
C. Castelfranchi, Y. Lespérance (Eds.): Intelligent Agents VII, LNAI 1986, pp. 89–103, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Developing Multi-agent Systems with JADE

Fabio Bellifemine1, Agostino Poggi2, and Giovanni Rimassa2

1
 CSELT S.p.A.

Via G. Reiss Romoli, 274, 10148, Torino, Italy
bellifemine@cselt.it

2 Dipartimento di Ingegneria dell’Informazione, University of Parma
Parco Area delle Scienze, 181A, 43100, Parma, Italy

(poggi,rimassa}@ce.unipr.it

Abstract. JADE (Java Agent Development Framework) is a software
framework to make easy the development of multi-agent applications in
compliance with the FIPA specifications. JADE can then be considered a
middle-ware that implements an efficient agent platform and supports the
development of multi agent systems. JADE agent platform tries to keep high the
performance of a distributed agent system implemented with the Java language.
In particular, its communication architecture tries to offer flexible and efficient
messaging, transparently choosing the best transport available and leveraging
state-of-the-art distributed object technology embedded within Java runtime
environment. JADE uses an agent model and Java implementation that allow
good runtime efficiency, software reuse, agent mobility and the realization of
different agent architectures.

1. Introduction

Nowadays, agent-based technologies are considered the most promising means to
deploy enterprise-wide and worldwide applications that often must operate across
corporations and continents and inter-operate with other heterogeneous systems. It is
because they offer the high-level software abstractions needed to manage complex
applications and because they were invented to cope with distribution and
interoperability [2,9,12,19,24,36].

However, agent-based technologies are still immature and few truly agent-based
systems have been built. Agent-based technologies cannot keep their promises, and
will not become widespread, until standards to support agent interoperability are in
place and adequate environments for the development of agent systems are available.
However, many people are working on the standardisation of agent technologies (see,
for example, the work done by Knowledge Sharing Effort [27], OMG [22] and FIPA
[7]) and on development environments to build agent systems (see, for example,
DMARS [28], RETSINA [34] MOLE [1]).

Such environments provide some predefined agent models and tools to ease the
development of systems. Moreover, some of them try to inter-operate with other agent
systems through a well-known agent communication language, that is, KQML [6].
However, a shared communication language is not enough to support interoperability

90 F. Bellifemine, A. Poggi, and G. Rimassa

between different agent systems, because common agent services and ontology are
also needed. The standardisation work of FIPA acknowledges this issue and, beyond
an agent communication language, specifies the key agents necessary for the
management of an agent system and the shared ontology to be used for the interaction
between two systems.

In this paper, we present JADE (Java Agent Development Framework), a software
framework to write agent applications in compliance with the FIPA specifications for
interoperable intelligent multi-agent systems. The next section introduces FIPA
specifications. Section three introduces related work on software frameworks to
develop agent systems. Section four describes JADE main features. Section five
describes the architecture of the agent platform, the communication subsystem.
Section six presents JADE agent model. Finally, section seven concludes with a brief
description about JADE main features, the use of JADE to realise applications and the
relationships between JADE and some other agent software frameworks.

2. FIPA Specifications

The Foundation for Intelligent Physical Agents (FIPA) [7] is an international non-
profit association of companies and organisations sharing the effort to produce
specifications for generic agent technologies. FIPA does not just promote a
technology for a single application domain but a set of general technologies for
different application areas that developers can integrate to make complex systems
with a high degree of interoperability.

The first output documents of FIPA, named FIPA97 specifications, state the
normative rules that allow a society of agents to exist, operate and be managed. First
of all they describe the reference model of an agent platform: they identify the roles of
some key agents necessary for managing the platform, and describe the agent
management content language and ontology. Three mandatory roles were identified
into an agent platform. The Agent Management System (AMS) is the agent that exerts
supervisory control over access to and use of the platform; it is responsible for
maintaining a directory of resident agents and for handling their life cycle. The Agent
Communication Channel (ACC) provides the path for basic contact between agents
inside and outside the platform. The ACC is the default communication method,
which offers a reliable, orderly and accurate message routing service. FIPA97
mandates ACC support for IIOP in order to inter-operate with other compliant agent
platforms. The Directory Facilitator (DF) is the agent that provides yellow page
services to the agent platform.

The specifications also define the Agent Communication Language (ACL), used
by agents to exchange messages. FIPA ACL is a language describing message
encoding and semantics, but it does not mandate specific mechanisms for message
transportation. Since different agents might run on different platforms on different
networks, messages are encoded in a textual form, assuming that agents are able to
transmit 7-bit data. ACL syntax is close to the widely used communication language
KQML. However, there are fundamental differences between KQML and ACL, the
most evident being the existence of a formal semantics for FIPA ACL, which should
eliminate any ambiguity and confusion from the usage of the language.

