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Abstract

In this paper, we give a reduction formula for the characteristic functions of
the Sturm–Liouville boundary value problems defined on a tree. We also
discuss the multiplicity of the eigenvalues and interlacing properties between
two spectral sets associated with different boundary conditions.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34A55, 34B24

1. Introduction

The theory of quantum graphs, i.e. Schrödinger or Dirac operators defined on graph domains,
is a fast developing research direction in the field of ordinary differential equations (see, e.g.,
[4, 5, 7, 12–16]). Similar problems also occur in the theory of small transversal vibrations
of webs of strings or rods (see, for review, [28]). In these theories, for finite graphs usually
continuity conditions and Kirchhoff conditions are imposed at interior vertices while Robin
conditions at pendant vertices. All these are motivated by physics. Important cases of Robin
conditions are Dirichlet and Neumann conditions which we will use in this paper.

To explain our aims let us recall (see, for example, [20, 21]) that the eigenvalues of two
self-adjoint Sturm–Liouville boundary value problems

−y ′′ + q(x)y = λ2y, (1.1)

y ′(0) + Hy(0) = 0, (1.2)

y ′(1) + hjy(1) = 0, j = 1, 2, (1.3)
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with real q ∈ L2(0, l),H ∈ R ∪ {∞}, hj ∈ R ∪ ∞ and h1 < h2 interlace in strict
meaning:

−∞ <
(
λ

(1)
1

)2
<

(
λ

(2)
1

)2
<

(
λ

(1)
2

)2
<

(
λ

(2)
2

)2
< · · · .

If h = 0, the corresponding boundary condition is said to be Neumann and if h = ∞,
then it is said to be Dirichlet. This is a particular case of general results obtained in [11] for
boundary value problems generated by the general equation of small transversal vibrations of a
string.

To solve inverse problems of recovering the potentials on the edges using the spectra
of boundary problems it is necessary to characterize spectral data. In the classical case (see
[19]), the interlacing property of eigenvalues and certain asymptotics of the spectra give the
necessary and sufficient conditions for two sequences to be the spectra of problems (1.1)–
(1.3). So we expect that some form of interlacing behavior should be a part of necessary
and sufficient conditions for sequences of real numbers to be the spectra of boundary value
problems on an arbitrary connected finite metric graph.

In [24], the following analog of classical interlacing was obtained for the inverse three
spectral problem. Let {λk}∞k �=0

−∞
be the spectrum of problem:

y ′′ + λ2y − q(x)y = 0,

y(0) = y(a) = 0.

Here the potential q(x) ∈ W 1
2 (0, a) is real and such that the spectrum is real and does not

contain 0.
Let {νk}∞k �=0

−∞
,
{
ν

(1)
k

}∞
k �=0
−∞

be the spectra of problems

y ′′ + λ2y − q(x)y = 0,

y(0) = y
(a

2

)
= 0,

and

y ′′ + λ2y − q(x)y = 0,

y
(a

2

)
= y(a) = 0,

respectively.

Theorem 1.1.

(a) All λk, νk and ν
(1)
k are simple, 0 < λ1 < ν1; λ1 < ν

(1)
1 .

(b) For every n > 1 the following alternative is valid: either the interval (λ1, λn) contains
exactly n − 1 (counting multiplicities) elements of the set {νk}∞1 ∪ {

ν
(1)
k

}∞
1 , and then

λn �∈ {νk}∞1 ∪ {
ν

(1)
k

}∞
1 , or the interval (λ1, λn) contains exactly n − 2 (counting

multiplicities) elements of the set {νk}∞1 ∪ {
ν

(1)
k

}∞
1 , and thenλn ∈ {νk}∞1 ∩ {

ν
(1)
k

}∞
1 .

