight line trajectories as motion
primitives. Arcs of circles are generated when the UAV keeps
its angular velocity saturated at one extrema for a non-zero
interval of time. Straight line segments are obtained due to
rapid switching between the extremum value of the controls
(chattering). An instance of such a behavior is exhibited by
UAV2 in Figure 4. Among the future works are to prevent
such an undesired behavior by adding the derivative of the



controls in the cost function of the game by considering a
dynamic extension of the original system.

VI. CONCLUSION

In this paper, we considered a differential game theoretic
approach to compute optimal strategies by a team of UAVs to
evade the attack of an aerial jammer on the communication
channel. We considered two variants of the problem in this
paper. We formulated the problem as a zero-sum pursuit-
evasion game and usedIsaacs’ approach to derive the
necessary conditions to arrive at the equations governing the
saddle-point strategies of the players. The cost function was
picked as the termination time of the game. We illustrated
the results through simulations.

Among the future works are to extend the problem to an-
alyze multiple jammers and multiple UAVs in the formation.
Another direction of future research is to extend the locally
optimal trajectories presented in this paper into the entire
phase space. In order to do so construction of various types
of singular surfaces [13] is needed. We are also analyzing
the case whe th
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