Developing Multi-agent Systems with JADE 91

FIPA supports common forms of inter-agent conversations through interaction
protocols, which are communication patterns followed by two or more agents. Such
protocols range from simple query and request protocols, to more complex ones, as
the well-known contract net negotiation protocol and English and Dutch auctions.

The remaining parts of the FIPA specifications deal with other aspects, in
particular with agent-software integration, agent mobility, agent security, ontology
service, and human-agent communication. However they are not described here
because they have not yet been considered in the JADE implementation. The
interested reader should refer directly to the FIPA Web page [7].

3. Related Work

A lot of research and commercial organisations are involved in the realisation of agent
applications and a considerable number of agent construction tools has been realised
[29]. Some of the most interesting are AgentBuilder [30], AgentTool [4], ASL [16],
Bee-gent [15], FIPA-OS [23], Grasshopper-2 [10], MOLE [1], the Open Agent
Architecture [20], RETSINA [34] and Zeus [25].

AgentBuilder [30] is a tool for building Java agent systems based on two
components: the Toolkit and the Run-Time System. The Toolkit includes tools for
managing the agent software development process, while the Run-Time System
provides an agent engine, that is, an interpreter, used as execution environment of
agent software. AgentBuilder agents are based on a model derived by the Agent-0
[32] and PLACA [35] agent models.

AgentTool [4] is a graphical environment to build heterogeneous multi-agent
systems. It is a kind of CASE tool, specifically oriented towards agent-oriented
software engineering, whose major advantages are the complete support for the MaSE
methodology (developed by the same authors together with the tool) and the
independence from agent internal architecture (with MaSE and agentTool it is
possible to build multi agent systems made of agents with different internal
architectures).

ASL [16] is an agent platform that supports the development in C/C++, Java, JESS,
CLIPS and Prolog. ASL is built upon the OMG’s CORBA 2.0 specifications. The use
of CORBA technology facilitates seamless agent distribution and allows adding to the
platform the language bindings supported by the used CORBA implementations.
Initially, ASL agents used to communicate through KQML messages, now the
platform is FIPA compliant supporting FIPA ACL.

Bee-gent [15] is a software framework to develop agent systems compliant to FIPA
specification that has been realised by Toshiba. Such a framework provides two types
of agents: wrapper agents used to agentify existing applications and mediation agents
supporting the wrappers coordination by handling all their communications. Bee-gent
also offers a graphic RAD tool to describe agents through state transition diagrams
and a directory facility to locate agents, databases and applications.

FIPA-OS [23] is another software framework to develop agent systems compliant
to FIPA specification that has been realised by NORTEL. Such a framework provides
the mandatory components realising the agent platform of the FIPA reference model
(i.e., the AMS, ACC and DF agents, and an internal platform message transport

92 F. Bellifemine, A. Poggi, and G. Rimassa

system), an agent shell and a template to produce agents that communicate taking
advantage of FIPA-OS agent platform.

 Grasshopper-2 [10] is a pure Java based Mobile Agent platform, conformant to
existing agent standards, as defined by the OMG - MASIF (Mobile Agent System
Interoperability Facility) [22] and FIPA specifications. Thus Grasshopper-2 is an open
platform, enabling maximum interoperability and easy integration with other mobile
and intelligent agent systems. The Grasshopper-2 environment consists of several
Agencies and a Region Registry, remotely connected via a selectable communication
protocol. Several interfaces are specified to enable remote interactions between the
distinguished distributed components. Moreover, Grasshopper-2 provides a Graphical
User for user-friendly access to all the functionality of an agent system.

MOLE [1] is an agent system developed in Java whose agents do not have a
sufficient set of features to be considered truly agent systems [9,33]. However, MOLE
is important because it offers one of the best supports for agent mobility. Mole agents
are multi-thread entities identified by a globally unique agent identifier. Agents
interact through two types of communication: through RMI for client/server
interactions and through message exchanges for peer-to-peer interactions.

The Open Agent Architecture [20] is a truly open architecture to realise distributed
agent systems in a number of languages, namely C, Java, Prolog, Lisp, Visual Basic
and Delphi. Its main feature is its powerful facilitator that coordinates all the other
agents in their tasks. The facilitator can receive tasks from agents, decompose them
and award them to other agents.

RETSINA [34] offers reusable agents to realise applications. Each agent has four
modules for communicating, planning, scheduling and monitoring the execution of
tasks and requests from other agents. RETSINA agents communicate through KQML
messages.

Zeus [25] allows the rapid development of Java agent systems by providing a
library of agent components, by supporting a visual environment for capturing user
specifications, an agent building environment that includes an automatic agent code
generator and a collection of classes that form the building blocks of individual
agents. Agents are composed of five layers: API layer, definition layer, organisational
layer, coordination layer and communication layer. The API layer allows the
interaction with non-agentized world.