The proof of this theorem can be found in [25 theorem 1.13]. Generalizations of this
theorem to the case of nonequal subintervals and wider class of q’s, and boundary conditions
were obtained in [9]. For other generalizations and discrete analogues, see [1, 2, 22].
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The above spectral problems on the interval [0, a] can be considered as problems on a
star graph having two edges of the length a/2 each. In this case, we call

y
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2
− 0

)
= y

(a

2
+ 0

)
= 0

the Dirichlet conditions, and

y
(a

2
− 0

)
= y

(a

2
+ 0

)
,

y ′
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2
− 0

)
= y ′

(a

2
+ 0

)
the Neumann conditions. Then {λk}∞k �=0

−∞
can be called the Neumann spectrum and

{νk}∞k �=0
−∞

∪ {
ν

(1)
k

}∞
k �=0
−∞

the Dirichlet spectrum. In this paper, we use generalizations of these

notions for trees.
Generalizations of the above interlacing results for star graphs of more than two edges

were obtained in [25, 26] for Sturm–Liouville problems, for Stieltjes strings in [3] and for
the problem generated by the string equation in [27]. For the case of a graph with simple
eigenvalues these results were generalized in [29].

In this paper, we consider the case of trees but allow eigenvalues to be of arbitrary
geometric multiplicity. We establish some useful formulae,

φN(λ2) = φ
(1)
N (λ2)φ

(2)
D (λ2) + φ

(2)
N (λ2)φ

(1)
D (λ2),

φD(λ2) = φ
(1)
D (λ2)φ

(2)
D (λ2),

connecting characteristic functions of Neumann and Dirichlet problems on whole graph with
these functions on subgraphs. These formulae were obtained in [17] when one of the subgraphs
is just an edge. Furthermore, the function φD

φN
will be analyzed in more detail.

We also study the interlacing behavior of eigenvalues of different boundary value problems
on a tree. It is interesting to note that these results are true also in the case of boundary value
problems generated by recurrence relations connected with small vibrations of Stieltjes strings.

2. Characteristic functions

Let T be a metric tree with n edges. We denote by vj the vertices, by d(vj ) their degrees,
by ej the edges and by lj their lengths. An arbitrary vertex v is chosen as the root. Local
coordinates for edges identify the edge ej with the interval [0, lj ] so that the local coordinate
increases as the distance to the root decreases. This means that each pendant vertex has the
local coordinate 0 if it is not the root. The root has local coordinate lj for any j th edge incident
to it. All the other interior vertices v have one outgoing edge, with local coordinate 0, while
the local coordinate for v for an incoming edge ej is lj . Functions yj on the edges are subject
to a system of n scalar Sturm–Liouville equations:

−y ′′
j + qj (x)yj = λ2yj , (2.1)

where qj is a real-valued function which belongs to L2[0, lj ]. For an edge ej incident to a
pendant vertex we impose self-adjoint boundary conditions,

y ′
j (0) + βjyj (0) = 0, (2.2)

where βj ∈ R ∪ {∞}. The case βj = ∞ corresponds to the Dirichlet boundary condition
yj (0) = 0.
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At the root v, we impose the continuity conditions

yj (lj ) = yk(lk) (2.3)

for all incident edges ej and ek , and the Kirchhoff condition∑
j

y ′
j (lj ) = 0, (2.4)

where the sum is taken over all edges ej incident to v. For all other interior vertices with
incoming edges ej and outgoing edge ek the continuity conditions are

yj (lj ) = yk(0), (2.5)

and the Kirchhoff condition is

y ′
k(0) =

∑
j

y ′
j (lj ). (2.6)

Let us denote by sj (λ, x) the solution of the Sturm–Liouville equation (2.1) on the
edge ej which satisfies the conditions sj (λ, 0) = s ′

j (λ, 0) − 1 = 0 and by cj (λ, x) the
solution which satisfies the conditions cj (λ, 0) − 1 = c′

j (λ, 0) = 0. Then the characteristic
function, i.e. an entire function whose zeros coincide with the spectrum of the problem
can be expressed by sj (λ, lj ), s