4. JADE

JADE (Java Agent Development Environment) is a software framework to make easy
the development of agent applications in compliance with the FIPA specifications for
interoperable intelligent multi-agent systems. JADE is an Open Source project, and
the complete system can be downloaded from JADE Home Page [11]. The goal of
JADE is to simplify development while ensuring standard compliance through a
comprehensive set of system services and agents. To achieve such a goal, JADE
offers the following list of features to the agent programmer:

- FIPA-compliant Agent Platform, which includes the AMS (Agent
Management System), the default DF (Directory Facilitator), and the ACC
(Agent Communication Channel). All these three agents are automatically
activated at the agent platform start-up.

Developing Multi-agent Systems with JADE 93

- Distributed agent platform. The agent platform can be split on several hosts.
Only one Java application, and therefore only one Java Virtual Machine, is
executed on each host. Agents are implemented as one Java thread and Java
events are used for effective and lightweight communication between agents
on the same host. Parallel tasks can be still executed by one agent, and JADE
schedules these tasks in a cooperative way.

- A number of FIPA-compliant additional DFs (Directory Facilitator) can be
started at run time in order to build multi-domain environments, where a
domain is a logical set of agents, whose services are advertised through a
common facilitator.

- Java API to send/receive messages to/from other agents; ACL messages are
represented as ordinary Java objects.

- FIPA97-compliant IIOP protocol to connect different agent platforms.
- Lightweight transport of ACL messages inside the same agent platform, as

messages are transferred encoded as Java objects, rather than strings, in order
to avoid marshalling and unmarshalling procedures.

- Library of FIPA interaction protocols ready to be used.
- Support for agent mobility within a JADE agent platform.
- Library to manage user-defined ontologies and content languages.
- Graphical user interface to manage several agents and agent platforms from

the same agent. The activity of each platform can be monitored and logged.
All life cycle operations on agents (creating a new agent, suspending or
terminating an existing agent, etc.) can be performed through this
administrative GUI.

The JADE system can be described from two different points of view. On the one
hand, JADE is a runtime system for FIPA-compliant Multi Agent Systems, supporting
application agents whenever they need to exploit some feature covered by the FIPA
standard specification (message passing, agent life-cycle management, etc.). On the
other hand, JADE is a Java framework for developing FIPA-compliant agent
applications, making FIPA standard assets available to the programmer through object
oriented abstractions. The two following subsections will present JADE from the two
standpoints, trying to highlight the major design choices followed by the JADE
development team. A final discussion section will comment on JADE actual strengths
and weaknesses and will describe the future improvements envisaged in the JADE
development roadmap.

5. JADE Runtime System

A running agent platform must provide several services to the applications: when
looking at the parts 1 and 2 of the FIPA97 specification, is can be seen that these
services fall into two main areas, that is, message passing support with FIPA ACL
and agent management with life-cycle, white and yellow pages, etc.

94 F. Bellifemine, A. Poggi, and G. Rimassa

5.1 Distributed Agent Platform

JADE complies with the FIPA97 specifications and includes all the system agents that
manage the platform that is the ACC, the AMS, and the default DF. All agent
communication is performed through message passing, where FIPA ACL is the
language used to represent messages.

While appearing as a single entity to the outside world, a JADE agent platform is
itself a distributed system, since it can be split over several hosts with one among
them acting as a front end for inter-platform IIOP communication. A JADE system is
made by one or more Agent Container, each one living in a separate Java Virtual
Machine and communicating using Java RMI. IIOP is used to forward outgoing
messages to foreign agent platforms. A special, Front End container is also an IIOP
server, listening at the official agent platform ACC address for incoming messages
from other platforms. Figure 1 shows the architecture of a JADE Agent Platform.

Fig. 1. Software architecture of a JADE Agent Platform

5.2 Message Delivery Subsystem

FIPA agent communication model is peer-to-peer though multi-message context is
provided by interaction protocols and conversation identifiers. On the other hand,
JADE uses transport technologies such as RMI, CORBA and event dispatching which
are typically associated with reactive systems. Clearly, there is some gap to bridge to
map the explicitly addressed FIPA message-passing model into the request/response
communication model of distributed objects. This is why in JADE ordinary agents are
not distributed objects, but agent containers are.

Network protocol stack

JRE 1.2 JRE 1.2 JRE 1.2

Jade Front-end Jade Agent Container Jade Agent Container

Jade distributed Agent Platform

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

Host 1 Host 2 Host 3

Developing Multi-agent Systems with JADE 95

A software agent, in compliance to FIPA agent model, has a globally-unique
identifier (GUID), that can be used by every other agent to address it with ACL
messages; likewise, an agent will put its GUID into the :sender slot of ACL messages
it sends around. So, JADE must figure out receiver location by simply looking at
:receiver message slot. Since a FIPA97 GUID resembles an email address, it has the
form: <agent name> @ <platform address>, it is fairly easy to recover the agent
name and the platform address from it.

When an ACL message is sent to a software agent, three options are given:
- Receiver on the same container of the same platform: Java events are used,

the ACLMessage is simply cloned.
- Receiver on a different container of the same platform: Java RMI is used, the

message is serialised at sender side, a remote method is called and the
message is unserialised at receiver side.

- Receiver on a different platform: IIOP is used, the ACLMessage is converted
into a String and marshalled at sender side, a remote CORBA call is done
and an unmarshalling followed by ACL parsing occurs at receiver side.

5.3 Address Management and Caching

JADE tries to select the most convenient of the three transport mechanisms above
according to agents location. Basically, each container has a table of its local agents,
called the Local-Agent Descriptor Table (LADT), whereas the front-end, besides its
own LADT, also maintains a Global-Agent Descriptor Table (GADT), mapping every
agent into the RMI object reference of its container. Moreover, JADE uses an address
caching technique to avoid querying the front-end continuously for address
information.

Besides being efficient, this is also meant to support agent mobility, where agent
addresses can change over time (e.g. from local to RMI); transparent caching means
that messaging subsystem will not be affected when agent mobility will be introduced
into JADE. Moreover, if new remote protocols will be needed in JADE (e.g. a
wireless protocol for nomadic applications), they will be seamlessly integrated inside
the messaging and address caching mechanisms.

5.4 Mobility

The new JADE version adds the support for agent mobility. Exploiting Java
Serialization API and dynamic class loading, it is now possible to move or clone a
JADE agent over different containers but within the same JADE agent platform. Our
current implementation is completely proprietary and does not allow inter-platform
mobility over the FIPA IIOP standard message transport service. While a more
complete mobility support could be possible, we feel that it would not be worth the
effort, because FIPA specifications for mobility support is still incomplete and a
proprietary, JADE-only mobility service would not help standardization and
interoperability.

96 F. Bellifemine, A. Poggi, and G. Rimassa

Rather, some more general proposals should be submitted to FIPA, undergoing
public discussion and evaluation. Then, an effective and interoperable implementation
could be built.

5.5 User-Defined Ontologies and Content Languages

According to the FIPA standard, achieving agent level interoperability requires that
different agents share much more than a simple on-the-wire protocol. While FIPA
mandates a single agent communication language, the FIPA ACL, it explicitly allows
application dependent content languages and ontologies. The FIPA specifications
themselves now contain a Content Language Library, whereas various mandatory
ontologies are defined and used within the different parts of the FIPA standard.

The last version of JADE lets application programmers create their own content
languages and their ontologies. Every JADE agent keeps a capability table where the
known languages and ontologies are listed; user defined codecs must be able to
translate back and forth between the String format (according to the content language
syntax) and a frame based representation.

If a user-defined ontology is defined, the application can register a suitable Java
class to play an ontological role, and JADE is able to convert to and from frames and
user defined Java objects. Acting this way, application programmers can represent
their domain specific concepts as familiar Java classes, while still being able to
process them at the agent level (put them within ACL messages, reasoning about
them, etc.).

5.6 Tools for Platform Management and Monitoring

Beyond a runtime library, JADE offers some tools to manage the running agent
platform and to monitor and debug agent societies; all these tools are implemented as
FIPA agents themselves, and they require no special support to perform their tasks,
but just rely on JADE AMS.

The general management console for a JADE agent platform is called RMA
(Remote Monitoring Agent). The RMA acquires the information about the platform
and executes the GUI commands to modify the status of the platform (creating agents,
shutting down containers, etc.) through the AMS. The Directory Facilitator agent also
has a GUI, with which it can be administered, configuring its advertised agents and
services.

JADE users can debug their agents with the Dummy Agent and the Sniffer Agent.
The Dummy Agent is a simple tool for inspecting message exchanges among

agents, facilitating validation of agent message exchange patterns and interactive
testing of an agent.

The Sniffer Agent allows to track messages exchanged in a JADE agent platform:
every message directed to or coming from a chosen agent or group is tracked and
displayed in the sniffer window, using a notation similar to UML Sequence
Diagrams.

Developing Multi-agent Systems with JADE 97

6. JADE Agent Development Model

FIPA specifications state nothing about agent internals, but when JADE was designed
and built they had to be addressed. A major design issue is the execution model for an
agent platform, both affecting performance and imposing specific programming styles
on agent developers. As will be shown in the following, JADE solution stems from
the balancing of forces from ordinary software engineering guidelines and theoretical
agent properties.