′
j (λ, lj ), cj (λ, lj ) and c′

j (λ, lj ). To do it we introduce
the following system of vector functions ψj(λ, x) = col{0, 0, . . . , sj (λ, x), . . . , 0} and
ψj+n(λ, x) = col{0, 0, . . . , cj (λ, x), . . . , 0} for j = 1, 2, . . . , n, where n is the number
of edges. As in [29], we denote by Lj (j = 1, 2, . . . , 2n) the linear functionals generated by
(2.2)–(2.6). Then �(λ2) = ‖Lj(ψk(λ, x)‖2n

j,k is the characteristic matrix which represents the
system of linear equations describing the continuity and Kirchhoff conditions for the internal
vertices. Then we call

φN(λ2) := det(�(λ2))

the characteristic function of problem (2.1)–(2.6). The characteristic function is determined
up to a constant multiple. For the sake of convenience, we use the spectral parameter z = λ2.
It is easy to see that the characteristic function satisfies

φN(z) = φN(z).

We are interested also in the problem generated by the same equations and the same
boundary and matching conditions, but with the condition

yj (lj ) = 0 (2.4′)

instead of (2.4) at v. We denote this characteristic function of problem (2.1)–(2.3), (2.4′),
(2.5), (2.6) by φD(λ2). In case when v is a pendant vertex, condition (2.4) coincides with
the Neumann boundary condition, and condition (2.4′) coincides with the Dirichlet boundary
condition. Also φD(z) satisfies the symmetry condition

φD(z) = φD(z).

Let us assume that the root v is an interior vertex. We divide our tree T into two subtrees
T1 and T2 having v as the only common vertex. (We say that T1 and T2 are complementary
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subtrees of T.)

T

Graph

V

V

V

T1 T2

Subgraphs

We consider two Neumann problems on the subtrees:

−y ′′
j,i + qj,i(x)yj,i = zyj,i , qj,i ∈ L2[0, lj,i], i = 1, 2. (2.7)

For an edge ej,i ∈ Ti incident to a pendant vertex,

y ′
j,i (0) + βj,iyj,i(0) = 0. (2.8)

At the root of the subtree Ti , we still have the continuity and Kirchhoff conditions for all
incident edges j and k:

yj,i(lj,i ) = yk,i(0), (2.9)∑
j

y ′
j,i (lj,i) = 0. (2.10)

For all other interior vertices with incoming edges ej,i and outgoing edge ek,i , the continuity
conditions are

yj,i(lj,i ) = yk,i(0), (2.11)

and the Kirchhoff condition is

y ′
k,i(0) =

∑
j,i

y ′
j,i (lj,i). (2.12)

The two Dirichlet problems on T1 and T2 are

−y ′′
j,i + qj,i(x)yj,i = λyj,i , qj,i ∈ L2[0, lj,i], i = 1, 2. (2.13)

For an edge ej,i incident to a pendant vertex, we let

y ′
j,i (0) + βj,iyj,i(0) = 0. (2.14)

At the root of Ti ,

yj,i(lj,i ) = 0, (2.15)
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for all edges ej,i belonging to the part i incident to the root. For all other interior vertices with
incoming edges ej,i and outgoing edge ek,i the continuity conditions are

yj,i(lj,i ) = yk,i(0), (2.16)

and the Kirchhoff condition is

y ′
k,i(0) =

∑
j,i

y ′
j,i (lj,i). (2.17)

Denote by φ
(i)
N (z) the characteristic function of problem (2.7)–(2.12) and by φ

(i)
D (z) the

characteristic function of problem (2.13)–(2.17). With these terminologies, we have the
following reduction formula for the characteristic functions of a tree.

Theorem 2.1. Let the root v of a tree T be an interior vertex. Let T1 and T2 be the
complementary subtrees of T. Then with the same orientation of the graph and the subgraphs
edges described above,

φN(z) = φ
(1)
N (z)φ

(2)
D (z) + φ

(1)
D (z)φ

(2)
N (z),

φD(z) = φ
(1)
D (z)φ

(2)
D (z).