6.1 From Agent Theory to Class Design

A distinguishing property of a software agent is its autonomy; an agent is not limited
to react to external stimuli, but it’s also able to start new communicative acts of its
own. A software agent, besides being autonomous, is said to be social, because it can
interact with other agents in order to pursue its goals or can even develop an overall
strategy together with its peers.

FIPA standard bases its Agent Communication Language on speech-act theory [31]
and uses a mentalistic model to build a formal semantic for the performatives agents
exchange. This approach is quite different from the one followed by distributed
objects and rooted in Design by Contract [21]; a fundamental difference is that
invocations can either succeed or fail but a request speech act can be refused if the
receiver is unwilling to perform the requested action.

Trying to map the aforementioned agent properties into design decisions, the
following list was produced:

- Agents are autonomous, then they are active objects.
- Agents are social, then intra-agent concurrency is needed.
- Messages are speech acts, then asynchronous messaging must be used.
- Agents can say “no”, then peer-to-peer communication model is needed.

The autonomy property requires each agent to be an active object [17] with at least
a Java thread, to proactively start new conversations, make plans and pursue goals.
The need for sociality has the outcome of allowing an agent to engage in many
conversations simultaneously, dealing with a significant amount of concurrency.

The third requirement suggests asynchronous message passing as a way to
exchange information between two independent agents, that also has the benefit of
producing more reusable interactions [33]. Similarly, the last requirement stresses that
in a Multi Agent System the sender and the receiver are equals (as opposed to
client/server systems where the receiver is supposed to obey the sender). An
autonomous agent should also be allowed to ignore a received message as long as he
wishes; this advocates using a pull consumer messaging model [26], where incoming
messages are buffered until their receiver decides to read them.

6.2 JADE Agent Concurrency Model

The above considerations help in deciding how many threads of control are needed in
an agent implementation; the autonomy requirement forces each agent to have at least
a thread, and the sociality requirement pushes towards many threads per agent.
Unfortunately, current operating systems limit the maximum number of threads that

98 F. Bellifemine, A. Poggi, and G. Rimassa

can be run effectively on a system. JADE execution model tries to limit the number of
threads and has its roots in actor languages.

Fig. 2. JADE agent architecture.

The Behaviour abstraction models agent tasks: a collection of behaviours are
scheduled and executed to carry on agent duties (see figure 2). Behaviours represent
logical threads of a software agent implementation. According to Active Object design
pattern [17], every JADE agent runs in its own Java thread, satisfying autonomy
property; instead, to limit the threads required to run an agent platform, all agent
behaviours are executed cooperatively within a single Java thread. So, JADE uses a
thread-per-agent execution model with cooperative intra-agent scheduling.

JADE agents schedule their behaviour with a “cooperative scheduling on top of the
stack”, in which all behaviours are run from a single stack frame (on top of the stack)
and a behaviour runs until it returns from its main function and cannot be pre-empted
by other behaviours (cooperative scheduling).

JADE model is an effort to provide fine-grained parallelism on coarser grained
hardware. A likewise, stack based execution model is followed by Illinois Concert
runtime system [14] for parallel object oriented languages. Concert executes
concurrent method calls optimistically on the stack, reverting to real thread spawning
only when the method is about to block, saving the context for the current call only
when forced to.

Choosing not to save behaviour execution context means that agent behaviours
start from the beginning every time they are scheduled for execution. So, behaviour
state that must be retained across multiple executions must be stored into behaviour
instance variables. A general rule for transforming an ordinary Java method into a
JADE behaviour is:

1. Turn the method body into an object whose class inherits from Behaviour.
2. Turn method local variables into behaviour instance variables.
3. Add the behaviour object to agent behaviour list during agent start-up.

private inbox of
ACL messages

scheduler of
behaviours

pa
tte

rn
 m

at
ch

in
g

tim
eo

ut
-b

as
ed

bl
oc

ki
ng

-b
as

ed

po
ll

in
g-

ba
se

d

life-cycle
manager

ac
ce

ss
 m

od
e

application
dependent

agent resources

beliefs

capabi-
lities

be
ha

vi
ou

r
1

be
ha

vi
ou

r
2

be
ha

vi
ou

r
n

…
active
agent behaviours
(i.e. agent intentions)

Developing Multi-agent Systems with JADE 99

The above guidelines apply the reification technique [13] to agent methods,
according to Command design pattern [18]; an agent behaviour object reifies both a
method and a separate thread executing it. A new class must be written and
instantiated for every agent behaviour, and this can lead to programs harder to
understand and maintain. JADE application programmers can compensate for this
shortcoming using Java Anonymous Inner Classes; this language feature makes the
code necessary for defining an agent behaviour only slightly higher than for writing a
single Java method.

JADE thread-per-agent model can deal alone with the most common situations
involving only agents: this is because every JADE agent owns a single message queue
from which ACL messages are retrieved. Having multiple threads but a single
mailbox would bring no benefit in message dispatching. On the other hand, when
writing agent wrappers for non-agent software, there can be many interesting events
from the environment beyond ACL message arrivals. Therefore, application
developers are free to choose whatever concurrency model they feel is needed for
their particular wrapper agent; ordinary Java threading is still possible from within an
agent behaviour.

6.3 Using Behaviours to Build Complex Agents

The developer implementing an agent must extend Agent class and implement agent-
specific tasks by writing one or more Behaviour subclasses. User defined agents
inherit from their superclass the capability of registering and deregistering with their
platform and a basic set of methods (e.g. send and receive ACL messages, use
standard interaction protocols, register with several domains). Moreover, user agents
inherit from their Agent superclass two methods: addBehaviour(Behaviour) and
removeBehaviour(Behaviour), to manage the behaviour list of the agent.

JADE contains ready made behaviours for the most common tasks in agent
programming, such as sending and receiving messages and structuring complex tasks
as aggregations of simpler ones. For example, JADE offers a so-called JessBehaviour
that allows full integration with JESS [8], a scripting environment for rule
programming offering an engine using the Rete algorithm to process rules.

Behaviour is an abstract class that provides the skeleton of the elementary task to
be performed. It exposes three methods: the action() method, representing the "true"
task to be accomplished by the specific behaviour classes; the done() method, used by
the agent scheduler, that must return true when the behaviour has finished and false
when the behaviour has not and the action() method must be executed again; the
reset() method, used to restart a behaviour from the beginning.

JADE follows a compositional approach to allow application developers to build
their own behaviours out of the simpler ones directly provided by the framework.
Applying the Composite design pattern, ComplexBehaviour class is itself a
Behaviour, with some sub-behaviours or children, defining two methods
addSubBehaviour(Behaviour) and removeSubBehaviour(Behaviour). This permits
agent writers to implement a structured tree with behaviours of different kinds.
Besides ComplexBehaviour, JADE framework defines some other subclasses of
Behaviour: SimpleBehaviour can be used to implement atomic steps of the agent
work. A behaviour implemented by a subclass of SimpleBehaviour is executed by
JADE scheduler in a single time frame. Two more subclasses to send and receive

100 F. Bellifemine, A. Poggi, and G. Rimassa

messages are SenderBehaviour and ReceiverBehaviour. They can be instantiated
passing appropriate parameters to their constructors. SenderBehaviour allows sending
a message, while ReceiverBehaviour allows receiving a message, which can be
matched against a pattern; the behaviour blocks itself (without stopping all other
agent activities) if no suitable messages are present.

JADE recursive aggregation of behaviour objects resembles the technique used for
graphical user interfaces, where every interface widget can be a leaf of a tree whose
intermediate nodes are special container widgets, with rendering and children
management features. An important distinction, however, exists: JADE behaviours
reify execution tasks, so task scheduling and suspension are to be considered, too.

Thinking in terms of software patterns, if Composite is the main structural pattern
used for JADE behaviours, on the behavioural side we have Chain of Responsibility:
agent scheduling directly affects only top-level nodes of the behaviour tree, but every
composite behaviour is responsible for its children scheduling within its time frame.

7. Conclusions

JADE design tries to put together abstraction and efficiency, giving programmers
easy access to the main FIPA standard assets while incurring into runtime costs for a
feature only when that specific feature is used. This “pay as you go” approach drives
all the main JADE architectural decisions: from the messaging subsystems that
transparently chooses the best transport available, to the address management module,
that uses optimistic caching and direct connection between containers.

Since JADE is a middleware for developing distributed applications, it must be
evaluated with respect to scalability and fault tolerance, which are two very important
issues for distributed robust software infrastructures.

When discussing scalability, it is necessary to first state with respect to which
variable; in a Multi Agent System, the three most interesting variables are the number
of agents in a platform, the number of messages for a single agent and the number of
simultaneous conversations a single agent gets involved in.

JADE tries to support large Multi Agent Systems as possible; exploiting JADE
distributed architecture, clusters of related agents can be deployed on separate agent
containers in order to reduce both the number of threads per host and the network load
among hosts.

JADE scalability with respect to the number of messages for a single agent is
strictly dependent on the lower communication layers, such as the CORBA ORB used
for IIOP and the RMI transport system. Again, the distributed platform with
decentralised connection management tries to help; when an agent receives many
messages, only the ones sent by remote agents stress the underlying communication
subsystem, while messages from local agents travel on a fast path of their own.