(2.18)

Proof. Fix the edges ej ∈ T1 and ek ∈ T2 incident to the root v. Without loss of generality,
we let both ej and ek be the internal edges. (The case when they are boundary edges is even
simpler.) Then the characteristic matrix �(λ2) can be expressed as

�(λ2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

* · · · · · · ∗ 0 · · · · · · 0
...

...
...

...
...

...
...

...

* · · · · · · ∗ 0 · · · · · · 0
0 · · · sj (lj ) cj (lj ) −sk(lk) −ck(lk) · · · 0
* · · · s ′

j (lj ) c′
j (lj ) s ′

k(lk) c′
k(lk) · · · ∗

0 · · · · · · 0 ∗ · · · · · · ∗
...

...
...

...
...

...
...

...

0 · · · · · · 0 ∗ · · · · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here the upper left square submatrix describes the continuity and Kirchhoff conditions at
the vertices in T1. So its determinant is φ

(1)
D (λ2), for the last row demonstrates the Dirichlet

condition at v. The lower right square submatrix describes those conditions in T2 with the
Neumann boundary condition at v. So its determinant is φ

(2)
N (λ2). What remain in det �(λ2)

is the product of the determinants of the upper left submatrix and lower right submatrix of
the matrix formed by interchanging the middle two row vectors concerning the continuity and
Kirchhoff conditions at v. Hence the overall characteristic function φN(z) is given by

φN(λ2) = det �(λ2)

= φ
(1)
D (λ2)φ

(2)
N (λ2) − det

⎡
⎢⎢⎢⎣

* · · · · · · ∗
...

...
...

...

* · · · · · · ∗
* · · · s ′

j (lj ) c′
j (lj )

⎤
⎥⎥⎥⎦ · det

⎡
⎢⎢⎢⎣

−sk(lk) −ck(lk) · · · 0
* · · · · · · ∗
...

...
...

...

* · · · · · · ∗

⎤
⎥⎥⎥⎦

= φ
(1)
D (λ2)φ

(2)
N (λ2) + φ

(1)
N (λ2)φ

(2)
D (λ2).

Equation (2.18) is evident from the definition of φD . �
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Corollary 2.2. Suppose a tree T with root v has d(v) complementary subtrees Ti

(i = 1, 2, . . . , d(v)). Let φ
(i)
N and φ

(i)
D denote the Neumann and the Dirichlet characteristic

functions for Ti . If v is a pendant vertex for Ti , then

φN(z) =
d(v)∑
i=1

φ
(i)
N (z)

d(v)∏
i=1,k �=i

φ
(k)
D (z), (2.19)

φD(z) =
d(v)∏
i=1

φ
(i)
D (z). (2.20)

Another application of theorem 2.1 lies in the understanding of the complex function φD

φN
.

For this, we need the notion of a Nevanlinna function. It is also called the R-function [11] or
Herglotz function, and its definition also varies. Below is the definition we use in this paper.

Definition. A meromorphic function f (z) is said to be a Nevanlinna function if:

(i) it is analytic in the half-planes Im z > 0 and Im z < 0,
(ii) f (z) = f (z) (Im z �= 0),

(iii) Im z Imf (z) � 0 for Im z �= 0.

The following lemma is obvious.

Lemma 2.3. Suppose that f and g are Nevanlinna functions, then f + g and − 1
f

are also
Nevanlinna functions.

Theorem 2.4. The ratio
φD(z)

φN(z)

is a Nevanlinna function.

Proof. We extend to the case of the graph domain the well-known method (see [10]). Using
Lagrange identity (see [23 part II, p 50]) for solution yj we obtain

−i(−y ′
j yj + yj

′yj )|lj0 = 2 Im z

∫ lj

0
|yj |2 dx. (2.21)

If T is just an interval, then using (2.2) we obtain from (2.21)

−i(−y ′(lj )yj (lj ) + y ′
j (lj )yj (lj )) = 2 Im z

∫ lj

0
|yj |2 dx.