JADE agents are very scalable with respect to the number of simultaneous
conversations a single agent can participate in. This is in fact the whole point of the
two level scheduling architecture: when an agent engages in a new conversation, no
new threads are spawned and no new connections are set up, just a new behaviour
object is created. So the only overhead associated to starting conversations is the
behaviour object creation time and its memory occupation; agents particularly

Developing Multi-agent Systems with JADE 101

sensitive to these overheads can easily bound them a priori implementing a behaviour
pool.

From a fault tolerance standpoint, JADE does not perform very well due to the
single point of failure represented by the Front End container and, in particular, by the
AMS. A replicated AMS would be necessary to grant complete fault tolerance of the
platform. Nevertheless, it should be noted that, due to JADE decentralised messaging
architecture, a group of cooperating agents could continue to work even in the
presence of an AMS failure. What is really missing in JADE is a restart mechanism
for the front-end container and the FIPA system agents.

Even if JADE is a young project, it has been designed with criteria more
academics than industrials, and even if only recently it has been released under Open
Source License, it has been already used into some of projects.

FACTS [5] is a project in the framework of the ACTS programme of the European
Commission that has used JADE in two application domains. In the first application
domain, JADE provides the basis for a new generation TV entertainment system. The
user accesses a multi-agent system to help him on the basis of his profile that is able
to capture, model, and refine over-time through the collaboration of agents with
different capabilities. The second application domain deals with agents collaborating,
and at the same time competing, in order to help the user to purchase a business trip.
A Personal Travel Assistance represents the user interests and cooperates with a
Travel Broker Agent in order to select and recommend the business trip.

CoMMA [3] is a project in the framework of the IST programme of the European
Commission that is using JADE to help users in the management of an organisation
corporate memory and in particular to facilitate the creation, dissemination,
transmission and reuse of knowledge in the organisation.

JADE offers an agent model that is more “primitive” than the agents models
offered, for example, by AgentBuilder, dMARS, RETSINA and Zeus; however, the
overhead due to such sophisticated agent models might not be justified for agents that
must perform some simple tasks. Starting from FIPA assumption that only the
external behavior of system components should be specified, leaving the
implementation details and internal architectures to agent developers, we realize a
very general agent model that can be easily specialized to implement, for example,
reactive or BDI architectures or other sophisticated architectures taking also
advantages of the separation between computation and synchronization code inside
agent behaviours through the use of guards and transitions. In particular, we can
realize a system composed of agents with different architectures, but able to interact
because on the top of the “primitive” JADE agent model. Moreover, the behavior
abstraction of our agent model allows an easy integration of external software. For
example, we realized a JessBehaviour that allows the use of JESS [8] as agent
reasoning engine.

Acknowledgements. Thanks to all the people that contributed to development of
JADE. The work has been partially supported by a grant from CSELT, Torino.

102 F. Bellifemine, A. Poggi, and G. Rimassa

References

1. J. Baumann, F. Hohl, K. Rothermel and M. Straßer. Mole - Concepts of a Mobile Agent
System, World Wide Web,1(3):123-137, 1998.

2. J.M. Bradshaw. Software Agents. MIT Press, Cambridge, MA, 1997.
3. CoMMA Project Home Page. Available at

http://www.ii.atos-group.com/sophia/comma/HomePage.htm.
4. S.A. DeLoach and M. Wood, Developing Multiagent Systems with agentTool. In C.

Castelfranchi and Y. Lespérance, editors, Intelligent Agents VII. Agent Theories,
Architectures, and Languages - 7th International Workshop, ATAL-2000, Boston, MA,
USA, July 7-9, 2000, Proceedings, Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin, 2001. In this volume.

5. FACTS Project Home Page: http://www.labs.bt.com/profsoc/facts/.
6. T. Finin and Y. Labrou. KQML as an agent communication language. In: J.M. Bradshaw

(ed.), Software Agents, pp. 291-316. MIT Press, Cambridge, MA, 1997.
7. Foundation for Intelligent Physical Agents. Specifications. 1999. Available at

http://www.fipa.org.
8. E.J. Friedman-Hill. Java Expert System Shell. 1998. Available At

http://herzberg.ca.sandia.gov/jess.
9. M.R. Genesereth and S.P. Ketchpel. Software Agents. Comm. of ACM, 37(7):48-53.1994.
10. Grasshopper Home Page. Available at http://www.ikv.de/products/grasshopper.
11. The JADE Project Home Page, 2000. Available at http://sharon.cselt.it/projects/jade.
12. N.R. Jennings and M. Wooldrige. Agent Technology: Foundations, Applications, and

Markets. Stringer, Berlin, Germany, 1998.
13. R.E. Johnson and J.M. Zweig. Delegation in C++. The Journal of Object Oriented

Programming, 4(7):31-34, 1991.
14. V. Karamcheti, J. Plevyak and A. Chien. Runtime Mechanisms for Efficient Dynamic

Multithreading. Journal of Parallel and Distributed Computing, 37:21-40, 1996.
15. T. Kawamura, N. Yoshioka, T. Hasegawa, A. Ohsuga and S. Honiden. Bee-gent : Bonding

and Encapsulation Enhancement Agent Framework for Development of Distributed
Systems. Proceedings of the 6th Asia-Pacific Software Engneering Conference, 1999.

16. D. Kerr, D. O'Sullivan, R. Evans, R. Richardson and F. Somers. Experiences using
Intelligent Agent Technologies as a Unifying Approach to Network and Service
Management. Proceedings of IS&N 98, Antwerp, Belgium. 1998.

17. G. Lavender and D. Schmidt. Active Object: An object behavioural pattern for concurrent
programming. In J.M. Vlissides, J.O. Coplien, and N.L. Kerth, Eds. Pattern Languages of
Program Design. Addison-Wesley, Reading, MA, 1996.

18. D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison Wesley,
Reading, MA, 1997.

19. P. Maes. Agents that reduce work and information overload. Comm. of ACM, 37(7):30-40.
1994.

20. D.L. Martin, A.J. Cheyer and D.B. Moran. The Open Agent Architecture: A Framework for
Building Distributed Software Systems. Applied Artificial Intelligence 13:91-128. 1998.

21. B. Meyer. Object Oriented Software Construction, 2nd Ed. Prentice Hall, 1997
22. D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka, D.

Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF - The
OMG Mobile Agent System Interoperability Facility. In K. Rothermel and F. Hohl, Eds. –
Proc. 2nd Int. Workshop Mobile Agents (MA '98), Lecture Notes in Computer Science,
1477, pp. 50-67, Springer, Stuttgart, Germany, 1998.

23. FIPA-OS Home Page. Available at
http://www.nortelnetworks.com/products/announcements/fipa/index.html.

24. H.S. Nwana. Software Agents: An Overview. The Knowledge Engineering Review,
11(3):205-244, 1996.

Developing Multi-agent Systems with JADE 103

25. H.S. Nwana, D.T. Ndumu and L.C. Lee. ZEUS: An advanced Tool-Kit for Engineering
Distributed Mulyi-Agent Systems. In: Proc of PAAM98, pp. 377-391, London, U.K., 1998.

26. Object Management Group. 95-11-03: Common Services. 1997. Available at
http://www.omg.org.

27. R.S. Patil, R.E. Fikes, P.F. Patel-Scheneider, D. McKay, T. Finin, T. Gruber and R. Neches.
The DARPA knowledge sharing effort: progress report. In: Proc. Third Conf. on Principles
of Knowledge Representation and Reasoning, pp 103-114. Cambridge, MA, 1992.

28. A.S. Rao and M. P. Georgeff. BDI agents: from theory to practice. In Proc. of the First Int.
Conf. On Multi-Agent Systems, pp. 312-319, San Francisco, CA, 1995.

29. Reticular Systems. Agent Construction Tools. 1999. Available at
http://www.agentbuilder.com.

30. Reticular Systems. AgentBuilder - An integrated Toolkit for Constructing Intelligence
Software Agents. 1999. Available at http://www.agentbuilder.com.

31. J.R. Searle. Speech Acts: An Essay in the Phylosophy of language. Cambridge University
Press, 1970.

32. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92. 1993.
33. Munindar P. Singh. Write Asynchronous, Run Synchronous. IEEE Internet Computing,

3(2):4-5. 1999.
34. K. Sycara, A. Pannu, M. Williamson and D. Zeng. Distributed Intelligent Agents. IEEE

Expert, 11(6):36-46. 1996.
35. S.R. Thomas. The PLACA Agent Programming Language. In M.J. Wooldrige & N.R.

Jennings (Eds.), Lecture Notes in Artificial Intelligence, pp. 355-370. Springer-Verlag,
Berlin. 1994.

36. M. Wooldrige and N.R. Jennings. Intelligent Agents: Theory and Practice, The Knowledge
Engineering Review, 10(2):115-152, 1995.

	Introduction
	FIPA Specifications
	Related Work
	JADE
	JADE Runtime System
	Distributed Agent Platform
	Message Delivery Subsystem
	Address Management and Caching
	Mobility
	User-Defined Ontologies and Content Languages
	Tools for Platform Management and Monitoring

	JADE Agent Development Model
	From Agent Theory to Class Design
	6.2 JADE Agent Concurrency Model
	Using Behaviours to Build Complex Agents

	Conclusions
	References