Thus on an interval,

−Im

(
φN(z)

φD(z)

)
= −Im

(
y ′

j (lj )

yj (lj )

)
= Im z

∫ lj
0 |yj |2 dx

|yj (lj )|2 .

It means that φD(z)

φN (z)
in the case of an interval is a Nevanlinna function.

For a general tree, we can use the root v to break down the tree into complementary
subtrees Ti’s (i = 1, . . . , d(v)). By theorem 2.1,

φN(z)

φD(z)
=

d(v)∑
i=1

φ
(i)
N (z)

φ
(i)
D (z)

.
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Then

φD(z)

φN(z)
= −

(
−

d(v)∑
i=1

φ
(i)
N (z)

φ
(i)
D (z)

)−1

.

By lemma 2.3, φD

φN
is a Nevanlinna function whenever φ

(1)
D

φ
(1)
N

and φ
(2)
D

φ
(2)
N

are both Nevanlinna

functions. Using a recursive argument, the statement is valid for any tree. �

Definition (see [11]). A Nevanlinna function f (z) is said to be an S-function if f (z) > 0 for
z < 0.

Theorem 2.5. There exists a number β > 0 such that

φD(z − β)

φN(z − β)

is an S-function.

Proof. In view of theorem 2.4 it is sufficient to show that there exists β > 0 such that φD(z)

φN (z)
> 0

for z < β. Using corollary 2.2, we obtain

φN(z)

φD(z)
=

d(v)∑
j=1

φ
(j)

N (z)

φ
(j)

D (z)
. (2.22)

All the functions φ
(j)

N (z) and φ
(j)

D (z) are the characteristic functions with Neumann and
Dirichlet conditions, respectively, at the pendant root. Therefore,

φ
(j)

N (z)

φ
(j)

D (z)
= cj (

√
z, lj )φ̃

(j)

N (z) + c′
j (

√
z, lj )φ̃D(z)

sj (
√

z, lj )φ̃
(j)

N (z) + s ′
j (

√
z, lj )φ̃D(z)

. (2.23)

The asymptotic expansions for sj (
√

z, lj ), s
′
j (

√
z, lj ), cj (

√
z, lj ), c

′
j (

√
z, lj ) are well known

(see, for example, [21]):

sj (
√

z, lj ) =
z→−∞

e
√|z|lj

2
√|z| (1 + o(1)), s ′

j (
√

z, lj ) =
z→−∞

e
√|z|lj

2
(1 + o(1)),

cj (
√

z, lj ) =
z→−∞

e
√|z|lj

2
(1 + o(1)), c′

j (
√

z, lj ) =
z→−∞

√|z| e
√|z|lj

2
(1 + o(1)).

Using these asymptotics we obtain from (2.23)

φ
(j)

N (z)

φ
(j)

D (z)
=

z→−∞
√

|z|(1 + o(1)).

Therefore, all the summands in (2.22) are positive for negative z with |z| large enough. Thus,
there exists β > 0 such that z < −β implies φN (z)

φD(z)
> 0 and φD(z)

φN (z)
> 0. �

Denote by {ζk} = {
ν

(1)
k

} ∪ {
ν

(2)
k

}
and by {ξk} = {

μ
(1)
k

} ∪ {
μ

(2)
k

}
, where

{
ν

(i)
k

}
is the set

of zeros of φ
(i)
D (λ2), and

{
μ

(i)
k

}
is the set of zeros of φ

(i)
N (λ2).

Corollary 2.6. The zeros λk of φN(λ2) interlace with {ζk} and with {ξk} as follows:

λ2
1 � ζ 2

1 � λ2
2 � ζ 2

2 � · · ·
ξ 2

1 � λ2
1 � ξ 2

2 � λ2
2 � · · · .

8
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Proof. By theorem 2.1

− φN(z)

φ
(1)
D (z)φ

(2)
D (z)

= −φ
(1)
N (z)

φ
(1)
D (z)

− φ
(2)
N (z)

φ
(2)
D (z)

(2.24)

and

φN(z)

φ
(1)
N (z)φ

(2)
N (z)

= φ
(1)
D (z)

φ
(1)
N (z)

+
φ

(2)
D (z)

φ
(2)
N (z)

. (2.25)

By theorem 2.4 both terms at the right-hand side of (2.24) and (2.25) are Nevanlinna functions
and so are the associated left-hand sides. The statement thus follows from the interlacing
properties of Nevanlinna functions [18] and theorem 2.5. �

These interlacing results are also evident from considering such boundary value problems
either variationally or via matrix Prüffer angles (see [8, 6]); both of the approaches are different
from that used in this paper.

3. Multiplicities of eigenvalues

Theorem 3.1. Denote by pN(z) the multiplicity of z as a zero of φN and by pD(z) the
multiplicity of z as a zero of φD(z). Then

(a) |pN(z) − pD(z)| � 1,

(b) pN(z) � n − ni , where n is the number of edges and ni is the number of interior vertices.

Proof. Part (a) follows from corollary 2.6. For part (b), we first observe that the multiplicity
of any nonzero eigenvalue z = λ2 is equal to dN(λ) := dim(Ker(�(λ))), the dimension of the
nullspace of the characteristic matrix �(λ), for if any zero of an entry in �(λ), if exists, is
simple. We shall use induction on n. The case n = 1 is obvious. When n = 2, then ni = 1,
and

�2(λ) =
(

S1(λ) −S2(λ)

S ′
1(λ) S ′

2(λ)

)
. (3.1)

So if λ is a zero of the row vector (S1(λ),−S2(λ)), then it would not be a zero of the other row
vector. Thus dN � 1. Suppose the statement is true for n = k with each ni � k − 1. Then any
tree with k + 1 edges (and ni interior vertices) can be obtained by adding one more edge to a
k-edged tree. If the (k + 1)th edge is added to a pendent vertex, the graph can be considered
as unchanged. Thus by induction hypothesis,

dN � k − (ni − 1) = (k + 1) − ni.

Suppose that the (k+1)th edge is added to an interior vertex, the dimension of the characteristic
matrix increases by 1, with an additional row such as (S1,−S2, 0, . . . , 0) and an additional
column. Hence,

dN � dim(Ker(�k(λ))) + 1 � k + 1 − ni.

The statement is valid for any n ∈ N by mathematical induction. �

Corollary 3.2.

(a) If the root v is an interior vertex then pD(z) � n − ni + 1.

9
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(b) If v is a pendant vertex then

pD(z) + pN(z) � 2n − 2ni − 1.

Proof. Part (a) follows from theorem 3.1. For part (b), we may assume that T has at least
one vertex with degree greater than 2. For if not, T is an interval, where the Dirichlet and
Neumann eigenvalues do not overlap, and pD(z) + pN(z) � 1.

So let the pendant vertex be incident to the edge e1, and vk+1 be the first vertex degree
greater than 2, after passing through edges {ei : 1 � i � k}. Now suppose pN(z) �
n − ni, pD(z) � n − ni for some z. By (2.19), we obtain that z is a zero of multiplicity at
least n − ni of

φN(z) = c1(
√

z, l1 + l2 + · · · + lk)φ
(2)
N (z) + c′

1

(√
z, l1 + l2 + · · · + lk

)
φ

(2)
D (z)

and of

φD(z) = s1(
√

z, l1 + l2 + · · · + lk)φ
(2)
N (z) + s ′

1

(√
z, l1 + l2 + · · · + lk

)
φ

(2)
D (z).

The Lagrange identity gives

c1(
√

z, l1 + l2 + · · · + lk)s
′
1(

√
z, l1 + l2 + · · · + lk)

− c′
1(

√
z, l1 + l2 + · · · + lk)s1(

√
z, l1 + l2 + · · · + lk) = 1.

Therefore, if z is a zero of multiplicity not less than n−ni for both φN and φD , then it is a zero
of the same multiplicity of φ

(2)
N and φ

(2)
D which is impossible since the tree T1 obtained from

T by deleting k edges connecting the root v with vk+1 has n − k edges and ni − k + 1 interior
vertices, and according to (b) of theorem 3.1 the multiplicity p

(2)
N of the Neumann problem for

T1 satisfies inequality p
(2)
N � n − k − (ni − k + 1) = n − ni − 1. Thus (b) is proved. �

Corollary 3.3. Let the root be an interior vertex. Then

(a) The multiplicity of any nonzero eigenvalue of problem (2.2)–(2.6) does not exceed n− ni .
(b) The multiplicity of any nonzero eigenvalue of problem (2.2), (2.3), (2.4′), (2.5), (2.6) does

not exceed n − ni + 1.
(c) If 0 is an eigenvalue of problem (2.2)–(2.6) then its geometric multiplicity does not exceed

n − ni and its algebraic multiplicity is twice more.
(d) If 0 is an eigenvalue of problem (2.2), (2.3), (2.4′), (2.5), (2.6) then its geometric

multiplicity does not exceed n − ni + 1 and its algebraic multiplicity is twice more.

Theorem 3.4. Suppose a tree T rooted at v has complementary subtrees Tj (j = 1, 2, . . . , d),

and
d∪

j=1
VTj

= VT and VTj
∩VTr

= {v}. Let φN(z) and φD(z) be as in (2.19) and (2.20). Suppose

that z0 is a common zero of φN(z) and φD(z) with multiplicities pN and pD , respectively. Then
pN � pD implies that pD � n − d − ni + 1.

Proof. According to corollary 3.2 for each j

p
(j)

D (z) + p
(j)

N (z) � 2n(j) − 2n
(j)

i − 1, (3.2)

where n(j) is the number of the edges of the j th subtree, n
(j)

i is the number of the interior
vertices of the j th subtree. According to (2.22), pN(z) = min

1�j�d

{
p

(j)

N (z) +
∑d

k=1,k �=j p
(k)
D (z)

}
and pD(z) = ∑d

k=1 p
(k)
D (z), it is clear that the condition pN(z) � pD(z) implies

p
(j)

N (z) � p
(j)

D (z) (3.3)

10
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for each j . Combining (3.2) with (3.3) we obtain

p
(j)

D (z) � n(j) − n
(j)

i − 1.

Using this inequality we get

pD(z) =
d∑

j=1

p
(j)

D (z) �
d∑

j=1

n(j) −
d∑

j=1

n
(j)

i − d = n − ni − d + 1. �

Let us consider a star-shaped graph of n edges rooted at the interior vertex. Then

φN(z) =
n∑

j=1

(c′
j (

√
z, lj ) − βj s

′
j (

√
z, lj ))

n∏
k=1,k �=j

(ck(
√

z, lk) − βksk(
√

z, lk)),

φD(z) =
n∏

k=1

(ck(
√

z, lk) − βksk(
√

z, lk)).

Denote by
{
λ2

k

}
the set of zeros of φN(z) and by

{
θ2
k

} = n∪
j=1

{
τ

(j)2
k

}
the union of sets

{
τ

(j)2
k

}
of zeros of cj (

√
z, lj ) − βj sj (

√
z, lj ).

Corollary 3.5.

(a) λ2
1 � θ2

1 � λ2
2 � θ2

2 � · · ·.
(b) θ2

k = λ2
k+1 if and only if λ2

k+1 = θ2
k+1.

(c) Multiplicity of θ2
k does not exceed n.

Proof. Part (a) follows from corollary 2.6. Part (c) follows from simplicity of zeros of
cj (

√
z, lj ) − βj sj (

√
z, lj ). To prove (b), we note that for a star graph ni = 1 and d = n.

Therefore, theorem 3.4 implies that if z is a common zero for φD and φN then pN < pD . Then
it follows from theorem 3.1 that pN = pD − 1. This together with the interlacing property
implies (b). �

Thus we have obtained theorem 3.2 in [26] as a particular case.
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